Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals
Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite ha...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 2; pp. 527 - 538 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2021.3100297 |
Cover
Loading…
Abstract | Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization. |
---|---|
AbstractList | Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization. Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject’s brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization. |
Author | Denman, Simon Sridharan, Sridha Fookes, Clinton Fernando, Tharindu Dissanayake, Theekshana |
Author_xml | – sequence: 1 givenname: Theekshana orcidid: 0000-0001-9741-1575 surname: Dissanayake fullname: Dissanayake, Theekshana email: theekshanadis@eng.pdn.ac.lk organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia – sequence: 2 givenname: Tharindu orcidid: 0000-0002-6935-1816 surname: Fernando fullname: Fernando, Tharindu email: t.warnakulasuriya@qut.edu.au organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia – sequence: 3 givenname: Simon orcidid: 0000-0002-0983-5480 surname: Denman fullname: Denman, Simon email: s.denman@qut.edu.au organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia – sequence: 4 givenname: Sridha orcidid: 0000-0003-4316-9001 surname: Sridharan fullname: Sridharan, Sridha email: s.sridharan@qut.edu.au organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia – sequence: 5 givenname: Clinton orcidid: 0000-0002-8515-6324 surname: Fookes fullname: Fookes, Clinton email: c.fookes@qut.edu.au organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34314363$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vEzEQxS1UREvpB0BIyBKXXhL8d20faRvSoEgghZ6ttXe2crTxLvbuAT49XiXh0AM-eEbW7z2N571FF7GPgNB7SpaUEvP5293jZskIo0tOCWFGvUJXjFZ6wRjRF-eeGnGJbnLek3J0eTLVG3TJBaeCV_wKNWvoDzCm4PEDwIC3UKcY4jNu-4R3k9uDH_EmNjBAueKIV0PoYBgLv4PwZ0qAfyRogh9DH_FTnqU7X3cDXq3WeBeeY93ld-h1WwrcnOo1evq6-nn_uNh-X2_uv2wXXkg9LpRvOW9bKY0gzpOK-ApqUKYB3SrHGyG94FIZ7pgTjkvTNs44yZwGoxRh_BrdHn2H1P-aII_2ELKHrqsj9FO2TBZvRZXUBf30At33U5qHtaxikldaC1Gojydqcgdo7JDCoU6_7Xl_BVBHwKc-5wSt9WGs512MqQ6dpcTOYdk5LDuHZU9hFSV9oTyb_0_z4agJAPCPN6L8vozzF8iRnX4 |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_3390_biomedicines10071551 crossref_primary_10_1007_s11432_023_3876_1 crossref_primary_10_1142_S0129065723500545 crossref_primary_10_3390_e24111641 crossref_primary_10_1016_j_compbiomed_2024_109257 crossref_primary_10_1016_j_bspc_2022_104053 crossref_primary_10_3389_fnins_2023_1150668 crossref_primary_10_3390_s23042061 crossref_primary_10_1007_s12559_024_10261_9 crossref_primary_10_1109_TNSRE_2023_3322275 crossref_primary_10_3233_THC_240550 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1007_s13755_023_00239_6 crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1155_2023_8674641 crossref_primary_10_1109_JBHI_2022_3203454 crossref_primary_10_3390_bioengineering9120781 crossref_primary_10_1109_TIM_2023_3261919 crossref_primary_10_1007_s11042_024_18560_x crossref_primary_10_3390_biomedicines12061283 crossref_primary_10_3390_brainsci13101462 crossref_primary_10_1016_j_compbiomed_2024_108510 crossref_primary_10_1109_TNSRE_2023_3321414 crossref_primary_10_1109_JBHI_2024_3423766 crossref_primary_10_1016_j_bspc_2024_106447 crossref_primary_10_3934_math_2024805 crossref_primary_10_3389_fninf_2024_1303380 crossref_primary_10_1016_j_bspc_2024_106603 crossref_primary_10_3389_fnins_2024_1474782 crossref_primary_10_1016_j_eswa_2023_121727 crossref_primary_10_1088_1741_2552_acfff5 crossref_primary_10_1109_TNSRE_2024_3460348 crossref_primary_10_1177_20552076241277185 crossref_primary_10_1038_s41598_024_64802_1 crossref_primary_10_3390_s23052458 crossref_primary_10_1088_1741_2552_adb455 crossref_primary_10_1016_j_jneumeth_2024_110182 crossref_primary_10_1038_s41598_023_30864_w crossref_primary_10_3389_fnins_2022_967116 crossref_primary_10_1142_S0129065724500515 crossref_primary_10_1109_JBHI_2023_3282251 crossref_primary_10_1117_1_JMI_10_4_044502 crossref_primary_10_54097_3v9scg07 |
Cites_doi | 10.1109/JBHI.2020.3027910 10.5555/3157382.3157527 10.1109/RBME.2020.3008792 10.1109/TAFFC.2020.2994159 10.1109/JSEN.2021.3057076 10.1016/j.compbiomed.2018.05.019 10.1109/JBHI.2019.2933046 10.1088/1741-2552/ab909d 10.1145/3386580 10.1038/s41598-020-78784-3 10.1016/j.asoc.2020.106954 10.1109/MSP.2012.2235192 10.1007/s12652-019-01220-6 10.1016/j.compbiomed.2020.103671 10.1109/TIFS.2019.2916403 10.1109/JBHI.2020.2984128 10.1109/ACCESS.2019.2927768 10.1109/TBCAS.2019.2929053 10.1016/j.neunet.2020.04.011 10.1016/j.neulet.2005.06.002 10.1109/TNSRE.2019.2943362 10.1016/j.compbiomed.2020.103719 10.1109/TCDS.2020.3012278 10.3390/pr8070846 10.1016/j.neunet.2018.04.018 10.1088/1741-2552/ab260c 10.1038/s41598-020-65401-6 10.1109/TAFFC.2018.2817622 10.1109/ACCESS.2019.2939288 10.1109/MSP.2017.2693418 10.1109/CBMS.2017.33 10.1109/TBME.2017.2785401 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2021.3100297 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 538 |
ExternalDocumentID | 34314363 10_1109_JBHI_2021_3100297 9497714 |
Genre | orig-research Journal Article |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c458t-7cf33ff55940bc060c6eae79de8f7b3d45c435793b2b4b359fdb9b52b8e977023 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 03:51:58 EDT 2025 Sun Jun 29 12:28:22 EDT 2025 Thu Jan 02 22:55:37 EST 2025 Tue Jul 01 03:00:00 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Wed Aug 27 03:00:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-7cf33ff55940bc060c6eae79de8f7b3d45c435793b2b4b359fdb9b52b8e977023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8515-6324 0000-0002-6935-1816 0000-0003-4316-9001 0000-0001-9741-1575 0000-0002-0983-5480 |
OpenAccessLink | https://eprints.qut.edu.au/212250/1/88918403.pdf |
PMID | 34314363 |
PQID | 2625368844 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9497714 proquest_miscellaneous_2555971758 proquest_journals_2625368844 crossref_citationtrail_10_1109_JBHI_2021_3100297 crossref_primary_10_1109_JBHI_2021_3100297 pubmed_primary_34314363 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 Lun (ref27) 2021 ref30 ref11 ref33 ref10 ref32 ref2 ref17 Shoeb (ref31) 2009 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref7 doi: 10.1109/JBHI.2020.3027910 – ident: ref33 doi: 10.5555/3157382.3157527 – ident: ref10 doi: 10.1109/RBME.2020.3008792 – ident: ref21 doi: 10.1109/TAFFC.2020.2994159 – ident: ref4 doi: 10.1109/JSEN.2021.3057076 – year: 2021 ident: ref27 article-title: GCNs-Net: A graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals – ident: ref26 doi: 10.1016/j.compbiomed.2018.05.019 – ident: ref24 doi: 10.1109/JBHI.2019.2933046 – ident: ref16 doi: 10.1088/1741-2552/ab909d – ident: ref25 doi: 10.1145/3386580 – ident: ref5 doi: 10.1038/s41598-020-78784-3 – ident: ref18 doi: 10.1016/j.asoc.2020.106954 – ident: ref17 doi: 10.1109/MSP.2012.2235192 – ident: ref22 doi: 10.1007/s12652-019-01220-6 – ident: ref11 doi: 10.1016/j.compbiomed.2020.103671 – ident: ref20 doi: 10.1109/TIFS.2019.2916403 – ident: ref6 doi: 10.1109/JBHI.2020.2984128 – ident: ref14 doi: 10.1109/ACCESS.2019.2927768 – ident: ref2 doi: 10.1109/TBCAS.2019.2929053 – ident: ref9 doi: 10.1016/j.neunet.2020.04.011 – ident: ref13 doi: 10.1016/j.neulet.2005.06.002 – ident: ref15 doi: 10.1109/TNSRE.2019.2943362 – ident: ref8 doi: 10.1016/j.compbiomed.2020.103719 – ident: ref30 doi: 10.1109/TCDS.2020.3012278 – ident: ref32 doi: 10.3390/pr8070846 – ident: ref23 doi: 10.1016/j.neunet.2018.04.018 – year: 2009 ident: ref31 article-title: Application of machine learning to epileptic seizure onset detection and treatment MASS NSl of technology – ident: ref12 doi: 10.1088/1741-2552/ab260c – ident: ref29 doi: 10.1038/s41598-020-65401-6 – ident: ref19 doi: 10.1109/TAFFC.2018.2817622 – ident: ref34 doi: 10.1109/ACCESS.2019.2939288 – ident: ref28 doi: 10.1109/MSP.2017.2693418 – ident: ref35 doi: 10.1109/CBMS.2017.33 – ident: ref3 doi: 10.1109/TBME.2017.2785401 |
SSID | ssj0000816896 |
Score | 2.5400472 |
Snippet | Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs)... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 527 |
SubjectTerms | Algorithms Anomalies Brain modeling Convulsions & seizures Data models Deep Learning EEG Electroencephalography Electroencephalography - methods Epilepsy Graphs Humans Localization Machine learning neural networks Prediction models Predictive models Scalp seizure prediction Seizures Seizures - diagnosis signal processing Synthesis Training |
Title | Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals |
URI | https://ieeexplore.ieee.org/document/9497714 https://www.ncbi.nlm.nih.gov/pubmed/34314363 https://www.proquest.com/docview/2625368844 https://www.proquest.com/docview/2555971758 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RDqiXQqGPLQ8ZqSfULEnsOMmxpQsL0lZIWyRu0dqeIFTYXS3JhV_fGccbqVVb9RbJjhNrZjzfeOz5AD4q5cjxuDrSmOcRaYiLZjpXEcpau9xmycxfF5t80-MbdXWb3W7Ap_4uDCL6w2c45Eefy3cL2_JW2WmpCK0wa_ULCty6u1r9foonkPB0XCk9RGSIKiQxk7g8vfoyvqRgME2GvKGdlsy9J8l3KqnlLx7JU6z8HW16r3O-DZP1_3aHTX4M28YM7fNvpRz_d0I78CrAT_G505fXsIHzXdiahAT7HrgLXDwyyZYVXxGXIpRfvROEbQUtMrxrIy576txGjJa0rNCyY8UU75_bFYrrFY_G8hb-PIKYkhosxWh0Iab3d1yu-Q3cnI--n42jQMQQWZUVTZTbWsq6puBDxcbGOrYaZ5iXDos6N9KpzBLqIks3qVFGZmXtTGmy1BRI8yNU8BY254s5vgehmeWMYJctNEXmRhcZ9csTrLnOTGLcAOK1MCobqpQzWcZD5aOVuKxYlBWLsgqiHMBJ_8qyK9Hxr857LIa-Y5DAAA7WEq-CET9VKcWGUheFoubjvpnMj3MqszkuWuqTcUhGGKwYwLtOU_qx1wr24c_f3IeXKd-l8EfAD2CzWbV4SAinMUdetX8CxfPyGQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQwJeGDAYHRsYiSdEuvywneQRRrd2rBNSN2lvUW1fpgloq5K87K_nznEjgQDxFskXJ9ad7e_OvvsA3krpaONxdaQxzyOyEBfNdS4jzGrtcquSuU8Xm17o8ZU8u1bXW_C-z4VBRH_5DIf86M_y3dK2HCo7KiWhFWatvqc4GbfL1uojKp5CwhNypfQQ0VSU4Rgzicujs4_jCbmDaTLkkHZaMvteRrunzHT2y57kSVb-jjf9vnOyA9PNH3fXTb4O28YM7d1vxRz_d0iP4VEAoOJDZzFPYAsXT-H-NByx74I7xeV3ptmy4hPiSoQCrDeC0K2gZYbjNmLSk-c2YrSihYUWHitmeHvXrlF8WXNvrHHhbySIGRnCSoxGp2J2e8MFm5_B1cno8ngcBSqGyEpVNFFu6yyra3I_ZGxsrGOrcY556bCoc5M5qSzhLprrJjXSZKqsnSmNSk2BND7CBc9he7Fc4AsQmnnOCHjZQpNvbnShSC5PsOZKM4lxA4g3yqhsqFPOdBnfKu-vxGXFqqxYlVVQ5QDe9a-suiId_xLeZTX0gkEDAzjYaLwK0_hHlZJ3mOmikNT8pm-mCcinKvMFLluSUeyUEQorBrDXWUrf98bA9v_8zdfwYHw5Pa_OJxefX8LDlDMr_IXwA9hu1i0eEt5pzCtv5j8Bja_1YQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+Deep+Learning+for+Subject+Independent+Epileptic+Seizure+Prediction+Using+Scalp+EEG+Signals&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Dissanayake%2C+Theekshana&rft.au=Fernando%2C+Tharindu&rft.au=Denman%2C+Simon&rft.au=Sridharan%2C+Sridha&rft.date=2022-02-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=2&rft.spage=527&rft_id=info:doi/10.1109%2FJBHI.2021.3100297&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |