Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals

Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite ha...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 2; pp. 527 - 538
Main Authors Dissanayake, Theekshana, Fernando, Tharindu, Denman, Simon, Sridharan, Sridha, Fookes, Clinton
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2021.3100297

Cover

Loading…
Abstract Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.
AbstractList Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject's brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.
Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs) that can anticipate an epileptic seizure by differentiating between the pre-ictal and interictal stages of the subject’s brain. Despite having the appearance of a typical anomaly detection task, this problem is complicated by subject-specific characteristics in EEG data. Therefore, studies that investigate seizure prediction widely employ subject-specific models. However, this approach is not suitable in situations where a target subject has limited (or no) data for training. Subject-independent models can address this issue by learning to predict seizures from multiple subjects, and therefore are of greater value in practice. In this study, we propose a subject-independent seizure predictor using Geometric Deep Learning (GDL). In the first stage of our GDL-based method we use graphs derived from physical connections in the EEG grid. We subsequently seek to synthesize subject-specific graphs using deep learning. The models proposed in both stages achieve state-of-the-art performance using a one-hour early seizure prediction window on two benchmark datasets (CHB-MIT-EEG: 95.38% with 23 subjects and Siena-EEG: 96.05% with 15 subjects). To the best of our knowledge, this is the first study that proposes synthesizing subject-specific graphs for seizure prediction. Furthermore, through model interpretation we outline how this method can potentially contribute towards Scalp EEG-based seizure localization.
Author Denman, Simon
Sridharan, Sridha
Fookes, Clinton
Fernando, Tharindu
Dissanayake, Theekshana
Author_xml – sequence: 1
  givenname: Theekshana
  orcidid: 0000-0001-9741-1575
  surname: Dissanayake
  fullname: Dissanayake, Theekshana
  email: theekshanadis@eng.pdn.ac.lk
  organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia
– sequence: 2
  givenname: Tharindu
  orcidid: 0000-0002-6935-1816
  surname: Fernando
  fullname: Fernando, Tharindu
  email: t.warnakulasuriya@qut.edu.au
  organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia
– sequence: 3
  givenname: Simon
  orcidid: 0000-0002-0983-5480
  surname: Denman
  fullname: Denman, Simon
  email: s.denman@qut.edu.au
  organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia
– sequence: 4
  givenname: Sridha
  orcidid: 0000-0003-4316-9001
  surname: Sridharan
  fullname: Sridharan, Sridha
  email: s.sridharan@qut.edu.au
  organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia
– sequence: 5
  givenname: Clinton
  orcidid: 0000-0002-8515-6324
  surname: Fookes
  fullname: Fookes, Clinton
  email: c.fookes@qut.edu.au
  organization: Signal Processing, Artificial Intelligence, and Vision Technologies (SAIVT) Group, Queensland University of Technology, Q3 Brisbane, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34314363$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1UREvpB0BIyBKXXhL8d20faRvSoEgghZ6ttXe2crTxLvbuAT49XiXh0AM-eEbW7z2N571FF7GPgNB7SpaUEvP5293jZskIo0tOCWFGvUJXjFZ6wRjRF-eeGnGJbnLek3J0eTLVG3TJBaeCV_wKNWvoDzCm4PEDwIC3UKcY4jNu-4R3k9uDH_EmNjBAueKIV0PoYBgLv4PwZ0qAfyRogh9DH_FTnqU7X3cDXq3WeBeeY93ld-h1WwrcnOo1evq6-nn_uNh-X2_uv2wXXkg9LpRvOW9bKY0gzpOK-ApqUKYB3SrHGyG94FIZ7pgTjkvTNs44yZwGoxRh_BrdHn2H1P-aII_2ELKHrqsj9FO2TBZvRZXUBf30At33U5qHtaxikldaC1Gojydqcgdo7JDCoU6_7Xl_BVBHwKc-5wSt9WGs512MqQ6dpcTOYdk5LDuHZU9hFSV9oTyb_0_z4agJAPCPN6L8vozzF8iRnX4
CODEN IJBHA9
CitedBy_id crossref_primary_10_3390_biomedicines10071551
crossref_primary_10_1007_s11432_023_3876_1
crossref_primary_10_1142_S0129065723500545
crossref_primary_10_3390_e24111641
crossref_primary_10_1016_j_compbiomed_2024_109257
crossref_primary_10_1016_j_bspc_2022_104053
crossref_primary_10_3389_fnins_2023_1150668
crossref_primary_10_3390_s23042061
crossref_primary_10_1007_s12559_024_10261_9
crossref_primary_10_1109_TNSRE_2023_3322275
crossref_primary_10_3233_THC_240550
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1007_s13755_023_00239_6
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1155_2023_8674641
crossref_primary_10_1109_JBHI_2022_3203454
crossref_primary_10_3390_bioengineering9120781
crossref_primary_10_1109_TIM_2023_3261919
crossref_primary_10_1007_s11042_024_18560_x
crossref_primary_10_3390_biomedicines12061283
crossref_primary_10_3390_brainsci13101462
crossref_primary_10_1016_j_compbiomed_2024_108510
crossref_primary_10_1109_TNSRE_2023_3321414
crossref_primary_10_1109_JBHI_2024_3423766
crossref_primary_10_1016_j_bspc_2024_106447
crossref_primary_10_3934_math_2024805
crossref_primary_10_3389_fninf_2024_1303380
crossref_primary_10_1016_j_bspc_2024_106603
crossref_primary_10_3389_fnins_2024_1474782
crossref_primary_10_1016_j_eswa_2023_121727
crossref_primary_10_1088_1741_2552_acfff5
crossref_primary_10_1109_TNSRE_2024_3460348
crossref_primary_10_1177_20552076241277185
crossref_primary_10_1038_s41598_024_64802_1
crossref_primary_10_3390_s23052458
crossref_primary_10_1088_1741_2552_adb455
crossref_primary_10_1016_j_jneumeth_2024_110182
crossref_primary_10_1038_s41598_023_30864_w
crossref_primary_10_3389_fnins_2022_967116
crossref_primary_10_1142_S0129065724500515
crossref_primary_10_1109_JBHI_2023_3282251
crossref_primary_10_1117_1_JMI_10_4_044502
crossref_primary_10_54097_3v9scg07
Cites_doi 10.1109/JBHI.2020.3027910
10.5555/3157382.3157527
10.1109/RBME.2020.3008792
10.1109/TAFFC.2020.2994159
10.1109/JSEN.2021.3057076
10.1016/j.compbiomed.2018.05.019
10.1109/JBHI.2019.2933046
10.1088/1741-2552/ab909d
10.1145/3386580
10.1038/s41598-020-78784-3
10.1016/j.asoc.2020.106954
10.1109/MSP.2012.2235192
10.1007/s12652-019-01220-6
10.1016/j.compbiomed.2020.103671
10.1109/TIFS.2019.2916403
10.1109/JBHI.2020.2984128
10.1109/ACCESS.2019.2927768
10.1109/TBCAS.2019.2929053
10.1016/j.neunet.2020.04.011
10.1016/j.neulet.2005.06.002
10.1109/TNSRE.2019.2943362
10.1016/j.compbiomed.2020.103719
10.1109/TCDS.2020.3012278
10.3390/pr8070846
10.1016/j.neunet.2018.04.018
10.1088/1741-2552/ab260c
10.1038/s41598-020-65401-6
10.1109/TAFFC.2018.2817622
10.1109/ACCESS.2019.2939288
10.1109/MSP.2017.2693418
10.1109/CBMS.2017.33
10.1109/TBME.2017.2785401
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2021.3100297
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 538
ExternalDocumentID 34314363
10_1109_JBHI_2021_3100297
9497714
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c458t-7cf33ff55940bc060c6eae79de8f7b3d45c435793b2b4b359fdb9b52b8e977023
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 03:51:58 EDT 2025
Sun Jun 29 12:28:22 EDT 2025
Thu Jan 02 22:55:37 EST 2025
Tue Jul 01 03:00:00 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Wed Aug 27 03:00:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-7cf33ff55940bc060c6eae79de8f7b3d45c435793b2b4b359fdb9b52b8e977023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8515-6324
0000-0002-6935-1816
0000-0003-4316-9001
0000-0001-9741-1575
0000-0002-0983-5480
OpenAccessLink https://eprints.qut.edu.au/212250/1/88918403.pdf
PMID 34314363
PQID 2625368844
PQPubID 85417
PageCount 12
ParticipantIDs ieee_primary_9497714
proquest_miscellaneous_2555971758
proquest_journals_2625368844
crossref_citationtrail_10_1109_JBHI_2021_3100297
crossref_primary_10_1109_JBHI_2021_3100297
pubmed_primary_34314363
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
Lun (ref27) 2021
ref30
ref11
ref33
ref10
ref32
ref2
ref17
Shoeb (ref31) 2009
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/JBHI.2020.3027910
– ident: ref33
  doi: 10.5555/3157382.3157527
– ident: ref10
  doi: 10.1109/RBME.2020.3008792
– ident: ref21
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref4
  doi: 10.1109/JSEN.2021.3057076
– year: 2021
  ident: ref27
  article-title: GCNs-Net: A graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals
– ident: ref26
  doi: 10.1016/j.compbiomed.2018.05.019
– ident: ref24
  doi: 10.1109/JBHI.2019.2933046
– ident: ref16
  doi: 10.1088/1741-2552/ab909d
– ident: ref25
  doi: 10.1145/3386580
– ident: ref5
  doi: 10.1038/s41598-020-78784-3
– ident: ref18
  doi: 10.1016/j.asoc.2020.106954
– ident: ref17
  doi: 10.1109/MSP.2012.2235192
– ident: ref22
  doi: 10.1007/s12652-019-01220-6
– ident: ref11
  doi: 10.1016/j.compbiomed.2020.103671
– ident: ref20
  doi: 10.1109/TIFS.2019.2916403
– ident: ref6
  doi: 10.1109/JBHI.2020.2984128
– ident: ref14
  doi: 10.1109/ACCESS.2019.2927768
– ident: ref2
  doi: 10.1109/TBCAS.2019.2929053
– ident: ref9
  doi: 10.1016/j.neunet.2020.04.011
– ident: ref13
  doi: 10.1016/j.neulet.2005.06.002
– ident: ref15
  doi: 10.1109/TNSRE.2019.2943362
– ident: ref8
  doi: 10.1016/j.compbiomed.2020.103719
– ident: ref30
  doi: 10.1109/TCDS.2020.3012278
– ident: ref32
  doi: 10.3390/pr8070846
– ident: ref23
  doi: 10.1016/j.neunet.2018.04.018
– year: 2009
  ident: ref31
  article-title: Application of machine learning to epileptic seizure onset detection and treatment MASS NSl of technology
– ident: ref12
  doi: 10.1088/1741-2552/ab260c
– ident: ref29
  doi: 10.1038/s41598-020-65401-6
– ident: ref19
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref34
  doi: 10.1109/ACCESS.2019.2939288
– ident: ref28
  doi: 10.1109/MSP.2017.2693418
– ident: ref35
  doi: 10.1109/CBMS.2017.33
– ident: ref3
  doi: 10.1109/TBME.2017.2785401
SSID ssj0000816896
Score 2.5400472
Snippet Recently, researchers in the biomedical community have introduced deep learning-based epileptic seizure prediction models using electroencephalograms (EEGs)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 527
SubjectTerms Algorithms
Anomalies
Brain modeling
Convulsions & seizures
Data models
Deep Learning
EEG
Electroencephalography
Electroencephalography - methods
Epilepsy
Graphs
Humans
Localization
Machine learning
neural networks
Prediction models
Predictive models
Scalp
seizure prediction
Seizures
Seizures - diagnosis
signal processing
Synthesis
Training
Title Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals
URI https://ieeexplore.ieee.org/document/9497714
https://www.ncbi.nlm.nih.gov/pubmed/34314363
https://www.proquest.com/docview/2625368844
https://www.proquest.com/docview/2555971758
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RDqiXQqGPLQ8ZqSfULEnsOMmxpQsL0lZIWyRu0dqeIFTYXS3JhV_fGccbqVVb9RbJjhNrZjzfeOz5AD4q5cjxuDrSmOcRaYiLZjpXEcpau9xmycxfF5t80-MbdXWb3W7Ap_4uDCL6w2c45Eefy3cL2_JW2WmpCK0wa_ULCty6u1r9foonkPB0XCk9RGSIKiQxk7g8vfoyvqRgME2GvKGdlsy9J8l3KqnlLx7JU6z8HW16r3O-DZP1_3aHTX4M28YM7fNvpRz_d0I78CrAT_G505fXsIHzXdiahAT7HrgLXDwyyZYVXxGXIpRfvROEbQUtMrxrIy576txGjJa0rNCyY8UU75_bFYrrFY_G8hb-PIKYkhosxWh0Iab3d1yu-Q3cnI--n42jQMQQWZUVTZTbWsq6puBDxcbGOrYaZ5iXDos6N9KpzBLqIks3qVFGZmXtTGmy1BRI8yNU8BY254s5vgehmeWMYJctNEXmRhcZ9csTrLnOTGLcAOK1MCobqpQzWcZD5aOVuKxYlBWLsgqiHMBJ_8qyK9Hxr857LIa-Y5DAAA7WEq-CET9VKcWGUheFoubjvpnMj3MqszkuWuqTcUhGGKwYwLtOU_qx1wr24c_f3IeXKd-l8EfAD2CzWbV4SAinMUdetX8CxfPyGQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQwJeGDAYHRsYiSdEuvywneQRRrd2rBNSN2lvUW1fpgloq5K87K_nznEjgQDxFskXJ9ad7e_OvvsA3krpaONxdaQxzyOyEBfNdS4jzGrtcquSuU8Xm17o8ZU8u1bXW_C-z4VBRH_5DIf86M_y3dK2HCo7KiWhFWatvqc4GbfL1uojKp5CwhNypfQQ0VSU4Rgzicujs4_jCbmDaTLkkHZaMvteRrunzHT2y57kSVb-jjf9vnOyA9PNH3fXTb4O28YM7d1vxRz_d0iP4VEAoOJDZzFPYAsXT-H-NByx74I7xeV3ptmy4hPiSoQCrDeC0K2gZYbjNmLSk-c2YrSihYUWHitmeHvXrlF8WXNvrHHhbySIGRnCSoxGp2J2e8MFm5_B1cno8ngcBSqGyEpVNFFu6yyra3I_ZGxsrGOrcY556bCoc5M5qSzhLprrJjXSZKqsnSmNSk2BND7CBc9he7Fc4AsQmnnOCHjZQpNvbnShSC5PsOZKM4lxA4g3yqhsqFPOdBnfKu-vxGXFqqxYlVVQ5QDe9a-suiId_xLeZTX0gkEDAzjYaLwK0_hHlZJ3mOmikNT8pm-mCcinKvMFLluSUeyUEQorBrDXWUrf98bA9v_8zdfwYHw5Pa_OJxefX8LDlDMr_IXwA9hu1i0eEt5pzCtv5j8Bja_1YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+Deep+Learning+for+Subject+Independent+Epileptic+Seizure+Prediction+Using+Scalp+EEG+Signals&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Dissanayake%2C+Theekshana&rft.au=Fernando%2C+Tharindu&rft.au=Denman%2C+Simon&rft.au=Sridharan%2C+Sridha&rft.date=2022-02-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=26&rft.issue=2&rft.spage=527&rft_id=info:doi/10.1109%2FJBHI.2021.3100297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon