The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro

Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation o...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 145; no. 1; pp. 40 - 48
Main Authors Qiu, Yuanyuan, Luo, Yi, Zhang, Yanli, Cui, Weicheng, Zhang, Dong, Wu, Junru, Zhang, Junfeng, Tu, Juan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.07.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure ( P −; 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0 MPa), total treatment time (0, 5, 10, 20, 40 or 60 s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000 Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters ( e.g., P −, total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect. The elevated inertial cavitation dose (ICD; quantifying cumulative IC energy during sonication) exhibits high correlation with enlarged sonopration pore size, decreased cell viability, and enhanced PEI:DNA transfection efficiency until it reaches a saturation level. ▪
AbstractList Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure (P super(-); 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0 MPa), total treatment time (0, 5, 10, 20, 40 or 60 s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000 Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters (e.g., P super(-), total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect.
Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure ( P −; 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0 MPa), total treatment time (0, 5, 10, 20, 40 or 60 s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000 Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters ( e.g., P −, total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect. The elevated inertial cavitation dose (ICD; quantifying cumulative IC energy during sonication) exhibits high correlation with enlarged sonopration pore size, decreased cell viability, and enhanced PEI:DNA transfection efficiency until it reaches a saturation level. ▪
Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure (P(-); 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0MPa), total treatment time (0, 5, 10, 20, 40 or 60s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters (e.g., P(-), total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect.Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure (P(-); 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0MPa), total treatment time (0, 5, 10, 20, 40 or 60s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters (e.g., P(-), total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect.
Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast agent microbubbles, due to the acoustic cavitation-induced sonoporation. However, obstacles still remain to achieve controllable sonoporation outcome. The general hypotheses guiding present studies were that inertial cavitation (IC) activities accumulated during US exposure could be quantified as IC dose (ICD) based on passive cavitation detection (PCD), and the assessment of sonoporation outcome should be correlated with ICD measurements. In current work, MCF-7 cells mixed with PEI:DNA complex and UCD microbubbles were exposed to 1-MHz US pulses with 20-cycle pulse and varied acoustic peak negative pressure (P(-); 0 (sham), 0.3, 0.75, 1.4, 2.2 or 3.0MPa), total treatment time (0, 5, 10, 20, 40 or 60s), and pulse-repetition-frequency (PRF; 0, 20, 100, 250, 500, or 1000Hz). Then, four series experiments were conducted: (1) the IC activities were detected using a PCD system and quantified as ICD; (2) the DNA transfection efficiency was evaluated with flow cytometry; (3) the cell viability was examined by PI dying then measured using flow cytometry; and (4) scan electron microscopy was used to investigate the sonoporation effects on the cell membrane. The results showed that: (1) the ICD generated during US exposure could be affected by US parameters (e.g., P(-), total treatment time, and PRF); (2) the pooled data analyses demonstrated that DNA transfection efficiency initially increased linearly with the increasing ICD, then it tended to saturate instead of trying to achieve a maximum value while the ICD kept going up; and (3) the measured ICD, sonoporation pore size, and cell viability exhibited high correlation among each other. All the results indicated that IC activity should play an important role in the US-mediated DNA transfection through sonoporation, and ICD could be used as an effective tool to monitor and control the US-mediated gene/drug delivery effect.
Author Qiu, Yuanyuan
Zhang, Yanli
Zhang, Dong
Zhang, Junfeng
Wu, Junru
Tu, Juan
Luo, Yi
Cui, Weicheng
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Qiu
  fullname: Qiu, Yuanyuan
  organization: Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, Jiangsu, 210093, PR China
– sequence: 2
  givenname: Yi
  surname: Luo
  fullname: Luo, Yi
  organization: State Key Lab of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
– sequence: 3
  givenname: Yanli
  surname: Zhang
  fullname: Zhang, Yanli
  organization: Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, Jiangsu, 210093, PR China
– sequence: 4
  givenname: Weicheng
  surname: Cui
  fullname: Cui, Weicheng
  organization: Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, Jiangsu, 210093, PR China
– sequence: 5
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, Jiangsu, 210093, PR China
– sequence: 6
  givenname: Junru
  surname: Wu
  fullname: Wu, Junru
  organization: Department of Physics, University of Vermont, Burlington, VT 05405, USA
– sequence: 7
  givenname: Junfeng
  surname: Zhang
  fullname: Zhang, Junfeng
  organization: State Key Lab of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
– sequence: 8
  givenname: Juan
  surname: Tu
  fullname: Tu, Juan
  email: juantutu@gmail.com
  organization: Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, Jiangsu, 210093, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22908456$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20398711$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFRwBlg4BFBjuOY0csUFUKVKqARVlbjnOt8ShjD3ZmqnkNnpg7JIDEZlbXuv7O8c-5F-QsxACEPGd0yShr3q6XaxtDgmFZUezReonlEVkwJXlZt604IwvkVMkb0Z6Ti5zXlFLBa_mEnFeUt0oytiA_71dQ2JjQyIw-hqKD8QEgFMbGXR69LazZ-3HaM6EvcgxxG9PU8GEfhz30uCh2w5hMjrvQlxvovRmx_eHLVYHdkB3Y34IHP66KbRwOMK4OAwS_8QGK199ubt8cPfCkFJ-Sx84MGZ7N9ZJ8_3hzf_25vPv66fb66q60tVBjKSt8AucWuLV933DjGJPCta1qDAjW45I74E521MgGnOuc6oQEYdrWdK7il-TV5LtN8ccO8qg3PlsYBhMA366VbCpe06o5SUpRq6ZV9LQnXphxoYRE8sVM7jr8L71NfmPSQf-JBoGXM2CyNYPDb7Q-_-OqlqpaHC8nJs6mmHMC9xdhVB9HRa_1PCr6OCqa1hoL6t79p7NzzpiYH06q309qwIT2HpLO1kOwmHzCrHUf_QmHX3hb4Ig
CODEN JCREEC
CitedBy_id crossref_primary_10_1016_j_biomaterials_2011_11_015
crossref_primary_10_3390_biomedicines9010032
crossref_primary_10_34133_2022_9807347
crossref_primary_10_1016_j_ultras_2014_10_015
crossref_primary_10_1016_j_ultrasmedbio_2014_11_001
crossref_primary_10_1016_j_jconrel_2011_09_071
crossref_primary_10_1007_s11307_013_0672_5
crossref_primary_10_35848_1347_4065_acbd5c
crossref_primary_10_7567_1347_4065_ab4eb1
crossref_primary_10_1016_j_ultrasmedbio_2011_05_012
crossref_primary_10_1021_acsami_8b18418
crossref_primary_10_1038_s44222_024_00166_5
crossref_primary_10_1007_s12195_013_0279_6
crossref_primary_10_1371_journal_pone_0056423
crossref_primary_10_1186_s11671_015_1193_8
crossref_primary_10_1016_j_ultrasmedbio_2020_11_029
crossref_primary_10_1007_s00232_016_9921_2
crossref_primary_10_1260_2040_2295_4_2_223
crossref_primary_10_1016_j_ultsonch_2013_10_017
crossref_primary_10_1016_j_canlet_2019_06_017
crossref_primary_10_1016_j_ultrasmedbio_2013_01_008
crossref_primary_10_1016_j_addr_2013_11_008
crossref_primary_10_1016_j_ultsonch_2023_106346
crossref_primary_10_1063_1_4865770
crossref_primary_10_7498_aps_64_094306
crossref_primary_10_1038_mtm_2016_12
crossref_primary_10_1016_j_jconrel_2011_02_006
crossref_primary_10_1021_acsptsci_0c00212
crossref_primary_10_1089_jop_2022_0114
crossref_primary_10_1371_journal_pone_0277759
crossref_primary_10_3390_brainsci11111429
crossref_primary_10_1109_TUFFC_2019_2897983
crossref_primary_10_1038_s41598_020_64213_y
crossref_primary_10_1016_j_addr_2014_03_003
crossref_primary_10_1016_j_ultrasmedbio_2019_10_026
crossref_primary_10_1088_1478_3975_12_6_066007
crossref_primary_10_3389_fimmu_2022_937344
crossref_primary_10_1021_acs_chemrev_1c00622
crossref_primary_10_1088_1361_6560_ace23e
crossref_primary_10_4155_tde_12_100
crossref_primary_10_1016_j_ijpharm_2020_119615
crossref_primary_10_1016_j_ultrasmedbio_2016_08_005
crossref_primary_10_3390_molecules29245997
crossref_primary_10_1016_j_addr_2021_02_015
crossref_primary_10_1021_mp300037t
crossref_primary_10_1038_srep37728
crossref_primary_10_1371_journal_pone_0113673
crossref_primary_10_1021_acs_langmuir_8b03288
crossref_primary_10_1016_j_jconrel_2011_12_028
crossref_primary_10_1039_D4NR00277F
crossref_primary_10_1088_0031_9155_59_22_6729
crossref_primary_10_1016_j_nantod_2023_101804
crossref_primary_10_1016_j_ultsonch_2015_10_006
crossref_primary_10_1038_mtm_2014_7
crossref_primary_10_1016_j_jbiomech_2012_03_011
crossref_primary_10_1021_acs_jpcc_6b04086
crossref_primary_10_1016_j_jddst_2022_103882
crossref_primary_10_1007_s12195_019_00597_w
crossref_primary_10_1016_j_apacoust_2021_108056
crossref_primary_10_1016_j_biomaterials_2013_02_067
crossref_primary_10_1088_1674_1056_26_5_054301
crossref_primary_10_1016_j_actbio_2021_06_015
crossref_primary_10_1016_j_febslet_2012_12_005
crossref_primary_10_1016_j_ultsonch_2016_06_017
crossref_primary_10_1016_j_colsurfb_2017_10_036
crossref_primary_10_1016_j_ultsonch_2012_12_005
crossref_primary_10_1088_0256_307X_31_3_034302
crossref_primary_10_1016_j_ultsonch_2023_106685
crossref_primary_10_1016_j_ultras_2023_107227
crossref_primary_10_1016_j_bspc_2020_102235
crossref_primary_10_1016_j_ultsonch_2023_106723
crossref_primary_10_1016_j_jconrel_2018_01_014
crossref_primary_10_1021_jz502513w
crossref_primary_10_1016_j_ultsonch_2023_106563
crossref_primary_10_1109_TUFFC_2013_2534
crossref_primary_10_1016_j_ultsonch_2020_105096
crossref_primary_10_1016_j_ultrasmedbio_2020_03_013
crossref_primary_10_1021_acs_chemrev_5b00346
crossref_primary_10_1371_journal_pone_0076544
crossref_primary_10_7567_JJAP_56_047201
crossref_primary_10_3390_pharmaceutics15051463
crossref_primary_10_1016_j_ultrasmedbio_2012_08_025
crossref_primary_10_1016_j_ultsonch_2013_08_019
crossref_primary_10_3390_pharmaceutics16111383
crossref_primary_10_3390_molecules28237733
crossref_primary_10_1016_j_jconrel_2020_10_068
crossref_primary_10_1016_j_jddst_2022_103386
crossref_primary_10_1007_s11095_014_1332_4
crossref_primary_10_1002_admt_201800081
crossref_primary_10_1016_j_ultrasmedbio_2021_07_004
crossref_primary_10_1021_acs_langmuir_8b03538
crossref_primary_10_1038_s41598_018_22056_8
crossref_primary_10_1121_1_4927413
crossref_primary_10_1016_j_jconrel_2018_01_001
crossref_primary_10_1155_2017_3273816
crossref_primary_10_1016_j_ultsonch_2015_12_001
crossref_primary_10_1016_j_colsurfb_2020_110849
crossref_primary_10_1021_acs_molpharmaceut_5b00347
crossref_primary_10_1016_j_ultrasmedbio_2012_06_008
crossref_primary_10_1088_1674_1056_21_7_074301
crossref_primary_10_1109_TUFFC_2016_2620492
crossref_primary_10_1016_j_ultsonch_2020_105439
crossref_primary_10_1021_acsami_5b02832
crossref_primary_10_1016_j_bioelechem_2022_108153
crossref_primary_10_1016_j_ultsonch_2024_106888
crossref_primary_10_1016_j_ijpharm_2014_12_013
crossref_primary_10_1016_j_jconrel_2012_07_005
crossref_primary_10_1016_j_ultrasmedbio_2018_04_005
crossref_primary_10_1016_j_ultrasmedbio_2016_10_003
crossref_primary_10_1080_10717544_2017_1319433
crossref_primary_10_1158_0008_5472_CAN_15_3231
crossref_primary_10_2139_ssrn_3981539
crossref_primary_10_1016_j_ultsonch_2019_03_031
crossref_primary_10_1016_j_bioelechem_2024_108708
crossref_primary_10_1016_j_ultsonch_2024_107051
crossref_primary_10_3109_1061186X_2014_921922
crossref_primary_10_1016_j_ultrasmedbio_2016_01_021
crossref_primary_10_3390_pharmaceutics13050640
crossref_primary_10_1016_j_ultsonch_2018_07_031
crossref_primary_10_1038_s41598_019_49386_5
crossref_primary_10_1121_10_0010534
crossref_primary_10_1007_s13277_015_4681_7
crossref_primary_10_1021_nn3045243
crossref_primary_10_1088_1674_1056_25_12_124308
crossref_primary_10_1016_j_irbm_2018_11_005
crossref_primary_10_1016_j_ultrasmedbio_2013_08_003
crossref_primary_10_1088_0256_307X_33_8_084302
crossref_primary_10_1016_j_ultsonch_2019_01_005
crossref_primary_10_1021_acs_molpharmaceut_6b00761
crossref_primary_10_1039_C9NR03402A
crossref_primary_10_1063_1_3660352
crossref_primary_10_1021_acs_jpcb_5b02218
crossref_primary_10_1016_j_measurement_2024_114372
crossref_primary_10_1016_j_inoche_2024_113765
crossref_primary_10_1117_1_JBO_21_4_045003
crossref_primary_10_3233_THC_199025
crossref_primary_10_1016_j_ultrasmedbio_2014_01_011
crossref_primary_10_1073_pnas_1713328114
crossref_primary_10_1080_10717544_2017_1422300
crossref_primary_10_1016_j_jconrel_2012_08_014
crossref_primary_10_1007_s12013_013_9523_x
crossref_primary_10_1016_j_apacoust_2020_107384
crossref_primary_10_1016_j_ijpharm_2013_08_041
crossref_primary_10_1039_D3NR02562D
crossref_primary_10_3390_biomedicines9070803
crossref_primary_10_3390_pharmaceutics11050244
crossref_primary_10_1038_s44172_024_00265_6
crossref_primary_10_1016_j_ultrasmedbio_2015_05_003
crossref_primary_10_12659_MSM_898323
crossref_primary_10_1016_j_jconrel_2017_07_004
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
2010 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: 2010 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
DOI 10.1016/j.jconrel.2010.04.010
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database

MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 48
ExternalDocumentID 20398711
22908456
10_1016_j_jconrel_2010_04_010
S0168365910002646
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
AFJKZ
AGQPQ
AIGII
APXCP
BNPGV
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
ID FETCH-LOGICAL-c458t-7298733ce3ccdd63af1175f9986ae51d5f93fe3f7b0a76effbf8b57e5a99abf23
IEDL.DBID AIKHN
ISSN 0168-3659
1873-4995
IngestDate Fri Jul 11 02:17:12 EDT 2025
Thu Jul 10 17:48:20 EDT 2025
Mon Jul 21 10:47:08 EDT 2025
Mon Jul 21 05:57:57 EDT 2025
Mon Jul 21 09:11:10 EDT 2025
Tue Jul 01 04:04:04 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Fri Feb 23 02:28:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Inertial cavitation dose
Ultrasound-mediated gene/drug delivery
PEI
Sonoporation
Ultrasound contrast agents
Correlation
Pharmaceutical technology
Drug carrier
In vitro
Genetic transfer
Polyelectrolyte
Transfection
DNA
Ultrasound contrast agent
Olefinimine polymer
Gene therapy
Ultrasound
Nucleic acid
Polyethylene imine
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
2010 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-7298733ce3ccdd63af1175f9986ae51d5f93fe3f7b0a76effbf8b57e5a99abf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20398711
PQID 733135857
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_876234026
proquest_miscellaneous_754869802
proquest_miscellaneous_733135857
pubmed_primary_20398711
pascalfrancis_primary_22908456
crossref_primary_10_1016_j_jconrel_2010_04_010
crossref_citationtrail_10_1016_j_jconrel_2010_04_010
elsevier_sciencedirect_doi_10_1016_j_jconrel_2010_04_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Boletta, Benigni, Lutz, Remuzzi, Soria, Monaco (bib8) 1997; 8
Van Wamel, Kooiman, Harteveld, Emmer, ten Cate, Versluis, de Jong (bib16) 2006; 112
Leborgne, Coeytaux, Danos (bib24) 2001; 3
Miller, Pislaru, Greenleaf (bib19) 2002; 27
Ferrara, Pollard, Borden (bib12) 2007; 9
Anderson (bib1) 1992; 256
Prasad, Wang, Hill, Zhang (bib2) 2004; 4
Mitragotri (bib11) 2005; 4
Kudo, Okada, Yamamoto (bib27) 2009; 96
Lemkine, Goula, Becher, Paleari, Levi, Demeneix (bib29) 1999; 7
Yang, Gu, Chen, Xi, Zhang, Li, Wu (bib32) 2008; 131
Newman, Bettinger (bib18) 2007; 14
Guzman, Nguyen, Khan, Prausnitz (bib30) 2001; 110
Wilson (bib4) 2002; 3
Apfel, Holland (bib20) 1991; 17
Tu, Matula, Brayman, Crum (bib23) 2006; 32
Everbach, Makin, Azadniv, Meltzer (bib26) 1997; 23
Han, Ikegami, Chung, Zhang, Deng (bib34) 2007; 73
Neu, Fischer, Kissel (bib7) 2005; 7
Sophie, Thierry, Feng, Guy (bib15) 2005; 104
Kicheler, Leborgne, Coeytaux, Danos (bib9) 2001; 3
Lungwitz, Breuning, Blunk (bib6) 2005; 60
Deng, Xu, Apfel, Holland (bib21) 1996; 22
Mehier-Humbert, Guy (bib3) 2005; 57
Deshpande, Prausnitz (bib10) 2007; 118
Schelicher, Radhakrishna, Tolentino, Apkarian, Zamitsyn, Prausnitz (bib31) 2006; 32
Cramer, Lauterborn (bib25) 1982; 38
Erbacher, Bettinger, Belguise-Valladier, Zou, Coll, Behr, Remy (bib33) 1999; 1
Tsivgoulis, Alexandrov (bib13) 2007; 4
Chang, Chen, Mourad, Poliachik, Crum (bib22) 2001; 48
Wu, Jason, Mercedes (bib17) 2006; 44
Niidome, Huang (bib5) 2002; 9
Rosenthal, Sostaric, Riesz (bib14) 2004; 11
Zamitsyn, Rostad, Prausnitz (bib28) 2008; 95
References_xml – volume: 73
  start-page: 3677
  year: 2007
  end-page: 3683
  ident: bib34
  article-title: Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in
  publication-title: Appl. Environ. Microbiol.
– volume: 3
  start-page: 135
  year: 2001
  end-page: 144
  ident: bib9
  article-title: Polyethyleneimine-mediated gene delivery: a mechanistic study
  publication-title: J. Gene Med.
– volume: 1
  start-page: 210
  year: 1999
  end-page: 222
  ident: bib33
  article-title: Transfection and physical properties of various saccharide, poly (ethylene glycol), and antibody-derivatized polyethylenimines (PEI)
  publication-title: J. Gene Med.
– volume: 96
  start-page: 4866
  year: 2009
  end-page: 4876
  ident: bib27
  article-title: Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells
  publication-title: Biophys. J.
– volume: 44
  start-page: e21
  year: 2006
  end-page: e25
  ident: bib17
  article-title: Sonoporation, anti-cancer drug and antibody delivery using ultrasound
  publication-title: Ultrasonics
– volume: 48
  start-page: 161
  year: 2001
  end-page: 170
  ident: bib22
  article-title: Thresholds for inertial cavitation in Albunex suspesions under pulsed ultrasound conditions
  publication-title: IEEE Trans. Ultra. Ferro. Freq. control
– volume: 3
  start-page: 135
  year: 2001
  end-page: 144
  ident: bib24
  article-title: Polyethyleneimine-mediated gene delivery: a mechanistic study
  publication-title: J. Gene Med.
– volume: 112
  start-page: 149
  year: 2006
  end-page: 155
  ident: bib16
  article-title: vibrating microbubbles poling individual cells: drug transfer into cells via sonoporation
  publication-title: J. Control. Release
– volume: 9
  start-page: 1647
  year: 2002
  end-page: 1652
  ident: bib5
  article-title: Gene therapy progress and prospects: nonviral vectors
  publication-title: Gene Ther.
– volume: 57
  start-page: 733
  year: 2005
  end-page: 753
  ident: bib3
  article-title: Physical methods for gene transfer: improving the kinetics of gene delivery into cells
  publication-title: Adv. Drug. Deliv. Rev.
– volume: 9
  start-page: 415
  year: 2007
  end-page: 447
  ident: bib12
  article-title: Ultrasound microbubble contrast agents: fundermental and application to gene and drug delivery
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 32
  start-page: 281
  year: 2006
  end-page: 288
  ident: bib23
  article-title: Inertial cavitation dose produced in ex vivo rabbit ear arteries by 1-MHz insonation treatment during infusion with optison
  publication-title: Ultra. Med. Biol.
– volume: 110
  start-page: 588
  year: 2001
  end-page: 596
  ident: bib30
  article-title: Ultrasound-mediated distruption of cell membranes. I. Quantification of molecular uptake and cell viability
  publication-title: J. Acoust. Soc. Am.
– volume: 17
  start-page: 179
  year: 1991
  end-page: 185
  ident: bib20
  article-title: Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound
  publication-title: Ultra. Med. Biol
– volume: 60
  start-page: 247
  year: 2005
  end-page: 266
  ident: bib6
  article-title: Polyethylenimine-based non-viral gene delivery systems
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 32
  start-page: 915
  year: 2006
  end-page: 924
  ident: bib31
  article-title: Mechanism of intracellular delivery by acoustic cavitation
  publication-title: Ultra. Med. Biol.
– volume: 7
  start-page: 305
  year: 1999
  end-page: 312
  ident: bib29
  article-title: Optimisation of oplyethylenimine based gene delivery to mouse braine
  publication-title: J. Drug Target
– volume: 3
  start-page: 151
  year: 2002
  end-page: 164
  ident: bib4
  article-title: Viral-mediated gene transfer for cancer treatment
  publication-title: Curr. Pharm. Biotechnol.
– volume: 4
  start-page: 420
  year: 2007
  end-page: 427
  ident: bib13
  article-title: Ultrasound-enhanced thrombolysis in acute ischemic stroke: potential, failures, and safety
  publication-title: Neurotherapeutics
– volume: 4
  start-page: 347
  year: 2004
  end-page: 361
  ident: bib2
  article-title: Recent advances in experimental molecular therapeutics for malignant gliomas
  publication-title: Curr. Med. Chem. Anti-cancer Agents
– volume: 7
  start-page: 992
  year: 2005
  end-page: 1009
  ident: bib7
  article-title: Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives
  publication-title: J. Gene Med.
– volume: 11
  start-page: 349
  year: 2004
  end-page: 363
  ident: bib14
  article-title: Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound
  publication-title: Ultra. Sonochem.
– volume: 27
  start-page: 115
  year: 2002
  end-page: 134
  ident: bib19
  article-title: Sonoporation: mechanical DNA delivery by ultrasonic cavitation
  publication-title: Cell Mol. Genet.
– volume: 4
  start-page: 255
  year: 2005
  end-page: 260
  ident: bib11
  article-title: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications
  publication-title: Nat. Rev. Drug Discov.
– volume: 38
  start-page: 209
  year: 1982
  end-page: 214
  ident: bib25
  article-title: Acoustic cavitation noise spectra
  publication-title: Appl. Sci. Res.
– volume: 256
  start-page: 808
  year: 1992
  end-page: 813
  ident: bib1
  article-title: Human gene therapy
  publication-title: Science
– volume: 14
  start-page: 465
  year: 2007
  end-page: 475
  ident: bib18
  article-title: Gene therapy progress and prospects: ultrasound for gene transfer
  publication-title: Gene Ther.
– volume: 118
  start-page: 126
  year: 2007
  end-page: 135
  ident: bib10
  article-title: Synergistic effects of ultrasound and PEI on DNA transfection
  publication-title: J. Control. Release
– volume: 22
  start-page: 939
  year: 1996
  end-page: 948
  ident: bib21
  publication-title: Ultra. Med. Biol.
– volume: 8
  start-page: 1243
  year: 1997
  end-page: 1251
  ident: bib8
  article-title: Non-viral gene delivery to the rat kidney with poly(ethylenimine)
  publication-title: Hum. Gene Ther.
– volume: 23
  start-page: 619
  year: 1997
  end-page: 624
  ident: bib26
  article-title: Correlation of ultrasound-induced hemolysis with cavitation detector output
  publication-title: Ultra. Med. Biol.
– volume: 95
  start-page: 4124
  year: 2008
  end-page: 4138
  ident: bib28
  article-title: Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation
  publication-title: Biophys. J.
– volume: 131
  start-page: 205
  year: 2008
  end-page: 210
  ident: bib32
  article-title: Experimental study on cell self-sealing during sonoporation
  publication-title: J. Control. Release
– volume: 104
  start-page: 213
  year: 2005
  end-page: 222
  ident: bib15
  article-title: Plasma membrane poration induced by ultrasound exposure implication for drug delivery
  publication-title: J. Control. Release
SSID ssj0005347
Score 2.4135487
Snippet Previous studies have demonstrated that the efficiency of gene/drug delivery can be enhanced under ultrasound (US) exposure with the presence of US contrast...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Biological and medical sciences
Cell Line, Tumor
Cell Survival - physiology
DNA - administration & dosage
DNA - genetics
Drug Carriers - chemistry
Gene Transfer Techniques
General pharmacology
Green Fluorescent Proteins - genetics
Humans
Inertial cavitation dose
Medical sciences
Microscopy, Electron, Scanning
PEI
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Phonophoresis
Plasmids
Polyethyleneimine - chemistry
Sonication
Sonoporation
Transfection
Ultrasound contrast agents
Ultrasound-mediated gene/drug delivery
Title The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro
URI https://dx.doi.org/10.1016/j.jconrel.2010.04.010
https://www.ncbi.nlm.nih.gov/pubmed/20398711
https://www.proquest.com/docview/733135857
https://www.proquest.com/docview/754869802
https://www.proquest.com/docview/876234026
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBa9vAzG2L1Zt6CHUTaoEzuyZfkxdC3pxkJgLfRNSLIECcExiVvIy37EfnHPseWawtpCnyISKb6co3Oxv3M-Qr5mynFhUx3A1skCsH5poLSAEWda5QLylhiLk39P-eQy_nmVXO2Qk7YWBmGV3vY3Nr221v6bob-bw3I-H_6BYEUwnmT4hBrcOt8l-yOWcVDt_fH5r8m0Q3qwuKma5iLABV0hz3AxWEDaubZLD_KKByHW0v7fRb0s1QZunGsYLx4OSWvXdPaavPIxJR03p_2G7NjiLTmaNU2pt8f0oqux2hzTIzrr2lVv35F_8DM1SNLRwOKoh25RmFFTfVGjbnwnb6qKnEKEviq95tB5AfbtxuYwoNfLaq02yNMU1AUpEMzSH9MxrerguMZ8FRQf_NJytdxaUBFwecgqZum32en5d_wPONJ69Z5cnp1enEwCz9QQmDgRFfLhipQxY5kxec6ZctgB1EEqx5VNohyGzFnmUh2qlFvntBM6SW2iskxpN2IfyF6xKuwBodykBl82KsdcPNKptomxECRFmptMR6xH4lY40viLRzaNpWzxagvpZSpRpjKMJXz0yOBuWdn08XhqgWglL-8ppARf89TS_j1NuTsg9tYXELH2CG1VR8Juxlc0qrAgU4kMmgwyuPSRKZBj8kyEo4enoIdjMWyKHvnYKGZ3CiEDUUXRp-df3iF50UAoELP8mexV62v7BSKzSvfJ7uBv1Pf77xakJD38
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZd97DBGLt22aXTwygb1IkTybL8WLqWdGtDYCn0TUiyBAnBMYlbyEt_RH_xzrHlZoV1hT1Z2JJv526fcz5CvmTaC-lSE4HoZBFovzTSRsJIMKNzCXELx-Lks5EYnvMfF8nFFjlsa2EwrTLo_kan19o67OmFt9krp9PeL3BWJBNJhl-owayLR-QxB_FF6exe_5HnwXhTMy1khNM3ZTy9WXcGQefSzUOKF-_GWEn7dwP1rNQreG2-wbu43yGtDdPxC_I8eJT0oLnpl2TLFa_I3rhpSb3ep5NNhdVqn-7R8aZZ9fo1uYHD1CJER5MUR0PiFoUZNdAXtfoq9PGmusgp-OeLMvANnRag3a5cDgN6Oa-WeoUoTVFdjgKuLP0-OqBV7RrXGV8Fxc--tFzM1w4YBAweYoo5-nV8dPINzwFXWi7ekPPjo8nhMAo4DZHliawQDVemjFnHrM1zwbTH_p8eAjmhXdLPYci8Yz41sU6F8954aZLUJTrLtPED9pZsF4vCvSNU2NTir0btmecDkxqXWAcuUt8Im5k-6xDeEkfZ8PCIpTFXbbbaTAWaKqSpirmCTYd0b5eVTRePhxbIlvLqDjsqsDQPLd29wym3F8TO-hL81Q6hLesokGX8QaMLBzRViJ_JIH5L_zEFIkyRyXhw_xS0b4yDSHTITsOYm1uIGZCq33___4_3mTwZTs5O1enJ6OcH8rRJpsDs5Y9ku1peuk_go1Vmt5bB309kPsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+correlation+between+acoustic+cavitation+and+sonoporation+involved+in+ultrasound-mediated+DNA+transfection+with+polyethylenimine+%28PEI%29+in+vitro&rft.jtitle=Journal+of+controlled+release&rft.au=Qiu%2C+Yuanyuan&rft.au=Luo%2C+Yi&rft.au=Zhang%2C+Yanli&rft.au=Cui%2C+Weicheng&rft.date=2010-07-01&rft.issn=1873-4995&rft.eissn=1873-4995&rft.volume=145&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1016%2Fj.jconrel.2010.04.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon