SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION

We introduce a new estimator for the vector of coefficients in the linear model = + , where has dimensions with possibly larger than . SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ ≥ λ ≥ … ≥ λ ≥ 0 and [Formula: see text] are the decreasing absolute...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 9; no. 3; p. 1103
Main Authors Bogdan, Małgorzata, van den Berg, Ewout, Sabatti, Chiara, Su, Weijie, Candès, Emmanuel J
Format Journal Article
LanguageEnglish
Published United States 01.09.2015
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We introduce a new estimator for the vector of coefficients in the linear model = + , where has dimensions with possibly larger than . SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ ≥ λ ≥ … ≥ λ ≥ 0 and [Formula: see text] are the decreasing absolute values of the entries of . This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ procedures such as the Lasso. Here, the regularizer is a sorted ℓ norm, which penalizes the regression coefficients according to their rank: the higher the rank-that is, stronger the signal-the larger the penalty. This is similar to the Benjamini and Hochberg [ (1995) 289-300] procedure (BH) which compares more significant -values with more stringent thresholds. One notable choice of the sequence {λ } is given by the BH critical values [Formula: see text], where ∈ (0, 1) and ( ) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λ provably controls FDR at level . Moreover, it also appears to have appreciable inferential properties under more general designs while having substantial power, as demonstrated in a series of experiments running on both simulated and real data.
AbstractList We introduce a new estimator for the vector of coefficients in the linear model = + , where has dimensions with possibly larger than . SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ ≥ λ ≥ … ≥ λ ≥ 0 and [Formula: see text] are the decreasing absolute values of the entries of . This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ procedures such as the Lasso. Here, the regularizer is a sorted ℓ norm, which penalizes the regression coefficients according to their rank: the higher the rank-that is, stronger the signal-the larger the penalty. This is similar to the Benjamini and Hochberg [ (1995) 289-300] procedure (BH) which compares more significant -values with more stringent thresholds. One notable choice of the sequence {λ } is given by the BH critical values [Formula: see text], where ∈ (0, 1) and ( ) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λ provably controls FDR at level . Moreover, it also appears to have appreciable inferential properties under more general designs while having substantial power, as demonstrated in a series of experiments running on both simulated and real data.
Author Bogdan, Małgorzata
van den Berg, Ewout
Sabatti, Chiara
Su, Weijie
Candès, Emmanuel J
Author_xml – sequence: 1
  givenname: Małgorzata
  surname: Bogdan
  fullname: Bogdan, Małgorzata
  organization: Department of Mathematics, Wrocław University of Technology, 50-370 Wrocław, Poland
– sequence: 2
  givenname: Ewout
  surname: van den Berg
  fullname: van den Berg, Ewout
  organization: Human Language Technologies, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
– sequence: 3
  givenname: Chiara
  surname: Sabatti
  fullname: Sabatti, Chiara
  organization: Department of Health Research and Policy, Division of Biostatistics, Stanford University, HRP Redwood Building, Stanford, California 94305, USA
– sequence: 4
  givenname: Weijie
  surname: Su
  fullname: Su, Weijie
  organization: Department of Statistics, Stanford University, 90 Serra Mall, Sequoia Hall, Stanford, California 94305, USA
– sequence: 5
  givenname: Emmanuel J
  surname: Candès
  fullname: Candès, Emmanuel J
  organization: Department of Statistics, Stanford University, 390 Serra Mall, Sequoia Hall, Stanford, California 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26709357$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRrMYcS668QGkLxBN0j-3ZawZDdTJYGsRN0Pb_AXFGYepLnx7FXX1weFw4JuTye5th4SccXbBBYdLLqmLrjIgJmTGbS6o4lJPyXwcXxiTYIAfk6lQmtlc6hmxVRnXnrprt65D47PG3Qd3Vfqs8qUv6hBXWRNcVsRV4x-z-C3dhSf3w0_I0dC-jnj6twvysPR1cUvLeBMKV9IepHmnCm0SBlirNB-Uws5AjgYRjEiM6Rxa5CZxTAqHBFL30NtuSDljKMG2WizI-W93_9FtMW32h-dte_jc_H8QXxpoQfo
CitedBy_id crossref_primary_10_1007_s13571_019_00219_5
crossref_primary_10_1016_j_neunet_2020_12_004
crossref_primary_10_1214_18_AOS1742
crossref_primary_10_1007_s10463_018_0693_6
crossref_primary_10_1080_00401706_2020_1801256
crossref_primary_10_1214_17_AOS1562
crossref_primary_10_1214_22_AOS2194
crossref_primary_10_1093_imaiai_iaaa037
crossref_primary_10_1214_15_AOAS842
crossref_primary_10_1109_TIT_2020_2965738
crossref_primary_10_1109_TCBB_2017_2780106
crossref_primary_10_1080_01621459_2022_2081575
crossref_primary_10_1080_14697688_2021_1962539
crossref_primary_10_1214_24_EJS2330
crossref_primary_10_3150_18_BEJ1019
crossref_primary_10_1214_19_EJS1649
crossref_primary_10_1080_03610926_2019_1628991
crossref_primary_10_1088_1742_6596_699_1_012016
crossref_primary_10_1093_biomet_asab042
crossref_primary_10_1109_OJSP_2025_3529312
crossref_primary_10_1007_s00181_024_02694_w
crossref_primary_10_1016_j_spa_2018_11_024
crossref_primary_10_1080_01621459_2022_2060113
crossref_primary_10_3390_e26090794
crossref_primary_10_1109_TSP_2018_2807399
crossref_primary_10_1214_20_AOS2043
crossref_primary_10_1080_10618600_2020_1869026
crossref_primary_10_1093_imaiai_iaab025
crossref_primary_10_1214_17_AOS1670
crossref_primary_10_1186_s13023_018_0820_8
crossref_primary_10_1109_TSP_2020_3038480
crossref_primary_10_1007_s40305_022_00414_8
crossref_primary_10_1214_21_AOS2100
crossref_primary_10_1214_17_AOS1559
crossref_primary_10_1287_ijoc_2021_0255
crossref_primary_10_1016_j_jspi_2022_02_005
crossref_primary_10_1109_TIT_2020_3025272
crossref_primary_10_5351_KJAS_2024_37_3_265
crossref_primary_10_1371_journal_pone_0269369
crossref_primary_10_1162_neco_a_01279
crossref_primary_10_1063_5_0072462
crossref_primary_10_1111_insr_12469
crossref_primary_10_1214_18_EJS1410
crossref_primary_10_1534_genetics_116_193987
crossref_primary_10_2139_ssrn_3263420
crossref_primary_10_1214_23_AOS2274
crossref_primary_10_1109_TIT_2018_2840720
crossref_primary_10_3150_22_BEJ1574
crossref_primary_10_3150_24_BEJ1767
crossref_primary_10_1109_TIT_2021_3075137
crossref_primary_10_1109_LSP_2018_2860242
crossref_primary_10_1137_21M1457631
crossref_primary_10_1109_TIT_2022_3166720
crossref_primary_10_3390_sym11101311
crossref_primary_10_1016_j_econlet_2019_108916
crossref_primary_10_1111_rssb_12265
crossref_primary_10_1214_21_AOS2116
crossref_primary_10_1111_rssb_12268
crossref_primary_10_1109_TIT_2022_3188753
crossref_primary_10_1093_jamia_ocae109
crossref_primary_10_3847_1538_4365_ac545a
crossref_primary_10_1016_j_artint_2022_103683
crossref_primary_10_1214_18_AOAS1185
crossref_primary_10_1080_01621459_2024_2431344
crossref_primary_10_1016_j_sigpro_2017_10_023
crossref_primary_10_1214_17_AOS1651
crossref_primary_10_1287_moor_2024_0457
crossref_primary_10_1214_23_EJS2204
crossref_primary_10_1002_sta4_186
crossref_primary_10_1137_18M1223277
crossref_primary_10_1088_1361_6560_ac4442
crossref_primary_10_1080_00031305_2021_1946150
crossref_primary_10_1214_18_AOS1759
crossref_primary_10_3233_JIFS_234381
crossref_primary_10_1007_s42081_024_00269_8
crossref_primary_10_1007_s11222_024_10492_8
crossref_primary_10_1080_03610926_2024_2328165
crossref_primary_10_1137_20M1330634
crossref_primary_10_1214_23_AOS2338
crossref_primary_10_1016_j_jempfin_2021_11_003
crossref_primary_10_1002_sim_8538
crossref_primary_10_1002_bimj_201400160
crossref_primary_10_1002_sim_9620
crossref_primary_10_1093_imaiai_iaac018
crossref_primary_10_1214_21_EJS1862
crossref_primary_10_3389_fams_2022_801650
crossref_primary_10_1214_15_AOS1397
crossref_primary_10_1007_s11590_020_01598_9
crossref_primary_10_1016_j_asoc_2021_108286
crossref_primary_10_1109_TIT_2018_2884963
crossref_primary_10_1214_21_AOS2139
crossref_primary_10_1080_02331888_2020_1720019
crossref_primary_10_1214_17_EJS1364
crossref_primary_10_1214_21_AOS2140
crossref_primary_10_1111_rssb_12373
crossref_primary_10_1080_01621459_2017_1411269
crossref_primary_10_1214_20_AOS1956
crossref_primary_10_1016_j_jmva_2018_12_006
crossref_primary_10_1016_j_jmva_2024_105339
crossref_primary_10_3150_22_BEJ1527
crossref_primary_10_1002_sta4_317
crossref_primary_10_1016_j_jmva_2019_104546
crossref_primary_10_1080_01621459_2021_1945459
crossref_primary_10_1080_10618600_2021_1963263
crossref_primary_10_1214_15_STS527
crossref_primary_10_1007_s10589_023_00506_y
crossref_primary_10_1007_s11229_020_02889_5
crossref_primary_10_1137_23M1608690
crossref_primary_10_1007_s11425_020_1743_9
crossref_primary_10_1371_journal_pone_0203242
crossref_primary_10_1080_10556788_2023_2278091
crossref_primary_10_1214_19_AOS1828
crossref_primary_10_1214_17_AOS1626
crossref_primary_10_3390_app9204291
crossref_primary_10_1007_s10589_020_00189_9
crossref_primary_10_3390_jimaging7030058
crossref_primary_10_1093_genetics_iyaa041
crossref_primary_10_29220_CSAM_2025_32_1_091
crossref_primary_10_1137_17M1147342
crossref_primary_10_1016_j_jbankfin_2019_105687
crossref_primary_10_1007_s13171_020_00212_5
crossref_primary_10_1214_17_AOS1572
crossref_primary_10_1007_s11222_024_10528_z
crossref_primary_10_1016_j_sigpro_2018_10_002
crossref_primary_10_1080_03610918_2021_2024232
crossref_primary_10_1214_16_EJS1129
crossref_primary_10_1615_JPorMedia_2023049839
crossref_primary_10_1214_22_EJS1979
crossref_primary_10_1007_s10182_022_00465_5
crossref_primary_10_1080_01621459_2018_1543124
crossref_primary_10_1007_s11222_018_9819_1
crossref_primary_10_1214_19_AOS1897
ContentType Journal Article
DBID NPM
DOI 10.1214/15-AOAS842
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 26709357
Genre Journal Article
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG006695
GroupedDBID 123
23M
2AX
6J9
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c458t-6e9d2840a671f66eb843e8ee482d00734ae18d1ed6efd457c4c9bfd300e549a72
ISSN 1932-6157
IngestDate Thu Apr 03 07:03:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords sorted ℓ1 penalized estimation (SLOPE)
Sparse regression
variable selection
false discovery rate
Lasso
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-6e9d2840a671f66eb843e8ee482d00734ae18d1ed6efd457c4c9bfd300e549a72
OpenAccessLink http://doi.org/10.1214/15-AOAS842
PMID 26709357
ParticipantIDs pubmed_primary_26709357
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2015
SSID ssj0054841
Score 2.5381205
Snippet We introduce a new estimator for the vector of coefficients in the linear model = + , where has dimensions with possibly larger than . SLOPE, short for Sorted...
SourceID pubmed
SourceType Index Database
StartPage 1103
Title SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION
URI https://www.ncbi.nlm.nih.gov/pubmed/26709357
Volume 9
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZgXOAwDcaPbTDlME5RWBPbiXMMJYiiliJSqooLcmKnK9Ja1LWaxF_Pc5w4GYIJuERV3CZOvq8v77289xmhH2koYID6DiZMOCTgocMz1eAjcuYGnPuseF3Qu_DPrsn5iI7qkqCiu2SRHmUPz_aVvAdV2Ae4qi7ZNyBrDgo74DPgC1tAGLavwjjp9i9jJzqJLgedYWwPo6tOdNyN7STuxkVxiD3sRHa7fzGMR3YfvtTr3NQ5qbuaKNzIKPPSK1WNRlrD2QTss7HQ2dIeP2zTQ-aNZ_MH3dpmOqHAitnHVcXY39nSFNUkPOULXTrQ_jXhc_OrZFmU-cnJ3UQ2UxAuNTVWldUEJxBiUK00XZnVsMEe3DCR4G_gZ2235xKVRqBO1I8SpjW3GiDe_y5Q9JTgHNan-v_oEx3tamgVrUJEoZZIVXkd_cyGsK1Y49RcSClkC1P6WU9ICUeXB3kShBTOyOAT-lhGEVakKbGJVuR0C230jATvn88o_JccVkUOy5DDAnJYmhxWkxzb6Po0HrTPnHKdDCcjlC0cX4YCvIwW9wM3932ZMoIlk5IwT6g3sYRLlwlXCl_mgtAgI1mY5gK3WpKSkAfeDvownU3lHrJc-MtyD4vcw3BPZMYphO8hy7HXCsB1Tr-gXX3dt_daDOW2uiNfXxz5htZr0uyjtRwILQ_AlVuk3wsUHgFG8Dsz
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLOPE-ADAPTIVE+VARIABLE+SELECTION+VIA+CONVEX+OPTIMIZATION&rft.jtitle=The+annals+of+applied+statistics&rft.au=Bogdan%2C+Ma%C5%82gorzata&rft.au=van+den+Berg%2C+Ewout&rft.au=Sabatti%2C+Chiara&rft.au=Su%2C+Weijie&rft.date=2015-09-01&rft.issn=1932-6157&rft.volume=9&rft.issue=3&rft.spage=1103&rft_id=info:doi/10.1214%2F15-AOAS842&rft_id=info%3Apmid%2F26709357&rft_id=info%3Apmid%2F26709357&rft.externalDocID=26709357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon