SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION
We introduce a new estimator for the vector of coefficients in the linear model = + , where has dimensions with possibly larger than . SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ ≥ λ ≥ … ≥ λ ≥ 0 and [Formula: see text] are the decreasing absolute...
Saved in:
Published in | The annals of applied statistics Vol. 9; no. 3; p. 1103 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2015
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | We introduce a new estimator for the vector of coefficients
in the linear model
=
+
, where
has dimensions
with
possibly larger than
. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ
≥ λ
≥ … ≥ λ
≥ 0 and [Formula: see text] are the decreasing absolute values of the entries of
. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ
procedures such as the Lasso. Here, the regularizer is a sorted ℓ
norm, which penalizes the regression coefficients according to their rank: the higher the rank-that is, stronger the signal-the larger the penalty. This is similar to the Benjamini and Hochberg [
(1995) 289-300] procedure (BH) which compares more significant
-values with more stringent thresholds. One notable choice of the sequence {λ
} is given by the BH critical values [Formula: see text], where
∈ (0, 1) and
(
) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λ
provably controls FDR at level
. Moreover, it also appears to have appreciable inferential properties under more general designs
while having substantial power, as demonstrated in a series of experiments running on both simulated and real data. |
---|---|
AbstractList | We introduce a new estimator for the vector of coefficients
in the linear model
=
+
, where
has dimensions
with
possibly larger than
. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to [Formula: see text]where λ
≥ λ
≥ … ≥ λ
≥ 0 and [Formula: see text] are the decreasing absolute values of the entries of
. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ
procedures such as the Lasso. Here, the regularizer is a sorted ℓ
norm, which penalizes the regression coefficients according to their rank: the higher the rank-that is, stronger the signal-the larger the penalty. This is similar to the Benjamini and Hochberg [
(1995) 289-300] procedure (BH) which compares more significant
-values with more stringent thresholds. One notable choice of the sequence {λ
} is given by the BH critical values [Formula: see text], where
∈ (0, 1) and
(
) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λ
provably controls FDR at level
. Moreover, it also appears to have appreciable inferential properties under more general designs
while having substantial power, as demonstrated in a series of experiments running on both simulated and real data. |
Author | Bogdan, Małgorzata van den Berg, Ewout Sabatti, Chiara Su, Weijie Candès, Emmanuel J |
Author_xml | – sequence: 1 givenname: Małgorzata surname: Bogdan fullname: Bogdan, Małgorzata organization: Department of Mathematics, Wrocław University of Technology, 50-370 Wrocław, Poland – sequence: 2 givenname: Ewout surname: van den Berg fullname: van den Berg, Ewout organization: Human Language Technologies, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA – sequence: 3 givenname: Chiara surname: Sabatti fullname: Sabatti, Chiara organization: Department of Health Research and Policy, Division of Biostatistics, Stanford University, HRP Redwood Building, Stanford, California 94305, USA – sequence: 4 givenname: Weijie surname: Su fullname: Su, Weijie organization: Department of Statistics, Stanford University, 90 Serra Mall, Sequoia Hall, Stanford, California 94305, USA – sequence: 5 givenname: Emmanuel J surname: Candès fullname: Candès, Emmanuel J organization: Department of Statistics, Stanford University, 390 Serra Mall, Sequoia Hall, Stanford, California 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26709357$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYRrMYcS668QGkLxBN0j-3ZawZDdTJYGsRN0Pb_AXFGYepLnx7FXX1weFw4JuTye5th4SccXbBBYdLLqmLrjIgJmTGbS6o4lJPyXwcXxiTYIAfk6lQmtlc6hmxVRnXnrprt65D47PG3Qd3Vfqs8qUv6hBXWRNcVsRV4x-z-C3dhSf3w0_I0dC-jnj6twvysPR1cUvLeBMKV9IepHmnCm0SBlirNB-Uws5AjgYRjEiM6Rxa5CZxTAqHBFL30NtuSDljKMG2WizI-W93_9FtMW32h-dte_jc_H8QXxpoQfo |
CitedBy_id | crossref_primary_10_1007_s13571_019_00219_5 crossref_primary_10_1016_j_neunet_2020_12_004 crossref_primary_10_1214_18_AOS1742 crossref_primary_10_1007_s10463_018_0693_6 crossref_primary_10_1080_00401706_2020_1801256 crossref_primary_10_1214_17_AOS1562 crossref_primary_10_1214_22_AOS2194 crossref_primary_10_1093_imaiai_iaaa037 crossref_primary_10_1214_15_AOAS842 crossref_primary_10_1109_TIT_2020_2965738 crossref_primary_10_1109_TCBB_2017_2780106 crossref_primary_10_1080_01621459_2022_2081575 crossref_primary_10_1080_14697688_2021_1962539 crossref_primary_10_1214_24_EJS2330 crossref_primary_10_3150_18_BEJ1019 crossref_primary_10_1214_19_EJS1649 crossref_primary_10_1080_03610926_2019_1628991 crossref_primary_10_1088_1742_6596_699_1_012016 crossref_primary_10_1093_biomet_asab042 crossref_primary_10_1109_OJSP_2025_3529312 crossref_primary_10_1007_s00181_024_02694_w crossref_primary_10_1016_j_spa_2018_11_024 crossref_primary_10_1080_01621459_2022_2060113 crossref_primary_10_3390_e26090794 crossref_primary_10_1109_TSP_2018_2807399 crossref_primary_10_1214_20_AOS2043 crossref_primary_10_1080_10618600_2020_1869026 crossref_primary_10_1093_imaiai_iaab025 crossref_primary_10_1214_17_AOS1670 crossref_primary_10_1186_s13023_018_0820_8 crossref_primary_10_1109_TSP_2020_3038480 crossref_primary_10_1007_s40305_022_00414_8 crossref_primary_10_1214_21_AOS2100 crossref_primary_10_1214_17_AOS1559 crossref_primary_10_1287_ijoc_2021_0255 crossref_primary_10_1016_j_jspi_2022_02_005 crossref_primary_10_1109_TIT_2020_3025272 crossref_primary_10_5351_KJAS_2024_37_3_265 crossref_primary_10_1371_journal_pone_0269369 crossref_primary_10_1162_neco_a_01279 crossref_primary_10_1063_5_0072462 crossref_primary_10_1111_insr_12469 crossref_primary_10_1214_18_EJS1410 crossref_primary_10_1534_genetics_116_193987 crossref_primary_10_2139_ssrn_3263420 crossref_primary_10_1214_23_AOS2274 crossref_primary_10_1109_TIT_2018_2840720 crossref_primary_10_3150_22_BEJ1574 crossref_primary_10_3150_24_BEJ1767 crossref_primary_10_1109_TIT_2021_3075137 crossref_primary_10_1109_LSP_2018_2860242 crossref_primary_10_1137_21M1457631 crossref_primary_10_1109_TIT_2022_3166720 crossref_primary_10_3390_sym11101311 crossref_primary_10_1016_j_econlet_2019_108916 crossref_primary_10_1111_rssb_12265 crossref_primary_10_1214_21_AOS2116 crossref_primary_10_1111_rssb_12268 crossref_primary_10_1109_TIT_2022_3188753 crossref_primary_10_1093_jamia_ocae109 crossref_primary_10_3847_1538_4365_ac545a crossref_primary_10_1016_j_artint_2022_103683 crossref_primary_10_1214_18_AOAS1185 crossref_primary_10_1080_01621459_2024_2431344 crossref_primary_10_1016_j_sigpro_2017_10_023 crossref_primary_10_1214_17_AOS1651 crossref_primary_10_1287_moor_2024_0457 crossref_primary_10_1214_23_EJS2204 crossref_primary_10_1002_sta4_186 crossref_primary_10_1137_18M1223277 crossref_primary_10_1088_1361_6560_ac4442 crossref_primary_10_1080_00031305_2021_1946150 crossref_primary_10_1214_18_AOS1759 crossref_primary_10_3233_JIFS_234381 crossref_primary_10_1007_s42081_024_00269_8 crossref_primary_10_1007_s11222_024_10492_8 crossref_primary_10_1080_03610926_2024_2328165 crossref_primary_10_1137_20M1330634 crossref_primary_10_1214_23_AOS2338 crossref_primary_10_1016_j_jempfin_2021_11_003 crossref_primary_10_1002_sim_8538 crossref_primary_10_1002_bimj_201400160 crossref_primary_10_1002_sim_9620 crossref_primary_10_1093_imaiai_iaac018 crossref_primary_10_1214_21_EJS1862 crossref_primary_10_3389_fams_2022_801650 crossref_primary_10_1214_15_AOS1397 crossref_primary_10_1007_s11590_020_01598_9 crossref_primary_10_1016_j_asoc_2021_108286 crossref_primary_10_1109_TIT_2018_2884963 crossref_primary_10_1214_21_AOS2139 crossref_primary_10_1080_02331888_2020_1720019 crossref_primary_10_1214_17_EJS1364 crossref_primary_10_1214_21_AOS2140 crossref_primary_10_1111_rssb_12373 crossref_primary_10_1080_01621459_2017_1411269 crossref_primary_10_1214_20_AOS1956 crossref_primary_10_1016_j_jmva_2018_12_006 crossref_primary_10_1016_j_jmva_2024_105339 crossref_primary_10_3150_22_BEJ1527 crossref_primary_10_1002_sta4_317 crossref_primary_10_1016_j_jmva_2019_104546 crossref_primary_10_1080_01621459_2021_1945459 crossref_primary_10_1080_10618600_2021_1963263 crossref_primary_10_1214_15_STS527 crossref_primary_10_1007_s10589_023_00506_y crossref_primary_10_1007_s11229_020_02889_5 crossref_primary_10_1137_23M1608690 crossref_primary_10_1007_s11425_020_1743_9 crossref_primary_10_1371_journal_pone_0203242 crossref_primary_10_1080_10556788_2023_2278091 crossref_primary_10_1214_19_AOS1828 crossref_primary_10_1214_17_AOS1626 crossref_primary_10_3390_app9204291 crossref_primary_10_1007_s10589_020_00189_9 crossref_primary_10_3390_jimaging7030058 crossref_primary_10_1093_genetics_iyaa041 crossref_primary_10_29220_CSAM_2025_32_1_091 crossref_primary_10_1137_17M1147342 crossref_primary_10_1016_j_jbankfin_2019_105687 crossref_primary_10_1007_s13171_020_00212_5 crossref_primary_10_1214_17_AOS1572 crossref_primary_10_1007_s11222_024_10528_z crossref_primary_10_1016_j_sigpro_2018_10_002 crossref_primary_10_1080_03610918_2021_2024232 crossref_primary_10_1214_16_EJS1129 crossref_primary_10_1615_JPorMedia_2023049839 crossref_primary_10_1214_22_EJS1979 crossref_primary_10_1007_s10182_022_00465_5 crossref_primary_10_1080_01621459_2018_1543124 crossref_primary_10_1007_s11222_018_9819_1 crossref_primary_10_1214_19_AOS1897 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/15-AOAS842 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 26709357 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG006695 |
GroupedDBID | 123 23M 2AX 6J9 AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACHJO ACMTB ACTMH ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c458t-6e9d2840a671f66eb843e8ee482d00734ae18d1ed6efd457c4c9bfd300e549a72 |
ISSN | 1932-6157 |
IngestDate | Thu Apr 03 07:03:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | sorted ℓ1 penalized estimation (SLOPE) Sparse regression variable selection false discovery rate Lasso |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c458t-6e9d2840a671f66eb843e8ee482d00734ae18d1ed6efd457c4c9bfd300e549a72 |
OpenAccessLink | http://doi.org/10.1214/15-AOAS842 |
PMID | 26709357 |
ParticipantIDs | pubmed_primary_26709357 |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2015 |
SSID | ssj0054841 |
Score | 2.5381205 |
Snippet | We introduce a new estimator for the vector of coefficients
in the linear model
=
+
, where
has dimensions
with
possibly larger than
. SLOPE, short for Sorted... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1103 |
Title | SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26709357 |
Volume | 9 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZgXOAwDcaPbTDlME5RWBPbiXMMJYiiliJSqooLcmKnK9Ja1LWaxF_Pc5w4GYIJuERV3CZOvq8v77289xmhH2koYID6DiZMOCTgocMz1eAjcuYGnPuseF3Qu_DPrsn5iI7qkqCiu2SRHmUPz_aVvAdV2Ae4qi7ZNyBrDgo74DPgC1tAGLavwjjp9i9jJzqJLgedYWwPo6tOdNyN7STuxkVxiD3sRHa7fzGMR3YfvtTr3NQ5qbuaKNzIKPPSK1WNRlrD2QTss7HQ2dIeP2zTQ-aNZ_MH3dpmOqHAitnHVcXY39nSFNUkPOULXTrQ_jXhc_OrZFmU-cnJ3UQ2UxAuNTVWldUEJxBiUK00XZnVsMEe3DCR4G_gZ2235xKVRqBO1I8SpjW3GiDe_y5Q9JTgHNan-v_oEx3tamgVrUJEoZZIVXkd_cyGsK1Y49RcSClkC1P6WU9ICUeXB3kShBTOyOAT-lhGEVakKbGJVuR0C230jATvn88o_JccVkUOy5DDAnJYmhxWkxzb6Po0HrTPnHKdDCcjlC0cX4YCvIwW9wM3932ZMoIlk5IwT6g3sYRLlwlXCl_mgtAgI1mY5gK3WpKSkAfeDvownU3lHrJc-MtyD4vcw3BPZMYphO8hy7HXCsB1Tr-gXX3dt_daDOW2uiNfXxz5htZr0uyjtRwILQ_AlVuk3wsUHgFG8Dsz |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLOPE-ADAPTIVE+VARIABLE+SELECTION+VIA+CONVEX+OPTIMIZATION&rft.jtitle=The+annals+of+applied+statistics&rft.au=Bogdan%2C+Ma%C5%82gorzata&rft.au=van+den+Berg%2C+Ewout&rft.au=Sabatti%2C+Chiara&rft.au=Su%2C+Weijie&rft.date=2015-09-01&rft.issn=1932-6157&rft.volume=9&rft.issue=3&rft.spage=1103&rft_id=info:doi/10.1214%2F15-AOAS842&rft_id=info%3Apmid%2F26709357&rft_id=info%3Apmid%2F26709357&rft.externalDocID=26709357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |