Marathon running alters the DNA base excision repair in human skeletal muscle

Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxogu...

Full description

Saved in:
Bibliographic Details
Published inLife sciences (1973) Vol. 72; no. 14; pp. 1627 - 1633
Main Authors Radák, Zsolt, Apor, Peter, Pucsok, Jozsef, Berkes, Istvan, Ogonovszky, Helga, Pavlik, Gabor, Nakamoto, Hideko, Goto, Sataro
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 21.02.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.
AbstractList Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.
Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.
Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8- oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of super(32)P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up- regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.
Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA. Formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (endo III) or their functional mammalian homologues repair 7,8-dihydro-8-oxoguanine (8-oxoG) and damaged pyrimidines, respectively, to curb the deleterious effects of oxidative DNA alterations. A single bout of physical exercise can induce oxidative DNA damage. However, its effect on the activity of repair enzymes is not known. Here we report that the activity of a functional homolog of Fpg, human 8-oxoG DNA glycosylase (hOGG1), is increased significantly, as measured by the excision of 32P labeled damaged oligonucleotide, in human skeletal muscle after a marathon race. The AP site repair enzyme did not change significantly. Despite the large individual differences among the six subjects measured, data suggest that a single-bout of aerobic exercise increases the activity of hOGG1 which is responsible for the excision of 8-oxoG. The up-regulation of DNA repair enzymes might be an important part of the regular exercise induced adaptation process.
Author Radák, Zsolt
Goto, Sataro
Pavlik, Gabor
Berkes, Istvan
Ogonovszky, Helga
Nakamoto, Hideko
Pucsok, Jozsef
Apor, Peter
Author_xml – sequence: 1
  givenname: Zsolt
  surname: Radák
  fullname: Radák, Zsolt
  email: radak@mail.hupe.hu
  organization: Laboratory of Exercise Physiology, School of Sport Sciences, Semmelweis University, Budapest, Alkotas u. 44, H-1123, Hungary
– sequence: 2
  givenname: Peter
  surname: Apor
  fullname: Apor, Peter
  organization: Svabhegy Pediatric Institute, Budapest, Hungary
– sequence: 3
  givenname: Jozsef
  surname: Pucsok
  fullname: Pucsok, Jozsef
  organization: National Institute of Sport Medicine, Budapest, Hungary
– sequence: 4
  givenname: Istvan
  surname: Berkes
  fullname: Berkes, Istvan
  organization: National Institute of Sport Medicine, Budapest, Hungary
– sequence: 5
  givenname: Helga
  surname: Ogonovszky
  fullname: Ogonovszky, Helga
  organization: Laboratory of Exercise Physiology, School of Sport Sciences, Semmelweis University, Budapest, Alkotas u. 44, H-1123, Hungary
– sequence: 6
  givenname: Gabor
  surname: Pavlik
  fullname: Pavlik, Gabor
  organization: Laboratory of Exercise Physiology, School of Sport Sciences, Semmelweis University, Budapest, Alkotas u. 44, H-1123, Hungary
– sequence: 7
  givenname: Hideko
  surname: Nakamoto
  fullname: Nakamoto, Hideko
  organization: Department Biochemistry, School of Pharmaceutical Sciences, Toho University, Funabashi, Japan
– sequence: 8
  givenname: Sataro
  surname: Goto
  fullname: Goto, Sataro
  organization: Department Biochemistry, School of Pharmaceutical Sciences, Toho University, Funabashi, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12551751$$D View this record in MEDLINE/PubMed
BookMark eNqF0blOxDAUBVALgWBYPgHkCkERsJ04TkSBELvEUgC19XBeGEPiDLaD4O_JMCwSzVR2ce4r7l0li65zSMgmZ3uc8Xz_jjGRJalgcoeJ3eGv8oQvkBEvVJmwPOWLZPRLVshqCM-MMSlVukxWuJCSK8lH5PoaPMRx56jvnbPuiUIT0Qcax0hPbo7oIwSk-G5ssFOEE7CeWkfHfQuOhhdsMEJD2z6YBtfJUg1NwI3vd408nJ3eH18kV7fnl8dHV4nJZBGTHFVR1chMVdYM0JQFVCJLOYDJFFalEDCAyhgpi1pAkaoylwwyo3iqBpKuke3Z3YnvXnsMUbc2GGwacNj1QStRqjTP2VwoOM_40MQAt75h_9hipSfetuA_9E9TA5AzYHwXgsf6jzA9XUR_LaKndWsm9Nciepo7-JczNkIcyowebDM3fThL49Dmm0Wvg7HoDFbWo4m66uycC59j8qPN
CitedBy_id crossref_primary_10_1080_10715760903040628
crossref_primary_10_1002_em_20572
crossref_primary_10_1080_10408390600550299
crossref_primary_10_1002_em_20457
crossref_primary_10_3390_ijerph20196872
crossref_primary_10_1155_2016_7239639
crossref_primary_10_1016_j_freeradbiomed_2007_01_029
crossref_primary_10_1371_journal_pone_0212499
crossref_primary_10_1016_j_mad_2008_01_001
crossref_primary_10_1046_j_0001_6772_2003_01242_x
crossref_primary_10_1016_j_freeradbiomed_2018_10_444
crossref_primary_10_31362_patd_1110573
crossref_primary_10_4103_1673_5374_282237
crossref_primary_10_3390_antiox7070085
crossref_primary_10_1249_MSS_0b013e31821240bb
crossref_primary_10_1016_j_freeradbiomed_2005_03_024
crossref_primary_10_1038_nutd_2013_30
crossref_primary_10_18632_oncotarget_14670
crossref_primary_10_1016_j_neuint_2005_02_009
crossref_primary_10_1016_j_freeradbiomed_2011_04_018
crossref_primary_10_1007_s11332_016_0342_5
crossref_primary_10_1007_s40279_015_0348_1
crossref_primary_10_1097_APO_0000000000000226
crossref_primary_10_1158_1055_9965_EPI_08_0293
crossref_primary_10_1007_s12576_014_0334_7
crossref_primary_10_1016_j_genm_2008_07_002
crossref_primary_10_3233_JAD_210424
crossref_primary_10_1002_ijc_28383
crossref_primary_10_1155_2021_2775025
crossref_primary_10_1016_j_arr_2015_02_004
crossref_primary_10_2203_dose_response_13_035_Ristow
crossref_primary_10_1007_s40279_014_0282_7
crossref_primary_10_1080_02640414_2020_1754739
crossref_primary_10_1080_21553769_2011_635008
crossref_primary_10_1096_fj_04_2278fje
crossref_primary_10_1016_j_neuroscience_2013_08_020
crossref_primary_10_1016_j_mrrev_2009_02_002
crossref_primary_10_1155_2012_756132
crossref_primary_10_1002_ptr_8215
crossref_primary_10_1007_s11332_018_0508_4
crossref_primary_10_1158_1055_9965_227_14_1
crossref_primary_10_1016_j_exger_2006_11_006
crossref_primary_10_1016_j_ypmed_2017_04_027
crossref_primary_10_1080_10715760400013763
crossref_primary_10_1080_10715760600623015
crossref_primary_10_1039_C6FO00252H
crossref_primary_10_1089_ars_2011_4498
crossref_primary_10_1016_j_arr_2007_04_004
crossref_primary_10_1073_pnas_2107621118
crossref_primary_10_1016_j_freeradbiomed_2023_11_005
crossref_primary_10_1097_JSM_0b013e3181e413df
crossref_primary_10_1589_jpts_26_825
crossref_primary_10_1152_japplphysiol_01051_2006
crossref_primary_10_29252_mlj_14_4_31
crossref_primary_10_1080_02640414_2015_1004637
crossref_primary_10_1042_BST20140120
crossref_primary_10_1186_1476_5918_8_1
crossref_primary_10_1007_s40520_013_0117_7
crossref_primary_10_1080_1354750X_2018_1452049
crossref_primary_10_1139_h05_114
crossref_primary_10_2165_11594400_000000000_00000
crossref_primary_10_1249_01_MSS_0000135778_57355_CA
crossref_primary_10_3109_10715762_2015_1025388
crossref_primary_10_1113_JP270659
crossref_primary_10_1016_j_mad_2010_03_009
crossref_primary_10_1017_S0007114512000992
crossref_primary_10_3390_ijms18122573
crossref_primary_10_1007_s00421_010_1499_2
crossref_primary_10_1007_s10522_004_7386_7
crossref_primary_10_3390_ijms15046504
Cites_doi 10.1093/nar/29.9.1975
10.1073/pnas.94.14.7429
10.1016/S0006-2952(97)00448-6
10.1038/35077232
10.1074/jbc.273.33.21203
10.1073/pnas.94.15.8010
10.1016/0092-8674(85)90191-6
10.1016/S0891-5849(99)00038-6
10.1074/jbc.272.2.1148
10.1055/s-2007-972868
10.1080/02640419608727720
10.2307/3579809
10.1016/S0891-5849(00)00172-6
10.1093/carcin/22.2.265
10.1016/0168-9525(93)90089-Z
10.1096/fj.00-0703com
10.1073/pnas.94.1.109
10.1016/S0079-6603(01)68084-X
10.1016/S0891-5849(98)00309-8
10.1080/10715769800300621
10.1073/pnas.97.2.686
10.1093/carcin/11.9.1447
10.1073/pnas.95.17.9997
ContentType Journal Article
Copyright 2002
Copyright_xml – notice: 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
DOI 10.1016/S0024-3205(02)02476-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Nucleic Acids Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1879-0631
EndPage 1633
ExternalDocumentID 12551751
10_1016_S0024_3205_02_02476_1
S0024320502024761
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
29L
3O-
4.4
457
53G
5GY
5RE
5VS
6TJ
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABTAH
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMG
HMT
HVGLF
HZ~
H~9
IH2
IHE
J1W
J5H
K-O
KOM
L7B
LCYCR
M34
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SPT
SSH
SSP
SSZ
T5K
TEORI
WUQ
X7M
Y6R
YYP
YZZ
ZGI
ZKB
ZXP
ZY4
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
ID FETCH-LOGICAL-c458t-6e78dfe0cd9f0aec98ad2431aac47ed922a78ddcc558f2a8379650a4c7137c473
IEDL.DBID .~1
ISSN 0024-3205
IngestDate Fri Jul 11 09:41:16 EDT 2025
Fri Jul 11 10:52:18 EDT 2025
Thu Apr 03 06:53:44 EDT 2025
Tue Jul 01 00:22:55 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Fri Feb 23 02:30:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Oxidative stress
Exercise
DNA repair
Base excision repair
DNA damage
Adaptation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-6e78dfe0cd9f0aec98ad2431aac47ed922a78ddcc558f2a8379650a4c7137c473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 12551751
PQID 21141175
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_72973660
proquest_miscellaneous_21141175
pubmed_primary_12551751
crossref_primary_10_1016_S0024_3205_02_02476_1
crossref_citationtrail_10_1016_S0024_3205_02_02476_1
elsevier_sciencedirect_doi_10_1016_S0024_3205_02_02476_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-02-21
PublicationDateYYYYMMDD 2003-02-21
PublicationDate_xml – month: 02
  year: 2003
  text: 2003-02-21
  day: 21
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Life sciences (1973)
PublicationTitleAlternate Life Sci
PublicationYear 2003
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Nakamura, Swenberg (BIB19) 1999; 59
Floyd (BIB16) 1990; 11
Grollman, Moriya (BIB17) 1993; 9
Cardozo-Pelaez, Brooks, Stedeford, Song, Sanchez-Ramos (BIB13) 2000; 28
Stecca, Gerber (BIB14) 1998; 55
Wallace (BIB21) 1998; 150
Glassner, Rasmussen, Najarian, Posnick, Samson (BIB25) 1998; 95
Moller, Loft, Lundby, Olsen (BIB5) 2001; 15
Rosenquist, Zharkov, Grollman (BIB15) 1997; 94
Niess, Hartmann, Grunert-Fuchs, Poch, Speit (BIB9) 1996; 17
Loeb (BIB23) 1985; 40
Hoeijmakers (BIB1) 2001; 411
Aspinwall, Rothwell, Roldan-Arjona, Anselmino, Ward, Cheadle, Sampson, Lindahl, Harris, Hickson (BIB4) 1997; 94
Radicella, Dherin, Desmaze, Fox, Boiteux (BIB3) 1997; 94
Srivastava, Berg, Prasad, Molina, Beard, Tomkinson, Wilson (BIB20) 1998; 273
Asami, Hirano, Yamaguchi, Itoh, Kasai (BIB18) 1998; 29
Poulsen, Loft, Vistisen (BIB6) 1996; 14
Radak, Pucsok, Mecseki, Csont, Ferdinandy (BIB7) 1999; 26
Radak, Taylor, Ohno, Goto (BIB8) 2001; 7
Niess, Baumann, Roecker, Horstmann, Mayer, Dickhuth (BIB10) 1998; 38
Atamna, Cheung, Ames (BIB2) 2000; 97
Kingma, Osheroff (BIB24) 1997; 272
Radak, Kaneko, Tahara, Nakamoto, Ohno, Sasvari, Nyakas, Goto (BIB11) 1999; 27
Matsumoto, Zhang, Takao, Yasui, Yone (BIB26) 2001; 29
Lindahl (BIB22) 2001; 68
Kim, Morimoto, Tsuda, Ootsuyama, Hirohashi, Hirano, Tanaka, Lim, Yun, Kasai (BIB12) 2001; 22
Lindahl (10.1016/S0024-3205(02)02476-1_BIB22) 2001; 68
Kingma (10.1016/S0024-3205(02)02476-1_BIB24) 1997; 272
Srivastava (10.1016/S0024-3205(02)02476-1_BIB20) 1998; 273
Matsumoto (10.1016/S0024-3205(02)02476-1_BIB26) 2001; 29
Nakamura (10.1016/S0024-3205(02)02476-1_BIB19) 1999; 59
Radak (10.1016/S0024-3205(02)02476-1_BIB8) 2001; 7
Glassner (10.1016/S0024-3205(02)02476-1_BIB25) 1998; 95
Aspinwall (10.1016/S0024-3205(02)02476-1_BIB4) 1997; 94
Loeb (10.1016/S0024-3205(02)02476-1_BIB23) 1985; 40
Rosenquist (10.1016/S0024-3205(02)02476-1_BIB15) 1997; 94
Radak (10.1016/S0024-3205(02)02476-1_BIB11) 1999; 27
Niess (10.1016/S0024-3205(02)02476-1_BIB10) 1998; 38
Atamna (10.1016/S0024-3205(02)02476-1_BIB2) 2000; 97
Kim (10.1016/S0024-3205(02)02476-1_BIB12) 2001; 22
Asami (10.1016/S0024-3205(02)02476-1_BIB18) 1998; 29
Radicella (10.1016/S0024-3205(02)02476-1_BIB3) 1997; 94
Floyd (10.1016/S0024-3205(02)02476-1_BIB16) 1990; 11
Niess (10.1016/S0024-3205(02)02476-1_BIB9) 1996; 17
Moller (10.1016/S0024-3205(02)02476-1_BIB5) 2001; 15
Cardozo-Pelaez (10.1016/S0024-3205(02)02476-1_BIB13) 2000; 28
Radak (10.1016/S0024-3205(02)02476-1_BIB7) 1999; 26
Grollman (10.1016/S0024-3205(02)02476-1_BIB17) 1993; 9
Hoeijmakers (10.1016/S0024-3205(02)02476-1_BIB1) 2001; 411
Stecca (10.1016/S0024-3205(02)02476-1_BIB14) 1998; 55
Wallace (10.1016/S0024-3205(02)02476-1_BIB21) 1998; 150
Poulsen (10.1016/S0024-3205(02)02476-1_BIB6) 1996; 14
References_xml – volume: 97
  start-page: 686
  year: 2000
  end-page: 691
  ident: BIB2
  article-title: A method for detecting abasic sites in living cells: age-dependent changes in base excision repair
  publication-title: Proc Natl Acad Sci U S A
– volume: 150
  start-page: S60
  year: 1998
  end-page: S79
  ident: BIB21
  article-title: Enzymatic processing of radiation-induced free radical damage in DNA
  publication-title: Radiat Res
– volume: 9
  start-page: 246
  year: 1993
  end-page: 249
  ident: BIB17
  article-title: Mutagenesis by 8-oxoguanine: an enemy within
  publication-title: Trends Genet
– volume: 14
  start-page: 343
  year: 1996
  end-page: 346
  ident: BIB6
  article-title: Extreme exercise and oxidative DNA modification
  publication-title: J Sports Sci
– volume: 95
  start-page: 9997
  year: 1998
  end-page: 10002
  ident: BIB25
  article-title: Generation of a strong mutator phenotype in yeast by imbalanced base excision repair
  publication-title: Proc Natl Acad Sci U SA
– volume: 11
  start-page: 1447
  year: 1990
  end-page: 1450
  ident: BIB16
  article-title: The role of 8-hydroxyguanine in carcinogenesis
  publication-title: Carcinogenesis
– volume: 38
  start-page: 111
  year: 1998
  end-page: 1115
  ident: BIB10
  article-title: Effects of intensive endurance exercise on DNA damage in leucocytes
  publication-title: J Sports Med Phys Fitness
– volume: 28
  start-page: 779
  year: 2000
  end-page: 785
  ident: BIB13
  article-title: DNA damage, repair, and antioxidant systems in brain regions: a correlative study
  publication-title: Free Radic Biol Med
– volume: 273
  start-page: 21203
  year: 1998
  end-page: 21209
  ident: BIB20
  article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps
  publication-title: J. Biol. Chem.
– volume: 94
  start-page: 8010
  year: 1997
  end-page: 8015
  ident: BIB3
  article-title: Cloning and characterization of hOGG1 gene of saccharomyces cerevisiae
  publication-title: Proc Natl Acad Sci USA
– volume: 94
  start-page: 109
  year: 1997
  end-page: 114
  ident: BIB4
  article-title: Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 1975
  year: 2001
  end-page: 1981
  ident: BIB26
  article-title: Escherichia Coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxguanine/guanine mispairs in DNA
  publication-title: Nucl. Acid Res.
– volume: 29
  start-page: 581
  year: 1998
  end-page: 585
  ident: BIB18
  article-title: Reduction of 8-hydroxyguanine in human leukocyte DNA by physical exercise
  publication-title: Free Radic Res
– volume: 15
  start-page: 1181
  year: 2001
  end-page: 1186
  ident: BIB5
  article-title: Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans
  publication-title: FASEB J
– volume: 27
  start-page: 69
  year: 1999
  end-page: 74
  ident: BIB11
  article-title: The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes
  publication-title: Free Radic Biol Med
– volume: 68
  start-page: xvii
  year: 2001
  end-page: xxx
  ident: BIB22
  article-title: Keynote: past, present, and future aspects of base excision repair
  publication-title: Prog Nucleic Acid Res. Mol. Biol.
– volume: 7
  start-page: 90
  year: 2001
  end-page: 107
  ident: BIB8
  article-title: Adaptation to exercise-induced oxidative stress: from muscle to brain
  publication-title: Exerc Immun Rev
– volume: 94
  start-page: 7429
  year: 1997
  end-page: 7434
  ident: BIB15
  article-title: Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase
  publication-title: Proc Natl Acad Sci U S A
– volume: 59
  start-page: 2522
  year: 1999
  end-page: 2526
  ident: BIB19
  article-title: Endogenous apurinic/apyrimidic sites in genomic DNA of mammalian tissues
  publication-title: Cancer Res
– volume: 17
  start-page: 397
  year: 1996
  end-page: 403
  ident: BIB9
  article-title: DNA damage after exhaustive treadmill running in trained and untrained men
  publication-title: Int J Sports Med
– volume: 411
  start-page: 366
  year: 2001
  end-page: 374
  ident: BIB1
  article-title: Genome maintenance mechanisms for preventing cancer
  publication-title: Nature
– volume: 26
  start-page: 1059
  year: 1999
  end-page: 1063
  ident: BIB7
  article-title: Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle
  publication-title: Free Radic Biol Med
– volume: 22
  start-page: 265
  year: 2001
  end-page: 269
  ident: BIB12
  article-title: Changes in DNA 8-hydroxyguanine levels, 8-hydroxyguanine repair activity, and hOGG1 and hMTH1 mRNA expression in human lung alveolar epithelial cells induced by crocidolite asbestos
  publication-title: Carcinogenesis
– volume: 272
  start-page: 1148
  year: 1997
  end-page: 1155
  ident: BIB24
  article-title: Apurinic sites are position-specific topoisomerase II poisons
  publication-title: J. Biol. Chem.
– volume: 55
  start-page: 941
  year: 1998
  end-page: 951
  ident: BIB14
  article-title: Adaptive response to DNA-damaging agents
  publication-title: Biochem Pharmacol
– volume: 40
  start-page: 483
  year: 1985
  end-page: 484
  ident: BIB23
  article-title: Apurinic sites as mutagenic intermediates
  publication-title: Cell
– volume: 59
  start-page: 2522
  year: 1999
  ident: 10.1016/S0024-3205(02)02476-1_BIB19
  article-title: Endogenous apurinic/apyrimidic sites in genomic DNA of mammalian tissues
  publication-title: Cancer Res
– volume: 7
  start-page: 90
  year: 2001
  ident: 10.1016/S0024-3205(02)02476-1_BIB8
  article-title: Adaptation to exercise-induced oxidative stress: from muscle to brain
  publication-title: Exerc Immun Rev
– volume: 29
  start-page: 1975
  year: 2001
  ident: 10.1016/S0024-3205(02)02476-1_BIB26
  article-title: Escherichia Coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxguanine/guanine mispairs in DNA
  publication-title: Nucl. Acid Res.
  doi: 10.1093/nar/29.9.1975
– volume: 94
  start-page: 7429
  year: 1997
  ident: 10.1016/S0024-3205(02)02476-1_BIB15
  article-title: Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.14.7429
– volume: 38
  start-page: 111
  year: 1998
  ident: 10.1016/S0024-3205(02)02476-1_BIB10
  article-title: Effects of intensive endurance exercise on DNA damage in leucocytes
  publication-title: J Sports Med Phys Fitness
– volume: 55
  start-page: 941
  year: 1998
  ident: 10.1016/S0024-3205(02)02476-1_BIB14
  article-title: Adaptive response to DNA-damaging agents
  publication-title: Biochem Pharmacol
  doi: 10.1016/S0006-2952(97)00448-6
– volume: 411
  start-page: 366
  year: 2001
  ident: 10.1016/S0024-3205(02)02476-1_BIB1
  article-title: Genome maintenance mechanisms for preventing cancer
  publication-title: Nature
  doi: 10.1038/35077232
– volume: 273
  start-page: 21203
  year: 1998
  ident: 10.1016/S0024-3205(02)02476-1_BIB20
  article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.33.21203
– volume: 94
  start-page: 8010
  year: 1997
  ident: 10.1016/S0024-3205(02)02476-1_BIB3
  article-title: Cloning and characterization of hOGG1 gene of saccharomyces cerevisiae
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.15.8010
– volume: 40
  start-page: 483
  year: 1985
  ident: 10.1016/S0024-3205(02)02476-1_BIB23
  article-title: Apurinic sites as mutagenic intermediates
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90191-6
– volume: 27
  start-page: 69
  year: 1999
  ident: 10.1016/S0024-3205(02)02476-1_BIB11
  article-title: The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(99)00038-6
– volume: 272
  start-page: 1148
  year: 1997
  ident: 10.1016/S0024-3205(02)02476-1_BIB24
  article-title: Apurinic sites are position-specific topoisomerase II poisons
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.2.1148
– volume: 17
  start-page: 397
  year: 1996
  ident: 10.1016/S0024-3205(02)02476-1_BIB9
  article-title: DNA damage after exhaustive treadmill running in trained and untrained men
  publication-title: Int J Sports Med
  doi: 10.1055/s-2007-972868
– volume: 14
  start-page: 343
  year: 1996
  ident: 10.1016/S0024-3205(02)02476-1_BIB6
  article-title: Extreme exercise and oxidative DNA modification
  publication-title: J Sports Sci
  doi: 10.1080/02640419608727720
– volume: 150
  start-page: S60
  year: 1998
  ident: 10.1016/S0024-3205(02)02476-1_BIB21
  article-title: Enzymatic processing of radiation-induced free radical damage in DNA
  publication-title: Radiat Res
  doi: 10.2307/3579809
– volume: 28
  start-page: 779
  year: 2000
  ident: 10.1016/S0024-3205(02)02476-1_BIB13
  article-title: DNA damage, repair, and antioxidant systems in brain regions: a correlative study
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(00)00172-6
– volume: 22
  start-page: 265
  year: 2001
  ident: 10.1016/S0024-3205(02)02476-1_BIB12
  article-title: Changes in DNA 8-hydroxyguanine levels, 8-hydroxyguanine repair activity, and hOGG1 and hMTH1 mRNA expression in human lung alveolar epithelial cells induced by crocidolite asbestos
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/22.2.265
– volume: 9
  start-page: 246
  year: 1993
  ident: 10.1016/S0024-3205(02)02476-1_BIB17
  article-title: Mutagenesis by 8-oxoguanine: an enemy within
  publication-title: Trends Genet
  doi: 10.1016/0168-9525(93)90089-Z
– volume: 15
  start-page: 1181
  year: 2001
  ident: 10.1016/S0024-3205(02)02476-1_BIB5
  article-title: Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans
  publication-title: FASEB J
  doi: 10.1096/fj.00-0703com
– volume: 94
  start-page: 109
  year: 1997
  ident: 10.1016/S0024-3205(02)02476-1_BIB4
  article-title: Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.1.109
– volume: 68
  start-page: xvii
  year: 2001
  ident: 10.1016/S0024-3205(02)02476-1_BIB22
  article-title: Keynote: past, present, and future aspects of base excision repair
  publication-title: Prog Nucleic Acid Res. Mol. Biol.
  doi: 10.1016/S0079-6603(01)68084-X
– volume: 26
  start-page: 1059
  year: 1999
  ident: 10.1016/S0024-3205(02)02476-1_BIB7
  article-title: Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(98)00309-8
– volume: 29
  start-page: 581
  year: 1998
  ident: 10.1016/S0024-3205(02)02476-1_BIB18
  article-title: Reduction of 8-hydroxyguanine in human leukocyte DNA by physical exercise
  publication-title: Free Radic Res
  doi: 10.1080/10715769800300621
– volume: 97
  start-page: 686
  year: 2000
  ident: 10.1016/S0024-3205(02)02476-1_BIB2
  article-title: A method for detecting abasic sites in living cells: age-dependent changes in base excision repair
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.2.686
– volume: 11
  start-page: 1447
  year: 1990
  ident: 10.1016/S0024-3205(02)02476-1_BIB16
  article-title: The role of 8-hydroxyguanine in carcinogenesis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/11.9.1447
– volume: 95
  start-page: 9997
  year: 1998
  ident: 10.1016/S0024-3205(02)02476-1_BIB25
  article-title: Generation of a strong mutator phenotype in yeast by imbalanced base excision repair
  publication-title: Proc Natl Acad Sci U SA
  doi: 10.1073/pnas.95.17.9997
SSID ssj0005573
Score 2.0451593
Snippet Reactive oxygen and nitrogen species generated either as products of aerobic metabolism or as a consequence of environmental mutagens, oxidatively modify DNA....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1627
SubjectTerms Adaptation
Base excision repair
Biopsy
Deoxyribonuclease (Pyrimidine Dimer)
DNA - chemistry
DNA Damage
DNA Repair
DNA-Formamidopyrimidine Glycosylase
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Escherichia coli Proteins
Exercise
Humans
Male
Muscle, Skeletal - enzymology
N-Glycosyl Hydrolases - genetics
N-Glycosyl Hydrolases - metabolism
Oxidative stress
Running
Title Marathon running alters the DNA base excision repair in human skeletal muscle
URI https://dx.doi.org/10.1016/S0024-3205(02)02476-1
https://www.ncbi.nlm.nih.gov/pubmed/12551751
https://www.proquest.com/docview/21141175
https://www.proquest.com/docview/72973660
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hEBIL4k15emCAIRC7jpOMFQ8VUDuBxGa5tiMqIK2aVoKF387ZcSkMFRJTJOvOcc4X33fyPQBOigTdhkK4OD9fVNuqCM_AOFKZNUWTqp72dbo7XdF-5HdPydMCXE5zYVxYZTj76zPdn9Zh5CJI82LY77scX8abLE4Q8DCeeheI4xN1-vzzR5hHEm6ZGY8c9SyLp57BD57G7MxPEtF59mke_vR26GYNVgOAJK16jeuwYMsNWK5bSn5swHr4WStyGipKn21Cp-MKfD8PSjKa-BZFxF-SVwTRH7nqtoizZcS-1-12yAhNVH9E-iXxHfxI9YK2CUE6eZtU-M4teLy5frhsR6GPQqR5ko0jYdPMFDbWJi9iZXWeKYOio0ppnlqTM6aQwGidJFnBFLqsOeI2xTU6sCmSNLdhsRyUdhdIbgWnNBUmNWj-bE_lVDFlrGAIHYQ1DeBT6Ukdioy7XhevchZNhoKWTugyZtILXdIGnH-zDesqG38xZNOtkb_URaIl-Iv1eLqVEn8ldz-iSjuYVBJ9YfdxyXyK1HX6EiJuwE6tA7PVomuGrHTv_wvbhxUfKejy5ekBLI5HE3uIiGfcO_IqfQRLrdv7dvcLwvL3dQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hEIIF8aY8PTDAEIhdx0lGxEPl0U4gsVmu7YgKSFHTSrDw2zk7LoWhQmK17hznbN99J98D4LBI0G0ohIvz80W1rYpQB8aRyqwpmlR1ta_T3e6I1gO_eUweZ-B8nAvjwiqD7q91utfWYeQ0SPP0rddzOb6MN1mcIOBhPHUu0BzH6-vaGJx8_ojzSMIzM-ORI5-k8dRT-MGjmB37WSI6zUBNA6DeEF0tw1JAkOSsXuQKzNhyFebrnpIfq7ASbmtFjkJJ6eM1aLddhe-nfkkGI9-jiPhX8oog_CMXnTPijBmx73W_HTJAG9UbkF5JfAs_Uj2jcUKUTl5HFX5zHR6uLu_PW1FopBBpnmTDSNg0M4WNtcmLWFmdZ8qg7KhSmqfW5IwpJDBaJ0lWMIU-a47ATXGNHmyKJM0NmC37pd0CklvBKU2FSQ3aP9tVOVVMGSsYYgdhTQP4WHpShyrjrtnFi5yEk6GgpRO6jJn0Qpe0ASffbG91mY2_GLLx1shf50WiKfiL9WC8lRLvknsgUaXtjyqJzrD7uWQ6RepafQkRN2CzPgOT1aJvhqx0-_8LO4CF1n37Tt5dd253YNGHDbrkeboLs8PByO4h_Bl29_3x_gJrZPkD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marathon+running+alters+the+DNA+base+excision+repair+in+human+skeletal+muscle&rft.jtitle=Life+sciences+%281973%29&rft.au=Rad%C3%A1k%2C+Zsolt&rft.au=Apor%2C+Peter&rft.au=Pucsok%2C+Jozsef&rft.au=Berkes%2C+Istvan&rft.date=2003-02-21&rft.issn=0024-3205&rft.volume=72&rft.issue=14&rft.spage=1627&rft.epage=1633&rft_id=info:doi/10.1016%2FS0024-3205%2802%2902476-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0024_3205_02_02476_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon