Numerical model for CFRP confined concrete elements subject to monotonic and cyclic loadings

Uniaxial cyclic and monotonic compression tests were carried out on partially and fully wrapped concrete cylinders with Carbon Fibre Reinforced Polymer (CFRP) wet lay-up sheets. The influence of the concrete compressive strength, CFRP stiffness, geometric confinement arrangement and loading type on...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 40; no. 8; pp. 766 - 775
Main Authors Varma, Rajendra K., Barros, Joaquim A.O., Sena-Cruz, José M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2009
Elsevier
Subjects
Online AccessGet full text
ISSN1359-8368
1879-1069
DOI10.1016/j.compositesb.2009.05.005

Cover

Abstract Uniaxial cyclic and monotonic compression tests were carried out on partially and fully wrapped concrete cylinders with Carbon Fibre Reinforced Polymer (CFRP) wet lay-up sheets. The influence of the concrete compressive strength, CFRP stiffness, geometric confinement arrangement and loading type on the compressive behaviour of reinforced concrete column elements of circular cross-section up to their failure was assessed. A uniaxial stress–strain constitutive model is proposed, and the results obtained from the experimental tests were used to calibrate some of the parameters of this model, and to appraise the model performance. This model allows the simulation of reinforced concrete members by using Timoshenko one-dimensional elements, in the context of the finite element method (fibre model). Good agreement was obtained between numerical simulations and experimental results for both monotonic and cyclic loading tests.
AbstractList Uniaxial cyclic and monotonic compression tests were carried out on partially and fully wrapped concrete cylinders with Carbon Fibre Reinforced Polymer (CFRP) wet lay-up sheets. The influence of the concrete compressive strength, CFRP stiffness, geometric confinement arrangement and loading type on the compressive behaviour of reinforced concrete column elements of circular cross-section up to their failure was assessed. A uniaxial stress-strain constitutive model is proposed, and the results obtained from the experimental tests were used to calibrate some of the parameters of this model, and to appraise the model performance. This model allows the simulation of reinforced concrete members by using Timoshenko one-dimensional elements, in the context of the finite element method (fibre model). Good agreement was obtained between numerical simulations and experimental results for both monotonic and cyclic loading tests.
Author Sena-Cruz, José M.
Barros, Joaquim A.O.
Varma, Rajendra K.
Author_xml – sequence: 1
  givenname: Rajendra K.
  surname: Varma
  fullname: Varma, Rajendra K.
  email: rajendra@civil.uminho.pt
– sequence: 2
  givenname: Joaquim A.O.
  surname: Barros
  fullname: Barros, Joaquim A.O.
  email: barros@civil.uminho.pt
– sequence: 3
  givenname: José M.
  surname: Sena-Cruz
  fullname: Sena-Cruz, José M.
  email: jsena@civil.uminho.pt
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22104027$$DView record in Pascal Francis
BookMark eNqNkEGL1TAUhYOM4Mzof6gL3bXetE2brEQejgqDiuhOCMntreSRJs8kb2D-vXm8EcTVrHIW53yXfFfsIsRAjL3k0HHg05t9h3E7xOwKZdv1AKoD0QGIJ-ySy1m1HCZ1UfMgVCuHST5jVznvAWAUQ3_Jfn4-bpQcGt9scSHfrDE1u5tvXxuMYXWBllPARIUa8rRRKLnJR7snLE2JdRRiicFhY0Kt3qOv0UezuPArP2dPV-MzvXh4r9mPm_ffdx_b2y8fPu3e3bY4ClnakYyVExi-WOq5gVnSMs3zJIRUlsj2YISVvRzW2SoL3JoRlVS4oKXVDvNwzV6fuYcUfx8pF725jOS9CRSPWQ8CQE4T1OKrh6LJ9ctrMgFd1ofkNpPudd9zGKE_Ad-ee5hizolWja6Y4mIoyTivOeiTfb3X_9jXJ_sahK72K0H9R_h75DHb3XlL1dmdo6QzOgpIi0tVu16iewTlD_zwq3I
CitedBy_id crossref_primary_10_1007_s40996_019_00293_9
crossref_primary_10_1007_s11803_012_0101_9
crossref_primary_10_1016_j_jcsr_2019_105925
crossref_primary_10_1016_j_jcsr_2023_108316
crossref_primary_10_1016_j_engstruct_2024_117466
crossref_primary_10_1016_j_compstruct_2018_11_024
crossref_primary_10_1016_j_compstruct_2021_114407
crossref_primary_10_1016_j_compstruct_2020_112943
crossref_primary_10_1016_j_istruc_2020_01_014
crossref_primary_10_1016_j_engstruct_2020_111647
crossref_primary_10_1177_1475921720986156
crossref_primary_10_1186_s40069_018_0283_2
crossref_primary_10_1016_j_compositesb_2018_10_092
crossref_primary_10_1016_j_compstruct_2019_110984
crossref_primary_10_1016_j_cscm_2022_e01747
crossref_primary_10_14359_51744376
crossref_primary_10_1016_j_compstruct_2018_06_088
crossref_primary_10_1016_j_engstruct_2014_04_033
crossref_primary_10_3846_13923730_2012_701664
Cites_doi 10.1016/S0167-6636(02)00288-0
10.1016/j.cemconcomp.2006.07.009
10.1016/0950-0618(95)00004-Y
10.1061/(ASCE)1090-0268(2008)12:2(134)
10.1061/(ASCE)0733-9445(1988)114:8(1804)
10.1016/j.cemconcomp.2006.07.007
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8FD
JG9
DOI 10.1016/j.compositesb.2009.05.005
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-1069
EndPage 775
ExternalDocumentID 22104027
10_1016_j_compositesb_2009_05_005
S1359836809001176
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8FD
JG9
ID FETCH-LOGICAL-c458t-4eab860a1dbe21a078ed67765589beeb20a5b8283f7b9b01ba4c989cdcbefb373
IEDL.DBID .~1
ISSN 1359-8368
IngestDate Fri Sep 05 05:06:57 EDT 2025
Mon Jul 21 09:12:01 EDT 2025
Tue Jul 01 01:25:00 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:27:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords C. Computational modelling
C. Finite element analysis (FEA)
C. Cyclic constitutive model
A. Carbon fibre
Constitutive equation
Stress strain relation
Construction materials
Experimental study
Modeling
Monotonic load
Finite element method
Cyclic load
Fibre reinforced plastics
Numerical simulation
Concrete
Carbon fiber
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-4eab860a1dbe21a078ed67765589beeb20a5b8283f7b9b01ba4c989cdcbefb373
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://hdl.handle.net/1822/13215
PQID 35008660
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_35008660
pascalfrancis_primary_22104027
crossref_citationtrail_10_1016_j_compositesb_2009_05_005
crossref_primary_10_1016_j_compositesb_2009_05_005
elsevier_sciencedirect_doi_10_1016_j_compositesb_2009_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Composites. Part B, Engineering
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References ISO TC 71/SC 6 N. Non-conventional reinforcement of concrete-test methods – Part 2: fiber reinforced polymer (FRP) sheets, International standard; 2003.
Chen X. FRP-wrapped concrete short column under uniaxial compression, final report, National Diagnosis and Rehabilitation of Industrial Building Research Center, Beijing, China; 2001.
Spolelstra, Monti (bib4) 1999; 3
Chang GA, Mander JB. Seismic energy based fatigue damage analysis of bridge columns: Part I – evaluation of seismic capacity, Technical Report NCEER-94-0006; 1994.
Ferreira DRSM. CFRP-based confinement of circular concrete column elements – experimental and analytical research, Ph.D. Thesis, University of Minho, December 2007 (in Portuguese).
Barros, Ferreira (bib6) 2008; 12
Lam, Teng, Cheung, Xiao (bib9) 2006; 28
Mander, Priestley, Park (bib12) 1998; 114
Shao, Zhu, Mirmiran (bib8) 2006; 28
Lam L, Teng JG, Design-oriented stress–strain model for FRP-confined concrete. J Constr Build Mater, (Elsevier) 17 (2003), 471–489.
Li, Lin, Sung (bib17) 2003; 35
Saadatmanesh, Ehsani, Li (bib1) 1994; 91
CEB-FIP. Model code, Thomas Telford; 1990.
Picher F, Rochette P, Labossière P. Confinement of concrete cylinders with CFRP. In: Proceedings of the first international conference on composites and infrastructures, Tucson, Ariz; 1996. p. 829–41.
Seible F, Burgueno A, Abdallah MG, Nuismer R. Advanced composites carbon shell system for bridge columns under seismic loads. In: Proceedings, national seismic conference on bridges and highways. San Diago, USA; 1995.
Harajli, Hantouche, Soudki (bib13) 2006; 105
Nanni, Bradford (bib2) 1995; 9
10.1016/j.compositesb.2009.05.005_bib15
10.1016/j.compositesb.2009.05.005_bib14
10.1016/j.compositesb.2009.05.005_bib3
Barros (10.1016/j.compositesb.2009.05.005_bib6) 2008; 12
Saadatmanesh (10.1016/j.compositesb.2009.05.005_bib1) 1994; 91
10.1016/j.compositesb.2009.05.005_bib5
10.1016/j.compositesb.2009.05.005_bib16
Li (10.1016/j.compositesb.2009.05.005_bib17) 2003; 35
10.1016/j.compositesb.2009.05.005_bib11
10.1016/j.compositesb.2009.05.005_bib10
Shao (10.1016/j.compositesb.2009.05.005_bib8) 2006; 28
Nanni (10.1016/j.compositesb.2009.05.005_bib2) 1995; 9
Harajli (10.1016/j.compositesb.2009.05.005_bib13) 2006; 105
10.1016/j.compositesb.2009.05.005_bib7
Spolelstra (10.1016/j.compositesb.2009.05.005_bib4) 1999; 3
Mander (10.1016/j.compositesb.2009.05.005_bib12) 1998; 114
Lam (10.1016/j.compositesb.2009.05.005_bib9) 2006; 28
References_xml – volume: 28
  start-page: 959
  year: 2006
  end-page: 968
  ident: bib8
  article-title: Cyclic modeling of FRP-confined concrete with improved ductility
  publication-title: Cem Concr Compos
– volume: 12
  start-page: 134
  year: 2008
  end-page: 148
  ident: bib6
  article-title: Assessing the efficiency of CFRP discrete confinement systems for concrete column elements
  publication-title: J Compos Constr ASCE
– reference: Ferreira DRSM. CFRP-based confinement of circular concrete column elements – experimental and analytical research, Ph.D. Thesis, University of Minho, December 2007 (in Portuguese).
– reference: Seible F, Burgueno A, Abdallah MG, Nuismer R. Advanced composites carbon shell system for bridge columns under seismic loads. In: Proceedings, national seismic conference on bridges and highways. San Diago, USA; 1995.
– volume: 105
  start-page: 672
  year: 2006
  end-page: 682
  ident: bib13
  article-title: Stress–strain model for fiber-reinforced polymer jacketed concrete columns
  publication-title: ACI Struct J
– reference: Chang GA, Mander JB. Seismic energy based fatigue damage analysis of bridge columns: Part I – evaluation of seismic capacity, Technical Report NCEER-94-0006; 1994.
– reference: CEB-FIP. Model code, Thomas Telford; 1990.
– reference: ISO TC 71/SC 6 N. Non-conventional reinforcement of concrete-test methods – Part 2: fiber reinforced polymer (FRP) sheets, International standard; 2003.
– reference: Picher F, Rochette P, Labossière P. Confinement of concrete cylinders with CFRP. In: Proceedings of the first international conference on composites and infrastructures, Tucson, Ariz; 1996. p. 829–41.
– volume: 28
  start-page: 949
  year: 2006
  end-page: 958
  ident: bib9
  article-title: FRP-confined concrete under cyclic axial compression
  publication-title: Cem Concr Compos
– volume: 3
  start-page: 144
  year: 1999
  end-page: 150
  ident: bib4
  article-title: FRP-confined concrete model
  publication-title: J Compos Constr ASCE
– volume: 35
  start-page: 603
  year: 2003
  end-page: 619
  ident: bib17
  article-title: A constitutive model for concrete confined with carbon fiber reinforced plastics
  publication-title: Mech Mater
– volume: 9
  start-page: 115
  year: 1995
  end-page: 124
  ident: bib2
  article-title: FRP jacketed concrete under uniaxial compression
  publication-title: Constr Build Mater
– volume: 91
  start-page: 434
  year: 1994
  end-page: 447
  ident: bib1
  article-title: Strength and ductility of concrete columns externally reinforced with fiber composite straps
  publication-title: ACI Struct J
– volume: 114
  start-page: 1804
  year: 1998
  end-page: 1826
  ident: bib12
  article-title: Theoretical stress–strain model for confined concrete
  publication-title: J Struct Eng ASCE
– reference: Lam L, Teng JG, Design-oriented stress–strain model for FRP-confined concrete. J Constr Build Mater, (Elsevier) 17 (2003), 471–489.
– reference: Chen X. FRP-wrapped concrete short column under uniaxial compression, final report, National Diagnosis and Rehabilitation of Industrial Building Research Center, Beijing, China; 2001.
– ident: 10.1016/j.compositesb.2009.05.005_bib11
– ident: 10.1016/j.compositesb.2009.05.005_bib10
– ident: 10.1016/j.compositesb.2009.05.005_bib14
– volume: 105
  start-page: 672
  issue: 5
  year: 2006
  ident: 10.1016/j.compositesb.2009.05.005_bib13
  article-title: Stress–strain model for fiber-reinforced polymer jacketed concrete columns
  publication-title: ACI Struct J
– ident: 10.1016/j.compositesb.2009.05.005_bib7
– volume: 35
  start-page: 603
  issue: 3–6
  year: 2003
  ident: 10.1016/j.compositesb.2009.05.005_bib17
  article-title: A constitutive model for concrete confined with carbon fiber reinforced plastics
  publication-title: Mech Mater
  doi: 10.1016/S0167-6636(02)00288-0
– ident: 10.1016/j.compositesb.2009.05.005_bib5
– volume: 28
  start-page: 959
  issue: 10
  year: 2006
  ident: 10.1016/j.compositesb.2009.05.005_bib8
  article-title: Cyclic modeling of FRP-confined concrete with improved ductility
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2006.07.009
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.compositesb.2009.05.005_bib2
  article-title: FRP jacketed concrete under uniaxial compression
  publication-title: Constr Build Mater
  doi: 10.1016/0950-0618(95)00004-Y
– volume: 3
  start-page: 144
  issue: 3
  year: 1999
  ident: 10.1016/j.compositesb.2009.05.005_bib4
  article-title: FRP-confined concrete model
  publication-title: J Compos Constr ASCE
– ident: 10.1016/j.compositesb.2009.05.005_bib3
– volume: 12
  start-page: 134
  issue: 2
  year: 2008
  ident: 10.1016/j.compositesb.2009.05.005_bib6
  article-title: Assessing the efficiency of CFRP discrete confinement systems for concrete column elements
  publication-title: J Compos Constr ASCE
  doi: 10.1061/(ASCE)1090-0268(2008)12:2(134)
– volume: 114
  start-page: 1804
  issue: 8
  year: 1998
  ident: 10.1016/j.compositesb.2009.05.005_bib12
  article-title: Theoretical stress–strain model for confined concrete
  publication-title: J Struct Eng ASCE
  doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
– volume: 28
  start-page: 949
  issue: 10
  year: 2006
  ident: 10.1016/j.compositesb.2009.05.005_bib9
  article-title: FRP-confined concrete under cyclic axial compression
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2006.07.007
– ident: 10.1016/j.compositesb.2009.05.005_bib16
– ident: 10.1016/j.compositesb.2009.05.005_bib15
– volume: 91
  start-page: 434
  year: 1994
  ident: 10.1016/j.compositesb.2009.05.005_bib1
  article-title: Strength and ductility of concrete columns externally reinforced with fiber composite straps
  publication-title: ACI Struct J
SSID ssj0004532
Score 1.9977056
Snippet Uniaxial cyclic and monotonic compression tests were carried out on partially and fully wrapped concrete cylinders with Carbon Fibre Reinforced Polymer (CFRP)...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 766
SubjectTerms A. Carbon fibre
Applied sciences
Buildings. Public works
C. Computational modelling
C. Cyclic constitutive model
C. Finite element analysis (FEA)
Exact sciences and technology
Materials
Plastics
Strength of materials (elasticity, plasticity, buckling, etc.)
Structural analysis. Stresses
Title Numerical model for CFRP confined concrete elements subject to monotonic and cyclic loadings
URI https://dx.doi.org/10.1016/j.compositesb.2009.05.005
https://www.proquest.com/docview/35008660
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-OE0QR8RPXjzWCr3XbpmlT8OVYXFbFRdSDexBCJknhjqVdbPfBF_92Z_px7iHCgW-hzNAwSecj-fU3AK8DlVW-xCzKPbnAzCkbaYlJ5JkMDgNFoIpvdD9t8vVp9uFMnR3BcvoXhmGVo-8ffHrvrccni9Gai935-eJrwuRzMtdx2RObMe12lhW819_8Sg4Yw_smZSwcsfRNePUH48WwbcZGhRZH6ko-YVH_ilF3drYly1VDy4u_vHcfklb34O6YS4qTYbr34SjUD-D2AcPgQ_i-2Q9XMlvR97wRlKOK5erLZ0F1cEVyngeUOXZBhAFJ3op2j3w6I7qGlOqmY_ZcYWsS_em2NNw2PfC-fQSnq3fflutobKgQuUzpLsqCRZ3HNvEY0sRSdhB8XhS5UrrEQDV2bBVSCSarAkuME7SZK3XpvMNQoSzkYziumzo8AWFV4bSU1jN_upWeskzltLeFSiymmM9ATyY0bmQb56YXWzPByi7MgfW5G2ZpYmXI-jNIL1V3A-XGdZTeTutkruwfQ6HhOurzK2t7-eKUSmIqsYsZvJwW29AHyLcqtg7NvjVScVmYx0__bwbP4FY6tqaIk-dw3P3YhxeU73Q47zf0HG6cvP-43vwGUn0ECw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UCl4o4qXi2tqO4GvcJJOZTMAXWVxWbRfRFvogDHMLVJZkMdkHX_ztnpNL3SKFgm9DOIcMZybnMvPlOwBvApZVvrBZJD26wMwJEyluk8gTGZwNGIFKutE9XcrFefbpQlzswGz8F4ZglYPv7316562HJ9PBmtP15eX0W0Lkc1yquOiIzeQduJsJnhOu7-3vZIsyvOtSRtIRid-D139BXoTbJnBUaOzAXUlHLOKmILW3Ng2arux7XvzjvruYNH8Mj4Zkkr3v5_sEdkL1FB5uUQw-g-_LTX8ns2Jd0xuGSSqbzb9-YVgIlyjnaYCpYxtY6KHkDWs2lo5nWFujUlW3RJ_LTIWiv9wKh6u6Q943-3A-_3A2W0RDR4XIZUK1URaMVTI2ibchTQymB8HLPJdCqMIGLLJjIyzWYLzMbWHjxJrMFapw3tlQWp7z57Bb1VV4AcyI3CnOjScCdcM9ppnCKW9ykRibWjkBNZpQu4FunLperPSIK_uht6xP7TALHQuN1p9AeqW67jk3bqP0blwnfW0DaYwNt1E_ura2Vy9OsSbGGjufwPG42Bq_QLpWMVWoN43mgupCGb_8vxkcw_3F2emJPvm4_HwAD9KhT0WcHMJu-3MTXmHy09qjbnP_ATsABZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+model+for+CFRP+confined+concrete+elements+subject+to+monotonic+and+cyclic+loadings&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Varma%2C+R+K&rft.au=Barros%2C+J.A.O.&rft.au=Sena-Cruz%2C+J+M&rft.date=2009-12-01&rft.issn=1359-8368&rft.volume=40&rft.issue=8&rft.spage=766&rft.epage=775&rft_id=info:doi/10.1016%2Fj.compositesb.2009.05.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon