On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study

The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate be...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 30; no. 4; pp. 891 - 927
Main Authors Campos, Guilherme O., Zimek, Arthur, Sander, Jörg, Campello, Ricardo J. G. B., Micenková, Barbora, Schubert, Erich, Assent, Ira, Houle, Michael E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results.
AbstractList The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results.
The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results.
Author Schubert, Erich
Sander, Jörg
Campello, Ricardo J. G. B.
Assent, Ira
Houle, Michael E.
Campos, Guilherme O.
Zimek, Arthur
Micenková, Barbora
Author_xml – sequence: 1
  givenname: Guilherme O.
  surname: Campos
  fullname: Campos, Guilherme O.
  organization: University of São Paulo
– sequence: 2
  givenname: Arthur
  surname: Zimek
  fullname: Zimek, Arthur
  email: zimek@dbs.ifi.lmu.de
  organization: Ludwig-Maximilians-Universität München
– sequence: 3
  givenname: Jörg
  surname: Sander
  fullname: Sander, Jörg
  organization: Department of Computing Science, University of Alberta
– sequence: 4
  givenname: Ricardo J. G. B.
  surname: Campello
  fullname: Campello, Ricardo J. G. B.
  organization: University of São Paulo
– sequence: 5
  givenname: Barbora
  surname: Micenková
  fullname: Micenková, Barbora
  organization: Department of Computer Science, Aarhus University
– sequence: 6
  givenname: Erich
  surname: Schubert
  fullname: Schubert, Erich
  organization: Ludwig-Maximilians-Universität München
– sequence: 7
  givenname: Ira
  surname: Assent
  fullname: Assent, Ira
  organization: Department of Computer Science, Aarhus University
– sequence: 8
  givenname: Michael E.
  surname: Houle
  fullname: Houle, Michael E.
  organization: National Institute of Informatics
BookMark eNp9kE1rFTEUQINUsK3-AHcBN1049Wby-bqTolYodKPgLmQyNzVlXuY1H4X-e_N8XUihLkLu4pzkck7IUVoTEvKewTkD0J8KA8XMAEwOIIQYzCtyzKTmg5bq11GfuRGDNAzekJNS7gBAjhyOib1JtP5Gig9uaa7GNdE10JZK22F-iAVnura6RMx0xop-T1zQLbrSMpaPdHbVFax9cmnuh-J2F3P0bqGltvnxLXkd3FLw3dN9Sn5-_fLj8mq4vvn2_fLz9eCFNHXgQfjAcdrg6DVMwY2TCmhgVHxWEqZJb7zaaBQIbGJuDjhzHQQEBV7xEPgpOTu8u8vrfcNS7TYWj8viEq6tWGZGKRmMRnT0wzP0bm059e0s0xutpFZMdYodKJ_XUjIGu8tx6_KjZWD3ye0hue3J7T65Nd3Rzxwf69-oNbu4_NccD2bpv6RbzP_s9KL0B-KdmJw
CitedBy_id crossref_primary_10_1109_TSC_2024_3479909
crossref_primary_10_1007_s10845_023_02156_7
crossref_primary_10_1007_s13755_023_00221_2
crossref_primary_10_1145_3447822
crossref_primary_10_1002_sta4_335
crossref_primary_10_1007_s10044_019_00852_w
crossref_primary_10_3233_JIFS_236518
crossref_primary_10_1109_TCYB_2018_2838668
crossref_primary_10_1007_s40747_022_00695_9
crossref_primary_10_1016_j_ssci_2018_12_018
crossref_primary_10_1002_widm_1491
crossref_primary_10_1155_2019_2686378
crossref_primary_10_1007_s13762_019_02252_3
crossref_primary_10_1016_j_ins_2022_12_041
crossref_primary_10_3390_app9245565
crossref_primary_10_1007_s10618_023_00967_z
crossref_primary_10_1007_s11227_021_04038_2
crossref_primary_10_1016_j_ins_2023_119880
crossref_primary_10_4018_IJSSCI_2020010102
crossref_primary_10_1109_TCSS_2020_2977958
crossref_primary_10_1155_2016_4178079
crossref_primary_10_1080_10618600_2020_1807997
crossref_primary_10_1016_j_jisa_2022_103196
crossref_primary_10_56583_br_2191
crossref_primary_10_1007_s00521_019_04421_4
crossref_primary_10_1109_TNNLS_2021_3086137
crossref_primary_10_3233_JIFS_231735
crossref_primary_10_1109_ACCESS_2023_3274113
crossref_primary_10_1111_biom_13505
crossref_primary_10_1016_j_pce_2020_102945
crossref_primary_10_1016_j_dss_2020_113422
crossref_primary_10_1016_j_future_2020_07_037
crossref_primary_10_1007_s12065_024_00953_4
crossref_primary_10_1016_j_jpdc_2024_104923
crossref_primary_10_1109_ACCESS_2024_3454807
crossref_primary_10_1145_3572408
crossref_primary_10_1109_TNNLS_2021_3105400
crossref_primary_10_1080_24725854_2023_2224854
crossref_primary_10_1038_s41598_019_46097_9
crossref_primary_10_1016_j_patcog_2021_107874
crossref_primary_10_1145_3653719
crossref_primary_10_1002_sta4_322
crossref_primary_10_1016_j_patrec_2020_01_028
crossref_primary_10_2200_S00800ED1V01Y201709SPT022
crossref_primary_10_1016_j_eswa_2023_120994
crossref_primary_10_1109_TFUZZ_2021_3114734
crossref_primary_10_1214_22_AOS2244
crossref_primary_10_1109_TPWRS_2017_2783242
crossref_primary_10_1016_j_inffus_2023_02_007
crossref_primary_10_1016_j_dss_2024_114196
crossref_primary_10_1016_j_procs_2022_09_289
crossref_primary_10_1007_s10115_018_1168_z
crossref_primary_10_1109_ACCESS_2024_3524908
crossref_primary_10_1109_TKDE_2023_3332757
crossref_primary_10_3390_a15070239
crossref_primary_10_1007_s10489_020_01724_1
crossref_primary_10_1007_s10618_024_01086_z
crossref_primary_10_1016_j_patrec_2021_03_008
crossref_primary_10_1109_ACCESS_2023_3294096
crossref_primary_10_3233_IDA_216257
crossref_primary_10_1002_spe_3208
crossref_primary_10_2112_SI82_036_1
crossref_primary_10_1007_s10489_024_05428_8
crossref_primary_10_1007_s10618_020_00697_6
crossref_primary_10_1016_j_eswa_2024_124953
crossref_primary_10_1049_itr2_12109
crossref_primary_10_1145_3276463
crossref_primary_10_2139_ssrn_4192366
crossref_primary_10_1007_s10462_023_10437_z
crossref_primary_10_1016_j_pmcj_2020_101130
crossref_primary_10_1007_s10618_023_00931_x
crossref_primary_10_1007_s11356_023_26780_1
crossref_primary_10_1155_2018_2318763
crossref_primary_10_1016_j_ins_2024_121560
crossref_primary_10_1016_j_isatra_2023_09_002
crossref_primary_10_3390_agriculture11111083
crossref_primary_10_1109_ACCESS_2021_3090936
crossref_primary_10_1007_s11265_021_01715_6
crossref_primary_10_1109_ACCESS_2017_2679006
crossref_primary_10_1145_3690827
crossref_primary_10_1007_s10994_024_06521_2
crossref_primary_10_1007_s40747_022_00674_0
crossref_primary_10_1016_j_knosys_2021_106878
crossref_primary_10_1089_ast_2024_0019
crossref_primary_10_1016_j_is_2020_101569
crossref_primary_10_1111_gean_12138
crossref_primary_10_1007_s10489_022_03258_0
crossref_primary_10_1016_j_jksuci_2022_06_005
crossref_primary_10_1109_TKDE_2022_3159580
crossref_primary_10_1002_eng2_12449
crossref_primary_10_1007_s41060_021_00265_1
crossref_primary_10_1109_TKDE_2023_3270293
crossref_primary_10_1109_ACCESS_2018_2877097
crossref_primary_10_1016_j_ins_2024_120286
crossref_primary_10_1016_j_ins_2024_121255
crossref_primary_10_1109_TSMC_2021_3119119
crossref_primary_10_3390_app8081248
crossref_primary_10_1145_3439950
crossref_primary_10_3233_IDA_184227
crossref_primary_10_7717_peerj_cs_1199
crossref_primary_10_1016_j_omega_2020_102298
crossref_primary_10_1109_ACCESS_2024_3481288
crossref_primary_10_1016_j_ins_2023_119337
crossref_primary_10_1186_s13321_017_0230_2
crossref_primary_10_1029_2019WR024906
crossref_primary_10_1016_j_patcog_2023_109334
crossref_primary_10_1007_s00354_022_00193_z
crossref_primary_10_1016_j_cag_2016_08_008
crossref_primary_10_1016_j_eswa_2020_113453
crossref_primary_10_1109_ACCESS_2019_2932769
crossref_primary_10_1109_TCYB_2021_3058780
crossref_primary_10_1007_s40745_021_00362_9
crossref_primary_10_1145_3203246
crossref_primary_10_1016_j_engappai_2022_105503
crossref_primary_10_1049_iet_gtd_2019_0682
crossref_primary_10_1016_j_fss_2020_10_017
crossref_primary_10_1093_bib_bbac406
crossref_primary_10_1007_s00170_022_09251_8
crossref_primary_10_1016_j_promfg_2020_02_090
crossref_primary_10_3390_fi12060100
crossref_primary_10_1007_s10618_024_01056_5
crossref_primary_10_1002_widm_1280
crossref_primary_10_1007_s41060_017_0068_8
crossref_primary_10_1080_15481603_2021_1907896
crossref_primary_10_1016_j_dajour_2024_100424
crossref_primary_10_2345_0899_8205_56_2_58
crossref_primary_10_3390_make5030042
crossref_primary_10_1016_j_procs_2024_09_325
crossref_primary_10_1109_TNNLS_2018_2861743
crossref_primary_10_1016_j_jtrangeo_2024_104080
crossref_primary_10_2478_jaiscr_2025_0001
crossref_primary_10_1007_s00521_023_08596_9
crossref_primary_10_1109_TKDE_2024_3462442
crossref_primary_10_1007_s00521_023_08721_8
crossref_primary_10_1007_s10618_023_00925_9
crossref_primary_10_1016_j_trc_2021_103234
crossref_primary_10_1007_s10115_016_1004_2
crossref_primary_10_1007_s10618_019_00661_z
crossref_primary_10_1007_s41019_022_00185_5
crossref_primary_10_1145_3312739
crossref_primary_10_3390_ijms21062114
crossref_primary_10_1007_s10664_020_09881_0
crossref_primary_10_2345_1943_5967_56_2_58
crossref_primary_10_1109_ACCESS_2019_2921096
crossref_primary_10_3233_SJI_220061
crossref_primary_10_1002_jbio_202200251
crossref_primary_10_1016_j_neucom_2018_10_113
crossref_primary_10_1117_1_NPh_11_4_045008
crossref_primary_10_1186_s40537_021_00469_z
crossref_primary_10_1109_TNSE_2023_3273543
crossref_primary_10_1007_s10994_020_05880_w
crossref_primary_10_1016_j_ins_2025_122075
crossref_primary_10_1080_01969722_2022_2080338
crossref_primary_10_2139_ssrn_4958745
crossref_primary_10_3389_fspas_2022_867947
crossref_primary_10_1080_08839514_2020_1722933
crossref_primary_10_3390_pr8091168
crossref_primary_10_1007_s10115_023_02018_x
crossref_primary_10_1109_TNNLS_2021_3116269
crossref_primary_10_1155_2022_1036293
crossref_primary_10_29130_dubited_1287453
crossref_primary_10_22531_muglajsci_1252876
crossref_primary_10_15622_ia_20_4_5
crossref_primary_10_1007_s10994_022_06149_0
crossref_primary_10_1108_JEDT_08_2020_0321
crossref_primary_10_1016_j_knosys_2021_106830
crossref_primary_10_1007_s13042_024_02470_3
crossref_primary_10_1007_s11042_020_09628_5
crossref_primary_10_1109_TNSM_2021_3071928
crossref_primary_10_1080_10618600_2020_1807353
crossref_primary_10_1109_TKDE_2024_3525003
crossref_primary_10_1214_20_AOS1988
crossref_primary_10_3389_fams_2017_00023
crossref_primary_10_1109_TAI_2024_3394795
crossref_primary_10_1007_s41060_018_0137_7
crossref_primary_10_1016_j_knosys_2021_107256
crossref_primary_10_1007_s40300_020_00183_5
crossref_primary_10_1016_j_patrec_2023_08_020
crossref_primary_10_3390_s23010486
crossref_primary_10_1016_j_procs_2018_07_211
crossref_primary_10_1145_3399806
crossref_primary_10_1109_JPROC_2021_3052449
crossref_primary_10_1109_TAI_2024_3381102
crossref_primary_10_1016_j_ijar_2023_108971
crossref_primary_10_1016_j_ijar_2024_109323
crossref_primary_10_1111_tgis_12725
crossref_primary_10_1016_j_knosys_2019_105331
crossref_primary_10_7717_peerj_cs_757
crossref_primary_10_1016_j_neucom_2023_126634
crossref_primary_10_1093_bfgp_elz036
crossref_primary_10_1007_s10618_021_00750_y
crossref_primary_10_1145_3588700
crossref_primary_10_1007_s10618_024_01077_0
crossref_primary_10_1016_j_bcra_2024_100227
crossref_primary_10_2514_1_I010582
crossref_primary_10_1109_ACCESS_2018_2886197
crossref_primary_10_1109_ACCESS_2021_3090957
crossref_primary_10_1007_s00180_022_01277_6
crossref_primary_10_1111_1755_0998_13221
crossref_primary_10_1109_ACCESS_2019_2935628
crossref_primary_10_1016_j_dsp_2025_105153
crossref_primary_10_1007_s11227_021_04239_9
crossref_primary_10_1016_j_datak_2021_101946
crossref_primary_10_1007_s11634_025_00627_8
crossref_primary_10_1016_j_jtice_2024_105434
crossref_primary_10_1016_j_asoc_2019_105895
crossref_primary_10_1016_j_asoc_2019_105650
crossref_primary_10_1109_TKDE_2019_2905606
crossref_primary_10_1016_j_patcog_2021_108115
crossref_primary_10_1109_JIOT_2021_3049674
crossref_primary_10_3390_nano10040708
crossref_primary_10_1016_j_inffus_2020_10_001
crossref_primary_10_1111_coin_12156
crossref_primary_10_1007_s00530_024_01343_7
crossref_primary_10_1016_j_patrec_2024_06_032
crossref_primary_10_1089_big_2021_0069
crossref_primary_10_1016_j_asoc_2023_109995
crossref_primary_10_1016_j_mlwa_2021_100172
crossref_primary_10_1186_s13638_018_1158_6
crossref_primary_10_1007_s00778_022_00773_x
crossref_primary_10_1007_s10515_021_00310_0
crossref_primary_10_1109_ACCESS_2019_2891933
crossref_primary_10_1016_j_knosys_2019_104907
crossref_primary_10_1109_TKDE_2021_3103571
crossref_primary_10_1145_3441453
crossref_primary_10_1016_j_health_2022_100118
crossref_primary_10_1016_j_simpa_2022_100359
crossref_primary_10_1109_TII_2018_2875956
crossref_primary_10_1016_j_eswa_2022_118196
crossref_primary_10_3390_computers12120253
crossref_primary_10_1007_s12596_023_01147_4
crossref_primary_10_1016_j_ijar_2020_12_003
crossref_primary_10_1080_10618600_2019_1575226
crossref_primary_10_1016_j_jcp_2019_03_003
crossref_primary_10_1016_j_asoc_2023_110742
crossref_primary_10_1016_j_engappai_2022_104719
crossref_primary_10_3390_axioms12050425
crossref_primary_10_1007_s11269_024_03885_x
crossref_primary_10_1155_2018_9280787
crossref_primary_10_1016_j_neucom_2020_11_059
crossref_primary_10_1109_TIE_2017_2777383
crossref_primary_10_1145_3403934
crossref_primary_10_1016_j_engappai_2022_105359
crossref_primary_10_1145_3467470
crossref_primary_10_1016_j_eswa_2024_124227
crossref_primary_10_1145_3522690
crossref_primary_10_1016_j_eswa_2025_126922
crossref_primary_10_1016_j_patcog_2019_01_002
crossref_primary_10_1007_s10044_024_01372_y
crossref_primary_10_1007_s13042_022_01569_9
crossref_primary_10_3233_JIFS_211417
crossref_primary_10_1016_j_knosys_2019_05_026
crossref_primary_10_1109_TPAMI_2021_3066111
crossref_primary_10_1016_j_eswa_2020_114372
crossref_primary_10_1016_j_ins_2021_04_083
crossref_primary_10_1109_ACCESS_2020_3025530
crossref_primary_10_1007_s00778_021_00653_w
crossref_primary_10_1016_j_eswa_2022_118904
crossref_primary_10_1007_s13042_020_01183_7
crossref_primary_10_1109_ACCESS_2020_2976850
crossref_primary_10_1080_02564602_2019_1647804
crossref_primary_10_1016_j_knosys_2020_106186
crossref_primary_10_1155_2021_4026132
crossref_primary_10_3233_IDA_215741
crossref_primary_10_3390_app13127313
crossref_primary_10_1007_s13222_021_00392_w
crossref_primary_10_1007_s10489_019_01592_4
crossref_primary_10_1016_j_ejor_2020_01_014
crossref_primary_10_1007_s00799_017_0220_z
crossref_primary_10_1109_ACCESS_2024_3402446
crossref_primary_10_1109_TASE_2018_2848198
crossref_primary_10_1016_j_eswa_2022_117809
crossref_primary_10_2514_1_I011076
crossref_primary_10_1016_j_procs_2022_01_297
crossref_primary_10_1142_S0219649220400134
crossref_primary_10_1016_j_inffus_2023_102133
crossref_primary_10_1016_j_cosrev_2022_100463
crossref_primary_10_1016_j_knosys_2023_110678
crossref_primary_10_1080_02664763_2020_1815675
crossref_primary_10_1002_itl2_85
crossref_primary_10_1007_s00778_022_00729_1
crossref_primary_10_1007_s10586_020_03136_9
crossref_primary_10_1016_j_inffus_2023_101957
crossref_primary_10_1109_TKDE_2023_3312108
crossref_primary_10_1145_3372274
crossref_primary_10_3390_metabo13010097
crossref_primary_10_7717_peerj_cs_1214
crossref_primary_10_1016_j_is_2020_101705
crossref_primary_10_1007_s11356_021_14419_y
crossref_primary_10_1109_ACCESS_2018_2883681
crossref_primary_10_3389_fphys_2023_1233341
crossref_primary_10_1016_j_asoc_2021_108301
crossref_primary_10_1007_s41060_020_00238_w
crossref_primary_10_3847_1538_3881_ad4da5
crossref_primary_10_1016_j_matpr_2020_09_522
crossref_primary_10_1016_j_eswa_2020_114287
crossref_primary_10_48175_IJARSCT_22509
crossref_primary_10_1080_01431161_2023_2283900
crossref_primary_10_1007_s11063_022_10845_2
crossref_primary_10_3233_JIFS_236009
crossref_primary_10_5604_01_3001_0012_6833
crossref_primary_10_1016_j_ins_2019_03_013
crossref_primary_10_1016_j_tcs_2022_11_011
crossref_primary_10_1145_3394053
crossref_primary_10_1002_jcaf_22389
crossref_primary_10_1016_j_datak_2024_102365
crossref_primary_10_1007_s10489_024_06007_7
crossref_primary_10_1016_j_egyai_2022_100159
crossref_primary_10_1016_j_eij_2020_06_001
crossref_primary_10_1016_j_asoc_2022_109146
Cites_doi 10.1145/568574.568575
10.1002/sam.10080
10.1137/1.9781611972818.2
10.1145/2463676.2463696
10.1137/1.9781611972832.25
10.1007/978-3-540-73499-4_6
10.1007/s10994-012-5303-x
10.1080/01621459.1937.10503522
10.1109/ICDM.2012.112
10.1007/978-94-015-3994-4
10.1145/2783702.2783706
10.1109/ICPR.2004.1334558
10.1007/s10115-016-1004-2
10.1148/radiology.143.1.7063747
10.1007/s10618-012-0300-z
10.14778/2824032.2824115
10.1007/978-1-4614-6396-2
10.1145/2594473.2594476
10.1007/978-3-642-12026-8_29
10.1109/TKDE.2014.2365790
10.1145/1150402.1150459
10.1109/ICDE.2014.6816642
10.1002/sam.11161
10.1007/BF01908075
10.1109/ICDM.2010.151
10.1007/978-0-387-39940-9_482
10.1145/2487575.2487676
10.1109/TKDE.2005.31
10.1109/ICDE.2012.88
10.1007/3-540-47887-6_53
10.1007/978-0-387-39940-9_484
10.1007/s10618-014-0365-y
10.1145/1143844.1143874
10.1162/neco.1996.8.7.1341
10.1007/s10115-011-0430-4
10.14778/1920841.1921021
10.1145/1497577.1497578
10.1109/ICDE.2011.5767916
10.1007/s10994-013-5334-y
10.1145/1401890.1401946
10.1137/1.9781611972825.90
10.1007/978-0-387-39940-9_486
10.1145/1645953.1646195
10.1145/2791347.2791352
10.1109/ICDM.2006.43
10.1007/11731139_68
10.1007/978-3-319-18123-3_2
10.1007/978-3-319-07821-2_5
10.1145/342009.335388
10.1109/ICDE.2011.5767852
10.1145/1081870.1081891
10.1145/1541880.1541882
10.1137/1.9781611973440.63
10.1145/342009.335437
10.1007/3-540-45681-3_2
10.1007/978-3-642-01307-2_84
10.1007/978-3-642-13818-8_34
10.1145/782010.782021
10.1145/1401890.1401983
10.1145/2500853.2500858
ContentType Journal Article
Copyright The Author(s) 2016
Copyright_xml – notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-015-0444-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 927
ExternalDocumentID 4092686191
10_1007_s10618_015_0444_8
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR)
  grantid: 304137/2013-8
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (CA)
  funderid: http://dx.doi.org/10.13039/501100002790
– fundername: Teknologi og Produktion, Det Frie Forskningsråd (DK)
  grantid: 10-081972
  funderid: http://dx.doi.org/10.13039/100008393
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR)
  grantid: 400772/2014-0
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (BR)
  grantid: 2013/18698-4
  funderid: http://dx.doi.org/10.13039/501100001807
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c458t-3f4cf3eb9e2c70bfa2b6fe80263d650bb79c697e4e01b1adfed37f40f60c63ff3
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Thu Jul 10 22:38:00 EDT 2025
Sat Aug 16 06:21:28 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Tue Jul 01 00:40:30 EDT 2025
Fri Feb 21 02:33:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Datasets
Evaluation
Unsupervised outlier detection
Measures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-3f4cf3eb9e2c70bfa2b6fe80263d650bb79c697e4e01b1adfed37f40f60c63ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1007/s10618-015-0444-8
PQID 1797657616
PQPubID 43030
PageCount 37
ParticipantIDs proquest_miscellaneous_1825510284
proquest_journals_1797657616
crossref_primary_10_1007_s10618_015_0444_8
crossref_citationtrail_10_1007_s10618_015_0444_8
springer_journals_10_1007_s10618_015_0444_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kriegel HP, Schubert E, Zimek A (2015) The (black) art of runtime evaluation: Are we comparing algorithms or implementations? submitted
Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 157–166. doi:10.1145/1081870.1081891
Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning (ICML), Pittsburgh, pp 233–240
Müller E, Assent I, Iglesias P, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: Proceedings of the 12th IEEE international conference on data mining (ICDM), Brussels, pp 529–538. doi:10.1109/ICDM.2012.112
Houle ME, Kriegel HP, Kröger P, Schubert E, Zimek A (2010) Can shared-neighbor distances defeat the curse of dimensionality? In: Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, pp 482–500. doi:10.1007/978-3-642-13818-8_34
Müller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace projections for outlier ranking. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 434–445. doi:10.1109/ICDE.2011.5767916
WolpertDHThe lack of a priori distinctions between learning algorithmsNeural Comput1996871341139010.1162/neco.1996.8.7.1341
Achtert E, Kriegel HP, Schubert E, Zimek A (2013) Interactive data mining with 3D-parallel-coordinate-trees. In: Proceedings of the ACM international conference on management of data (SIGMOD), New York, pp 1009–1012. doi:10.1145/2463676.2463696
Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
AggarwalCCOutlier analysis2013BerlinSpringer10.1007/978-1-4614-6396-21291.68004
Schubert E, Zimek A, Kriegel HP (2014a) Generalized outlier detection with flexible kernel density estimates. In: Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, pp 542–550. doi:10.1137/1.9781611973440.63
LiuFTTingKMZhouZHIsolation-based anomaly detectionACM Trans Knowl Discov Data201261313910.1145/2133360.2133363
Estivill-CastroVWhy so many clustering algorithms—a position paperACM SIGKDD Explor2002416575119252510.1145/568574.568575
Keller F, Müller E, Böhm K (2012) HiCS: high contrast subspaces for density-based outlier ranking. In: Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC, pp 1037–1048. doi:10.1109/ICDE.2012.88
von LuxburgUWilliamsonRCGuyonIClustering: science or art?JMLR Workshop Conf Proc2012276579
HawkinsDIdentification of outliers1980LondonChapman and Hall10.1007/978-94-015-3994-40438.62022
Kriegel HP, Schubert M, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 444–452. doi:10.1145/1401890.1401946
Dang XH, Micenková B, Assent I, Ng R (2013) Outlier detection with space transformation and spectral analysis. In: Proceedings ofthe 13th SIAM international conference on data mining (SDM), Austin, pp 225–233
FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570110.1080/01621459.1937.1050352263.1098.02
ZimmermannAThe data problem in data miningACM SIGKDD Explor2014162384510.1145/2783702.2783706
HubertLArabiePComparing partitionsJ Classif19852119321810.1007/BF019080750587.62128
Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, New Jersey
ZimekAVreekenJThe blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectivesMach Learn2015981–2121155329668010.1007/s10994-013-5334-y1321.68413
Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, pp 368–383. doi:10.1007/978-3-642-12026-8_29
ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surveys200941315810.1145/1541880.1541882
Micenková B, van Beusekom J, Shafait F (2012) Stamp verification for automated document authentication. In: 5th International workshop on computational forensics
Knorr EM, Ng RT (1997) A unified notion of outliers: properties and computation. In: Proceedings of the 3rd ACM international conference on knowledge discovery and data mining (KDD), Newport Beach, pp 219–222. doi:10.1145/782010.782021
Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng. doi:10.1109/TKDE.2014.2365790
OrairGHTeixeiraCWangYMeiraWJrParthasarathySDistance-based outlier detection: consolidation and renewed bearingProc VLDB Endow2010321469148010.14778/1920841.1921021
Breunig MM, Kriegel HP, Ng R, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 93–104. doi:10.1145/342009.335388
Craswell N (2009b) R-precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, p 2453. doi:10.1007/978-0-387-39940-9_486
Gao J, Tan PN (2006) Converting output scores from outlier detection algorithms into probability estimates. In: Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, pp 212–221. doi:10.1109/ICDM.2006.43
KriegelHPKrögerPZimekAClustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clusteringACM Trans Knowl Discov Data20093115810.1145/1497577.1497578
ZimekACampelloRJGBSanderJEnsembles for unsupervised outlier detection: challenges and research questionsACM SIGKDD Explor2013151112210.1145/2594473.2594476
DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184
TingKMZhouGTLiuFTTanSCMass estimationMach Learn2013901127160300869010.1007/s10994-012-5303-x1260.68349
Zimek A, Gaudet M, Campello RJGB, Sander J (2013b) Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 428–436. doi:10.1145/2487575.2487676
Jin W, Tung AKH, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In: Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore, pp 577–593. doi:10.1007/11731139_68
de VriesTChawlaSHouleMEDensity-preserving projections for large-scale local anomaly detectionKnowl Inf Syst2012321255210.1007/s10115-011-0430-4
VendraminLCampelloRJGBHruschkaERRelative clustering validity criteria: a comparative overviewStat Anal Data Min2010342092352672774
AngiulliFPizzutiCOutlier mining in large high-dimensional data setsIEEE Trans Knowl Data Eng2005172203215223153610.1109/TKDE.2005.311084.68140
Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detection approach for scattered real-world data. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Bangkok, pp 813–822. doi:10.1007/978-3-642-01307-2_84
Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th international conference on very large data bases (VLDB), New York, pp 392–403
Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, pp 1047–1058. doi:10.1137/1.9781611972825.90
Vreeken J, Tatti N (2014) Interesting patterns, chapter 5. In: Aggarwal CC, Han J (eds) Frequent pattern mining. Springer, Berlin, pp 105–134. doi:10.1007/978-3-319-07821-2_5
Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of anomaly detection benchmarks from real data. In: Workshop on outlier detection and description, held in conjunction with the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, pp 16–21
NguyenHVGopalkrishnanVFeature extraction for outlier detection in high-dimensional spacesJ Mach Learn Res Proc Track2010106675
Kriegel HP, Kröger P, Schubert E, Zimek A (2009a) LoOP: local outlier probabilities. In: Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, pp 1649–1652. doi:10.1145/1645953.1646195
Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 427–438. doi:10.1145/342009.335437
Wang Y, Parthasarathy S, Tatikonda S (2011) Locality sensitive outlier detection: a ranking driven approach. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 410–421. doi:10.1109/ICDE.2011.5767852
Schubert E, Zimek A, Kriegel HP (2015b) Fast and scalable outlier detection with approximate nearest neighbor ensembles. In: Proceedings of the 20th international conference on database systems for advanced applications (DASFAA), Hanoi, Vietnam, pp 19–36. doi:10.1007/978-3-319-18123-3_2
Zhang E, Zhang Y (2009) Average precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 192–193. doi:10.1007/978-0-387-39940-9_482
de Vries T, Chawla S, Houle ME (2010) Finding local anomalies in very high dimensional space. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, pp 128–137. doi:10.1109/ICDM.2010.151
Kriegel HP, Kröger P, Schubert E, Zimek A (2011a) Interpreting and unifying outlier scores. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, pp 13–24. doi:10.1137/1.9781611972818.2
Krie
444_CR62
HV Nguyen (444_CR47) 2010; 10
444_CR61
J Demšar (444_CR18) 2006; 7
M Friedman (444_CR21) 1937; 32
444_CR27
444_CR25
444_CR23
444_CR22
444_CR66
444_CR65
444_CR64
DH Wolpert (444_CR63) 1996; 8
444_CR2
444_CR5
V Barnett (444_CR8) 1994
FT Liu (444_CR41) 2012; 6
444_CR7
444_CR19
A Zimek (444_CR69) 2013; 15
444_CR9
V Chandola (444_CR10) 2009; 41
444_CR1
E Schubert (444_CR54) 2014; 28
444_CR30
JA Hanley (444_CR24) 1982; 143
444_CR70
GH Orair (444_CR49) 2010; 3
444_CR38
444_CR37
444_CR36
444_CR34
444_CR33
444_CR32
444_CR31
T Vries de (444_CR17) 2012; 32
L Akoglu (444_CR4) 2015; 29
444_CR29
KM Ting (444_CR58) 2013; 90
444_CR40
D Hawkins (444_CR26) 1980
444_CR48
444_CR46
A Zimmermann (444_CR71) 2014; 16
444_CR45
444_CR44
444_CR43
444_CR42
444_CR39
HP Kriegel (444_CR35) 2009; 3
444_CR52
L Vendramin (444_CR59) 2010; 3
V Estivill-Castro (444_CR20) 2002; 4
444_CR51
444_CR50
444_CR16
444_CR15
444_CR14
444_CR13
444_CR57
444_CR12
444_CR56
444_CR11
444_CR53
F Angiulli (444_CR6) 2005; 17
A Zimek (444_CR67) 2015; 98
E Schubert (444_CR55) 2015; 8
A Zimek (444_CR68) 2012; 5
U Luxburg von (444_CR60) 2012; 27
CC Aggarwal (444_CR3) 2013
L Hubert (444_CR28) 1985; 2
References_xml – reference: Estivill-CastroVWhy so many clustering algorithms—a position paperACM SIGKDD Explor2002416575119252510.1145/568574.568575
– reference: Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
– reference: de VriesTChawlaSHouleMEDensity-preserving projections for large-scale local anomaly detectionKnowl Inf Syst2012321255210.1007/s10115-011-0430-4
– reference: Craswell N (2009b) R-precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, p 2453. doi:10.1007/978-0-387-39940-9_486
– reference: Schubert E, Zimek A, Kriegel HP (2015b) Fast and scalable outlier detection with approximate nearest neighbor ensembles. In: Proceedings of the 20th international conference on database systems for advanced applications (DASFAA), Hanoi, Vietnam, pp 19–36. doi:10.1007/978-3-319-18123-3_2
– reference: Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, pp 368–383. doi:10.1007/978-3-642-12026-8_29
– reference: de Vries T, Chawla S, Houle ME (2010) Finding local anomalies in very high dimensional space. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, pp 128–137. doi:10.1109/ICDM.2010.151
– reference: Kriegel HP, Schubert E, Zimek A (2015) The (black) art of runtime evaluation: Are we comparing algorithms or implementations? submitted
– reference: HanleyJAMcNeilBJThe meaning and use of the area under a receiver operating characteristic (ROC) curveRadiology1982143293610.1148/radiology.143.1.7063747
– reference: Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, pp 1047–1058. doi:10.1137/1.9781611972825.90
– reference: Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning (ICML), Pittsburgh, pp 233–240
– reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184
– reference: Dang XH, Assent I, Ng RT, Zimek A, Schubert E (2014) Discriminative features for identifying and interpreting outliers. In: Proceedings of the 30th International Conference on Data Engineering (ICDE), Chicago, pp 88–99. doi:10.1109/ICDE.2014.6816642
– reference: HubertLArabiePComparing partitionsJ Classif19852119321810.1007/BF019080750587.62128
– reference: ZimmermannAThe data problem in data miningACM SIGKDD Explor2014162384510.1145/2783702.2783706
– reference: VendraminLCampelloRJGBHruschkaERRelative clustering validity criteria: a comparative overviewStat Anal Data Min2010342092352672774
– reference: AngiulliFPizzutiCOutlier mining in large high-dimensional data setsIEEE Trans Knowl Data Eng2005172203215223153610.1109/TKDE.2005.311084.68140
– reference: Müller E, Assent I, Iglesias P, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: Proceedings of the 12th IEEE international conference on data mining (ICDM), Brussels, pp 529–538. doi:10.1109/ICDM.2012.112
– reference: Wang Y, Parthasarathy S, Tatikonda S (2011) Locality sensitive outlier detection: a ranking driven approach. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 410–421. doi:10.1109/ICDE.2011.5767852
– reference: Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), Helsinki, pp 15–26. doi:10.1007/3-540-45681-3_2
– reference: Hautamäki V, Kärkkäinen I, Fränti P (2004) Outlier detection using k-nearest neighbor graph. In: Proceedings of the 17th international conference on pattern recognition (ICPR), Cambridge, pp 430–433. doi:10.1109/ICPR.2004.1334558
– reference: Vreeken J, Tatti N (2014) Interesting patterns, chapter 5. In: Aggarwal CC, Han J (eds) Frequent pattern mining. Springer, Berlin, pp 105–134. doi:10.1007/978-3-319-07821-2_5
– reference: Dang XH, Micenková B, Assent I, Ng R (2013) Outlier detection with space transformation and spectral analysis. In: Proceedings ofthe 13th SIAM international conference on data mining (SDM), Austin, pp 225–233
– reference: Micenková B, van Beusekom J, Shafait F (2012) Stamp verification for automated document authentication. In: 5th International workshop on computational forensics
– reference: Knorr EM, Ng RT (1997) A unified notion of outliers: properties and computation. In: Proceedings of the 3rd ACM international conference on knowledge discovery and data mining (KDD), Newport Beach, pp 219–222. doi:10.1145/782010.782021
– reference: Achtert E, Kriegel HP, Schubert E, Zimek A (2013) Interactive data mining with 3D-parallel-coordinate-trees. In: Proceedings of the ACM international conference on management of data (SIGMOD), New York, pp 1009–1012. doi:10.1145/2463676.2463696
– reference: Craswell N (2009a) Precision at n. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 2127–2128. doi:10.1007/978-0-387-39940-9_484
– reference: LiuFTTingKMZhouZHIsolation-based anomaly detectionACM Trans Knowl Discov Data201261313910.1145/2133360.2133363
– reference: Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th international conference on very large data bases (VLDB), New York, pp 392–403
– reference: OrairGHTeixeiraCWangYMeiraWJrParthasarathySDistance-based outlier detection: consolidation and renewed bearingProc VLDB Endow2010321469148010.14778/1920841.1921021
– reference: HawkinsDIdentification of outliers1980LondonChapman and Hall10.1007/978-94-015-3994-40438.62022
– reference: Müller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace projections for outlier ranking. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 434–445. doi:10.1109/ICDE.2011.5767916
– reference: Houle ME, Kriegel HP, Kröger P, Schubert E, Zimek A (2010) Can shared-neighbor distances defeat the curse of dimensionality? In: Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, pp 482–500. doi:10.1007/978-3-642-13818-8_34
– reference: Keller F, Müller E, Böhm K (2012) HiCS: high contrast subspaces for density-based outlier ranking. In: Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC, pp 1037–1048. doi:10.1109/ICDE.2012.88
– reference: TingKMZhouGTLiuFTTanSCMass estimationMach Learn2013901127160300869010.1007/s10994-012-5303-x1260.68349
– reference: ZimekAVreekenJThe blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectivesMach Learn2015981–2121155329668010.1007/s10994-013-5334-y1321.68413
– reference: Abe N, Zadrozny B, Langford J (2006) Outlier detection by active learning. In: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, pp 504–509. doi:10.1145/1150402.1150459
– reference: Kriegel HP, Kröger P, Schubert E, Zimek A (2009a) LoOP: local outlier probabilities. In: Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, pp 1649–1652. doi:10.1145/1645953.1646195
– reference: ZimekASchubertEKriegelHPA survey on unsupervised outlier detection in high-dimensional numerical dataStat Anal Data Min201255363387297973510.1002/sam.11161
– reference: Färber I, Günnemann S, Kriegel HP, Kröger P, Müller E, Schubert E, Seidl T, Zimek A (2010) On using class-labels in evaluation of clusterings. In: MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC
– reference: Yang J, Zhong N, Yao Y, Wang J (2008) Local peculiarity factor and its application in outlier detection. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 776–784. doi:10.1145/1401890.1401983
– reference: ZimekACampelloRJGBSanderJEnsembles for unsupervised outlier detection: challenges and research questionsACM SIGKDD Explor2013151112210.1145/2594473.2594476
– reference: Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detection approach for scattered real-world data. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Bangkok, pp 813–822. doi:10.1007/978-3-642-01307-2_84
– reference: SchubertEZimekAKriegelHPLocal outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detectionData Min Knowl Discov2014281190237314756810.1007/s10618-012-0300-z1281.68192
– reference: Latecki LJ, Lazarevic A, Pokrajac D (2007) Outlier detection with kernel density functions. In: Proceedings of the 5th international conference on machine learning and data mining in pattern recognition (MLDM), Leipzig, pp 61–75. doi:10.1007/978-3-540-73499-4_6
– reference: von LuxburgUWilliamsonRCGuyonIClustering: science or art?JMLR Workshop Conf Proc2012276579
– reference: WolpertDHThe lack of a priori distinctions between learning algorithmsNeural Comput1996871341139010.1162/neco.1996.8.7.1341
– reference: Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 427–438. doi:10.1145/342009.335437
– reference: NguyenHVGopalkrishnanVFeature extraction for outlier detection in high-dimensional spacesJ Mach Learn Res Proc Track2010106675
– reference: Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 157–166. doi:10.1145/1081870.1081891
– reference: Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, New Jersey
– reference: Gao J, Tan PN (2006) Converting output scores from outlier detection algorithms into probability estimates. In: Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, pp 212–221. doi:10.1109/ICDM.2006.43
– reference: Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of anomaly detection benchmarks from real data. In: Workshop on outlier detection and description, held in conjunction with the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, pp 16–21
– reference: Marques HO, Campello RJGB, Zimek A, Sander J (2015) On the internal evaluation of unsupervised outlier detection. In: Proceedings of the 27th international conference on scientific and statistical database management (SSDBM), San Diego, pp 7:1–12. doi:10.1145/2791347.2791352
– reference: Breunig MM, Kriegel HP, Ng R, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 93–104. doi:10.1145/342009.335388
– reference: Jin W, Tung AKH, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In: Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore, pp 577–593. doi:10.1007/11731139_68
– reference: KriegelHPKrögerPZimekAClustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clusteringACM Trans Knowl Discov Data20093115810.1145/1497577.1497578
– reference: SchubertEKoosAEmrichTZüfleASchmidKAZimekAA framework for clustering uncertain dataProc VLDB Endow20158121976197910.14778/2824032.2824115
– reference: AggarwalCCOutlier analysis2013BerlinSpringer10.1007/978-1-4614-6396-21291.68004
– reference: BarnettVLewisTOutliers in statistical data19943New YorkWiley0801.62001
– reference: AkogluLTongHKoutraDGraph-based anomaly detection and description: a surveyData Mining Knowl Discov2015293626688333431710.1007/s10618-014-0365-y
– reference: Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng. doi:10.1109/TKDE.2014.2365790
– reference: Schubert E, Zimek A, Kriegel HP (2014a) Generalized outlier detection with flexible kernel density estimates. In: Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, pp 542–550. doi:10.1137/1.9781611973440.63
– reference: Zhang E, Zhang Y (2009) Average precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 192–193. doi:10.1007/978-0-387-39940-9_482
– reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570110.1080/01621459.1937.1050352263.1098.02
– reference: Kriegel HP, Kröger P, Schubert E, Zimek A (2011a) Interpreting and unifying outlier scores. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, pp 13–24. doi:10.1137/1.9781611972818.2
– reference: ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surveys200941315810.1145/1541880.1541882
– reference: Tang J, Chen Z, Fu AWC, Cheung DW (2002) Enhancing effectiveness of outlier detections for low density patterns. In: Proceedings of the 6th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Taipei, pp 535–548. doi:10.1007/3-540-47887-6_53
– reference: Kriegel HP, Schubert M, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 444–452. doi:10.1145/1401890.1401946
– reference: Zimek A, Gaudet M, Campello RJGB, Sander J (2013b) Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 428–436. doi:10.1145/2487575.2487676
– reference: Kriegel HP, Schubert E, Zimek A (2011b) Evaluation of multiple clustering solutions. In: 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, pp 55–66
– volume: 4
  start-page: 65
  issue: 1
  year: 2002
  ident: 444_CR20
  publication-title: ACM SIGKDD Explor
  doi: 10.1145/568574.568575
– volume: 6
  start-page: 31
  issue: 1
  year: 2012
  ident: 444_CR41
  publication-title: ACM Trans Knowl Discov Data
– volume: 3
  start-page: 209
  issue: 4
  year: 2010
  ident: 444_CR59
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.10080
– ident: 444_CR36
  doi: 10.1137/1.9781611972818.2
– volume: 10
  start-page: 66
  year: 2010
  ident: 444_CR47
  publication-title: J Mach Learn Res Proc Track
– ident: 444_CR2
  doi: 10.1145/2463676.2463696
– ident: 444_CR13
  doi: 10.1137/1.9781611972832.25
– ident: 444_CR39
  doi: 10.1007/978-3-540-73499-4_6
– volume: 90
  start-page: 127
  issue: 1
  year: 2013
  ident: 444_CR58
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5303-x
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 444_CR21
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1937.10503522
– ident: 444_CR46
– ident: 444_CR37
– ident: 444_CR45
  doi: 10.1109/ICDM.2012.112
– volume-title: Identification of outliers
  year: 1980
  ident: 444_CR26
  doi: 10.1007/978-94-015-3994-4
– volume: 16
  start-page: 38
  issue: 2
  year: 2014
  ident: 444_CR71
  publication-title: ACM SIGKDD Explor
  doi: 10.1145/2783702.2783706
– ident: 444_CR25
  doi: 10.1109/ICPR.2004.1334558
– ident: 444_CR38
  doi: 10.1007/s10115-016-1004-2
– volume: 143
  start-page: 29
  year: 1982
  ident: 444_CR24
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 28
  start-page: 190
  issue: 1
  year: 2014
  ident: 444_CR54
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0300-z
– volume: 8
  start-page: 1976
  issue: 12
  year: 2015
  ident: 444_CR55
  publication-title: Proc VLDB Endow
  doi: 10.14778/2824032.2824115
– volume-title: Outlier analysis
  year: 2013
  ident: 444_CR3
  doi: 10.1007/978-1-4614-6396-2
– volume: 15
  start-page: 11
  issue: 1
  year: 2013
  ident: 444_CR69
  publication-title: ACM SIGKDD Explor
  doi: 10.1145/2594473.2594476
– ident: 444_CR48
  doi: 10.1007/978-3-642-12026-8_29
– ident: 444_CR50
  doi: 10.1109/TKDE.2014.2365790
– ident: 444_CR1
  doi: 10.1145/1150402.1150459
– ident: 444_CR14
  doi: 10.1109/ICDE.2014.6816642
– volume: 5
  start-page: 363
  issue: 5
  year: 2012
  ident: 444_CR68
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.11161
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 444_CR28
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume-title: Outliers in statistical data
  year: 1994
  ident: 444_CR8
– ident: 444_CR16
  doi: 10.1109/ICDM.2010.151
– ident: 444_CR65
  doi: 10.1007/978-0-387-39940-9_482
– ident: 444_CR70
  doi: 10.1145/2487575.2487676
– volume: 17
  start-page: 203
  issue: 2
  year: 2005
  ident: 444_CR6
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.31
– ident: 444_CR30
  doi: 10.1109/ICDE.2012.88
– ident: 444_CR57
  doi: 10.1007/3-540-47887-6_53
– ident: 444_CR11
  doi: 10.1007/978-0-387-39940-9_484
– volume: 29
  start-page: 626
  issue: 3
  year: 2015
  ident: 444_CR4
  publication-title: Data Mining Knowl Discov
  doi: 10.1007/s10618-014-0365-y
– ident: 444_CR15
  doi: 10.1145/1143844.1143874
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  ident: 444_CR63
  publication-title: Neural Comput
  doi: 10.1162/neco.1996.8.7.1341
– volume: 32
  start-page: 25
  issue: 1
  year: 2012
  ident: 444_CR17
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0430-4
– volume: 3
  start-page: 1469
  issue: 2
  year: 2010
  ident: 444_CR49
  publication-title: Proc VLDB Endow
  doi: 10.14778/1920841.1921021
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 444_CR35
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/1497577.1497578
– ident: 444_CR44
  doi: 10.1109/ICDE.2011.5767916
– volume: 98
  start-page: 121
  issue: 1–2
  year: 2015
  ident: 444_CR67
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5334-y
– ident: 444_CR33
  doi: 10.1145/1401890.1401946
– ident: 444_CR52
  doi: 10.1137/1.9781611972825.90
– ident: 444_CR12
  doi: 10.1007/978-0-387-39940-9_486
– volume: 27
  start-page: 65
  year: 2012
  ident: 444_CR60
  publication-title: JMLR Workshop Conf Proc
– ident: 444_CR34
  doi: 10.1145/1645953.1646195
– ident: 444_CR42
  doi: 10.1145/2791347.2791352
– ident: 444_CR23
  doi: 10.1109/ICDM.2006.43
– ident: 444_CR29
  doi: 10.1007/11731139_68
– ident: 444_CR32
– ident: 444_CR56
  doi: 10.1007/978-3-319-18123-3_2
– ident: 444_CR61
  doi: 10.1007/978-3-319-07821-2_5
– ident: 444_CR9
  doi: 10.1145/342009.335388
– ident: 444_CR62
  doi: 10.1109/ICDE.2011.5767852
– ident: 444_CR7
– ident: 444_CR40
  doi: 10.1145/1081870.1081891
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 444_CR10
  publication-title: ACM Comput Surveys
  doi: 10.1145/1541880.1541882
– ident: 444_CR53
  doi: 10.1137/1.9781611973440.63
– ident: 444_CR22
– ident: 444_CR51
  doi: 10.1145/342009.335437
– ident: 444_CR5
  doi: 10.1007/3-540-45681-3_2
– ident: 444_CR43
– ident: 444_CR66
  doi: 10.1007/978-3-642-01307-2_84
– volume: 7
  start-page: 1
  year: 2006
  ident: 444_CR18
  publication-title: J Mach Learn Res
– ident: 444_CR27
  doi: 10.1007/978-3-642-13818-8_34
– ident: 444_CR31
  doi: 10.1145/782010.782021
– ident: 444_CR64
  doi: 10.1145/1401890.1401983
– ident: 444_CR19
  doi: 10.1145/2500853.2500858
SSID ssj0005230
Score 2.6230886
Snippet The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 891
SubjectTerms Algorithms
Artificial Intelligence
Benchmarking
Chemistry and Earth Sciences
Computer Science
Constants
Data analysis
Data mining
Data Mining and Knowledge Discovery
Datasets
Information Storage and Retrieval
Outliers (statistics)
Physics
Semantics
Statistics for Engineering
Tasks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXjxLa4vInhSg-02TVMvoqKI4ANR8FaaZgKCdlfb_f9O2nRXBT0UCk0TmEkmX2Ym3wDsEwRQMtGSmyDXXEgVciVEzJVNA6NQJDp0d4dv7-T1s7h5iV-8w63yaZWdTWwMtRkWzkd-TBMnkQSOQ3k6-uCuapSLrvoSGrMwRyZYqR7MnV_ePTx-S_KI2nvCSvBYhZO4Znt5ToYukSvmjjONq5870xRu_oqQNhvP1RIseMTIzloVL8MMliuw2FVjYH5xrkJ2XzJCc2zK382Glo3Lajxy9qBCw1z2D22DzGDdZGCVJ-y99RFWR8zlilZY01teGnoYvo9eGwIR1nDQrsHz1eXTxTX35RN4IWJV88iKwkaoUxwUSaBtPtDSoqJDV2QIl2mdpIVMExQYhKQRY9FEiRWBlUEhI2ujdeiVwxI3gFlhlBmkgUbq1Io8JZyHqshjk8hU6LwPQSe6rPDc4q7ExVs2ZUV20s5I2pmTdqb6cDD5ZdQSa_zXeLvTR-bXWJVNZ0Qf9iafaXW4kEde4nBMbegAHDsMJfpw2OnxWxd_Dbj5_4BbME_ASbZpu9vQqz_HuEPgpNa7fgZ-AUj64YU
  priority: 102
  providerName: ProQuest
Title On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study
URI https://link.springer.com/article/10.1007/s10618-015-0444-8
https://www.proquest.com/docview/1797657616
https://www.proquest.com/docview/1825510284
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFD7YloV98VJdrNYyCz7pDuQymUx8q9ILLlYRC_UpZDJnYGGbFpP-f8_k0lZRwYeQQCYTOCcz852c73wD8JoggJKxltx4meZCKp8rISKubOIZhSLWvqsd_rSSy7X4uIk2bR132bHdu5RkPVOfFbtJ3xGvIu40zrjqwSCi0N3xuNbB9IzXETalwUrwSPnHVOafuvh1MTohzN-SovVaM38MD1uQyKaNV5_AAyyG8KjbgIG143EIFzV_My-fQvq5YATl2Em8m-0sOxTlYe8mgxINc9QfWgOZwaqmXxXv2Lb5QVjeMEcULbGiq6wwdDDc7u9q9RBWC9A-g_V89u3Dkrd7J_BcRKrioRW5DVEnGOSxp20WaGlRUcQVGgJlWsdJLpMYBXo-ucNYNGFshWell8vQ2vAK-sWuwOfArDDKBImnkTq1IksI5KHKs8jEMhE6G4HXGTHNW2Fxt7_FfXqSRHZ2T8nuqbN7qkbw5vjIvlHV-FfjceeZtB1gZUrzSCwpVvLlCK6Pt2louHxHVuDuQG0o-o0cgBIjeNt59KyLv73wxX-1fgmXBKJkQ-EdQ7_6ccBXBFQqPYGemi8mMJguvt_O6Px-tvrydVJ_rj8Bh8bjmQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALLQXU7QsjlQtgNQ_HcSpVFQKWLX1waaXe3DgeS0htdiFZVf1T_Y0d57FbkOith0iR4tjWeDzz2fMC2CYIoGRqJLdBbriQKuRKiIQrlwVWoUhN6GOHj0_k6Ez8OE_OF-C2j4XxbpW9TGwEtR0X_o58hxgnlQSOQ7k_-c191ShvXe1LaLRscYg313Rkq_YOvtL6vo-i4bfTLyPeVRXghUhUzWMnChejyTAq0sC4PDLSoaKzSGwJrhiTZoXMUhQYhDRR69DGqROBk0EhY-di6vcJPBUxaXIfmT78fs-lJG6jkpXgiQpnVtQ2VE-G3m0s4T5DG1d_68E5uP3HHtuoueEyvOjwKfvcMtRLWMByBZb62g-sEwWvQP8sGWFHNs8WzsaOTctqOvHSp0LLvK8RKV1msW78vcpddtXeSFafmPdMrbCmt7y09DC8mvxq0pWwJuPtazh7FLK-gcVyXOIqMCesslEWGKROncgzQpWoijyxqcyEyQcQ9KTTRZfJ3BfUuNTzHMye2pqorT21tRrAh9kvkzaNx0ONN_r10N2OrvSc_wbwbvaZ9qI3sOQljqfUho7biUdsYgAf-3W818X_Blx7eMC38Gx0enykjw5ODtfhOUE22ToMb8Bi_WeKmwSLarPV8CKDi8dm_jvatx8k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFcQXv8XTWiPoixq6H9kkWxCptkdr9SxioW_pZjMBwe6d7h7iv-Zf18l-3FXBvvVhYWGz2WUySX6T-c0MwHOCAFoqK7mLCsuF1DHXQmRc-zxyGoWycYgd_jSV-8fiw0l2sgZ_hliYQKsc1sR2oXazMpyRb5HiKEngOJZbvqdFHO1O3s5_8FBBKnhah3IanYoc4u9fZL7Vbw52aaxfJMlk7-v7fd5XGOClyHTDUy9Kn6LNMSlVZH2RWOlRk12SOoIu1qq8lLlCgVFMP-08ulR5EXkZlTL1PqV-r8G6ClbRCNbf7U2PvlwgmKRdjLIWPNPx0qfaBe7JOJDIMh7ytXH99664grr_eGfbTW9yG272aJXtdOp1B9awugu3hkoQrF8Y7oH5XDFCkmyVO5zNPFtU9WIe1qIaHQvMI9qCmcOmZX9V2-ysO5-sX7PAU62xobuicnQxPJt_a5OXsDb_7X04vhLBPoBRNavwITAvnHZJHlmkTr0ocsKYqMsic0rmwhZjiAbRmbLPax7Ka3w3q4zMQdqGpG2CtI0ew8vlK_MuqcdljTeG8TD9_K7NShvH8Gz5mGZmcLcUFc4W1IaM7yzgNzGGV8M4Xujifx98dPkHn8J1Unzz8WB6-BhuEH6THXt4A0bNzwU-IYzU2M1eGRmcXrX-nwPoyyS2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+evaluation+of+unsupervised+outlier+detection%3A+measures%2C+datasets%2C+and+an+empirical+study&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Campos%2C+Guilherme+O.&rft.au=Zimek%2C+Arthur&rft.au=Sander%2C+J%C3%B6rg&rft.au=Campello%2C+Ricardo+J.+G.+B.&rft.date=2016-07-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=4&rft.spage=891&rft.epage=927&rft_id=info:doi/10.1007%2Fs10618-015-0444-8&rft.externalDocID=10_1007_s10618_015_0444_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon