On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study
The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate be...
Saved in:
Published in | Data mining and knowledge discovery Vol. 30; no. 4; pp. 891 - 927 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard
k
nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results. |
---|---|
AbstractList | The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results. The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results. |
Author | Schubert, Erich Sander, Jörg Campello, Ricardo J. G. B. Assent, Ira Houle, Michael E. Campos, Guilherme O. Zimek, Arthur Micenková, Barbora |
Author_xml | – sequence: 1 givenname: Guilherme O. surname: Campos fullname: Campos, Guilherme O. organization: University of São Paulo – sequence: 2 givenname: Arthur surname: Zimek fullname: Zimek, Arthur email: zimek@dbs.ifi.lmu.de organization: Ludwig-Maximilians-Universität München – sequence: 3 givenname: Jörg surname: Sander fullname: Sander, Jörg organization: Department of Computing Science, University of Alberta – sequence: 4 givenname: Ricardo J. G. B. surname: Campello fullname: Campello, Ricardo J. G. B. organization: University of São Paulo – sequence: 5 givenname: Barbora surname: Micenková fullname: Micenková, Barbora organization: Department of Computer Science, Aarhus University – sequence: 6 givenname: Erich surname: Schubert fullname: Schubert, Erich organization: Ludwig-Maximilians-Universität München – sequence: 7 givenname: Ira surname: Assent fullname: Assent, Ira organization: Department of Computer Science, Aarhus University – sequence: 8 givenname: Michael E. surname: Houle fullname: Houle, Michael E. organization: National Institute of Informatics |
BookMark | eNp9kE1rFTEUQINUsK3-AHcBN1049Wby-bqTolYodKPgLmQyNzVlXuY1H4X-e_N8XUihLkLu4pzkck7IUVoTEvKewTkD0J8KA8XMAEwOIIQYzCtyzKTmg5bq11GfuRGDNAzekJNS7gBAjhyOib1JtP5Gig9uaa7GNdE10JZK22F-iAVnura6RMx0xop-T1zQLbrSMpaPdHbVFax9cmnuh-J2F3P0bqGltvnxLXkd3FLw3dN9Sn5-_fLj8mq4vvn2_fLz9eCFNHXgQfjAcdrg6DVMwY2TCmhgVHxWEqZJb7zaaBQIbGJuDjhzHQQEBV7xEPgpOTu8u8vrfcNS7TYWj8viEq6tWGZGKRmMRnT0wzP0bm059e0s0xutpFZMdYodKJ_XUjIGu8tx6_KjZWD3ye0hue3J7T65Nd3Rzxwf69-oNbu4_NccD2bpv6RbzP_s9KL0B-KdmJw |
CitedBy_id | crossref_primary_10_1109_TSC_2024_3479909 crossref_primary_10_1007_s10845_023_02156_7 crossref_primary_10_1007_s13755_023_00221_2 crossref_primary_10_1145_3447822 crossref_primary_10_1002_sta4_335 crossref_primary_10_1007_s10044_019_00852_w crossref_primary_10_3233_JIFS_236518 crossref_primary_10_1109_TCYB_2018_2838668 crossref_primary_10_1007_s40747_022_00695_9 crossref_primary_10_1016_j_ssci_2018_12_018 crossref_primary_10_1002_widm_1491 crossref_primary_10_1155_2019_2686378 crossref_primary_10_1007_s13762_019_02252_3 crossref_primary_10_1016_j_ins_2022_12_041 crossref_primary_10_3390_app9245565 crossref_primary_10_1007_s10618_023_00967_z crossref_primary_10_1007_s11227_021_04038_2 crossref_primary_10_1016_j_ins_2023_119880 crossref_primary_10_4018_IJSSCI_2020010102 crossref_primary_10_1109_TCSS_2020_2977958 crossref_primary_10_1155_2016_4178079 crossref_primary_10_1080_10618600_2020_1807997 crossref_primary_10_1016_j_jisa_2022_103196 crossref_primary_10_56583_br_2191 crossref_primary_10_1007_s00521_019_04421_4 crossref_primary_10_1109_TNNLS_2021_3086137 crossref_primary_10_3233_JIFS_231735 crossref_primary_10_1109_ACCESS_2023_3274113 crossref_primary_10_1111_biom_13505 crossref_primary_10_1016_j_pce_2020_102945 crossref_primary_10_1016_j_dss_2020_113422 crossref_primary_10_1016_j_future_2020_07_037 crossref_primary_10_1007_s12065_024_00953_4 crossref_primary_10_1016_j_jpdc_2024_104923 crossref_primary_10_1109_ACCESS_2024_3454807 crossref_primary_10_1145_3572408 crossref_primary_10_1109_TNNLS_2021_3105400 crossref_primary_10_1080_24725854_2023_2224854 crossref_primary_10_1038_s41598_019_46097_9 crossref_primary_10_1016_j_patcog_2021_107874 crossref_primary_10_1145_3653719 crossref_primary_10_1002_sta4_322 crossref_primary_10_1016_j_patrec_2020_01_028 crossref_primary_10_2200_S00800ED1V01Y201709SPT022 crossref_primary_10_1016_j_eswa_2023_120994 crossref_primary_10_1109_TFUZZ_2021_3114734 crossref_primary_10_1214_22_AOS2244 crossref_primary_10_1109_TPWRS_2017_2783242 crossref_primary_10_1016_j_inffus_2023_02_007 crossref_primary_10_1016_j_dss_2024_114196 crossref_primary_10_1016_j_procs_2022_09_289 crossref_primary_10_1007_s10115_018_1168_z crossref_primary_10_1109_ACCESS_2024_3524908 crossref_primary_10_1109_TKDE_2023_3332757 crossref_primary_10_3390_a15070239 crossref_primary_10_1007_s10489_020_01724_1 crossref_primary_10_1007_s10618_024_01086_z crossref_primary_10_1016_j_patrec_2021_03_008 crossref_primary_10_1109_ACCESS_2023_3294096 crossref_primary_10_3233_IDA_216257 crossref_primary_10_1002_spe_3208 crossref_primary_10_2112_SI82_036_1 crossref_primary_10_1007_s10489_024_05428_8 crossref_primary_10_1007_s10618_020_00697_6 crossref_primary_10_1016_j_eswa_2024_124953 crossref_primary_10_1049_itr2_12109 crossref_primary_10_1145_3276463 crossref_primary_10_2139_ssrn_4192366 crossref_primary_10_1007_s10462_023_10437_z crossref_primary_10_1016_j_pmcj_2020_101130 crossref_primary_10_1007_s10618_023_00931_x crossref_primary_10_1007_s11356_023_26780_1 crossref_primary_10_1155_2018_2318763 crossref_primary_10_1016_j_ins_2024_121560 crossref_primary_10_1016_j_isatra_2023_09_002 crossref_primary_10_3390_agriculture11111083 crossref_primary_10_1109_ACCESS_2021_3090936 crossref_primary_10_1007_s11265_021_01715_6 crossref_primary_10_1109_ACCESS_2017_2679006 crossref_primary_10_1145_3690827 crossref_primary_10_1007_s10994_024_06521_2 crossref_primary_10_1007_s40747_022_00674_0 crossref_primary_10_1016_j_knosys_2021_106878 crossref_primary_10_1089_ast_2024_0019 crossref_primary_10_1016_j_is_2020_101569 crossref_primary_10_1111_gean_12138 crossref_primary_10_1007_s10489_022_03258_0 crossref_primary_10_1016_j_jksuci_2022_06_005 crossref_primary_10_1109_TKDE_2022_3159580 crossref_primary_10_1002_eng2_12449 crossref_primary_10_1007_s41060_021_00265_1 crossref_primary_10_1109_TKDE_2023_3270293 crossref_primary_10_1109_ACCESS_2018_2877097 crossref_primary_10_1016_j_ins_2024_120286 crossref_primary_10_1016_j_ins_2024_121255 crossref_primary_10_1109_TSMC_2021_3119119 crossref_primary_10_3390_app8081248 crossref_primary_10_1145_3439950 crossref_primary_10_3233_IDA_184227 crossref_primary_10_7717_peerj_cs_1199 crossref_primary_10_1016_j_omega_2020_102298 crossref_primary_10_1109_ACCESS_2024_3481288 crossref_primary_10_1016_j_ins_2023_119337 crossref_primary_10_1186_s13321_017_0230_2 crossref_primary_10_1029_2019WR024906 crossref_primary_10_1016_j_patcog_2023_109334 crossref_primary_10_1007_s00354_022_00193_z crossref_primary_10_1016_j_cag_2016_08_008 crossref_primary_10_1016_j_eswa_2020_113453 crossref_primary_10_1109_ACCESS_2019_2932769 crossref_primary_10_1109_TCYB_2021_3058780 crossref_primary_10_1007_s40745_021_00362_9 crossref_primary_10_1145_3203246 crossref_primary_10_1016_j_engappai_2022_105503 crossref_primary_10_1049_iet_gtd_2019_0682 crossref_primary_10_1016_j_fss_2020_10_017 crossref_primary_10_1093_bib_bbac406 crossref_primary_10_1007_s00170_022_09251_8 crossref_primary_10_1016_j_promfg_2020_02_090 crossref_primary_10_3390_fi12060100 crossref_primary_10_1007_s10618_024_01056_5 crossref_primary_10_1002_widm_1280 crossref_primary_10_1007_s41060_017_0068_8 crossref_primary_10_1080_15481603_2021_1907896 crossref_primary_10_1016_j_dajour_2024_100424 crossref_primary_10_2345_0899_8205_56_2_58 crossref_primary_10_3390_make5030042 crossref_primary_10_1016_j_procs_2024_09_325 crossref_primary_10_1109_TNNLS_2018_2861743 crossref_primary_10_1016_j_jtrangeo_2024_104080 crossref_primary_10_2478_jaiscr_2025_0001 crossref_primary_10_1007_s00521_023_08596_9 crossref_primary_10_1109_TKDE_2024_3462442 crossref_primary_10_1007_s00521_023_08721_8 crossref_primary_10_1007_s10618_023_00925_9 crossref_primary_10_1016_j_trc_2021_103234 crossref_primary_10_1007_s10115_016_1004_2 crossref_primary_10_1007_s10618_019_00661_z crossref_primary_10_1007_s41019_022_00185_5 crossref_primary_10_1145_3312739 crossref_primary_10_3390_ijms21062114 crossref_primary_10_1007_s10664_020_09881_0 crossref_primary_10_2345_1943_5967_56_2_58 crossref_primary_10_1109_ACCESS_2019_2921096 crossref_primary_10_3233_SJI_220061 crossref_primary_10_1002_jbio_202200251 crossref_primary_10_1016_j_neucom_2018_10_113 crossref_primary_10_1117_1_NPh_11_4_045008 crossref_primary_10_1186_s40537_021_00469_z crossref_primary_10_1109_TNSE_2023_3273543 crossref_primary_10_1007_s10994_020_05880_w crossref_primary_10_1016_j_ins_2025_122075 crossref_primary_10_1080_01969722_2022_2080338 crossref_primary_10_2139_ssrn_4958745 crossref_primary_10_3389_fspas_2022_867947 crossref_primary_10_1080_08839514_2020_1722933 crossref_primary_10_3390_pr8091168 crossref_primary_10_1007_s10115_023_02018_x crossref_primary_10_1109_TNNLS_2021_3116269 crossref_primary_10_1155_2022_1036293 crossref_primary_10_29130_dubited_1287453 crossref_primary_10_22531_muglajsci_1252876 crossref_primary_10_15622_ia_20_4_5 crossref_primary_10_1007_s10994_022_06149_0 crossref_primary_10_1108_JEDT_08_2020_0321 crossref_primary_10_1016_j_knosys_2021_106830 crossref_primary_10_1007_s13042_024_02470_3 crossref_primary_10_1007_s11042_020_09628_5 crossref_primary_10_1109_TNSM_2021_3071928 crossref_primary_10_1080_10618600_2020_1807353 crossref_primary_10_1109_TKDE_2024_3525003 crossref_primary_10_1214_20_AOS1988 crossref_primary_10_3389_fams_2017_00023 crossref_primary_10_1109_TAI_2024_3394795 crossref_primary_10_1007_s41060_018_0137_7 crossref_primary_10_1016_j_knosys_2021_107256 crossref_primary_10_1007_s40300_020_00183_5 crossref_primary_10_1016_j_patrec_2023_08_020 crossref_primary_10_3390_s23010486 crossref_primary_10_1016_j_procs_2018_07_211 crossref_primary_10_1145_3399806 crossref_primary_10_1109_JPROC_2021_3052449 crossref_primary_10_1109_TAI_2024_3381102 crossref_primary_10_1016_j_ijar_2023_108971 crossref_primary_10_1016_j_ijar_2024_109323 crossref_primary_10_1111_tgis_12725 crossref_primary_10_1016_j_knosys_2019_105331 crossref_primary_10_7717_peerj_cs_757 crossref_primary_10_1016_j_neucom_2023_126634 crossref_primary_10_1093_bfgp_elz036 crossref_primary_10_1007_s10618_021_00750_y crossref_primary_10_1145_3588700 crossref_primary_10_1007_s10618_024_01077_0 crossref_primary_10_1016_j_bcra_2024_100227 crossref_primary_10_2514_1_I010582 crossref_primary_10_1109_ACCESS_2018_2886197 crossref_primary_10_1109_ACCESS_2021_3090957 crossref_primary_10_1007_s00180_022_01277_6 crossref_primary_10_1111_1755_0998_13221 crossref_primary_10_1109_ACCESS_2019_2935628 crossref_primary_10_1016_j_dsp_2025_105153 crossref_primary_10_1007_s11227_021_04239_9 crossref_primary_10_1016_j_datak_2021_101946 crossref_primary_10_1007_s11634_025_00627_8 crossref_primary_10_1016_j_jtice_2024_105434 crossref_primary_10_1016_j_asoc_2019_105895 crossref_primary_10_1016_j_asoc_2019_105650 crossref_primary_10_1109_TKDE_2019_2905606 crossref_primary_10_1016_j_patcog_2021_108115 crossref_primary_10_1109_JIOT_2021_3049674 crossref_primary_10_3390_nano10040708 crossref_primary_10_1016_j_inffus_2020_10_001 crossref_primary_10_1111_coin_12156 crossref_primary_10_1007_s00530_024_01343_7 crossref_primary_10_1016_j_patrec_2024_06_032 crossref_primary_10_1089_big_2021_0069 crossref_primary_10_1016_j_asoc_2023_109995 crossref_primary_10_1016_j_mlwa_2021_100172 crossref_primary_10_1186_s13638_018_1158_6 crossref_primary_10_1007_s00778_022_00773_x crossref_primary_10_1007_s10515_021_00310_0 crossref_primary_10_1109_ACCESS_2019_2891933 crossref_primary_10_1016_j_knosys_2019_104907 crossref_primary_10_1109_TKDE_2021_3103571 crossref_primary_10_1145_3441453 crossref_primary_10_1016_j_health_2022_100118 crossref_primary_10_1016_j_simpa_2022_100359 crossref_primary_10_1109_TII_2018_2875956 crossref_primary_10_1016_j_eswa_2022_118196 crossref_primary_10_3390_computers12120253 crossref_primary_10_1007_s12596_023_01147_4 crossref_primary_10_1016_j_ijar_2020_12_003 crossref_primary_10_1080_10618600_2019_1575226 crossref_primary_10_1016_j_jcp_2019_03_003 crossref_primary_10_1016_j_asoc_2023_110742 crossref_primary_10_1016_j_engappai_2022_104719 crossref_primary_10_3390_axioms12050425 crossref_primary_10_1007_s11269_024_03885_x crossref_primary_10_1155_2018_9280787 crossref_primary_10_1016_j_neucom_2020_11_059 crossref_primary_10_1109_TIE_2017_2777383 crossref_primary_10_1145_3403934 crossref_primary_10_1016_j_engappai_2022_105359 crossref_primary_10_1145_3467470 crossref_primary_10_1016_j_eswa_2024_124227 crossref_primary_10_1145_3522690 crossref_primary_10_1016_j_eswa_2025_126922 crossref_primary_10_1016_j_patcog_2019_01_002 crossref_primary_10_1007_s10044_024_01372_y crossref_primary_10_1007_s13042_022_01569_9 crossref_primary_10_3233_JIFS_211417 crossref_primary_10_1016_j_knosys_2019_05_026 crossref_primary_10_1109_TPAMI_2021_3066111 crossref_primary_10_1016_j_eswa_2020_114372 crossref_primary_10_1016_j_ins_2021_04_083 crossref_primary_10_1109_ACCESS_2020_3025530 crossref_primary_10_1007_s00778_021_00653_w crossref_primary_10_1016_j_eswa_2022_118904 crossref_primary_10_1007_s13042_020_01183_7 crossref_primary_10_1109_ACCESS_2020_2976850 crossref_primary_10_1080_02564602_2019_1647804 crossref_primary_10_1016_j_knosys_2020_106186 crossref_primary_10_1155_2021_4026132 crossref_primary_10_3233_IDA_215741 crossref_primary_10_3390_app13127313 crossref_primary_10_1007_s13222_021_00392_w crossref_primary_10_1007_s10489_019_01592_4 crossref_primary_10_1016_j_ejor_2020_01_014 crossref_primary_10_1007_s00799_017_0220_z crossref_primary_10_1109_ACCESS_2024_3402446 crossref_primary_10_1109_TASE_2018_2848198 crossref_primary_10_1016_j_eswa_2022_117809 crossref_primary_10_2514_1_I011076 crossref_primary_10_1016_j_procs_2022_01_297 crossref_primary_10_1142_S0219649220400134 crossref_primary_10_1016_j_inffus_2023_102133 crossref_primary_10_1016_j_cosrev_2022_100463 crossref_primary_10_1016_j_knosys_2023_110678 crossref_primary_10_1080_02664763_2020_1815675 crossref_primary_10_1002_itl2_85 crossref_primary_10_1007_s00778_022_00729_1 crossref_primary_10_1007_s10586_020_03136_9 crossref_primary_10_1016_j_inffus_2023_101957 crossref_primary_10_1109_TKDE_2023_3312108 crossref_primary_10_1145_3372274 crossref_primary_10_3390_metabo13010097 crossref_primary_10_7717_peerj_cs_1214 crossref_primary_10_1016_j_is_2020_101705 crossref_primary_10_1007_s11356_021_14419_y crossref_primary_10_1109_ACCESS_2018_2883681 crossref_primary_10_3389_fphys_2023_1233341 crossref_primary_10_1016_j_asoc_2021_108301 crossref_primary_10_1007_s41060_020_00238_w crossref_primary_10_3847_1538_3881_ad4da5 crossref_primary_10_1016_j_matpr_2020_09_522 crossref_primary_10_1016_j_eswa_2020_114287 crossref_primary_10_48175_IJARSCT_22509 crossref_primary_10_1080_01431161_2023_2283900 crossref_primary_10_1007_s11063_022_10845_2 crossref_primary_10_3233_JIFS_236009 crossref_primary_10_5604_01_3001_0012_6833 crossref_primary_10_1016_j_ins_2019_03_013 crossref_primary_10_1016_j_tcs_2022_11_011 crossref_primary_10_1145_3394053 crossref_primary_10_1002_jcaf_22389 crossref_primary_10_1016_j_datak_2024_102365 crossref_primary_10_1007_s10489_024_06007_7 crossref_primary_10_1016_j_egyai_2022_100159 crossref_primary_10_1016_j_eij_2020_06_001 crossref_primary_10_1016_j_asoc_2022_109146 |
Cites_doi | 10.1145/568574.568575 10.1002/sam.10080 10.1137/1.9781611972818.2 10.1145/2463676.2463696 10.1137/1.9781611972832.25 10.1007/978-3-540-73499-4_6 10.1007/s10994-012-5303-x 10.1080/01621459.1937.10503522 10.1109/ICDM.2012.112 10.1007/978-94-015-3994-4 10.1145/2783702.2783706 10.1109/ICPR.2004.1334558 10.1007/s10115-016-1004-2 10.1148/radiology.143.1.7063747 10.1007/s10618-012-0300-z 10.14778/2824032.2824115 10.1007/978-1-4614-6396-2 10.1145/2594473.2594476 10.1007/978-3-642-12026-8_29 10.1109/TKDE.2014.2365790 10.1145/1150402.1150459 10.1109/ICDE.2014.6816642 10.1002/sam.11161 10.1007/BF01908075 10.1109/ICDM.2010.151 10.1007/978-0-387-39940-9_482 10.1145/2487575.2487676 10.1109/TKDE.2005.31 10.1109/ICDE.2012.88 10.1007/3-540-47887-6_53 10.1007/978-0-387-39940-9_484 10.1007/s10618-014-0365-y 10.1145/1143844.1143874 10.1162/neco.1996.8.7.1341 10.1007/s10115-011-0430-4 10.14778/1920841.1921021 10.1145/1497577.1497578 10.1109/ICDE.2011.5767916 10.1007/s10994-013-5334-y 10.1145/1401890.1401946 10.1137/1.9781611972825.90 10.1007/978-0-387-39940-9_486 10.1145/1645953.1646195 10.1145/2791347.2791352 10.1109/ICDM.2006.43 10.1007/11731139_68 10.1007/978-3-319-18123-3_2 10.1007/978-3-319-07821-2_5 10.1145/342009.335388 10.1109/ICDE.2011.5767852 10.1145/1081870.1081891 10.1145/1541880.1541882 10.1137/1.9781611973440.63 10.1145/342009.335437 10.1007/3-540-45681-3_2 10.1007/978-3-642-01307-2_84 10.1007/978-3-642-13818-8_34 10.1145/782010.782021 10.1145/1401890.1401983 10.1145/2500853.2500858 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 |
Copyright_xml | – notice: The Author(s) 2016 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-015-0444-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 927 |
ExternalDocumentID | 4092686191 10_1007_s10618_015_0444_8 |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) grantid: 304137/2013-8 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (CA) funderid: http://dx.doi.org/10.13039/501100002790 – fundername: Teknologi og Produktion, Det Frie Forskningsråd (DK) grantid: 10-081972 funderid: http://dx.doi.org/10.13039/100008393 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) grantid: 400772/2014-0 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (BR) grantid: 2013/18698-4 funderid: http://dx.doi.org/10.13039/501100001807 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c458t-3f4cf3eb9e2c70bfa2b6fe80263d650bb79c697e4e01b1adfed37f40f60c63ff3 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Thu Jul 10 22:38:00 EDT 2025 Sat Aug 16 06:21:28 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Tue Jul 01 00:40:30 EDT 2025 Fri Feb 21 02:33:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Datasets Evaluation Unsupervised outlier detection Measures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-3f4cf3eb9e2c70bfa2b6fe80263d650bb79c697e4e01b1adfed37f40f60c63ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1007/s10618-015-0444-8 |
PQID | 1797657616 |
PQPubID | 43030 |
PageCount | 37 |
ParticipantIDs | proquest_miscellaneous_1825510284 proquest_journals_1797657616 crossref_primary_10_1007_s10618_015_0444_8 crossref_citationtrail_10_1007_s10618_015_0444_8 springer_journals_10_1007_s10618_015_0444_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kriegel HP, Schubert E, Zimek A (2015) The (black) art of runtime evaluation: Are we comparing algorithms or implementations? submitted Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 157–166. doi:10.1145/1081870.1081891 Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning (ICML), Pittsburgh, pp 233–240 Müller E, Assent I, Iglesias P, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: Proceedings of the 12th IEEE international conference on data mining (ICDM), Brussels, pp 529–538. doi:10.1109/ICDM.2012.112 Houle ME, Kriegel HP, Kröger P, Schubert E, Zimek A (2010) Can shared-neighbor distances defeat the curse of dimensionality? In: Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, pp 482–500. doi:10.1007/978-3-642-13818-8_34 Müller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace projections for outlier ranking. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 434–445. doi:10.1109/ICDE.2011.5767916 WolpertDHThe lack of a priori distinctions between learning algorithmsNeural Comput1996871341139010.1162/neco.1996.8.7.1341 Achtert E, Kriegel HP, Schubert E, Zimek A (2013) Interactive data mining with 3D-parallel-coordinate-trees. In: Proceedings of the ACM international conference on management of data (SIGMOD), New York, pp 1009–1012. doi:10.1145/2463676.2463696 Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml AggarwalCCOutlier analysis2013BerlinSpringer10.1007/978-1-4614-6396-21291.68004 Schubert E, Zimek A, Kriegel HP (2014a) Generalized outlier detection with flexible kernel density estimates. In: Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, pp 542–550. doi:10.1137/1.9781611973440.63 LiuFTTingKMZhouZHIsolation-based anomaly detectionACM Trans Knowl Discov Data201261313910.1145/2133360.2133363 Estivill-CastroVWhy so many clustering algorithms—a position paperACM SIGKDD Explor2002416575119252510.1145/568574.568575 Keller F, Müller E, Böhm K (2012) HiCS: high contrast subspaces for density-based outlier ranking. In: Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC, pp 1037–1048. doi:10.1109/ICDE.2012.88 von LuxburgUWilliamsonRCGuyonIClustering: science or art?JMLR Workshop Conf Proc2012276579 HawkinsDIdentification of outliers1980LondonChapman and Hall10.1007/978-94-015-3994-40438.62022 Kriegel HP, Schubert M, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 444–452. doi:10.1145/1401890.1401946 Dang XH, Micenková B, Assent I, Ng R (2013) Outlier detection with space transformation and spectral analysis. In: Proceedings ofthe 13th SIAM international conference on data mining (SDM), Austin, pp 225–233 FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570110.1080/01621459.1937.1050352263.1098.02 ZimmermannAThe data problem in data miningACM SIGKDD Explor2014162384510.1145/2783702.2783706 HubertLArabiePComparing partitionsJ Classif19852119321810.1007/BF019080750587.62128 Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, New Jersey ZimekAVreekenJThe blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectivesMach Learn2015981–2121155329668010.1007/s10994-013-5334-y1321.68413 Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, pp 368–383. doi:10.1007/978-3-642-12026-8_29 ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surveys200941315810.1145/1541880.1541882 Micenková B, van Beusekom J, Shafait F (2012) Stamp verification for automated document authentication. In: 5th International workshop on computational forensics Knorr EM, Ng RT (1997) A unified notion of outliers: properties and computation. In: Proceedings of the 3rd ACM international conference on knowledge discovery and data mining (KDD), Newport Beach, pp 219–222. doi:10.1145/782010.782021 Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng. doi:10.1109/TKDE.2014.2365790 OrairGHTeixeiraCWangYMeiraWJrParthasarathySDistance-based outlier detection: consolidation and renewed bearingProc VLDB Endow2010321469148010.14778/1920841.1921021 Breunig MM, Kriegel HP, Ng R, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 93–104. doi:10.1145/342009.335388 Craswell N (2009b) R-precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, p 2453. doi:10.1007/978-0-387-39940-9_486 Gao J, Tan PN (2006) Converting output scores from outlier detection algorithms into probability estimates. In: Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, pp 212–221. doi:10.1109/ICDM.2006.43 KriegelHPKrögerPZimekAClustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clusteringACM Trans Knowl Discov Data20093115810.1145/1497577.1497578 ZimekACampelloRJGBSanderJEnsembles for unsupervised outlier detection: challenges and research questionsACM SIGKDD Explor2013151112210.1145/2594473.2594476 DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184 TingKMZhouGTLiuFTTanSCMass estimationMach Learn2013901127160300869010.1007/s10994-012-5303-x1260.68349 Zimek A, Gaudet M, Campello RJGB, Sander J (2013b) Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 428–436. doi:10.1145/2487575.2487676 Jin W, Tung AKH, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In: Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore, pp 577–593. doi:10.1007/11731139_68 de VriesTChawlaSHouleMEDensity-preserving projections for large-scale local anomaly detectionKnowl Inf Syst2012321255210.1007/s10115-011-0430-4 VendraminLCampelloRJGBHruschkaERRelative clustering validity criteria: a comparative overviewStat Anal Data Min2010342092352672774 AngiulliFPizzutiCOutlier mining in large high-dimensional data setsIEEE Trans Knowl Data Eng2005172203215223153610.1109/TKDE.2005.311084.68140 Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detection approach for scattered real-world data. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Bangkok, pp 813–822. doi:10.1007/978-3-642-01307-2_84 Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th international conference on very large data bases (VLDB), New York, pp 392–403 Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, pp 1047–1058. doi:10.1137/1.9781611972825.90 Vreeken J, Tatti N (2014) Interesting patterns, chapter 5. In: Aggarwal CC, Han J (eds) Frequent pattern mining. Springer, Berlin, pp 105–134. doi:10.1007/978-3-319-07821-2_5 Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of anomaly detection benchmarks from real data. In: Workshop on outlier detection and description, held in conjunction with the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, pp 16–21 NguyenHVGopalkrishnanVFeature extraction for outlier detection in high-dimensional spacesJ Mach Learn Res Proc Track2010106675 Kriegel HP, Kröger P, Schubert E, Zimek A (2009a) LoOP: local outlier probabilities. In: Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, pp 1649–1652. doi:10.1145/1645953.1646195 Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 427–438. doi:10.1145/342009.335437 Wang Y, Parthasarathy S, Tatikonda S (2011) Locality sensitive outlier detection: a ranking driven approach. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 410–421. doi:10.1109/ICDE.2011.5767852 Schubert E, Zimek A, Kriegel HP (2015b) Fast and scalable outlier detection with approximate nearest neighbor ensembles. In: Proceedings of the 20th international conference on database systems for advanced applications (DASFAA), Hanoi, Vietnam, pp 19–36. doi:10.1007/978-3-319-18123-3_2 Zhang E, Zhang Y (2009) Average precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 192–193. doi:10.1007/978-0-387-39940-9_482 de Vries T, Chawla S, Houle ME (2010) Finding local anomalies in very high dimensional space. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, pp 128–137. doi:10.1109/ICDM.2010.151 Kriegel HP, Kröger P, Schubert E, Zimek A (2011a) Interpreting and unifying outlier scores. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, pp 13–24. doi:10.1137/1.9781611972818.2 Krie 444_CR62 HV Nguyen (444_CR47) 2010; 10 444_CR61 J Demšar (444_CR18) 2006; 7 M Friedman (444_CR21) 1937; 32 444_CR27 444_CR25 444_CR23 444_CR22 444_CR66 444_CR65 444_CR64 DH Wolpert (444_CR63) 1996; 8 444_CR2 444_CR5 V Barnett (444_CR8) 1994 FT Liu (444_CR41) 2012; 6 444_CR7 444_CR19 A Zimek (444_CR69) 2013; 15 444_CR9 V Chandola (444_CR10) 2009; 41 444_CR1 E Schubert (444_CR54) 2014; 28 444_CR30 JA Hanley (444_CR24) 1982; 143 444_CR70 GH Orair (444_CR49) 2010; 3 444_CR38 444_CR37 444_CR36 444_CR34 444_CR33 444_CR32 444_CR31 T Vries de (444_CR17) 2012; 32 L Akoglu (444_CR4) 2015; 29 444_CR29 KM Ting (444_CR58) 2013; 90 444_CR40 D Hawkins (444_CR26) 1980 444_CR48 444_CR46 A Zimmermann (444_CR71) 2014; 16 444_CR45 444_CR44 444_CR43 444_CR42 444_CR39 HP Kriegel (444_CR35) 2009; 3 444_CR52 L Vendramin (444_CR59) 2010; 3 V Estivill-Castro (444_CR20) 2002; 4 444_CR51 444_CR50 444_CR16 444_CR15 444_CR14 444_CR13 444_CR57 444_CR12 444_CR56 444_CR11 444_CR53 F Angiulli (444_CR6) 2005; 17 A Zimek (444_CR67) 2015; 98 E Schubert (444_CR55) 2015; 8 A Zimek (444_CR68) 2012; 5 U Luxburg von (444_CR60) 2012; 27 CC Aggarwal (444_CR3) 2013 L Hubert (444_CR28) 1985; 2 |
References_xml | – reference: Estivill-CastroVWhy so many clustering algorithms—a position paperACM SIGKDD Explor2002416575119252510.1145/568574.568575 – reference: Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml – reference: de VriesTChawlaSHouleMEDensity-preserving projections for large-scale local anomaly detectionKnowl Inf Syst2012321255210.1007/s10115-011-0430-4 – reference: Craswell N (2009b) R-precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, p 2453. doi:10.1007/978-0-387-39940-9_486 – reference: Schubert E, Zimek A, Kriegel HP (2015b) Fast and scalable outlier detection with approximate nearest neighbor ensembles. In: Proceedings of the 20th international conference on database systems for advanced applications (DASFAA), Hanoi, Vietnam, pp 19–36. doi:10.1007/978-3-319-18123-3_2 – reference: Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, pp 368–383. doi:10.1007/978-3-642-12026-8_29 – reference: de Vries T, Chawla S, Houle ME (2010) Finding local anomalies in very high dimensional space. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, pp 128–137. doi:10.1109/ICDM.2010.151 – reference: Kriegel HP, Schubert E, Zimek A (2015) The (black) art of runtime evaluation: Are we comparing algorithms or implementations? submitted – reference: HanleyJAMcNeilBJThe meaning and use of the area under a receiver operating characteristic (ROC) curveRadiology1982143293610.1148/radiology.143.1.7063747 – reference: Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, pp 1047–1058. doi:10.1137/1.9781611972825.90 – reference: Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning (ICML), Pittsburgh, pp 233–240 – reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res2006713022743601222.68184 – reference: Dang XH, Assent I, Ng RT, Zimek A, Schubert E (2014) Discriminative features for identifying and interpreting outliers. In: Proceedings of the 30th International Conference on Data Engineering (ICDE), Chicago, pp 88–99. doi:10.1109/ICDE.2014.6816642 – reference: HubertLArabiePComparing partitionsJ Classif19852119321810.1007/BF019080750587.62128 – reference: ZimmermannAThe data problem in data miningACM SIGKDD Explor2014162384510.1145/2783702.2783706 – reference: VendraminLCampelloRJGBHruschkaERRelative clustering validity criteria: a comparative overviewStat Anal Data Min2010342092352672774 – reference: AngiulliFPizzutiCOutlier mining in large high-dimensional data setsIEEE Trans Knowl Data Eng2005172203215223153610.1109/TKDE.2005.311084.68140 – reference: Müller E, Assent I, Iglesias P, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: Proceedings of the 12th IEEE international conference on data mining (ICDM), Brussels, pp 529–538. doi:10.1109/ICDM.2012.112 – reference: Wang Y, Parthasarathy S, Tatikonda S (2011) Locality sensitive outlier detection: a ranking driven approach. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 410–421. doi:10.1109/ICDE.2011.5767852 – reference: Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), Helsinki, pp 15–26. doi:10.1007/3-540-45681-3_2 – reference: Hautamäki V, Kärkkäinen I, Fränti P (2004) Outlier detection using k-nearest neighbor graph. In: Proceedings of the 17th international conference on pattern recognition (ICPR), Cambridge, pp 430–433. doi:10.1109/ICPR.2004.1334558 – reference: Vreeken J, Tatti N (2014) Interesting patterns, chapter 5. In: Aggarwal CC, Han J (eds) Frequent pattern mining. Springer, Berlin, pp 105–134. doi:10.1007/978-3-319-07821-2_5 – reference: Dang XH, Micenková B, Assent I, Ng R (2013) Outlier detection with space transformation and spectral analysis. In: Proceedings ofthe 13th SIAM international conference on data mining (SDM), Austin, pp 225–233 – reference: Micenková B, van Beusekom J, Shafait F (2012) Stamp verification for automated document authentication. In: 5th International workshop on computational forensics – reference: Knorr EM, Ng RT (1997) A unified notion of outliers: properties and computation. In: Proceedings of the 3rd ACM international conference on knowledge discovery and data mining (KDD), Newport Beach, pp 219–222. doi:10.1145/782010.782021 – reference: Achtert E, Kriegel HP, Schubert E, Zimek A (2013) Interactive data mining with 3D-parallel-coordinate-trees. In: Proceedings of the ACM international conference on management of data (SIGMOD), New York, pp 1009–1012. doi:10.1145/2463676.2463696 – reference: Craswell N (2009a) Precision at n. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 2127–2128. doi:10.1007/978-0-387-39940-9_484 – reference: LiuFTTingKMZhouZHIsolation-based anomaly detectionACM Trans Knowl Discov Data201261313910.1145/2133360.2133363 – reference: Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th international conference on very large data bases (VLDB), New York, pp 392–403 – reference: OrairGHTeixeiraCWangYMeiraWJrParthasarathySDistance-based outlier detection: consolidation and renewed bearingProc VLDB Endow2010321469148010.14778/1920841.1921021 – reference: HawkinsDIdentification of outliers1980LondonChapman and Hall10.1007/978-94-015-3994-40438.62022 – reference: Müller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace projections for outlier ranking. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 434–445. doi:10.1109/ICDE.2011.5767916 – reference: Houle ME, Kriegel HP, Kröger P, Schubert E, Zimek A (2010) Can shared-neighbor distances defeat the curse of dimensionality? In: Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, pp 482–500. doi:10.1007/978-3-642-13818-8_34 – reference: Keller F, Müller E, Böhm K (2012) HiCS: high contrast subspaces for density-based outlier ranking. In: Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC, pp 1037–1048. doi:10.1109/ICDE.2012.88 – reference: TingKMZhouGTLiuFTTanSCMass estimationMach Learn2013901127160300869010.1007/s10994-012-5303-x1260.68349 – reference: ZimekAVreekenJThe blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectivesMach Learn2015981–2121155329668010.1007/s10994-013-5334-y1321.68413 – reference: Abe N, Zadrozny B, Langford J (2006) Outlier detection by active learning. In: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, pp 504–509. doi:10.1145/1150402.1150459 – reference: Kriegel HP, Kröger P, Schubert E, Zimek A (2009a) LoOP: local outlier probabilities. In: Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, pp 1649–1652. doi:10.1145/1645953.1646195 – reference: ZimekASchubertEKriegelHPA survey on unsupervised outlier detection in high-dimensional numerical dataStat Anal Data Min201255363387297973510.1002/sam.11161 – reference: Färber I, Günnemann S, Kriegel HP, Kröger P, Müller E, Schubert E, Seidl T, Zimek A (2010) On using class-labels in evaluation of clusterings. In: MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC – reference: Yang J, Zhong N, Yao Y, Wang J (2008) Local peculiarity factor and its application in outlier detection. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 776–784. doi:10.1145/1401890.1401983 – reference: ZimekACampelloRJGBSanderJEnsembles for unsupervised outlier detection: challenges and research questionsACM SIGKDD Explor2013151112210.1145/2594473.2594476 – reference: Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detection approach for scattered real-world data. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Bangkok, pp 813–822. doi:10.1007/978-3-642-01307-2_84 – reference: SchubertEZimekAKriegelHPLocal outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detectionData Min Knowl Discov2014281190237314756810.1007/s10618-012-0300-z1281.68192 – reference: Latecki LJ, Lazarevic A, Pokrajac D (2007) Outlier detection with kernel density functions. In: Proceedings of the 5th international conference on machine learning and data mining in pattern recognition (MLDM), Leipzig, pp 61–75. doi:10.1007/978-3-540-73499-4_6 – reference: von LuxburgUWilliamsonRCGuyonIClustering: science or art?JMLR Workshop Conf Proc2012276579 – reference: WolpertDHThe lack of a priori distinctions between learning algorithmsNeural Comput1996871341139010.1162/neco.1996.8.7.1341 – reference: Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 427–438. doi:10.1145/342009.335437 – reference: NguyenHVGopalkrishnanVFeature extraction for outlier detection in high-dimensional spacesJ Mach Learn Res Proc Track2010106675 – reference: Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 157–166. doi:10.1145/1081870.1081891 – reference: Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, New Jersey – reference: Gao J, Tan PN (2006) Converting output scores from outlier detection algorithms into probability estimates. In: Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, pp 212–221. doi:10.1109/ICDM.2006.43 – reference: Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of anomaly detection benchmarks from real data. In: Workshop on outlier detection and description, held in conjunction with the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, pp 16–21 – reference: Marques HO, Campello RJGB, Zimek A, Sander J (2015) On the internal evaluation of unsupervised outlier detection. In: Proceedings of the 27th international conference on scientific and statistical database management (SSDBM), San Diego, pp 7:1–12. doi:10.1145/2791347.2791352 – reference: Breunig MM, Kriegel HP, Ng R, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 93–104. doi:10.1145/342009.335388 – reference: Jin W, Tung AKH, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In: Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore, pp 577–593. doi:10.1007/11731139_68 – reference: KriegelHPKrögerPZimekAClustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clusteringACM Trans Knowl Discov Data20093115810.1145/1497577.1497578 – reference: SchubertEKoosAEmrichTZüfleASchmidKAZimekAA framework for clustering uncertain dataProc VLDB Endow20158121976197910.14778/2824032.2824115 – reference: AggarwalCCOutlier analysis2013BerlinSpringer10.1007/978-1-4614-6396-21291.68004 – reference: BarnettVLewisTOutliers in statistical data19943New YorkWiley0801.62001 – reference: AkogluLTongHKoutraDGraph-based anomaly detection and description: a surveyData Mining Knowl Discov2015293626688333431710.1007/s10618-014-0365-y – reference: Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng. doi:10.1109/TKDE.2014.2365790 – reference: Schubert E, Zimek A, Kriegel HP (2014a) Generalized outlier detection with flexible kernel density estimates. In: Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, pp 542–550. doi:10.1137/1.9781611973440.63 – reference: Zhang E, Zhang Y (2009) Average precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 192–193. doi:10.1007/978-0-387-39940-9_482 – reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570110.1080/01621459.1937.1050352263.1098.02 – reference: Kriegel HP, Kröger P, Schubert E, Zimek A (2011a) Interpreting and unifying outlier scores. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, pp 13–24. doi:10.1137/1.9781611972818.2 – reference: ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput Surveys200941315810.1145/1541880.1541882 – reference: Tang J, Chen Z, Fu AWC, Cheung DW (2002) Enhancing effectiveness of outlier detections for low density patterns. In: Proceedings of the 6th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Taipei, pp 535–548. doi:10.1007/3-540-47887-6_53 – reference: Kriegel HP, Schubert M, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 444–452. doi:10.1145/1401890.1401946 – reference: Zimek A, Gaudet M, Campello RJGB, Sander J (2013b) Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 428–436. doi:10.1145/2487575.2487676 – reference: Kriegel HP, Schubert E, Zimek A (2011b) Evaluation of multiple clustering solutions. In: 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, pp 55–66 – volume: 4 start-page: 65 issue: 1 year: 2002 ident: 444_CR20 publication-title: ACM SIGKDD Explor doi: 10.1145/568574.568575 – volume: 6 start-page: 31 issue: 1 year: 2012 ident: 444_CR41 publication-title: ACM Trans Knowl Discov Data – volume: 3 start-page: 209 issue: 4 year: 2010 ident: 444_CR59 publication-title: Stat Anal Data Min doi: 10.1002/sam.10080 – ident: 444_CR36 doi: 10.1137/1.9781611972818.2 – volume: 10 start-page: 66 year: 2010 ident: 444_CR47 publication-title: J Mach Learn Res Proc Track – ident: 444_CR2 doi: 10.1145/2463676.2463696 – ident: 444_CR13 doi: 10.1137/1.9781611972832.25 – ident: 444_CR39 doi: 10.1007/978-3-540-73499-4_6 – volume: 90 start-page: 127 issue: 1 year: 2013 ident: 444_CR58 publication-title: Mach Learn doi: 10.1007/s10994-012-5303-x – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 444_CR21 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1937.10503522 – ident: 444_CR46 – ident: 444_CR37 – ident: 444_CR45 doi: 10.1109/ICDM.2012.112 – volume-title: Identification of outliers year: 1980 ident: 444_CR26 doi: 10.1007/978-94-015-3994-4 – volume: 16 start-page: 38 issue: 2 year: 2014 ident: 444_CR71 publication-title: ACM SIGKDD Explor doi: 10.1145/2783702.2783706 – ident: 444_CR25 doi: 10.1109/ICPR.2004.1334558 – ident: 444_CR38 doi: 10.1007/s10115-016-1004-2 – volume: 143 start-page: 29 year: 1982 ident: 444_CR24 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 28 start-page: 190 issue: 1 year: 2014 ident: 444_CR54 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0300-z – volume: 8 start-page: 1976 issue: 12 year: 2015 ident: 444_CR55 publication-title: Proc VLDB Endow doi: 10.14778/2824032.2824115 – volume-title: Outlier analysis year: 2013 ident: 444_CR3 doi: 10.1007/978-1-4614-6396-2 – volume: 15 start-page: 11 issue: 1 year: 2013 ident: 444_CR69 publication-title: ACM SIGKDD Explor doi: 10.1145/2594473.2594476 – ident: 444_CR48 doi: 10.1007/978-3-642-12026-8_29 – ident: 444_CR50 doi: 10.1109/TKDE.2014.2365790 – ident: 444_CR1 doi: 10.1145/1150402.1150459 – ident: 444_CR14 doi: 10.1109/ICDE.2014.6816642 – volume: 5 start-page: 363 issue: 5 year: 2012 ident: 444_CR68 publication-title: Stat Anal Data Min doi: 10.1002/sam.11161 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 444_CR28 publication-title: J Classif doi: 10.1007/BF01908075 – volume-title: Outliers in statistical data year: 1994 ident: 444_CR8 – ident: 444_CR16 doi: 10.1109/ICDM.2010.151 – ident: 444_CR65 doi: 10.1007/978-0-387-39940-9_482 – ident: 444_CR70 doi: 10.1145/2487575.2487676 – volume: 17 start-page: 203 issue: 2 year: 2005 ident: 444_CR6 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.31 – ident: 444_CR30 doi: 10.1109/ICDE.2012.88 – ident: 444_CR57 doi: 10.1007/3-540-47887-6_53 – ident: 444_CR11 doi: 10.1007/978-0-387-39940-9_484 – volume: 29 start-page: 626 issue: 3 year: 2015 ident: 444_CR4 publication-title: Data Mining Knowl Discov doi: 10.1007/s10618-014-0365-y – ident: 444_CR15 doi: 10.1145/1143844.1143874 – volume: 8 start-page: 1341 issue: 7 year: 1996 ident: 444_CR63 publication-title: Neural Comput doi: 10.1162/neco.1996.8.7.1341 – volume: 32 start-page: 25 issue: 1 year: 2012 ident: 444_CR17 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0430-4 – volume: 3 start-page: 1469 issue: 2 year: 2010 ident: 444_CR49 publication-title: Proc VLDB Endow doi: 10.14778/1920841.1921021 – volume: 3 start-page: 1 issue: 1 year: 2009 ident: 444_CR35 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/1497577.1497578 – ident: 444_CR44 doi: 10.1109/ICDE.2011.5767916 – volume: 98 start-page: 121 issue: 1–2 year: 2015 ident: 444_CR67 publication-title: Mach Learn doi: 10.1007/s10994-013-5334-y – ident: 444_CR33 doi: 10.1145/1401890.1401946 – ident: 444_CR52 doi: 10.1137/1.9781611972825.90 – ident: 444_CR12 doi: 10.1007/978-0-387-39940-9_486 – volume: 27 start-page: 65 year: 2012 ident: 444_CR60 publication-title: JMLR Workshop Conf Proc – ident: 444_CR34 doi: 10.1145/1645953.1646195 – ident: 444_CR42 doi: 10.1145/2791347.2791352 – ident: 444_CR23 doi: 10.1109/ICDM.2006.43 – ident: 444_CR29 doi: 10.1007/11731139_68 – ident: 444_CR32 – ident: 444_CR56 doi: 10.1007/978-3-319-18123-3_2 – ident: 444_CR61 doi: 10.1007/978-3-319-07821-2_5 – ident: 444_CR9 doi: 10.1145/342009.335388 – ident: 444_CR62 doi: 10.1109/ICDE.2011.5767852 – ident: 444_CR7 – ident: 444_CR40 doi: 10.1145/1081870.1081891 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 444_CR10 publication-title: ACM Comput Surveys doi: 10.1145/1541880.1541882 – ident: 444_CR53 doi: 10.1137/1.9781611973440.63 – ident: 444_CR22 – ident: 444_CR51 doi: 10.1145/342009.335437 – ident: 444_CR5 doi: 10.1007/3-540-45681-3_2 – ident: 444_CR43 – ident: 444_CR66 doi: 10.1007/978-3-642-01307-2_84 – volume: 7 start-page: 1 year: 2006 ident: 444_CR18 publication-title: J Mach Learn Res – ident: 444_CR27 doi: 10.1007/978-3-642-13818-8_34 – ident: 444_CR31 doi: 10.1145/782010.782021 – ident: 444_CR64 doi: 10.1145/1401890.1401983 – ident: 444_CR19 doi: 10.1145/2500853.2500858 |
SSID | ssj0005230 |
Score | 2.6230886 |
Snippet | The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 891 |
SubjectTerms | Algorithms Artificial Intelligence Benchmarking Chemistry and Earth Sciences Computer Science Constants Data analysis Data mining Data Mining and Knowledge Discovery Datasets Information Storage and Retrieval Outliers (statistics) Physics Semantics Statistics for Engineering Tasks |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXjxLa4vInhSg-02TVMvoqKI4ANR8FaaZgKCdlfb_f9O2nRXBT0UCk0TmEkmX2Ym3wDsEwRQMtGSmyDXXEgVciVEzJVNA6NQJDp0d4dv7-T1s7h5iV-8w63yaZWdTWwMtRkWzkd-TBMnkQSOQ3k6-uCuapSLrvoSGrMwRyZYqR7MnV_ePTx-S_KI2nvCSvBYhZO4Znt5ToYukSvmjjONq5870xRu_oqQNhvP1RIseMTIzloVL8MMliuw2FVjYH5xrkJ2XzJCc2zK382Glo3Lajxy9qBCw1z2D22DzGDdZGCVJ-y99RFWR8zlilZY01teGnoYvo9eGwIR1nDQrsHz1eXTxTX35RN4IWJV88iKwkaoUxwUSaBtPtDSoqJDV2QIl2mdpIVMExQYhKQRY9FEiRWBlUEhI2ujdeiVwxI3gFlhlBmkgUbq1Io8JZyHqshjk8hU6LwPQSe6rPDc4q7ExVs2ZUV20s5I2pmTdqb6cDD5ZdQSa_zXeLvTR-bXWJVNZ0Qf9iafaXW4kEde4nBMbegAHDsMJfpw2OnxWxd_Dbj5_4BbME_ASbZpu9vQqz_HuEPgpNa7fgZ-AUj64YU priority: 102 providerName: ProQuest |
Title | On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study |
URI | https://link.springer.com/article/10.1007/s10618-015-0444-8 https://www.proquest.com/docview/1797657616 https://www.proquest.com/docview/1825510284 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFD7YloV98VJdrNYyCz7pDuQymUx8q9ILLlYRC_UpZDJnYGGbFpP-f8_k0lZRwYeQQCYTOCcz852c73wD8JoggJKxltx4meZCKp8rISKubOIZhSLWvqsd_rSSy7X4uIk2bR132bHdu5RkPVOfFbtJ3xGvIu40zrjqwSCi0N3xuNbB9IzXETalwUrwSPnHVOafuvh1MTohzN-SovVaM38MD1uQyKaNV5_AAyyG8KjbgIG143EIFzV_My-fQvq5YATl2Em8m-0sOxTlYe8mgxINc9QfWgOZwaqmXxXv2Lb5QVjeMEcULbGiq6wwdDDc7u9q9RBWC9A-g_V89u3Dkrd7J_BcRKrioRW5DVEnGOSxp20WaGlRUcQVGgJlWsdJLpMYBXo-ucNYNGFshWell8vQ2vAK-sWuwOfArDDKBImnkTq1IksI5KHKs8jEMhE6G4HXGTHNW2Fxt7_FfXqSRHZ2T8nuqbN7qkbw5vjIvlHV-FfjceeZtB1gZUrzSCwpVvLlCK6Pt2louHxHVuDuQG0o-o0cgBIjeNt59KyLv73wxX-1fgmXBKJkQ-EdQ7_6ccBXBFQqPYGemi8mMJguvt_O6Px-tvrydVJ_rj8Bh8bjmQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALLQXU7QsjlQtgNQ_HcSpVFQKWLX1waaXe3DgeS0htdiFZVf1T_Y0d57FbkOith0iR4tjWeDzz2fMC2CYIoGRqJLdBbriQKuRKiIQrlwVWoUhN6GOHj0_k6Ez8OE_OF-C2j4XxbpW9TGwEtR0X_o58hxgnlQSOQ7k_-c191ShvXe1LaLRscYg313Rkq_YOvtL6vo-i4bfTLyPeVRXghUhUzWMnChejyTAq0sC4PDLSoaKzSGwJrhiTZoXMUhQYhDRR69DGqROBk0EhY-di6vcJPBUxaXIfmT78fs-lJG6jkpXgiQpnVtQ2VE-G3m0s4T5DG1d_68E5uP3HHtuoueEyvOjwKfvcMtRLWMByBZb62g-sEwWvQP8sGWFHNs8WzsaOTctqOvHSp0LLvK8RKV1msW78vcpddtXeSFafmPdMrbCmt7y09DC8mvxq0pWwJuPtazh7FLK-gcVyXOIqMCesslEWGKROncgzQpWoijyxqcyEyQcQ9KTTRZfJ3BfUuNTzHMye2pqorT21tRrAh9kvkzaNx0ONN_r10N2OrvSc_wbwbvaZ9qI3sOQljqfUho7biUdsYgAf-3W818X_Blx7eMC38Gx0enykjw5ODtfhOUE22ToMb8Bi_WeKmwSLarPV8CKDi8dm_jvatx8k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFcQXv8XTWiPoixq6H9kkWxCptkdr9SxioW_pZjMBwe6d7h7iv-Zf18l-3FXBvvVhYWGz2WUySX6T-c0MwHOCAFoqK7mLCsuF1DHXQmRc-zxyGoWycYgd_jSV-8fiw0l2sgZ_hliYQKsc1sR2oXazMpyRb5HiKEngOJZbvqdFHO1O3s5_8FBBKnhah3IanYoc4u9fZL7Vbw52aaxfJMlk7-v7fd5XGOClyHTDUy9Kn6LNMSlVZH2RWOlRk12SOoIu1qq8lLlCgVFMP-08ulR5EXkZlTL1PqV-r8G6ClbRCNbf7U2PvlwgmKRdjLIWPNPx0qfaBe7JOJDIMh7ytXH99664grr_eGfbTW9yG272aJXtdOp1B9awugu3hkoQrF8Y7oH5XDFCkmyVO5zNPFtU9WIe1qIaHQvMI9qCmcOmZX9V2-ysO5-sX7PAU62xobuicnQxPJt_a5OXsDb_7X04vhLBPoBRNavwITAvnHZJHlmkTr0ocsKYqMsic0rmwhZjiAbRmbLPax7Ka3w3q4zMQdqGpG2CtI0ew8vlK_MuqcdljTeG8TD9_K7NShvH8Gz5mGZmcLcUFc4W1IaM7yzgNzGGV8M4Xujifx98dPkHn8J1Unzz8WB6-BhuEH6THXt4A0bNzwU-IYzU2M1eGRmcXrX-nwPoyyS2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+evaluation+of+unsupervised+outlier+detection%3A+measures%2C+datasets%2C+and+an+empirical+study&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Campos%2C+Guilherme+O.&rft.au=Zimek%2C+Arthur&rft.au=Sander%2C+J%C3%B6rg&rft.au=Campello%2C+Ricardo+J.+G.+B.&rft.date=2016-07-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=30&rft.issue=4&rft.spage=891&rft.epage=927&rft_id=info:doi/10.1007%2Fs10618-015-0444-8&rft.externalDocID=10_1007_s10618_015_0444_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |