Coactivation of GSK3β and IGF-1 Attenuates Amyotrophic Lateral Sclerosis Nerve Fiber Cytopathies in SOD1 Mutant Patient-Derived Motor Neurons
Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 10; no. 10; p. 2773 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
16.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy. |
---|---|
AbstractList | Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy. Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1 G85R mutant and corrected SOD1 G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS ( SOD1 G85R and SOD1 D90A ), two SOD1 mutant corrected ( SOD1 G85G and SOD1 D90D ), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1 G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1 D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata , showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1 G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy. Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients' MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy.Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients' MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy. |
Author | Ho, Tsung-Jung Chiou, Tzyy-Wen Ting, Hsiao-Chien Lin, Shinn-Zong Harn, Horng-Jyh Liu, Ching-Ann Su, Hong-Lin Yang, Hui-I Tsai, Yung-Jen Chen, Mei-Fang Li, Xiang Chang, Chia-Yu Chiu, Ing-Ming |
AuthorAffiliation | 6 Waisman Center, University of Wisconsin, Madison, WI 53705, USA; michael2025li@163.com 9 Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan 4 Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; ingming@nhri.edu.tw 13 Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan 8 Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan 11 Neuroscience Center, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan 12 Department of Life Science, National Dong Hwa University, Hualien 97441, Taiwan; twchiou@gms.ndhu.edu.tw 7 Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan; mfchen@mail.tcu.edu.tw 5 Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; suhonglin@gmail.com 1 Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; sharkzoe@yahoo.com.tw (H.-C.T.); s8706083@ya |
AuthorAffiliation_xml | – name: 2 Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; jeron888@gmail.com – name: 11 Neuroscience Center, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan – name: 5 Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; suhonglin@gmail.com – name: 4 Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; ingming@nhri.edu.tw – name: 1 Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; sharkzoe@yahoo.com.tw (H.-C.T.); s8706083@yahoo.com.tw (H.-I.Y.); arthewduke@gmail.com (H.-J.H.); sagianne@gmail.com (C.-A.L.); cljbalaa@gmail.com (Y.-J.T.) – name: 13 Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan – name: 9 Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan – name: 8 Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan – name: 7 Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan; mfchen@mail.tcu.edu.tw – name: 3 Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien 97002, Taiwan – name: 6 Waisman Center, University of Wisconsin, Madison, WI 53705, USA; michael2025li@163.com – name: 10 School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan – name: 12 Department of Life Science, National Dong Hwa University, Hualien 97441, Taiwan; twchiou@gms.ndhu.edu.tw |
Author_xml | – sequence: 1 givenname: Hsiao-Chien surname: Ting fullname: Ting, Hsiao-Chien – sequence: 2 givenname: Hui-I surname: Yang fullname: Yang, Hui-I – sequence: 3 givenname: Horng-Jyh surname: Harn fullname: Harn, Horng-Jyh – sequence: 4 givenname: Ing-Ming orcidid: 0000-0001-6512-9815 surname: Chiu fullname: Chiu, Ing-Ming – sequence: 5 givenname: Hong-Lin surname: Su fullname: Su, Hong-Lin – sequence: 6 givenname: Xiang surname: Li fullname: Li, Xiang – sequence: 7 givenname: Mei-Fang surname: Chen fullname: Chen, Mei-Fang – sequence: 8 givenname: Tsung-Jung surname: Ho fullname: Ho, Tsung-Jung – sequence: 9 givenname: Ching-Ann surname: Liu fullname: Liu, Ching-Ann – sequence: 10 givenname: Yung-Jen surname: Tsai fullname: Tsai, Yung-Jen – sequence: 11 givenname: Tzyy-Wen surname: Chiou fullname: Chiou, Tzyy-Wen – sequence: 12 givenname: Shinn-Zong surname: Lin fullname: Lin, Shinn-Zong – sequence: 13 givenname: Chia-Yu orcidid: 0000-0002-3585-5944 surname: Chang fullname: Chang, Chia-Yu |
BookMark | eNp1ks1uEzEQx1eoiJbSI3dLXLgsrNf27uaCFKUkRKQUKXC2xt7ZxtHGDrY3Ul6Ch-FBeCacpEKkEr7YGv_nN58vswvrLGbZa1q8Y2xUvNfY94EWtCjrmj3LrsqiZjnnxejin_dldhPCukinoRUtxIvskvGqEbXgV9nPiQMdzQ6icZa4jsyWn9nvXwRsS-azaU7JOEa0A0QMZLzZu-jddmU0WSSLh54sdY_eBRPIF_Q7JFOj0JPJProtxJVJXsaS5f0tJXdDBBvJ1xQKbcxv0ZsdtuTOReeT8-CdDa-y5x30AW8e7-vs-_Tjt8mnfHE_m0_Gi1xz0cScsVZDxwtsmGYAJa9oVVFeCtqxmrGOqlp1oCkypQWtBeiyTVJo2g6Rg2bX2fzEbR2s5dabDfi9dGDk0eD8gwQfTapNggJVjsoEKUcc606l4EJwpajCkdJdYn04sbaD2mCrU3GpMWfQ8x9rVvLB7WQjmKBCJMDbR4B3PwYMUW5MOIwWLLohyFI0vG7KqmqS9M0T6doN3qZWHVWs4gU7APOTSqfJBI_d32RoIQ-LI88WJ-nZE7028bgRKV_T_8frD60vyr4 |
CitedBy_id | crossref_primary_10_61958_NMRD4863 crossref_primary_10_1016_j_jbc_2024_108047 crossref_primary_10_1007_s12035_024_04003_z crossref_primary_10_1016_j_bbrc_2024_150127 crossref_primary_10_1177_09636897231198172 crossref_primary_10_3390_ijms25179540 crossref_primary_10_3390_ijtm4040053 crossref_primary_10_1007_s12272_023_01463_0 crossref_primary_10_1038_s41420_025_02302_5 crossref_primary_10_3390_ijms232113462 |
Cites_doi | 10.3727/096368913X675179 10.1038/nature14973 10.1126/science.1166066 10.1016/j.bbadis.2006.03.008 10.1016/j.neuroscience.2008.06.040 10.1016/S0896-6273(00)80272-X 10.1038/srep08744 10.1016/S0169-328X(03)00025-1 10.18388/abp.2016_1272 10.1016/j.brainres.2018.03.024 10.1124/mol.106.030676 10.1002/med.21528 10.1212/WNL.18.9.841 10.1016/j.stemcr.2016.02.011 10.1007/s12035-019-1547-9 10.1038/s41467-017-00911-y 10.1016/j.cell.2008.04.039 10.1016/j.stem.2014.03.004 10.1038/ncomms7626 10.1093/hmg/ddr284 10.1080/21678421.2017.1407796 10.1038/srep25960 10.1006/exnr.1996.0098 10.1038/nature08971 10.1016/j.bbrc.2006.10.093 10.1016/j.stemcr.2017.02.019 10.1016/j.expneurol.2007.03.004 10.1038/362059a0 10.1038/ng1001-166 10.1016/j.neulet.2017.06.052 10.1126/scitranslmed.aaf3962 10.1126/science.8351519 10.1126/scitranslmed.3004052 10.1155/2012/564612 10.1111/j.1460-9568.2004.03765.x 10.4103/1673-5374.241445 10.1038/nbt.3049 10.3988/jcn.2013.9.2.65 10.3389/fncel.2015.00289 10.1016/S1474-4422(13)70037-1 10.1126/science.1165942 10.1007/s13311-016-0508-5 10.1023/A:1011334018804 10.1080/14656566.2017.1319937 10.1016/j.mcn.2013.07.007 10.1016/j.stem.2014.02.004 10.1016/j.jpba.2008.07.013 10.1038/s41591-018-0140-5 10.1212/WNL.50.1.62 10.1097/00005072-198409000-00002 10.1016/j.neuron.2011.09.010 10.1126/science.1134108 10.1074/jbc.M801522200 10.1038/nrn3430 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM DOA |
DOI | 10.3390/cells10102773 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: 开放获取期刊(Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_abab29275a294e7fb33d554bb1be9bcf PMC8535155 10_3390_cells10102773 |
GeographicLocations | United States--US Japan Taiwan |
GeographicLocations_xml | – name: Taiwan – name: United States--US – name: Japan |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c458t-33dcaf40e83c3aa24616614251f3733f1b7bfac1e3bc5175ac2d83ca8dfee4ac3 |
IEDL.DBID | DOA |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:24:09 EDT 2025 Thu Aug 21 18:45:13 EDT 2025 Fri Jul 11 16:10:19 EDT 2025 Fri Jul 25 12:03:35 EDT 2025 Tue Jul 01 01:00:24 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-33dcaf40e83c3aa24616614251f3733f1b7bfac1e3bc5175ac2d83ca8dfee4ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Co-first authors. |
ORCID | 0000-0001-6512-9815 0000-0002-3585-5944 |
OpenAccessLink | https://doaj.org/article/abab29275a294e7fb33d554bb1be9bcf |
PMID | 34685754 |
PQID | 2584364035 |
PQPubID | 2032536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_abab29275a294e7fb33d554bb1be9bcf pubmedcentral_primary_oai_pubmedcentral_nih_gov_8535155 proquest_miscellaneous_2584782668 proquest_journals_2584364035 crossref_primary_10_3390_cells10102773 crossref_citationtrail_10_3390_cells10102773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211016 |
PublicationDateYYYYMMDD | 2021-10-16 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211016 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kwiatkowski (ref_11) 2009; 323 Chen (ref_38) 2015; 24 Gurney (ref_44) 1998; 50 Marchetto (ref_23) 2011; 20 Imamura (ref_26) 2017; 9 Smith (ref_2) 2017; 14 Ichiyanagi (ref_25) 2016; 6 Egawa (ref_22) 2012; 4 Chen (ref_27) 2014; 14 Hirano (ref_16) 1984; 43 Guo (ref_31) 2017; 8 Robberecht (ref_1) 2013; 14 Arai (ref_9) 2006; 351 Maury (ref_40) 2015; 33 Li (ref_52) 2003; 111 Smith (ref_17) 2019; 710 Renton (ref_10) 2011; 72 Zhang (ref_30) 2015; 525 Lin (ref_57) 2008; 48 Barber (ref_19) 2006; 1762 Walker (ref_18) 2011; 63 Burkhardt (ref_29) 2013; 56 Hogg (ref_45) 2018; 19 Shin (ref_48) 2007; 71 Du (ref_41) 2016; 63 Gonzalez (ref_54) 2019; 56 Morrice (ref_21) 2018; 13 Lutz (ref_20) 2018; 1693 Allodi (ref_47) 2016; 6 Bruijn (ref_36) 1997; 18 Maruyama (ref_13) 2010; 465 Du (ref_43) 2015; 6 Basso (ref_35) 1996; 139 Jaiswal (ref_4) 2019; 39 Vance (ref_12) 2009; 323 Kiskinis (ref_28) 2014; 14 Fujimori (ref_32) 2018; 24 Group (ref_53) 2013; 12 Bhinge (ref_33) 2017; 8 Vohnoutka (ref_55) 2017; 6 Neumann (ref_8) 2006; 314 Carpenter (ref_15) 1968; 18 Koh (ref_51) 2007; 205 Feng (ref_50) 2008; 155 Rosen (ref_6) 1993; 362 Deng (ref_5) 1993; 261 Macarthur (ref_34) 2012; 2012 Chang (ref_39) 2015; 5 Bae (ref_42) 2013; 9 Warita (ref_46) 2001; 6 Tsuda (ref_14) 2008; 133 Sawada (ref_3) 2017; 18 Cao (ref_37) 2008; 283 Sugai (ref_49) 2004; 20 Hadano (ref_7) 2001; 29 Lee (ref_56) 2014; 127 Alves (ref_24) 2015; 9 |
References_xml | – volume: 24 start-page: 829 year: 2015 ident: ref_38 article-title: Prerequisite OCT4 maintenance potentiates the neural induction of differentiating human embryonic stem cells and induced pluripotent stem cells publication-title: Cell Transplant. doi: 10.3727/096368913X675179 – volume: 525 start-page: 56 year: 2015 ident: ref_30 article-title: The C9orf72 repeat expansion disrupts nucleocytoplasmic transport publication-title: Nature doi: 10.1038/nature14973 – volume: 323 start-page: 1205 year: 2009 ident: ref_11 article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis publication-title: Science doi: 10.1126/science.1166066 – volume: 1762 start-page: 1051 year: 2006 ident: ref_19 article-title: Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2006.03.008 – volume: 6 start-page: 1516 year: 2017 ident: ref_55 article-title: Influence of a GSK3beta phosphorylation site within the proximal C-terminus of Neurofilament-H on neurofilament dynamics publication-title: Biol. Open – volume: 155 start-page: 567 year: 2008 ident: ref_50 article-title: Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.06.040 – volume: 18 start-page: 327 year: 1997 ident: ref_36 article-title: ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions publication-title: Neuron doi: 10.1016/S0896-6273(00)80272-X – volume: 5 start-page: 8744 year: 2015 ident: ref_39 article-title: N-butylidenephthalide attenuates Alzheimer’s disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons publication-title: Sci Rep. doi: 10.1038/srep08744 – volume: 111 start-page: 155 year: 2003 ident: ref_52 article-title: VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death publication-title: Brain Res. Mol. Brain Res. doi: 10.1016/S0169-328X(03)00025-1 – volume: 63 start-page: 589 year: 2016 ident: ref_41 article-title: Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2016_1272 – volume: 1693 start-page: 1 year: 2018 ident: ref_20 article-title: Mouse models of ALS: Past, present and future publication-title: Brain Res. doi: 10.1016/j.brainres.2018.03.024 – volume: 71 start-page: 965 year: 2007 ident: ref_48 article-title: Concurrent administration of Neu2000 and lithium produces marked improvement of motor neuron survival, motor function, and mortality in a mouse model of amyotrophic lateral sclerosis publication-title: Mol. Pharmacol. doi: 10.1124/mol.106.030676 – volume: 39 start-page: 733 year: 2019 ident: ref_4 article-title: Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs publication-title: Med. Res. Rev. doi: 10.1002/med.21528 – volume: 18 start-page: 841 year: 1968 ident: ref_15 article-title: Proximal axonal enlargement in motor neuron disease publication-title: Neurology doi: 10.1212/WNL.18.9.841 – volume: 6 start-page: 496 year: 2016 ident: ref_25 article-title: Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2016.02.011 – volume: 56 start-page: 6777 year: 2019 ident: ref_54 article-title: Wnt signaling alterations in the human spinal cord of amyotrophic lateral sclerosis cases: Spotlight on Fz2 and Wnt5a publication-title: Mol. Neurobiol. doi: 10.1007/s12035-019-1547-9 – volume: 8 start-page: 1 year: 2017 ident: ref_31 article-title: HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients publication-title: Nat. Commun. doi: 10.1038/s41467-017-00911-y – volume: 133 start-page: 963 year: 2008 ident: ref_14 article-title: The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors publication-title: Cell doi: 10.1016/j.cell.2008.04.039 – volume: 14 start-page: 781 year: 2014 ident: ref_28 article-title: Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.03.004 – volume: 6 start-page: 1 year: 2015 ident: ref_43 article-title: Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells publication-title: Nat. Commun. doi: 10.1038/ncomms7626 – volume: 20 start-page: 3642 year: 2011 ident: ref_23 article-title: Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr284 – volume: 19 start-page: 438 year: 2018 ident: ref_45 article-title: Riluzole does not improve lifespan or motor function in three ALS mouse models publication-title: Amyotroph. Lateral Scler. Front. Degener. doi: 10.1080/21678421.2017.1407796 – volume: 6 start-page: 25960 year: 2016 ident: ref_47 article-title: Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS publication-title: Sci. Rep. doi: 10.1038/srep25960 – volume: 139 start-page: 244 year: 1996 ident: ref_35 article-title: Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection publication-title: Exp. Neurol. doi: 10.1006/exnr.1996.0098 – volume: 465 start-page: 223 year: 2010 ident: ref_13 article-title: Mutations of optineurin in amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/nature08971 – volume: 351 start-page: 602 year: 2006 ident: ref_9 article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.10.093 – volume: 8 start-page: 856 year: 2017 ident: ref_33 article-title: Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.02.019 – volume: 205 start-page: 336 year: 2007 ident: ref_51 article-title: Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS publication-title: Exp. Neurol doi: 10.1016/j.expneurol.2007.03.004 – volume: 63 start-page: 754 year: 2011 ident: ref_18 article-title: Stress signaling from the endoplasmic reticulum: A central player in the pathogenesis of amyotrophic lateral sclerosis publication-title: IUBMB Life – volume: 362 start-page: 59 year: 1993 ident: ref_6 article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/362059a0 – volume: 29 start-page: 166 year: 2001 ident: ref_7 article-title: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 publication-title: Nat. Genet. doi: 10.1038/ng1001-166 – volume: 710 start-page: 132933 year: 2019 ident: ref_17 article-title: The role of mitochondria in amyotrophic lateral sclerosis publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.06.052 – volume: 9 start-page: eaaf3962 year: 2017 ident: ref_26 article-title: The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf3962 – volume: 261 start-page: 1047 year: 1993 ident: ref_5 article-title: Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase publication-title: Science doi: 10.1126/science.8351519 – volume: 4 start-page: 145ra104 year: 2012 ident: ref_22 article-title: Drug screening for ALS using patient-specific induced pluripotent stem cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004052 – volume: 2012 start-page: 1 year: 2012 ident: ref_34 article-title: Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions publication-title: Stem Cells Int. doi: 10.1155/2012/564612 – volume: 20 start-page: 3179 year: 2004 ident: ref_49 article-title: Benefit of valproic acid in suppressing disease progression of ALS model mice publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2004.03765.x – volume: 13 start-page: 2050 year: 2018 ident: ref_21 article-title: Animal models of amyotrophic lateral sclerosis: A comparison of model validity publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.241445 – volume: 33 start-page: 89 year: 2015 ident: ref_40 article-title: Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3049 – volume: 9 start-page: 65 year: 2013 ident: ref_42 article-title: The puzzling case of hyperexcitability in amyotrophic lateral sclerosis publication-title: J. Clin. Neurol. doi: 10.3988/jcn.2013.9.2.65 – volume: 9 start-page: 289 year: 2015 ident: ref_24 article-title: Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00289 – volume: 12 start-page: 339 year: 2013 ident: ref_53 article-title: Lithium in patients with amyotrophic lateral sclerosis (LiCALS): A phase 3 multicentre, randomised, double-blind, placebo-controlled trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70037-1 – volume: 323 start-page: 1208 year: 2009 ident: ref_12 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science doi: 10.1126/science.1165942 – volume: 127 start-page: 4064 year: 2014 ident: ref_56 article-title: Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics publication-title: J. Cell Sci. – volume: 14 start-page: 762 year: 2017 ident: ref_2 article-title: Enhanced bulbar function in amyotrophic lateral sclerosis: The nuedexta treatment trial publication-title: Neurotherapeutics doi: 10.1007/s13311-016-0508-5 – volume: 6 start-page: 345 year: 2001 ident: ref_46 article-title: Early decrease of survival signal-related proteins in spinal motor neurons of presymptomatic transgenic mice with a mutant SOD1 gene publication-title: Apoptosis doi: 10.1023/A:1011334018804 – volume: 18 start-page: 735 year: 2017 ident: ref_3 article-title: Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis publication-title: Expert Opin. Pharmacother. doi: 10.1080/14656566.2017.1319937 – volume: 56 start-page: 355 year: 2013 ident: ref_29 article-title: A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2013.07.007 – volume: 14 start-page: 796 year: 2014 ident: ref_27 article-title: Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.02.004 – volume: 48 start-page: 909 year: 2008 ident: ref_57 article-title: Pharmacokinetics of gastrodin and its metabolite p-hydroxybenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/MS publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2008.07.013 – volume: 24 start-page: 1579 year: 2018 ident: ref_32 article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent publication-title: Nat. Med. doi: 10.1038/s41591-018-0140-5 – volume: 50 start-page: 62 year: 1998 ident: ref_44 article-title: Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis publication-title: Neurology doi: 10.1212/WNL.50.1.62 – volume: 43 start-page: 471 year: 1984 ident: ref_16 article-title: Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-198409000-00002 – volume: 72 start-page: 257 year: 2011 ident: ref_10 article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – volume: 314 start-page: 130 year: 2006 ident: ref_8 article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Science doi: 10.1126/science.1134108 – volume: 283 start-page: 16169 year: 2008 ident: ref_37 article-title: Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801522200 – volume: 14 start-page: 248 year: 2013 ident: ref_1 article-title: The changing scene of amyotrophic lateral sclerosis publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3430 |
SSID | ssj0000816105 |
Score | 2.2692268 |
Snippet | Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2773 |
SubjectTerms | Amyotrophic lateral sclerosis amyotrophic lateral sclerosis (ALS) Animal models Antibodies Cell culture Degeneration Drug screening gastrodin induced pluripotent stem cell (iPSC) Insulin-like growth factor I Laboratories motor neuron (MN) Motor neurons Mutants Mutation Nervous system Nervous system diseases Patients Physiology Pluripotency SOD1 Stem cells Superoxide dismutase Transgenic animals |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbtMwFLZgExI3E-NHlI3JSIgroi2xmzhXqOvWjZ-WiTJpd9GxY7NKW9w1KVJfgofhQXgmzknSQi7gNj5J7Bz_fD45_j7GXkutjQrpD2suo0AiBA-UAwgSCPM0tsqkQAeFx5P4_FJ-uOpftQG3sk2rXM-J9USde0Mx8sMIV0oRyyPRfze_C0g1iv6uthIa99k2TsEKN1_bx6eTiy-bKAvJSmBNGnJNgfv7Q4qHlyExqSWJ6CxGNWd_B2h20yT_WndGj9hOCxj5oPHwLrtni8fsQSMhuXrCfgw9HU1oAqvcO342_Sh-_eRQ5Pz92SgI-aBCWLwkSMkHtytfLfz8emb4J6Czxzd8ik_Fys1KPqHkRz6iFBI-XFW-FivGu2YFn34-Cfl4SYrD_KJhYg1OsO9-tzkfe9y285rkoyifssvR6dfhedBqLARG9lUVCJEbcPLIKmEEALHL0YqNqMeJRAgX6kQ7MKEV2vQRaoCJcjQFlTtrJRjxjG0VvrDPGU9FqoQAxIzWSCxWaWTTJAKXx_ggUD32dv2xM9MSkJMOxk2GGxHyTdbxTY-92ZjPG-aNfxkek-c2RkSYXV_wi29ZO_4y0KCjNMIGRKm0idPYcERSWofaptq4Httf-z1rR3GZ_elzPfZqU4zjj94PhfXLxgZRVhxj-5JOf-lUqFtSzK5rJm_ESiSx8-L_L99jDyPKpKE8mnifbVWLpX2JUKjSB21__w0RRw8g priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgERIXxPIjCrvISIgTgcZ2EueAUOnSXX66IJVKe4vGjr1bqSRLmyL6EvswPAjPtDNJWoiAG9d47NgeT_yNM_6GsSfKGKtD-sOaKxEohOCB9gBBAmGexk7bFOii8Pg4PpqqdyfRyS9KoXYCl3917Sif1HQxf_796_oVGvxL8jjRZX9BR9zLkMjRkkReZddwU0rIRsct0q8_yhqhTT9qWDb_rNXZlWry_g7i7MZL_rYBjW6xmy1y5ING1bvsiitus-tNLsn1HXYxLOmOQnPCykvPDyfv5c8fHIqcvz0cBSEfVIiPV4Qt-eDLuqwW5fnZzPIPQJeQ53yCrWLnZkt-TFGQfESxJHy4rso6azHWmhV88vEg5OMVpR7mnxpK1uAAF_E3l_Nxif47r9k-iuVdNh29-Tw8CtpkC4FVka4CKXMLXvWdllYCEM0cbd0If7xMpPShSYwHGzppbISYA6zIURR07p1TYOU9tlOUhbvPeCpTLSUgeHRWYbFOhUsTAT6PsSHQPfZsM9mZbZnIKSHGPEOPhHSTdXTTY0-34ucNBce_BF-T5rZCxJxdPygXp1lriBkYMCIVOACRKpd4gwNHSGVMaFxqrO-xvY3es81qzATCNBmrvox67PG2GA2R3g-FK1eNDMKtOMbxJZ310ulQt6SYndWU3giaKNfOg_8xgofshqDAGwq7iffYTrVYuX1ETpV5VNvEJR_IHos priority: 102 providerName: Scholars Portal |
Title | Coactivation of GSK3β and IGF-1 Attenuates Amyotrophic Lateral Sclerosis Nerve Fiber Cytopathies in SOD1 Mutant Patient-Derived Motor Neurons |
URI | https://www.proquest.com/docview/2584364035 https://www.proquest.com/docview/2584782668 https://pubmed.ncbi.nlm.nih.gov/PMC8535155 https://doaj.org/article/abab29275a294e7fb33d554bb1be9bcf |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQERIXxK_Y0lZGQpyIurGd2Dlut92Wn10qlkq9RWPHVlcqSdXNIu1L9GF4EJ6JmSRdbQ6IC5cc4onjn3HmG2f8DWPvlLXOxPSHtVAiUgjBIxMAIg1xkaXeuAzooPB0lp5dqE-XyeVWqi-KCWvpgduBOwQLVmRCJyAy5XWwUhZoAq2Nrc-sC_T1RZu35Uw132CDSGaYtKSaEv36Q9oHX8bEoKa17Bmhhqu_BzD74ZFb9mbylD3pgCIftQ18xh748jl71KaOXL9gd-OKjiS0G6q8Cvx0_ln-_sWhLPjH00kU81GNcHhFUJKPfqyr-ra6uVo4_gXozPE1n2Ot2LjFks8o6JFPKHSEj9d11SQpxqcWJZ9_PY75dEWZhvl5y8AaHaPO_vQFn1borvOG3KNcvmQXk5Pv47Ooy60QOZWYOsJRdBDU0BvpJACxypGlRrQTpJYyxFbbAC720roEIQY4UaAomCJ4r8DJV2ynrEr_mvFMZkZKQKzoncJikwmfaQGhSLEiMAP24X6wc9cRj1P-i-scHRCam7w3NwP2fiN-0zJu_E3wiGZuI0RE2c0NVJ-8U5_8X-ozYHv38553q3eZC0RlMlVDmQzY200xrjt6P5S-WrUyiK7SFPune_rSa1C_pFxcNQzeiJEotc7u_-jBG_ZYUJwNRdmke2ynvl35fQRKtT1gD49OZuffDpq1gdepMn8ASf4aPQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWXSG4IJ6isICRgBPRNnaaxwGhbrvdlj5Y0V1pb8F2bLbSEpcmBfVP8FM48EP4TczkUcgBbnuNJ37N2PPFGc9HyAtPShW6-Ic18ZjjAQR3QiOEEwg3iXwdqkjgReHpzB-eee_OO-c75Ed9FwbDKus9sdioE6vwjPyAgafkvtfmnbfLLw6yRuHf1ZpCozSLsd58g0-27M2oD_p9ydjg6LQ3dCpWAUd5nTB3OE-UMF5bh1xxITCfGvoo8POGB5wbVwbSCOVqLlUHnKtQLAFRESZGa08oDvVeI3vQmTZsBHuHR7OTD9tTHaSxgJGXyTw5j9oHeP6euZi5LQh4w_kVHAENYNsMy_zLzw1uk1sVQKXd0qLukB2d3iXXS8rKzT3yvWfxKkR5kEutocfzMf_1k4o0oaPjgePSbg4wfI0QlnY_b2y-ssuLhaITgXedL-kcaoXOLTI6w2BLOsCQFdrb5LYgR4a3Fimdv--7dLpGhmN6UmZ-dfqwVr7qhE5tble0SCqSZvfJ2ZXM_gOym9pUPyQ04lHIuQCMqpUHxWHEdBQwYRIfKhJhi7yuJztWVcJz5N24jOHDB3UTN3TTIq-24ssy08e_BA9Rc1shTNBdPLCrT3G13mMhhWQRgwGwyNOBkTBwQG5SulJHUpkW2a_1Hle7Rhb_sfEWeb4thvWO7YtU23UpA6jO92F8QcNeGh1qlqSLiyJzOGAzpPR59P_Gn5Ebw9PpJJ6MZuPH5CbDKB6M4fH3yW6-WusnAMNy-bSyfUo-XvVy-w1Pb01t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWrkBcEL-isCxGAk5Ebew0PweEuu1mt3RbKspKe8vajs1WWuLSpqC-BA_DcR-CZ2ImSQs5wG2v9dSJPTOez854PkJeelKq0MUvrKnHHA8guBMaIZxAuGnk61BFAi8Kj8b-8an3_qxztkOuNndhMK1ysyYWC3VqFZ6RtxhESu57bd5pmSotYtKP382_OsgghV9aN3QapYkM9fo7bN-Wbwd90PUrxuLDT71jp2IYcJTXCXOH81QJ47V1yBUXAmurYbyCmG94wLlxZSCNUK7mUnUg0ArFUhAVYWq09oTi0O8NshvArqjdILsHh-PJx-0JD1JawCyUhT05j9otPItfuljFLQh4LRAWfAE1kFtP0fwr5sV3yZ0KrNJuaV33yI7O7pObJX3l-gH50bN4LaI81KXW0KPpkP_6SUWW0sFR7Li0mwMkXyGcpd0va5sv7PxipuiJwHvPl3QKvcLLzZZ0jImXNMb0Fdpb57YgSoZ_zTI6_dB36WiFbMd0UlaBdfrgN990Skc2twtaFBjJlg_J6bXM_iPSyGymHxMa8SjkXABe1cqD5jBiOgqYMKkPHYmwSd5sJjtRVfFz5OC4TGAThLpJarppktdb8XlZ9eNfggeoua0QFusufrCLz0nl-4mQQrKIwQBY5OnASBg4oDgpXakjqUyT7G30nlQryDL5Y-9N8mLbDL6PzxeZtqtSBhCe78P4gpq91F6o3pLNLooq4oDTkN7nyf8f_pzcAjdLTgbj4VNym2FCD6bz-HukkS9W-hkgslzuV6ZPyfl1e9tvYmlRog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coactivation+of+GSK3%CE%B2+and+IGF-1+Attenuates+Amyotrophic+Lateral+Sclerosis+Nerve+Fiber+Cytopathies+in+SOD1+Mutant+Patient-Derived+Motor+Neurons&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Hsiao-Chien+Ting&rft.au=Hui-I+Yang&rft.au=Horng-Jyh+Harn&rft.au=Ing-Ming+Chiu&rft.date=2021-10-16&rft.pub=MDPI+AG&rft.eissn=2073-4409&rft.volume=10&rft.issue=10&rft.spage=2773&rft_id=info:doi/10.3390%2Fcells10102773&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abab29275a294e7fb33d554bb1be9bcf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |