The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering
Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polyca...
Saved in:
Published in | Polymers Vol. 13; no. 16; p. 2754 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
17.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed. |
---|---|
AbstractList | Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed. Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed. |
Author | Chen, Junyu Wan, Qianbing Zhou, Ying Yang, Xiangjun Wang, Yuting |
AuthorAffiliation | 1 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; yangxj199610@163.com (X.Y.); wangyuting408@163.com (Y.W.); 18683571838@163.com (Y.Z.) 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China |
AuthorAffiliation_xml | – name: 1 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; yangxj199610@163.com (X.Y.); wangyuting408@163.com (Y.W.); 18683571838@163.com (Y.Z.) – name: 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China |
Author_xml | – sequence: 1 givenname: Xiangjun orcidid: 0000-0002-2854-9105 surname: Yang fullname: Yang, Xiangjun – sequence: 2 givenname: Yuting surname: Wang fullname: Wang, Yuting – sequence: 3 givenname: Ying surname: Zhou fullname: Zhou, Ying – sequence: 4 givenname: Junyu orcidid: 0000-0003-1717-5782 surname: Chen fullname: Chen, Junyu – sequence: 5 givenname: Qianbing surname: Wan fullname: Wan, Qianbing |
BookMark | eNptkc1LHTEUxUNRqr667D7QTTdj8z0zm4K19gMEBV_XIZO5My-SSabJTMH_vnlqoYrZ3EB-59zcc0_QQYgBEHpPyRnnLfk0R38_UU4Vq6V4g44ZqXkluCIH_92P0GnOd6QcIZWi9Vt0xIWQlLX8GI3bHeDzefbOmsXFgOOAb4qrNXOK3tilNMQu4O0uAVRf3QQhF8x4fJNcWFwY8a01wxB9n_EQE_6yF2xdzivgyzC6AFDA8R06HIzPcPpUN-jXt8vtxY_q6vr7z4vzq8oK2SwV64DLtiVMWFXXDREMVNfRfrC0b2qi-p61HQCTnNSyaa2oGZMWemoUtw2lfIM-P_rOazdBbyEsyXg9JzeZdK-jcfr5S3A7PcY_uhEloBLJBn18Mkjx9wp50ZPLFrw3AeKaNSsZkvJHtUc_vEDv4ppKNg-UVJS0khWKP1I2xZwTDNq65SHr0t95TYne71I_22VRVS9U_0Z4nf8L2hai6A |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_126642 crossref_primary_10_1016_j_ijbiomac_2024_135519 crossref_primary_10_1016_j_ijbiomac_2023_126646 crossref_primary_10_1111_cpr_13466 crossref_primary_10_1016_j_jece_2023_109287 crossref_primary_10_3390_ma15134540 crossref_primary_10_1016_j_polymer_2024_127971 crossref_primary_10_3390_polym17020200 crossref_primary_10_1016_j_reth_2022_09_010 crossref_primary_10_1177_20417314241286092 crossref_primary_10_1016_j_mtbio_2024_101351 crossref_primary_10_3390_biomimetics9010030 crossref_primary_10_3390_ma16155459 crossref_primary_10_1016_j_mtchem_2023_101818 crossref_primary_10_1002_adem_202301297 crossref_primary_10_1016_j_bioadv_2024_213900 crossref_primary_10_1016_j_bioadv_2024_213902 crossref_primary_10_1016_j_bjps_2022_06_025 crossref_primary_10_1016_j_ijpharm_2024_124181 crossref_primary_10_3390_biomimetics9110690 crossref_primary_10_3390_polym15030576 crossref_primary_10_1016_j_eurpolymj_2024_113046 crossref_primary_10_3390_cancers15184466 crossref_primary_10_1039_D3MA00363A crossref_primary_10_1002_adma_202400700 crossref_primary_10_1002_marc_202300455 crossref_primary_10_1007_s13726_024_01449_9 crossref_primary_10_1002_adhm_202402571 crossref_primary_10_18019_1028_4427_2023_29_6_585_590 crossref_primary_10_3390_polym14214611 crossref_primary_10_3390_polym14173440 crossref_primary_10_3390_ijms242216180 crossref_primary_10_1016_j_ijbiomac_2023_123476 crossref_primary_10_1016_j_jddst_2022_103360 crossref_primary_10_1007_s12257_021_0418_1 crossref_primary_10_2217_3dp_2022_0020 crossref_primary_10_3390_polym16233303 crossref_primary_10_1016_j_jconrel_2023_01_048 crossref_primary_10_3389_fbioe_2023_1268049 crossref_primary_10_3390_polym16101389 crossref_primary_10_1002_jbm_a_37646 crossref_primary_10_1016_j_mtcomm_2023_107262 crossref_primary_10_1089_ten_tec_2023_0062 crossref_primary_10_1021_acsomega_4c04961 crossref_primary_10_3389_fbioe_2023_1123477 crossref_primary_10_1186_s12951_023_02007_w crossref_primary_10_2478_aei_2024_0008 crossref_primary_10_1016_j_ijbiomac_2024_135602 crossref_primary_10_1007_s00170_024_14652_y crossref_primary_10_1016_j_bioadv_2023_213382 crossref_primary_10_1016_j_ijbiomac_2024_134483 crossref_primary_10_1080_2374068X_2023_2255425 crossref_primary_10_3390_polym14050951 crossref_primary_10_1007_s42114_024_00932_4 crossref_primary_10_1016_j_actbio_2024_02_012 crossref_primary_10_3389_fbioe_2023_1168504 crossref_primary_10_1016_j_mtbio_2022_100434 crossref_primary_10_1177_19476035241246609 crossref_primary_10_1016_j_jmrt_2023_01_007 crossref_primary_10_1016_j_mtla_2024_102115 crossref_primary_10_3390_ijms241713642 crossref_primary_10_1016_j_ijbiomac_2023_127656 crossref_primary_10_1016_j_isci_2024_110214 crossref_primary_10_1021_acsabm_4c00236 crossref_primary_10_1155_2023_7547590 crossref_primary_10_1097_SCS_0000000000010574 crossref_primary_10_3390_ma17102413 crossref_primary_10_1016_j_bioactmat_2023_06_006 crossref_primary_10_3390_polym15030781 crossref_primary_10_1002_app_56391 crossref_primary_10_1002_marc_202300397 crossref_primary_10_3390_polym16172443 crossref_primary_10_1088_1748_605X_ad3536 crossref_primary_10_3390_polym15102404 crossref_primary_10_1021_acsami_4c02800 crossref_primary_10_1038_s41536_023_00330_2 crossref_primary_10_3390_gels8030163 crossref_primary_10_1186_s13018_023_04489_8 crossref_primary_10_3390_nano12213744 crossref_primary_10_1016_j_actbio_2025_03_009 crossref_primary_10_1039_D4SU00060A crossref_primary_10_1021_acsami_3c06873 crossref_primary_10_1088_1758_5090_ad2537 crossref_primary_10_1002_smll_202310614 crossref_primary_10_3390_ma15196952 crossref_primary_10_1016_j_rechem_2024_101534 crossref_primary_10_1021_acsabm_2c00455 crossref_primary_10_3390_jfb15060145 crossref_primary_10_1016_j_bioadv_2024_213816 crossref_primary_10_1016_j_ijbiomac_2023_123159 crossref_primary_10_3390_ma16041539 crossref_primary_10_3390_polym16121668 crossref_primary_10_1016_j_mtla_2024_102057 crossref_primary_10_3389_fbioe_2022_845342 crossref_primary_10_1080_17434440_2024_2341960 crossref_primary_10_3390_ijms241814201 crossref_primary_10_1016_j_jmapro_2024_03_052 crossref_primary_10_3390_gels9090768 crossref_primary_10_1002_mame_202300388 crossref_primary_10_3390_cells11142158 crossref_primary_10_1016_j_biopha_2022_113431 crossref_primary_10_3390_app132011558 crossref_primary_10_3390_polym14235178 crossref_primary_10_1016_j_reactfunctpolym_2024_106103 crossref_primary_10_1007_s12221_023_00310_9 crossref_primary_10_3389_pore_2023_1610996 crossref_primary_10_1002_pc_29254 crossref_primary_10_1016_j_ijbiomac_2023_128094 crossref_primary_10_1016_j_matdes_2024_113534 crossref_primary_10_1016_j_mtbio_2024_101410 crossref_primary_10_1016_j_bioadv_2024_214053 crossref_primary_10_1016_j_dt_2025_02_024 crossref_primary_10_1039_D3NR04044E crossref_primary_10_1016_j_procbio_2024_04_038 crossref_primary_10_1111_wrr_13233 crossref_primary_10_1016_j_apmt_2023_101968 crossref_primary_10_1016_j_ijpharm_2024_124734 crossref_primary_10_1038_s44222_024_00269_z crossref_primary_10_1007_s42823_024_00788_0 crossref_primary_10_3390_polym16010066 crossref_primary_10_1016_j_jddst_2025_106826 crossref_primary_10_3389_fbioe_2022_895766 crossref_primary_10_3390_jfb13040160 crossref_primary_10_3390_jfb13040280 crossref_primary_10_1016_j_engreg_2023_12_003 |
Cites_doi | 10.1002/jbm.b.31809 10.1089/ten.teb.2012.0437 10.1080/21691401.2018.1533844 10.1002/jbm.b.33432 10.1088/1748-605X/aa9bbc 10.1016/S0020-1383(15)30050-4 10.1016/j.msec.2019.03.047 10.1016/j.msec.2019.01.084 10.1021/acsbiomaterials.9b01911 10.1016/j.nano.2021.102426 10.1007/s10856-015-5658-1 10.1088/1758-5090/9/1/015005 10.1088/1758-5090/8/2/025020 10.3390/polym13050797 10.1093/rb/rbab019 10.1089/ten.tec.2015.0542 10.1088/1758-5090/aa8cb7 10.1002/adhm.201500168 10.1007/s00449-017-1835-6 10.3390/polym13020295 10.1088/1758-5090/abcf8d 10.1088/1758-5090/ab14ff 10.1016/j.gendis.2017.10.002 10.1016/j.actbio.2015.09.005 10.1016/j.msec.2016.12.054 10.1016/j.msec.2019.01.050 10.1016/j.jiec.2018.12.046 10.1557/jmr.2018.111 10.1016/j.msec.2018.12.100 10.1007/7651_2017_37 10.1088/2053-1591/aab916 10.1089/ten.tea.2016.0418 10.1016/j.actbio.2010.09.039 10.1088/1748-605X/aad916 10.1016/j.msec.2019.04.026 10.1016/j.addr.2014.11.018 10.1088/1758-5090/7/3/035002 10.3390/polym9090450 10.1016/j.actbio.2020.09.039 10.1021/acs.biomac.5b01316 10.1038/s41598-017-05518-3 10.1016/j.actbio.2017.09.027 10.1002/jor.22097 10.1089/ten.teb.2019.0215 10.1016/j.jiec.2017.12.022 10.1186/s40824-021-00204-y 10.3390/ma10040421 10.1016/j.actbio.2017.09.031 10.1039/C8BM00073E 10.1016/j.jcis.2015.09.044 10.1016/j.eng.2018.07.021 10.3390/ma10121434 10.1016/j.msec.2020.111525 10.1016/j.actbio.2018.05.048 10.1016/j.actbio.2015.11.012 10.1016/j.jiec.2017.06.033 10.1080/03008207.2018.1424145 10.1002/jbm.b.34761 10.1007/s10439-016-1668-5 10.1002/jbm.a.37075 10.18063/IJB.2017.01.005 10.1016/j.msec.2017.04.144 10.1016/j.actbio.2021.03.009 10.1016/j.jmbbm.2021.104583 10.1002/adhm.201600182 10.1016/j.biomaterials.2008.05.024 10.3390/ijms19113308 10.1016/j.matdes.2019.108092 10.1021/acsbiomaterials.6b00101 10.1038/s41598-020-78977-w 10.1016/j.tibtech.2011.07.001 10.1177/0954411916680236 10.1007/s42235-018-0034-8 10.1021/acsami.7b05012 10.1088/1758-5090/aafec8 10.1080/00914037.2017.1417285 10.1002/jbm.a.36196 10.1016/j.matlet.2012.05.085 10.1088/1758-5090/aaf707 10.1088/1758-5090/8/3/032001 10.1111/jcpe.12686 10.1177/0363546517691513 10.1515/amm-2016-0110 10.1002/adhm.202000727 10.1002/jbm.b.34222 10.3390/polym12091962 10.1007/s40846-015-0038-3 10.1039/D0BM02071K 10.1016/j.cirp.2011.03.116 10.1088/1748-605X/aa8357 10.1002/term.245 10.3390/biology10050398 10.3892/mmr.2017.7266 10.1016/j.actbio.2016.02.006 10.1039/C8NR04037K 10.1039/D0TB02019B 10.1016/j.jiec.2016.10.028 10.1016/j.msec.2019.03.037 10.3390/ma10070831 10.1002/jbm.a.36270 10.1016/j.msec.2018.06.005 10.1002/jbm.a.35637 10.1088/0022-3727/49/5/055504 10.1088/1748-6041/11/5/055005 10.1016/j.biomaterials.2021.120671 10.1002/term.2798 10.3390/pharmaceutics13040515 10.1038/s41598-017-03461-x 10.1007/s13346-015-0236-0 10.1088/1758-5090/8/3/035021 10.1089/ten.tea.2016.0498 10.1088/1758-5090/aa5766 10.1016/j.actbio.2020.05.040 10.1016/j.msec.2018.12.084 10.1089/ten.tec.2018.0293 10.1002/term.2310 10.1080/10717544.2020.1797239 10.1002/bit.26780 10.3390/ijms20040942 10.1177/1098612X18789549 10.1088/1758-5090/8/4/045002 10.1002/mabi.201800025 10.1016/j.joen.2017.01.009 10.1155/2018/5147156 10.1117/12.2254475 10.1039/C7TB00165G 10.3390/biomedicines9020128 10.7717/peerj.2040 10.3390/ma11061006 10.1002/jbm.b.33994 10.1002/adhm.202001232 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym13162754 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database ProQuest Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC8400029 10_3390_polym13162754 |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c458t-2be3599024c6778042e6bb1dfc1d8706dd29bee25307589c47225ced1a63c8113 |
IEDL.DBID | BENPR |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:24:29 EDT 2025 Fri Jul 11 02:57:15 EDT 2025 Tue Aug 19 10:10:49 EDT 2025 Tue Jul 01 02:20:06 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-2be3599024c6778042e6bb1dfc1d8706dd29bee25307589c47225ced1a63c8113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1717-5782 0000-0002-2854-9105 |
OpenAccessLink | https://www.proquest.com/docview/2565610952?pq-origsite=%requestingapplication% |
PMID | 34451293 |
PQID | 2565610952 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8400029 proquest_miscellaneous_2566035969 proquest_journals_2565610952 crossref_citationtrail_10_3390_polym13162754 crossref_primary_10_3390_polym13162754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210817 |
PublicationDateYYYYMMDD | 2021-08-17 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210817 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Polymers |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Dang (ref_100) 2019; 11 Xie (ref_20) 2019; 181 Garcia (ref_97) 2016; 6 Amini (ref_98) 2012; 30 ref_90 ref_14 Barbara (ref_76) 2016; 104 Gao (ref_132) 2017; 7 Moncal (ref_48) 2018; 33 Daly (ref_60) 2016; 5 Bhattacharjee (ref_1) 2017; 63 Park (ref_57) 2017; 46 Kade (ref_23) 2021; 10 Shim (ref_71) 2017; 13 Wu (ref_19) 2015; 35 Luo (ref_47) 2018; 5 Chiu (ref_59) 2017; 43 Liao (ref_34) 2012; 82 Kim (ref_103) 2016; 11 Jeffrey (ref_63) 2021; 120 Wagner (ref_108) 2018; 59 Soares (ref_133) 2018; 20 Seyedsalehi (ref_13) 2020; 10 Derakhshanfar (ref_4) 2018; 3 Kim (ref_110) 2017; 78 Fedorovich (ref_33) 2011; 29 Zhao (ref_121) 2020; 6 Liu (ref_37) 2020; 9 Kim (ref_96) 2016; 461 Lee (ref_11) 2011; 97 Guo (ref_10) 2021; 6 Loh (ref_69) 2013; 19 Nyberg (ref_125) 2017; 45 He (ref_109) 2018; 2018 Zheng (ref_79) 2017; 16 Yang (ref_82) 2016; 9 Wang (ref_39) 2019; 100 Vaquette (ref_136) 2021; 269 Lee (ref_74) 2017; 12 Ostrowska (ref_46) 2018; 12 Unagolla (ref_40) 2019; 102 Murphy (ref_95) 2017; 3 ref_75 Cho (ref_84) 2017; 105 Yang (ref_72) 2017; 9 Bartnikowski (ref_112) 2018; 13 Szlazak (ref_80) 2016; 61 Chung (ref_134) 2018; 115 Lee (ref_111) 2018; 10 Eichholz (ref_21) 2018; 75 Turnbull (ref_16) 2018; 3 Fonseca (ref_70) 2018; 6 Rindone (ref_49) 2018; 1577 Zhang (ref_99) 2020; 26 Domingos (ref_66) 2017; 231 Theodoridis (ref_81) 2019; 13 Yan (ref_5) 2018; 4 ref_89 Shim (ref_58) 2017; 55 ref_88 Shao (ref_102) 2019; 25 Lee (ref_114) 2016; 40 Do (ref_32) 2015; 4 Guarino (ref_35) 2008; 29 Youssef (ref_26) 2017; 9 Jian (ref_31) 2021; 6 Gong (ref_116) 2020; 117 Bessa (ref_105) 2010; 4 Butscher (ref_68) 2011; 7 Hansske (ref_122) 2017; 5 Miao (ref_61) 2016; 22 Wang (ref_64) 2021; 9 Mostafavi (ref_120) 2021; 127 Yang (ref_123) 2021; 13 Chen (ref_67) 2016; 17 ref_56 (ref_17) 2019; 100 Poh (ref_124) 2016; 30 Critchley (ref_93) 2020; 113 Bahcecioglu (ref_128) 2018; 11 Kim (ref_52) 2018; 18 Lee (ref_87) 2019; 98 Zhang (ref_129) 2017; 45 Chen (ref_29) 2018; 91 Vella (ref_53) 2018; 106 Jung (ref_130) 2019; 107 Nyberg (ref_65) 2017; 23 Temple (ref_135) 2014; 102 Shan (ref_86) 2017; 40 Daly (ref_92) 2016; 8 Arealis (ref_18) 2015; 46 Bas (ref_44) 2019; 11 VijayaVenkataRaman (ref_126) 2016; 8 Kim (ref_25) 2017; 7 Melke (ref_107) 2016; 31 Locs (ref_43) 2019; 99 ref_115 Bartolo (ref_91) 2011; 60 ref_117 Hochleitner (ref_24) 2015; 7 ref_36 Yang (ref_83) 2018; 61 Park (ref_15) 2021; 109 Olubamiji (ref_73) 2016; 8 Cao (ref_7) 2021; 8 Bishop (ref_3) 2017; 4 Cunniffe (ref_118) 2017; 23 Oliveira (ref_62) 2016; 104 Zimmerling (ref_12) 2021; 25 Swetha (ref_27) 2020; 8 ref_38 Tamjid (ref_54) 2018; 67 He (ref_22) 2016; 49 Hung (ref_50) 2016; 2 Dias (ref_8) 2021; 109 Puppi (ref_104) 2016; 27 Hamlet (ref_113) 2017; 44 Huang (ref_42) 2019; 98 Park (ref_51) 2018; 15 Samorezov (ref_2) 2014; 84 Jang (ref_106) 2019; 72 Wei (ref_119) 2020; 27 Gupta (ref_85) 2019; 98 Radhakrishnan (ref_9) 2021; 118 Neufurth (ref_55) 2017; 64 Stichler (ref_78) 2017; 9 Park (ref_131) 2018; 46 Kuss (ref_28) 2018; 106 ref_45 Roh (ref_77) 2017; 74 ref_41 ref_101 Yeo (ref_127) 2016; 8 Xie (ref_30) 2016; 4 ref_6 |
References_xml | – volume: 97 start-page: 263 year: 2011 ident: ref_11 article-title: Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.31809 – volume: 19 start-page: 485 year: 2013 ident: ref_69 article-title: Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2012.0437 – volume: 46 start-page: S1131 year: 2018 ident: ref_131 article-title: An omentum-cultured 3D-printed artificial trachea: In Vivo bioreactor publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1533844 – volume: 6 start-page: 1711 year: 2021 ident: ref_31 article-title: 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering publication-title: Bioact. Mater. – volume: 104 start-page: 1210 year: 2016 ident: ref_62 article-title: Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33432 – volume: 13 start-page: 015014 year: 2017 ident: ref_71 article-title: Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aa9bbc – volume: 46 start-page: S20 year: 2015 ident: ref_18 article-title: Bone printing: New frontiers in the treatment of bone defects publication-title: Injury doi: 10.1016/S0020-1383(15)30050-4 – volume: 100 start-page: 759 year: 2019 ident: ref_39 article-title: Engineered 3D printed poly(ε-caprolactone)/graphene scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.03.047 – volume: 99 start-page: 669 year: 2019 ident: ref_43 article-title: In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.084 – volume: 6 start-page: 5120 year: 2020 ident: ref_121 article-title: Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b01911 – ident: ref_94 doi: 10.1016/j.nano.2021.102426 – volume: 27 start-page: 44 year: 2016 ident: ref_104 article-title: Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-015-5658-1 – volume: 9 start-page: 15005 year: 2016 ident: ref_82 article-title: Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration publication-title: Biofabrication doi: 10.1088/1758-5090/9/1/015005 – volume: 8 start-page: 025020 year: 2016 ident: ref_73 article-title: Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: Influence of molecular weight and pore geometry publication-title: Biofabrication doi: 10.1088/1758-5090/8/2/025020 – ident: ref_41 doi: 10.3390/polym13050797 – volume: 8 start-page: rbab019 year: 2021 ident: ref_7 article-title: Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering publication-title: Regen. Biomater. doi: 10.1093/rb/rbab019 – volume: 22 start-page: 952 year: 2016 ident: ref_61 article-title: Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications publication-title: Tissue Eng. Part C-Methods doi: 10.1089/ten.tec.2015.0542 – volume: 3 start-page: 144 year: 2018 ident: ref_4 article-title: 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances publication-title: Bioact. Mater. – volume: 9 start-page: 044108 year: 2017 ident: ref_78 article-title: Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis publication-title: Biofabrication doi: 10.1088/1758-5090/aa8cb7 – volume: 4 start-page: 1742 year: 2015 ident: ref_32 article-title: 3D Printing of Scaffolds for Tissue Regeneration Applications publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500168 – volume: 40 start-page: 1813 year: 2017 ident: ref_86 article-title: Biomechanical properties and cellular biocompatibility of 3D printed tracheal graft publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-017-1835-6 – ident: ref_36 doi: 10.3390/polym13020295 – volume: 13 start-page: 035007 year: 2021 ident: ref_123 article-title: Bioactive Sr(2+)/Fe(3+)co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5090/abcf8d – volume: 11 start-page: 035014 year: 2019 ident: ref_100 article-title: 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function publication-title: Biofabrication doi: 10.1088/1758-5090/ab14ff – volume: 4 start-page: 185 year: 2017 ident: ref_3 article-title: 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends publication-title: Genes Dis. doi: 10.1016/j.gendis.2017.10.002 – volume: 31 start-page: 1 year: 2016 ident: ref_107 article-title: Silk fibroin as biomaterial for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.09.005 – volume: 74 start-page: 525 year: 2017 ident: ref_77 article-title: Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.12.054 – volume: 98 start-page: 949 year: 2019 ident: ref_87 article-title: Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.050 – volume: 72 start-page: 432 year: 2019 ident: ref_106 article-title: Synergistic effect of alginate/BMP-2/Umbilical cord serum-coated on 3D-printed PCL biocomposite for mastoid obliteration model publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.12.046 – volume: 33 start-page: 1972 year: 2018 ident: ref_48 article-title: 3D printing of poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.111 – volume: 98 start-page: 266 year: 2019 ident: ref_42 article-title: Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.12.100 – volume: 1577 start-page: 209 year: 2018 ident: ref_49 article-title: 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications publication-title: Methods Mol. Biol. doi: 10.1007/7651_2017_37 – volume: 5 start-page: 045403 year: 2018 ident: ref_47 article-title: 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aab916 – volume: 23 start-page: 503 year: 2017 ident: ref_65 article-title: Comparison of 3D-Printed Poly-epsilon-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2016.0418 – volume: 7 start-page: 907 year: 2011 ident: ref_68 article-title: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.09.039 – volume: 13 start-page: 065003 year: 2018 ident: ref_112 article-title: Release of lithium from 3D printed polycaprolactone scaffolds regulates macrophage and osteoclast response publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aad916 – volume: 102 start-page: 1 year: 2019 ident: ref_40 article-title: Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. doi: 10.1016/j.msec.2019.04.026 – volume: 84 start-page: 45 year: 2014 ident: ref_2 article-title: Spatial regulation of controlled bioactive factor delivery for bone tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2014.11.018 – volume: 7 start-page: 035002 year: 2015 ident: ref_24 article-title: Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing publication-title: Biofabrication doi: 10.1088/1758-5090/7/3/035002 – ident: ref_88 doi: 10.3390/polym9090450 – volume: 117 start-page: 246 year: 2020 ident: ref_116 article-title: An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.09.039 – volume: 17 start-page: 208 year: 2016 ident: ref_67 article-title: Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01316 – volume: 7 start-page: 5246 year: 2017 ident: ref_132 article-title: Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair publication-title: Sci. Rep. doi: 10.1038/s41598-017-05518-3 – volume: 63 start-page: 1 year: 2017 ident: ref_1 article-title: Silk scaffolds in bone tissue engineering: An overview publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.027 – volume: 30 start-page: 1507 year: 2012 ident: ref_98 article-title: Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering publication-title: J. Orthop. Res. doi: 10.1002/jor.22097 – volume: 26 start-page: 64 year: 2020 ident: ref_99 article-title: Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2019.0215 – volume: 61 start-page: 244 year: 2018 ident: ref_83 article-title: Preparation and characterization of spiral-like micro-struts with nano-roughened surface for enhancing the proliferation and differentiation of preosteoblasts publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.12.022 – volume: 25 start-page: 3 year: 2021 ident: ref_12 article-title: 3D printing PCL/nHA bone scaffolds: Exploring the influence of material synthesis techniques publication-title: Biomater Res. doi: 10.1186/s40824-021-00204-y – ident: ref_56 doi: 10.3390/ma10040421 – volume: 64 start-page: 377 year: 2017 ident: ref_55 article-title: 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.031 – volume: 6 start-page: 1569 year: 2018 ident: ref_70 article-title: Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance publication-title: Biomater. Sci. doi: 10.1039/C8BM00073E – volume: 461 start-page: 359 year: 2016 ident: ref_96 article-title: Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.09.044 – volume: 4 start-page: 729 year: 2018 ident: ref_5 article-title: A Review of 3D Printing Technology for Medical Applications publication-title: Engineering doi: 10.1016/j.eng.2018.07.021 – ident: ref_89 doi: 10.3390/ma10121434 – volume: 118 start-page: 111525 year: 2021 ident: ref_9 article-title: Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111525 – volume: 75 start-page: 140 year: 2018 ident: ref_21 article-title: Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.05.048 – volume: 30 start-page: 319 year: 2016 ident: ref_124 article-title: In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.11.012 – volume: 55 start-page: 101 year: 2017 ident: ref_58 article-title: Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly(caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.06.033 – volume: 59 start-page: 542 year: 2018 ident: ref_108 article-title: VEGF-mediated angiogenesis and vascularization of a fumarate-crosslinked polycaprolactone (PCLF) scaffold publication-title: Connect. Tissue Res. doi: 10.1080/03008207.2018.1424145 – volume: 109 start-page: 961 year: 2021 ident: ref_8 article-title: 3D -printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.34761 – volume: 45 start-page: 45 year: 2017 ident: ref_125 article-title: 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1668-5 – volume: 109 start-page: 840 year: 2021 ident: ref_15 article-title: Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.37075 – volume: 3 start-page: 54 year: 2017 ident: ref_95 article-title: 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering publication-title: Int. J. Bioprinting doi: 10.18063/IJB.2017.01.005 – volume: 78 start-page: 763 year: 2017 ident: ref_110 article-title: Optimally designed collagen/polycaprolactone biocomposites supplemented with controlled. release of HA/TCP/rhBMP-2 and HA/TCP/PRP for hard tissue regeneration publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. doi: 10.1016/j.msec.2017.04.144 – volume: 127 start-page: 313 year: 2021 ident: ref_120 article-title: In situ printing of scaffolds for reconstruction of bone defects publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.03.009 – volume: 120 start-page: 104583 year: 2021 ident: ref_63 article-title: Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds publication-title: J. Mech. Behav. Biomed. Mater doi: 10.1016/j.jmbbm.2021.104583 – volume: 5 start-page: 2353 year: 2016 ident: ref_60 article-title: 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201600182 – volume: 29 start-page: 3662 year: 2008 ident: ref_35 article-title: Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.05.024 – ident: ref_90 doi: 10.3390/ijms19113308 – volume: 181 start-page: 108092 year: 2019 ident: ref_20 article-title: Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108092 – volume: 2 start-page: 1806 year: 2016 ident: ref_50 article-title: Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00101 – volume: 10 start-page: 22210 year: 2020 ident: ref_13 article-title: Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds publication-title: Sci. Rep. doi: 10.1038/s41598-020-78977-w – volume: 29 start-page: 601 year: 2011 ident: ref_33 article-title: Organ printing: The future of bone regeneration? publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2011.07.001 – volume: 231 start-page: 555 year: 2017 ident: ref_66 article-title: Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411916680236 – volume: 15 start-page: 435 year: 2018 ident: ref_51 article-title: Fabrication of 3D Printed PCL/PEG Polyblend Scaffold Using Rapid Prototyping System for Bone Tissue Engineering Application publication-title: J. Bionic. Eng. doi: 10.1007/s42235-018-0034-8 – volume: 9 start-page: 22950 year: 2017 ident: ref_72 article-title: Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05012 – volume: 11 start-page: 035028 year: 2019 ident: ref_44 article-title: Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial peptide-polymer conjugates publication-title: Biofabrication doi: 10.1088/1758-5090/aafec8 – volume: 67 start-page: 1005 year: 2018 ident: ref_54 article-title: Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and in vitro cellular behavior publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2017.1417285 – volume: 105 start-page: 3432 year: 2017 ident: ref_84 article-title: Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36196 – volume: 82 start-page: 159 year: 2012 ident: ref_34 article-title: Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.05.085 – volume: 11 start-page: 025002 year: 2018 ident: ref_128 article-title: A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus publication-title: Biofabrication doi: 10.1088/1758-5090/aaf707 – volume: 8 start-page: 032001 year: 2016 ident: ref_126 article-title: 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/032001 – volume: 44 start-page: 428 year: 2017 ident: ref_113 article-title: 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering publication-title: J. Clin. Periodontol. doi: 10.1111/jcpe.12686 – volume: 45 start-page: 1497 year: 2017 ident: ref_129 article-title: 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model publication-title: Am. J. Sports Med. doi: 10.1177/0363546517691513 – volume: 6 start-page: 3620 year: 2021 ident: ref_10 article-title: 3D-printed cell-free PCL–MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration publication-title: Bioact. Mater. – volume: 61 start-page: 645 year: 2016 ident: ref_80 article-title: Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods publication-title: Arch. Met. Mater. doi: 10.1515/amm-2016-0110 – volume: 9 start-page: e2000727 year: 2020 ident: ref_37 article-title: Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration publication-title: Adv. Health Mater. doi: 10.1002/adhm.202000727 – volume: 107 start-page: 1295 year: 2019 ident: ref_130 article-title: Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.34222 – ident: ref_14 doi: 10.3390/polym12091962 – volume: 35 start-page: 285 year: 2015 ident: ref_19 article-title: Review: Polymeric-Based 3D Printing for Tissue Engineering publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-015-0038-3 – volume: 9 start-page: 3005 year: 2021 ident: ref_64 article-title: CaO2/gelatin oxygen slow-releasing microspheres facilitate tissue engineering efficiency for the osteonecrosis of femoral head by enhancing the angiogenesis and survival of grafted bone marrow mesenchymal stem cells publication-title: Biomater. Sci. doi: 10.1039/D0BM02071K – volume: 60 start-page: 271 year: 2011 ident: ref_91 article-title: BioCell Printing: Integrated automated assembly system for tissue engineering constructs publication-title: CIRP Ann. doi: 10.1016/j.cirp.2011.03.116 – volume: 12 start-page: 055003 year: 2017 ident: ref_74 article-title: Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aa8357 – volume: 4 start-page: 349 year: 2010 ident: ref_105 article-title: Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.245 – volume: 102 start-page: 4317 year: 2014 ident: ref_135 article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds publication-title: J. Biomed. Mater. Res. Part A – ident: ref_45 doi: 10.3390/biology10050398 – volume: 16 start-page: 5078 year: 2017 ident: ref_79 article-title: Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2017.7266 – volume: 40 start-page: 182 year: 2016 ident: ref_114 article-title: Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.02.006 – volume: 10 start-page: 15447 year: 2018 ident: ref_111 article-title: In situgold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications:in vitroandin vivostudies publication-title: Nanoscale doi: 10.1039/C8NR04037K – volume: 8 start-page: 9836 year: 2020 ident: ref_27 article-title: An insight into cell-laden 3D-printed constructs for bone tissue engineering publication-title: J. Mater Chem. B doi: 10.1039/D0TB02019B – volume: 46 start-page: 175 year: 2017 ident: ref_57 article-title: Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.10.028 – volume: 100 start-page: 631 year: 2019 ident: ref_17 article-title: Advances in additive manufacturing for bone tissue engineering scaffolds publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. doi: 10.1016/j.msec.2019.03.037 – ident: ref_117 doi: 10.3390/ma10070831 – volume: 106 start-page: 663 year: 2018 ident: ref_53 article-title: Three-dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36270 – volume: 91 start-page: 679 year: 2018 ident: ref_29 article-title: Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.06.005 – volume: 104 start-page: 991 year: 2016 ident: ref_76 article-title: Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration publication-title: Biomed. Mater Res. A. doi: 10.1002/jbm.a.35637 – volume: 49 start-page: 055504 year: 2016 ident: ref_22 article-title: Towards microscale electrohydrodynamic three-dimensional printing publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/49/5/055504 – volume: 11 start-page: 055005 year: 2016 ident: ref_103 article-title: 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects publication-title: Biomed. Mater. doi: 10.1088/1748-6041/11/5/055005 – volume: 269 start-page: 120671 year: 2021 ident: ref_136 article-title: Resorbable additively manufactured scaffold imparts dimensional stability to extraskeletally regenerated bone publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120671 – volume: 3 start-page: 278 year: 2018 ident: ref_16 article-title: 3D bioactive composite scaffolds for bone tissue engineering publication-title: Bioact. Mater. – volume: 13 start-page: 342 year: 2019 ident: ref_81 article-title: Hyaline cartilage next generation implants from adipose-tissue-derived mesenchymal stem cells: Comparative study on 3D-printed polycaprolactone scaffold patterns publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2798 – ident: ref_115 doi: 10.3390/pharmaceutics13040515 – volume: 7 start-page: 3166 year: 2017 ident: ref_25 article-title: Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities publication-title: Sci. Rep. doi: 10.1038/s41598-017-03461-x – volume: 6 start-page: 77 year: 2016 ident: ref_97 article-title: Biomaterial-mediated strategies targeting vascularization for bone repair publication-title: Drug Deliv. Trans. L Res. doi: 10.1007/s13346-015-0236-0 – volume: 8 start-page: 035021 year: 2016 ident: ref_127 article-title: Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/035021 – volume: 23 start-page: 891 year: 2017 ident: ref_118 article-title: Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2016.0498 – volume: 9 start-page: 1 year: 2017 ident: ref_26 article-title: Additive manufacturing of polymer melts for implantable medical devices and scaffolds publication-title: Biofabrication doi: 10.1088/1758-5090/aa5766 – volume: 113 start-page: 130 year: 2020 ident: ref_93 article-title: 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.05.040 – volume: 98 start-page: 602 year: 2019 ident: ref_85 article-title: Modelling and optimization of NaOH-etched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl. doi: 10.1016/j.msec.2018.12.084 – volume: 25 start-page: 222 year: 2019 ident: ref_102 article-title: Three-Dimensional Printing of Drug-Loaded Scaffolds for Antibacterial and Analgesic Applications publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2018.0293 – volume: 12 start-page: e473 year: 2018 ident: ref_46 article-title: Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2310 – volume: 27 start-page: 1106 year: 2020 ident: ref_119 article-title: IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering publication-title: Drug Deliv. doi: 10.1080/10717544.2020.1797239 – volume: 115 start-page: 2365 year: 2018 ident: ref_134 article-title: Segmental bone replacement via patient-specific, three-dimensional printed bioresorbable graft substitutes and their use as templates for the culture of mesenchymal stem cells under mechanical stimulation at various frequencies publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26780 – ident: ref_38 doi: 10.3390/ijms20040942 – volume: 20 start-page: 835 year: 2018 ident: ref_133 article-title: Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant publication-title: J. Feline Med. Surg. doi: 10.1177/1098612X18789549 – volume: 8 start-page: 045002 year: 2016 ident: ref_92 article-title: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage publication-title: Biofabrication doi: 10.1088/1758-5090/8/4/045002 – volume: 18 start-page: e1800025 year: 2018 ident: ref_52 article-title: Synergistic Effects of Beta Tri-Calcium Phosphate and Porcine-Derived Decellularized Bone Extracellular Matrix in 3D-Printed Polycaprolactone Scaffold on Bone Regeneration publication-title: Macromol. Biosci. doi: 10.1002/mabi.201800025 – volume: 43 start-page: 923 year: 2017 ident: ref_59 article-title: The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration publication-title: J. Endod. doi: 10.1016/j.joen.2017.01.009 – volume: 2018 start-page: 5147156 year: 2018 ident: ref_109 article-title: A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility publication-title: Biomed Res. Int. doi: 10.1155/2018/5147156 – ident: ref_75 doi: 10.1117/12.2254475 – volume: 5 start-page: 5037 year: 2017 ident: ref_122 article-title: Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00165G – ident: ref_6 doi: 10.3390/biomedicines9020128 – volume: 4 start-page: e2040 year: 2016 ident: ref_30 article-title: Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications publication-title: PeerJ doi: 10.7717/peerj.2040 – ident: ref_101 doi: 10.3390/ma11061006 – volume: 106 start-page: 1788 year: 2018 ident: ref_28 article-title: Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33994 – volume: 10 start-page: e2001232 year: 2021 ident: ref_23 article-title: Polymers for Melt Electrowriting publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001232 |
SSID | ssj0000456617 |
Score | 2.603753 |
SecondaryResourceType | review_article |
Snippet | Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2754 |
SubjectTerms | 3-D printers Biocompatibility Biomedical materials Bones Design Extracellular matrix Hydrogels Hydroxyapatite Lasers Mechanical properties Morphology Polycaprolactone Polyester resins Polyesters Pore size Rapid prototyping Review Scaffolds Surgical instruments Three dimensional printing Tissue engineering Translations |
Title | The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering |
URI | https://www.proquest.com/docview/2565610952 https://www.proquest.com/docview/2566035969 https://pubmed.ncbi.nlm.nih.gov/PMC8400029 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60HvQiPrG-WEE8udTdZJP0JK22iqAUbaG3kOxutFCT2taD_96ZNH3koJBL2A0TZnZ3Xsv3AVxGgdGYVfgcnZnDXS0DHlnf5eja6PFFkuMUPL94jz33qa_6RcFtUlyrnJ-J-UFtMk018pqkyENgQCBvR1-cWKOou1pQaKzDBh7BQVCBjWbrpfO6qLJQwII-egau6WB-Xxtlw59P4QhC53XLzmgZYZbvR644nPYObBeRImvMTLsLazbdg827OUHbPryjiVlj2YBmWcI6KFdHKGJIPDqpZYOUddFclt8TjP8MgoN1xoOcIIK96ShJsqGZMIxdWZM-6OaWYCs4hQfQa7e6d4-84E3g2lXBlMvYOgq9jHQ1wcPhtrReHAuTaGGorWmMrMfWSoX7WwV1TXiRSlsjIs_RgRDOIVRSlHgEzMTKtdIK1_dRlc5NpIyjkkQZP9aJqdercD1XYKgLUHHithiGmFyQvsOSvqtwtZg-mqFp_DXxdG6NsNhUk3C5BKpwsRhGpVOPI0pt9p3P8QiV0MNf80tWXAgkQO3ySDr4yIG1MdmlLuXx_8JPYEvSxRbCxfVPoTIdf9szjEym8TmsB-2H82IR4ttDX_wCrIXpMQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMBlBewiujzWSMuesMCOnaSH1YoFSnkKiSJxC4ntQKWSFFq04k_xG3cmaVpygBtSbnYy0cwXz4zH-QbgZxxag1lFwNGZeVwZGfLYBYqja6MrEGnBU3B-4bev1cmNvpmC1-pfGDpWWa2JxUJtc0N75DuSIg-BAYH803_k1DWKqqtVC40SFqfu5R-mbIPfxwdo3y0pW4ed_TYfdRXgRulwyGXiPI1rsFSGyNMQtM5PEmFTIywV_ayVzcQ5qRH9OmwaYlPUxlkR-54JhfDwudMwqzz05PRneutovKdD4RFGBCWVJ47v7vTz3suD8ARxAau665vEs_XTmG_cW2sBvoziUrZXAmkRply2BHP7VTu4r3CHgGJ7k3I3y1N2iXJNjCJ61LUnc6ybsQ6Cw_EDahpQEn6wy6du0Y6CXZk4TfOeHTCMlNlfuqFT2J29YUX8Btefos9lmMlQ4gowm2jlpBMqCFCV3m6srafTVNsgMaltNhuwXSkwMiMKc-qk0YswlSF9RzV9N-DXeHq_5O54b-JaZY1o9AkPogngGrA5HkalU0Ulzlz-XMzxiQPRx1cLalYcCyT67vpI1r0vaLwxtaaa6PePhf-AuXbn_Cw6O744XYV5SUdqiJE3WIOZ4dOzW8eYaJhsFEBkcPvZyP8PwNQhmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcIFFgk4ISV7q7Xax8QaptGLYUoglTqzbX3AZGCHZpUqH-NX8eMH0l9gFsl37z2WLPf7szsjL8BeJPF1mBUoQM0ZjIIjYiDzOkwQNNGl-a-4in4Mo6OTsNPZ-psC_60_8JQWWW7J1YbtS0NnZEPBHkeHB0CMfBNWcRkOPq4-BVQBynKtLbtNGqInLir3xi-LT8cD3Gu3woxOpweHAVNh4HAhCpeBSJ3UuF-LEJDRGoIYBflObfecEsJQGtFkjsnFK4EFSeGmBWVcZZnkTQx5xLfewu2NUVFPdjePxxPvq5PeMhZQv-gJvaUMtkdLMr51U8uOTEDh11DuPFuu7WZ14zd6D7ca7xUtlfD6gFsueIh3Dlom8M9gu8IL7a3SX6z0rMJyjUZiphTD5_CsVnBpggVFwyphUBN_8EmF7OqOQX7ZjLvy7ldMvSb2T49MK1QwK5xJD6G0xvR6BPoFSjxKTCbq9AJx0OtUZVyN1NWKu-V1bnxNkn68L5VYGoaQnPqqzFPMbAhfacdfffh3Xr4omby-NfAnXY20mZBL9MN_Prwen0blU75laxw5WU1JiJGxAg_TXdmcS2QyLy7d4rZj4rUGwNtypA--7_wV3AbUZ9-Ph6fPIe7gupriJ5X70BvdXHpXqCDtMpfNkhkcH7T4P8LueYnLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Polycaprolactone+in+Three-Dimensional+Printing+Scaffolds+for+Bone+Tissue+Engineering&rft.jtitle=Polymers&rft.au=Yang%2C+Xiangjun&rft.au=Wang%2C+Yuting&rft.au=Zhou%2C+Ying&rft.au=Chen%2C+Junyu&rft.date=2021-08-17&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Fpolym13162754&rft_id=info%3Apmid%2F34451293&rft.externalDocID=PMC8400029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |