The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering

Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polyca...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 13; no. 16; p. 2754
Main Authors Yang, Xiangjun, Wang, Yuting, Zhou, Ying, Chen, Junyu, Wan, Qianbing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 17.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
AbstractList Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
Author Chen, Junyu
Wan, Qianbing
Zhou, Ying
Yang, Xiangjun
Wang, Yuting
AuthorAffiliation 1 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; yangxj199610@163.com (X.Y.); wangyuting408@163.com (Y.W.); 18683571838@163.com (Y.Z.)
2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
AuthorAffiliation_xml – name: 1 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; yangxj199610@163.com (X.Y.); wangyuting408@163.com (Y.W.); 18683571838@163.com (Y.Z.)
– name: 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
Author_xml – sequence: 1
  givenname: Xiangjun
  orcidid: 0000-0002-2854-9105
  surname: Yang
  fullname: Yang, Xiangjun
– sequence: 2
  givenname: Yuting
  surname: Wang
  fullname: Wang, Yuting
– sequence: 3
  givenname: Ying
  surname: Zhou
  fullname: Zhou, Ying
– sequence: 4
  givenname: Junyu
  orcidid: 0000-0003-1717-5782
  surname: Chen
  fullname: Chen, Junyu
– sequence: 5
  givenname: Qianbing
  surname: Wan
  fullname: Wan, Qianbing
BookMark eNptkc1LHTEUxUNRqr667D7QTTdj8z0zm4K19gMEBV_XIZO5My-SSabJTMH_vnlqoYrZ3EB-59zcc0_QQYgBEHpPyRnnLfk0R38_UU4Vq6V4g44ZqXkluCIH_92P0GnOd6QcIZWi9Vt0xIWQlLX8GI3bHeDzefbOmsXFgOOAb4qrNXOK3tilNMQu4O0uAVRf3QQhF8x4fJNcWFwY8a01wxB9n_EQE_6yF2xdzivgyzC6AFDA8R06HIzPcPpUN-jXt8vtxY_q6vr7z4vzq8oK2SwV64DLtiVMWFXXDREMVNfRfrC0b2qi-p61HQCTnNSyaa2oGZMWemoUtw2lfIM-P_rOazdBbyEsyXg9JzeZdK-jcfr5S3A7PcY_uhEloBLJBn18Mkjx9wp50ZPLFrw3AeKaNSsZkvJHtUc_vEDv4ppKNg-UVJS0khWKP1I2xZwTDNq65SHr0t95TYne71I_22VRVS9U_0Z4nf8L2hai6A
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_126642
crossref_primary_10_1016_j_ijbiomac_2024_135519
crossref_primary_10_1016_j_ijbiomac_2023_126646
crossref_primary_10_1111_cpr_13466
crossref_primary_10_1016_j_jece_2023_109287
crossref_primary_10_3390_ma15134540
crossref_primary_10_1016_j_polymer_2024_127971
crossref_primary_10_3390_polym17020200
crossref_primary_10_1016_j_reth_2022_09_010
crossref_primary_10_1177_20417314241286092
crossref_primary_10_1016_j_mtbio_2024_101351
crossref_primary_10_3390_biomimetics9010030
crossref_primary_10_3390_ma16155459
crossref_primary_10_1016_j_mtchem_2023_101818
crossref_primary_10_1002_adem_202301297
crossref_primary_10_1016_j_bioadv_2024_213900
crossref_primary_10_1016_j_bioadv_2024_213902
crossref_primary_10_1016_j_bjps_2022_06_025
crossref_primary_10_1016_j_ijpharm_2024_124181
crossref_primary_10_3390_biomimetics9110690
crossref_primary_10_3390_polym15030576
crossref_primary_10_1016_j_eurpolymj_2024_113046
crossref_primary_10_3390_cancers15184466
crossref_primary_10_1039_D3MA00363A
crossref_primary_10_1002_adma_202400700
crossref_primary_10_1002_marc_202300455
crossref_primary_10_1007_s13726_024_01449_9
crossref_primary_10_1002_adhm_202402571
crossref_primary_10_18019_1028_4427_2023_29_6_585_590
crossref_primary_10_3390_polym14214611
crossref_primary_10_3390_polym14173440
crossref_primary_10_3390_ijms242216180
crossref_primary_10_1016_j_ijbiomac_2023_123476
crossref_primary_10_1016_j_jddst_2022_103360
crossref_primary_10_1007_s12257_021_0418_1
crossref_primary_10_2217_3dp_2022_0020
crossref_primary_10_3390_polym16233303
crossref_primary_10_1016_j_jconrel_2023_01_048
crossref_primary_10_3389_fbioe_2023_1268049
crossref_primary_10_3390_polym16101389
crossref_primary_10_1002_jbm_a_37646
crossref_primary_10_1016_j_mtcomm_2023_107262
crossref_primary_10_1089_ten_tec_2023_0062
crossref_primary_10_1021_acsomega_4c04961
crossref_primary_10_3389_fbioe_2023_1123477
crossref_primary_10_1186_s12951_023_02007_w
crossref_primary_10_2478_aei_2024_0008
crossref_primary_10_1016_j_ijbiomac_2024_135602
crossref_primary_10_1007_s00170_024_14652_y
crossref_primary_10_1016_j_bioadv_2023_213382
crossref_primary_10_1016_j_ijbiomac_2024_134483
crossref_primary_10_1080_2374068X_2023_2255425
crossref_primary_10_3390_polym14050951
crossref_primary_10_1007_s42114_024_00932_4
crossref_primary_10_1016_j_actbio_2024_02_012
crossref_primary_10_3389_fbioe_2023_1168504
crossref_primary_10_1016_j_mtbio_2022_100434
crossref_primary_10_1177_19476035241246609
crossref_primary_10_1016_j_jmrt_2023_01_007
crossref_primary_10_1016_j_mtla_2024_102115
crossref_primary_10_3390_ijms241713642
crossref_primary_10_1016_j_ijbiomac_2023_127656
crossref_primary_10_1016_j_isci_2024_110214
crossref_primary_10_1021_acsabm_4c00236
crossref_primary_10_1155_2023_7547590
crossref_primary_10_1097_SCS_0000000000010574
crossref_primary_10_3390_ma17102413
crossref_primary_10_1016_j_bioactmat_2023_06_006
crossref_primary_10_3390_polym15030781
crossref_primary_10_1002_app_56391
crossref_primary_10_1002_marc_202300397
crossref_primary_10_3390_polym16172443
crossref_primary_10_1088_1748_605X_ad3536
crossref_primary_10_3390_polym15102404
crossref_primary_10_1021_acsami_4c02800
crossref_primary_10_1038_s41536_023_00330_2
crossref_primary_10_3390_gels8030163
crossref_primary_10_1186_s13018_023_04489_8
crossref_primary_10_3390_nano12213744
crossref_primary_10_1016_j_actbio_2025_03_009
crossref_primary_10_1039_D4SU00060A
crossref_primary_10_1021_acsami_3c06873
crossref_primary_10_1088_1758_5090_ad2537
crossref_primary_10_1002_smll_202310614
crossref_primary_10_3390_ma15196952
crossref_primary_10_1016_j_rechem_2024_101534
crossref_primary_10_1021_acsabm_2c00455
crossref_primary_10_3390_jfb15060145
crossref_primary_10_1016_j_bioadv_2024_213816
crossref_primary_10_1016_j_ijbiomac_2023_123159
crossref_primary_10_3390_ma16041539
crossref_primary_10_3390_polym16121668
crossref_primary_10_1016_j_mtla_2024_102057
crossref_primary_10_3389_fbioe_2022_845342
crossref_primary_10_1080_17434440_2024_2341960
crossref_primary_10_3390_ijms241814201
crossref_primary_10_1016_j_jmapro_2024_03_052
crossref_primary_10_3390_gels9090768
crossref_primary_10_1002_mame_202300388
crossref_primary_10_3390_cells11142158
crossref_primary_10_1016_j_biopha_2022_113431
crossref_primary_10_3390_app132011558
crossref_primary_10_3390_polym14235178
crossref_primary_10_1016_j_reactfunctpolym_2024_106103
crossref_primary_10_1007_s12221_023_00310_9
crossref_primary_10_3389_pore_2023_1610996
crossref_primary_10_1002_pc_29254
crossref_primary_10_1016_j_ijbiomac_2023_128094
crossref_primary_10_1016_j_matdes_2024_113534
crossref_primary_10_1016_j_mtbio_2024_101410
crossref_primary_10_1016_j_bioadv_2024_214053
crossref_primary_10_1016_j_dt_2025_02_024
crossref_primary_10_1039_D3NR04044E
crossref_primary_10_1016_j_procbio_2024_04_038
crossref_primary_10_1111_wrr_13233
crossref_primary_10_1016_j_apmt_2023_101968
crossref_primary_10_1016_j_ijpharm_2024_124734
crossref_primary_10_1038_s44222_024_00269_z
crossref_primary_10_1007_s42823_024_00788_0
crossref_primary_10_3390_polym16010066
crossref_primary_10_1016_j_jddst_2025_106826
crossref_primary_10_3389_fbioe_2022_895766
crossref_primary_10_3390_jfb13040160
crossref_primary_10_3390_jfb13040280
crossref_primary_10_1016_j_engreg_2023_12_003
Cites_doi 10.1002/jbm.b.31809
10.1089/ten.teb.2012.0437
10.1080/21691401.2018.1533844
10.1002/jbm.b.33432
10.1088/1748-605X/aa9bbc
10.1016/S0020-1383(15)30050-4
10.1016/j.msec.2019.03.047
10.1016/j.msec.2019.01.084
10.1021/acsbiomaterials.9b01911
10.1016/j.nano.2021.102426
10.1007/s10856-015-5658-1
10.1088/1758-5090/9/1/015005
10.1088/1758-5090/8/2/025020
10.3390/polym13050797
10.1093/rb/rbab019
10.1089/ten.tec.2015.0542
10.1088/1758-5090/aa8cb7
10.1002/adhm.201500168
10.1007/s00449-017-1835-6
10.3390/polym13020295
10.1088/1758-5090/abcf8d
10.1088/1758-5090/ab14ff
10.1016/j.gendis.2017.10.002
10.1016/j.actbio.2015.09.005
10.1016/j.msec.2016.12.054
10.1016/j.msec.2019.01.050
10.1016/j.jiec.2018.12.046
10.1557/jmr.2018.111
10.1016/j.msec.2018.12.100
10.1007/7651_2017_37
10.1088/2053-1591/aab916
10.1089/ten.tea.2016.0418
10.1016/j.actbio.2010.09.039
10.1088/1748-605X/aad916
10.1016/j.msec.2019.04.026
10.1016/j.addr.2014.11.018
10.1088/1758-5090/7/3/035002
10.3390/polym9090450
10.1016/j.actbio.2020.09.039
10.1021/acs.biomac.5b01316
10.1038/s41598-017-05518-3
10.1016/j.actbio.2017.09.027
10.1002/jor.22097
10.1089/ten.teb.2019.0215
10.1016/j.jiec.2017.12.022
10.1186/s40824-021-00204-y
10.3390/ma10040421
10.1016/j.actbio.2017.09.031
10.1039/C8BM00073E
10.1016/j.jcis.2015.09.044
10.1016/j.eng.2018.07.021
10.3390/ma10121434
10.1016/j.msec.2020.111525
10.1016/j.actbio.2018.05.048
10.1016/j.actbio.2015.11.012
10.1016/j.jiec.2017.06.033
10.1080/03008207.2018.1424145
10.1002/jbm.b.34761
10.1007/s10439-016-1668-5
10.1002/jbm.a.37075
10.18063/IJB.2017.01.005
10.1016/j.msec.2017.04.144
10.1016/j.actbio.2021.03.009
10.1016/j.jmbbm.2021.104583
10.1002/adhm.201600182
10.1016/j.biomaterials.2008.05.024
10.3390/ijms19113308
10.1016/j.matdes.2019.108092
10.1021/acsbiomaterials.6b00101
10.1038/s41598-020-78977-w
10.1016/j.tibtech.2011.07.001
10.1177/0954411916680236
10.1007/s42235-018-0034-8
10.1021/acsami.7b05012
10.1088/1758-5090/aafec8
10.1080/00914037.2017.1417285
10.1002/jbm.a.36196
10.1016/j.matlet.2012.05.085
10.1088/1758-5090/aaf707
10.1088/1758-5090/8/3/032001
10.1111/jcpe.12686
10.1177/0363546517691513
10.1515/amm-2016-0110
10.1002/adhm.202000727
10.1002/jbm.b.34222
10.3390/polym12091962
10.1007/s40846-015-0038-3
10.1039/D0BM02071K
10.1016/j.cirp.2011.03.116
10.1088/1748-605X/aa8357
10.1002/term.245
10.3390/biology10050398
10.3892/mmr.2017.7266
10.1016/j.actbio.2016.02.006
10.1039/C8NR04037K
10.1039/D0TB02019B
10.1016/j.jiec.2016.10.028
10.1016/j.msec.2019.03.037
10.3390/ma10070831
10.1002/jbm.a.36270
10.1016/j.msec.2018.06.005
10.1002/jbm.a.35637
10.1088/0022-3727/49/5/055504
10.1088/1748-6041/11/5/055005
10.1016/j.biomaterials.2021.120671
10.1002/term.2798
10.3390/pharmaceutics13040515
10.1038/s41598-017-03461-x
10.1007/s13346-015-0236-0
10.1088/1758-5090/8/3/035021
10.1089/ten.tea.2016.0498
10.1088/1758-5090/aa5766
10.1016/j.actbio.2020.05.040
10.1016/j.msec.2018.12.084
10.1089/ten.tec.2018.0293
10.1002/term.2310
10.1080/10717544.2020.1797239
10.1002/bit.26780
10.3390/ijms20040942
10.1177/1098612X18789549
10.1088/1758-5090/8/4/045002
10.1002/mabi.201800025
10.1016/j.joen.2017.01.009
10.1155/2018/5147156
10.1117/12.2254475
10.1039/C7TB00165G
10.3390/biomedicines9020128
10.7717/peerj.2040
10.3390/ma11061006
10.1002/jbm.b.33994
10.1002/adhm.202001232
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym13162754
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC8400029
10_3390_polym13162754
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c458t-2be3599024c6778042e6bb1dfc1d8706dd29bee25307589c47225ced1a63c8113
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:24:29 EDT 2025
Fri Jul 11 02:57:15 EDT 2025
Tue Aug 19 10:10:49 EDT 2025
Tue Jul 01 02:20:06 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-2be3599024c6778042e6bb1dfc1d8706dd29bee25307589c47225ced1a63c8113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1717-5782
0000-0002-2854-9105
OpenAccessLink https://www.proquest.com/docview/2565610952?pq-origsite=%requestingapplication%
PMID 34451293
PQID 2565610952
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8400029
proquest_miscellaneous_2566035969
proquest_journals_2565610952
crossref_citationtrail_10_3390_polym13162754
crossref_primary_10_3390_polym13162754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210817
PublicationDateYYYYMMDD 2021-08-17
PublicationDate_xml – month: 8
  year: 2021
  text: 20210817
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Polymers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Dang (ref_100) 2019; 11
Xie (ref_20) 2019; 181
Garcia (ref_97) 2016; 6
Amini (ref_98) 2012; 30
ref_90
ref_14
Barbara (ref_76) 2016; 104
Gao (ref_132) 2017; 7
Moncal (ref_48) 2018; 33
Daly (ref_60) 2016; 5
Bhattacharjee (ref_1) 2017; 63
Park (ref_57) 2017; 46
Kade (ref_23) 2021; 10
Shim (ref_71) 2017; 13
Wu (ref_19) 2015; 35
Luo (ref_47) 2018; 5
Chiu (ref_59) 2017; 43
Liao (ref_34) 2012; 82
Kim (ref_103) 2016; 11
Jeffrey (ref_63) 2021; 120
Wagner (ref_108) 2018; 59
Soares (ref_133) 2018; 20
Seyedsalehi (ref_13) 2020; 10
Derakhshanfar (ref_4) 2018; 3
Kim (ref_110) 2017; 78
Fedorovich (ref_33) 2011; 29
Zhao (ref_121) 2020; 6
Liu (ref_37) 2020; 9
Kim (ref_96) 2016; 461
Lee (ref_11) 2011; 97
Guo (ref_10) 2021; 6
Loh (ref_69) 2013; 19
Nyberg (ref_125) 2017; 45
He (ref_109) 2018; 2018
Zheng (ref_79) 2017; 16
Yang (ref_82) 2016; 9
Wang (ref_39) 2019; 100
Vaquette (ref_136) 2021; 269
Lee (ref_74) 2017; 12
Ostrowska (ref_46) 2018; 12
Unagolla (ref_40) 2019; 102
Murphy (ref_95) 2017; 3
ref_75
Cho (ref_84) 2017; 105
Yang (ref_72) 2017; 9
Bartnikowski (ref_112) 2018; 13
Szlazak (ref_80) 2016; 61
Chung (ref_134) 2018; 115
Lee (ref_111) 2018; 10
Eichholz (ref_21) 2018; 75
Turnbull (ref_16) 2018; 3
Fonseca (ref_70) 2018; 6
Rindone (ref_49) 2018; 1577
Zhang (ref_99) 2020; 26
Domingos (ref_66) 2017; 231
Theodoridis (ref_81) 2019; 13
Yan (ref_5) 2018; 4
ref_89
Shim (ref_58) 2017; 55
ref_88
Shao (ref_102) 2019; 25
Lee (ref_114) 2016; 40
Do (ref_32) 2015; 4
Guarino (ref_35) 2008; 29
Youssef (ref_26) 2017; 9
Jian (ref_31) 2021; 6
Gong (ref_116) 2020; 117
Bessa (ref_105) 2010; 4
Butscher (ref_68) 2011; 7
Hansske (ref_122) 2017; 5
Miao (ref_61) 2016; 22
Wang (ref_64) 2021; 9
Mostafavi (ref_120) 2021; 127
Yang (ref_123) 2021; 13
Chen (ref_67) 2016; 17
ref_56
(ref_17) 2019; 100
Poh (ref_124) 2016; 30
Critchley (ref_93) 2020; 113
Bahcecioglu (ref_128) 2018; 11
Kim (ref_52) 2018; 18
Lee (ref_87) 2019; 98
Zhang (ref_129) 2017; 45
Chen (ref_29) 2018; 91
Vella (ref_53) 2018; 106
Jung (ref_130) 2019; 107
Nyberg (ref_65) 2017; 23
Temple (ref_135) 2014; 102
Shan (ref_86) 2017; 40
Daly (ref_92) 2016; 8
Arealis (ref_18) 2015; 46
Bas (ref_44) 2019; 11
VijayaVenkataRaman (ref_126) 2016; 8
Kim (ref_25) 2017; 7
Melke (ref_107) 2016; 31
Locs (ref_43) 2019; 99
ref_115
Bartolo (ref_91) 2011; 60
ref_117
Hochleitner (ref_24) 2015; 7
ref_36
Yang (ref_83) 2018; 61
Park (ref_15) 2021; 109
Olubamiji (ref_73) 2016; 8
Cao (ref_7) 2021; 8
Bishop (ref_3) 2017; 4
Cunniffe (ref_118) 2017; 23
Oliveira (ref_62) 2016; 104
Zimmerling (ref_12) 2021; 25
Swetha (ref_27) 2020; 8
ref_38
Tamjid (ref_54) 2018; 67
He (ref_22) 2016; 49
Hung (ref_50) 2016; 2
Dias (ref_8) 2021; 109
Puppi (ref_104) 2016; 27
Hamlet (ref_113) 2017; 44
Huang (ref_42) 2019; 98
Park (ref_51) 2018; 15
Samorezov (ref_2) 2014; 84
Jang (ref_106) 2019; 72
Wei (ref_119) 2020; 27
Gupta (ref_85) 2019; 98
Radhakrishnan (ref_9) 2021; 118
Neufurth (ref_55) 2017; 64
Stichler (ref_78) 2017; 9
Park (ref_131) 2018; 46
Kuss (ref_28) 2018; 106
ref_45
Roh (ref_77) 2017; 74
ref_41
ref_101
Yeo (ref_127) 2016; 8
Xie (ref_30) 2016; 4
ref_6
References_xml – volume: 97
  start-page: 263
  year: 2011
  ident: ref_11
  article-title: Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.31809
– volume: 19
  start-page: 485
  year: 2013
  ident: ref_69
  article-title: Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2012.0437
– volume: 46
  start-page: S1131
  year: 2018
  ident: ref_131
  article-title: An omentum-cultured 3D-printed artificial trachea: In Vivo bioreactor
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1533844
– volume: 6
  start-page: 1711
  year: 2021
  ident: ref_31
  article-title: 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering
  publication-title: Bioact. Mater.
– volume: 104
  start-page: 1210
  year: 2016
  ident: ref_62
  article-title: Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.33432
– volume: 13
  start-page: 015014
  year: 2017
  ident: ref_71
  article-title: Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aa9bbc
– volume: 46
  start-page: S20
  year: 2015
  ident: ref_18
  article-title: Bone printing: New frontiers in the treatment of bone defects
  publication-title: Injury
  doi: 10.1016/S0020-1383(15)30050-4
– volume: 100
  start-page: 759
  year: 2019
  ident: ref_39
  article-title: Engineered 3D printed poly(ε-caprolactone)/graphene scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.03.047
– volume: 99
  start-page: 669
  year: 2019
  ident: ref_43
  article-title: In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.084
– volume: 6
  start-page: 5120
  year: 2020
  ident: ref_121
  article-title: Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01911
– ident: ref_94
  doi: 10.1016/j.nano.2021.102426
– volume: 27
  start-page: 44
  year: 2016
  ident: ref_104
  article-title: Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-015-5658-1
– volume: 9
  start-page: 15005
  year: 2016
  ident: ref_82
  article-title: Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/9/1/015005
– volume: 8
  start-page: 025020
  year: 2016
  ident: ref_73
  article-title: Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: Influence of molecular weight and pore geometry
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/2/025020
– ident: ref_41
  doi: 10.3390/polym13050797
– volume: 8
  start-page: rbab019
  year: 2021
  ident: ref_7
  article-title: Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbab019
– volume: 22
  start-page: 952
  year: 2016
  ident: ref_61
  article-title: Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications
  publication-title: Tissue Eng. Part C-Methods
  doi: 10.1089/ten.tec.2015.0542
– volume: 3
  start-page: 144
  year: 2018
  ident: ref_4
  article-title: 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances
  publication-title: Bioact. Mater.
– volume: 9
  start-page: 044108
  year: 2017
  ident: ref_78
  article-title: Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa8cb7
– volume: 4
  start-page: 1742
  year: 2015
  ident: ref_32
  article-title: 3D Printing of Scaffolds for Tissue Regeneration Applications
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500168
– volume: 40
  start-page: 1813
  year: 2017
  ident: ref_86
  article-title: Biomechanical properties and cellular biocompatibility of 3D printed tracheal graft
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-017-1835-6
– ident: ref_36
  doi: 10.3390/polym13020295
– volume: 13
  start-page: 035007
  year: 2021
  ident: ref_123
  article-title: Bioactive Sr(2+)/Fe(3+)co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/abcf8d
– volume: 11
  start-page: 035014
  year: 2019
  ident: ref_100
  article-title: 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab14ff
– volume: 4
  start-page: 185
  year: 2017
  ident: ref_3
  article-title: 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2017.10.002
– volume: 31
  start-page: 1
  year: 2016
  ident: ref_107
  article-title: Silk fibroin as biomaterial for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.09.005
– volume: 74
  start-page: 525
  year: 2017
  ident: ref_77
  article-title: Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.12.054
– volume: 98
  start-page: 949
  year: 2019
  ident: ref_87
  article-title: Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.050
– volume: 72
  start-page: 432
  year: 2019
  ident: ref_106
  article-title: Synergistic effect of alginate/BMP-2/Umbilical cord serum-coated on 3D-printed PCL biocomposite for mastoid obliteration model
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.12.046
– volume: 33
  start-page: 1972
  year: 2018
  ident: ref_48
  article-title: 3D printing of poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.111
– volume: 98
  start-page: 266
  year: 2019
  ident: ref_42
  article-title: Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.12.100
– volume: 1577
  start-page: 209
  year: 2018
  ident: ref_49
  article-title: 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications
  publication-title: Methods Mol. Biol.
  doi: 10.1007/7651_2017_37
– volume: 5
  start-page: 045403
  year: 2018
  ident: ref_47
  article-title: 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aab916
– volume: 23
  start-page: 503
  year: 2017
  ident: ref_65
  article-title: Comparison of 3D-Printed Poly-epsilon-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2016.0418
– volume: 7
  start-page: 907
  year: 2011
  ident: ref_68
  article-title: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.09.039
– volume: 13
  start-page: 065003
  year: 2018
  ident: ref_112
  article-title: Release of lithium from 3D printed polycaprolactone scaffolds regulates macrophage and osteoclast response
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aad916
– volume: 102
  start-page: 1
  year: 2019
  ident: ref_40
  article-title: Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds
  publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.04.026
– volume: 84
  start-page: 45
  year: 2014
  ident: ref_2
  article-title: Spatial regulation of controlled bioactive factor delivery for bone tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2014.11.018
– volume: 7
  start-page: 035002
  year: 2015
  ident: ref_24
  article-title: Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/3/035002
– ident: ref_88
  doi: 10.3390/polym9090450
– volume: 117
  start-page: 246
  year: 2020
  ident: ref_116
  article-title: An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.09.039
– volume: 17
  start-page: 208
  year: 2016
  ident: ref_67
  article-title: Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b01316
– volume: 7
  start-page: 5246
  year: 2017
  ident: ref_132
  article-title: Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05518-3
– volume: 63
  start-page: 1
  year: 2017
  ident: ref_1
  article-title: Silk scaffolds in bone tissue engineering: An overview
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.027
– volume: 30
  start-page: 1507
  year: 2012
  ident: ref_98
  article-title: Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22097
– volume: 26
  start-page: 64
  year: 2020
  ident: ref_99
  article-title: Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2019.0215
– volume: 61
  start-page: 244
  year: 2018
  ident: ref_83
  article-title: Preparation and characterization of spiral-like micro-struts with nano-roughened surface for enhancing the proliferation and differentiation of preosteoblasts
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.12.022
– volume: 25
  start-page: 3
  year: 2021
  ident: ref_12
  article-title: 3D printing PCL/nHA bone scaffolds: Exploring the influence of material synthesis techniques
  publication-title: Biomater Res.
  doi: 10.1186/s40824-021-00204-y
– ident: ref_56
  doi: 10.3390/ma10040421
– volume: 64
  start-page: 377
  year: 2017
  ident: ref_55
  article-title: 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.031
– volume: 6
  start-page: 1569
  year: 2018
  ident: ref_70
  article-title: Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM00073E
– volume: 461
  start-page: 359
  year: 2016
  ident: ref_96
  article-title: Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.09.044
– volume: 4
  start-page: 729
  year: 2018
  ident: ref_5
  article-title: A Review of 3D Printing Technology for Medical Applications
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.07.021
– ident: ref_89
  doi: 10.3390/ma10121434
– volume: 118
  start-page: 111525
  year: 2021
  ident: ref_9
  article-title: Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.111525
– volume: 75
  start-page: 140
  year: 2018
  ident: ref_21
  article-title: Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.05.048
– volume: 30
  start-page: 319
  year: 2016
  ident: ref_124
  article-title: In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.11.012
– volume: 55
  start-page: 101
  year: 2017
  ident: ref_58
  article-title: Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly(caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.06.033
– volume: 59
  start-page: 542
  year: 2018
  ident: ref_108
  article-title: VEGF-mediated angiogenesis and vascularization of a fumarate-crosslinked polycaprolactone (PCLF) scaffold
  publication-title: Connect. Tissue Res.
  doi: 10.1080/03008207.2018.1424145
– volume: 109
  start-page: 961
  year: 2021
  ident: ref_8
  article-title: 3D -printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.34761
– volume: 45
  start-page: 45
  year: 2017
  ident: ref_125
  article-title: 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1668-5
– volume: 109
  start-page: 840
  year: 2021
  ident: ref_15
  article-title: Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.37075
– volume: 3
  start-page: 54
  year: 2017
  ident: ref_95
  article-title: 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering
  publication-title: Int. J. Bioprinting
  doi: 10.18063/IJB.2017.01.005
– volume: 78
  start-page: 763
  year: 2017
  ident: ref_110
  article-title: Optimally designed collagen/polycaprolactone biocomposites supplemented with controlled. release of HA/TCP/rhBMP-2 and HA/TCP/PRP for hard tissue regeneration
  publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl.
  doi: 10.1016/j.msec.2017.04.144
– volume: 127
  start-page: 313
  year: 2021
  ident: ref_120
  article-title: In situ printing of scaffolds for reconstruction of bone defects
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.03.009
– volume: 120
  start-page: 104583
  year: 2021
  ident: ref_63
  article-title: Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater
  doi: 10.1016/j.jmbbm.2021.104583
– volume: 5
  start-page: 2353
  year: 2016
  ident: ref_60
  article-title: 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600182
– volume: 29
  start-page: 3662
  year: 2008
  ident: ref_35
  article-title: Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.05.024
– ident: ref_90
  doi: 10.3390/ijms19113308
– volume: 181
  start-page: 108092
  year: 2019
  ident: ref_20
  article-title: Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108092
– volume: 2
  start-page: 1806
  year: 2016
  ident: ref_50
  article-title: Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00101
– volume: 10
  start-page: 22210
  year: 2020
  ident: ref_13
  article-title: Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78977-w
– volume: 29
  start-page: 601
  year: 2011
  ident: ref_33
  article-title: Organ printing: The future of bone regeneration?
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.07.001
– volume: 231
  start-page: 555
  year: 2017
  ident: ref_66
  article-title: Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411916680236
– volume: 15
  start-page: 435
  year: 2018
  ident: ref_51
  article-title: Fabrication of 3D Printed PCL/PEG Polyblend Scaffold Using Rapid Prototyping System for Bone Tissue Engineering Application
  publication-title: J. Bionic. Eng.
  doi: 10.1007/s42235-018-0034-8
– volume: 9
  start-page: 22950
  year: 2017
  ident: ref_72
  article-title: Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05012
– volume: 11
  start-page: 035028
  year: 2019
  ident: ref_44
  article-title: Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial peptide-polymer conjugates
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aafec8
– volume: 67
  start-page: 1005
  year: 2018
  ident: ref_54
  article-title: Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and in vitro cellular behavior
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2017.1417285
– volume: 105
  start-page: 3432
  year: 2017
  ident: ref_84
  article-title: Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36196
– volume: 82
  start-page: 159
  year: 2012
  ident: ref_34
  article-title: Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.05.085
– volume: 11
  start-page: 025002
  year: 2018
  ident: ref_128
  article-title: A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aaf707
– volume: 8
  start-page: 032001
  year: 2016
  ident: ref_126
  article-title: 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/032001
– volume: 44
  start-page: 428
  year: 2017
  ident: ref_113
  article-title: 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.12686
– volume: 45
  start-page: 1497
  year: 2017
  ident: ref_129
  article-title: 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546517691513
– volume: 6
  start-page: 3620
  year: 2021
  ident: ref_10
  article-title: 3D-printed cell-free PCL–MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration
  publication-title: Bioact. Mater.
– volume: 61
  start-page: 645
  year: 2016
  ident: ref_80
  article-title: Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods
  publication-title: Arch. Met. Mater.
  doi: 10.1515/amm-2016-0110
– volume: 9
  start-page: e2000727
  year: 2020
  ident: ref_37
  article-title: Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration
  publication-title: Adv. Health Mater.
  doi: 10.1002/adhm.202000727
– volume: 107
  start-page: 1295
  year: 2019
  ident: ref_130
  article-title: Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.34222
– ident: ref_14
  doi: 10.3390/polym12091962
– volume: 35
  start-page: 285
  year: 2015
  ident: ref_19
  article-title: Review: Polymeric-Based 3D Printing for Tissue Engineering
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-015-0038-3
– volume: 9
  start-page: 3005
  year: 2021
  ident: ref_64
  article-title: CaO2/gelatin oxygen slow-releasing microspheres facilitate tissue engineering efficiency for the osteonecrosis of femoral head by enhancing the angiogenesis and survival of grafted bone marrow mesenchymal stem cells
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM02071K
– volume: 60
  start-page: 271
  year: 2011
  ident: ref_91
  article-title: BioCell Printing: Integrated automated assembly system for tissue engineering constructs
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2011.03.116
– volume: 12
  start-page: 055003
  year: 2017
  ident: ref_74
  article-title: Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aa8357
– volume: 4
  start-page: 349
  year: 2010
  ident: ref_105
  article-title: Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.245
– volume: 102
  start-page: 4317
  year: 2014
  ident: ref_135
  article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
  publication-title: J. Biomed. Mater. Res. Part A
– ident: ref_45
  doi: 10.3390/biology10050398
– volume: 16
  start-page: 5078
  year: 2017
  ident: ref_79
  article-title: Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2017.7266
– volume: 40
  start-page: 182
  year: 2016
  ident: ref_114
  article-title: Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.02.006
– volume: 10
  start-page: 15447
  year: 2018
  ident: ref_111
  article-title: In situgold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications:in vitroandin vivostudies
  publication-title: Nanoscale
  doi: 10.1039/C8NR04037K
– volume: 8
  start-page: 9836
  year: 2020
  ident: ref_27
  article-title: An insight into cell-laden 3D-printed constructs for bone tissue engineering
  publication-title: J. Mater Chem. B
  doi: 10.1039/D0TB02019B
– volume: 46
  start-page: 175
  year: 2017
  ident: ref_57
  article-title: Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.10.028
– volume: 100
  start-page: 631
  year: 2019
  ident: ref_17
  article-title: Advances in additive manufacturing for bone tissue engineering scaffolds
  publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.03.037
– ident: ref_117
  doi: 10.3390/ma10070831
– volume: 106
  start-page: 663
  year: 2018
  ident: ref_53
  article-title: Three-dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36270
– volume: 91
  start-page: 679
  year: 2018
  ident: ref_29
  article-title: Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.06.005
– volume: 104
  start-page: 991
  year: 2016
  ident: ref_76
  article-title: Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration
  publication-title: Biomed. Mater Res. A.
  doi: 10.1002/jbm.a.35637
– volume: 49
  start-page: 055504
  year: 2016
  ident: ref_22
  article-title: Towards microscale electrohydrodynamic three-dimensional printing
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/49/5/055504
– volume: 11
  start-page: 055005
  year: 2016
  ident: ref_103
  article-title: 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/11/5/055005
– volume: 269
  start-page: 120671
  year: 2021
  ident: ref_136
  article-title: Resorbable additively manufactured scaffold imparts dimensional stability to extraskeletally regenerated bone
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120671
– volume: 3
  start-page: 278
  year: 2018
  ident: ref_16
  article-title: 3D bioactive composite scaffolds for bone tissue engineering
  publication-title: Bioact. Mater.
– volume: 13
  start-page: 342
  year: 2019
  ident: ref_81
  article-title: Hyaline cartilage next generation implants from adipose-tissue-derived mesenchymal stem cells: Comparative study on 3D-printed polycaprolactone scaffold patterns
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.2798
– ident: ref_115
  doi: 10.3390/pharmaceutics13040515
– volume: 7
  start-page: 3166
  year: 2017
  ident: ref_25
  article-title: Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03461-x
– volume: 6
  start-page: 77
  year: 2016
  ident: ref_97
  article-title: Biomaterial-mediated strategies targeting vascularization for bone repair
  publication-title: Drug Deliv. Trans. L Res.
  doi: 10.1007/s13346-015-0236-0
– volume: 8
  start-page: 035021
  year: 2016
  ident: ref_127
  article-title: Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035021
– volume: 23
  start-page: 891
  year: 2017
  ident: ref_118
  article-title: Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2016.0498
– volume: 9
  start-page: 1
  year: 2017
  ident: ref_26
  article-title: Additive manufacturing of polymer melts for implantable medical devices and scaffolds
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa5766
– volume: 113
  start-page: 130
  year: 2020
  ident: ref_93
  article-title: 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.05.040
– volume: 98
  start-page: 602
  year: 2019
  ident: ref_85
  article-title: Modelling and optimization of NaOH-etched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength
  publication-title: Mater. Sci. Eng. C-Mater. Biol. Appl.
  doi: 10.1016/j.msec.2018.12.084
– volume: 25
  start-page: 222
  year: 2019
  ident: ref_102
  article-title: Three-Dimensional Printing of Drug-Loaded Scaffolds for Antibacterial and Analgesic Applications
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2018.0293
– volume: 12
  start-page: e473
  year: 2018
  ident: ref_46
  article-title: Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.2310
– volume: 27
  start-page: 1106
  year: 2020
  ident: ref_119
  article-title: IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2020.1797239
– volume: 115
  start-page: 2365
  year: 2018
  ident: ref_134
  article-title: Segmental bone replacement via patient-specific, three-dimensional printed bioresorbable graft substitutes and their use as templates for the culture of mesenchymal stem cells under mechanical stimulation at various frequencies
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26780
– ident: ref_38
  doi: 10.3390/ijms20040942
– volume: 20
  start-page: 835
  year: 2018
  ident: ref_133
  article-title: Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant
  publication-title: J. Feline Med. Surg.
  doi: 10.1177/1098612X18789549
– volume: 8
  start-page: 045002
  year: 2016
  ident: ref_92
  article-title: A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/4/045002
– volume: 18
  start-page: e1800025
  year: 2018
  ident: ref_52
  article-title: Synergistic Effects of Beta Tri-Calcium Phosphate and Porcine-Derived Decellularized Bone Extracellular Matrix in 3D-Printed Polycaprolactone Scaffold on Bone Regeneration
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201800025
– volume: 43
  start-page: 923
  year: 2017
  ident: ref_59
  article-title: The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration
  publication-title: J. Endod.
  doi: 10.1016/j.joen.2017.01.009
– volume: 2018
  start-page: 5147156
  year: 2018
  ident: ref_109
  article-title: A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility
  publication-title: Biomed Res. Int.
  doi: 10.1155/2018/5147156
– ident: ref_75
  doi: 10.1117/12.2254475
– volume: 5
  start-page: 5037
  year: 2017
  ident: ref_122
  article-title: Via precise interface engineering towards bioinspired composites with improved 3D printing processability and mechanical properties
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00165G
– ident: ref_6
  doi: 10.3390/biomedicines9020128
– volume: 4
  start-page: e2040
  year: 2016
  ident: ref_30
  article-title: Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications
  publication-title: PeerJ
  doi: 10.7717/peerj.2040
– ident: ref_101
  doi: 10.3390/ma11061006
– volume: 106
  start-page: 1788
  year: 2018
  ident: ref_28
  article-title: Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.33994
– volume: 10
  start-page: e2001232
  year: 2021
  ident: ref_23
  article-title: Polymers for Melt Electrowriting
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202001232
SSID ssj0000456617
Score 2.603753
SecondaryResourceType review_article
Snippet Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2754
SubjectTerms 3-D printers
Biocompatibility
Biomedical materials
Bones
Design
Extracellular matrix
Hydrogels
Hydroxyapatite
Lasers
Mechanical properties
Morphology
Polycaprolactone
Polyester resins
Polyesters
Pore size
Rapid prototyping
Review
Scaffolds
Surgical instruments
Three dimensional printing
Tissue engineering
Translations
Title The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering
URI https://www.proquest.com/docview/2565610952
https://www.proquest.com/docview/2566035969
https://pubmed.ncbi.nlm.nih.gov/PMC8400029
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60HvQiPrG-WEE8udTdZJP0JK22iqAUbaG3kOxutFCT2taD_96ZNH3koJBL2A0TZnZ3Xsv3AVxGgdGYVfgcnZnDXS0DHlnf5eja6PFFkuMUPL94jz33qa_6RcFtUlyrnJ-J-UFtMk018pqkyENgQCBvR1-cWKOou1pQaKzDBh7BQVCBjWbrpfO6qLJQwII-egau6WB-Xxtlw59P4QhC53XLzmgZYZbvR644nPYObBeRImvMTLsLazbdg827OUHbPryjiVlj2YBmWcI6KFdHKGJIPDqpZYOUddFclt8TjP8MgoN1xoOcIIK96ShJsqGZMIxdWZM-6OaWYCs4hQfQa7e6d4-84E3g2lXBlMvYOgq9jHQ1wcPhtrReHAuTaGGorWmMrMfWSoX7WwV1TXiRSlsjIs_RgRDOIVRSlHgEzMTKtdIK1_dRlc5NpIyjkkQZP9aJqdercD1XYKgLUHHithiGmFyQvsOSvqtwtZg-mqFp_DXxdG6NsNhUk3C5BKpwsRhGpVOPI0pt9p3P8QiV0MNf80tWXAgkQO3ySDr4yIG1MdmlLuXx_8JPYEvSxRbCxfVPoTIdf9szjEym8TmsB-2H82IR4ttDX_wCrIXpMQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMBlBewiujzWSMuesMCOnaSH1YoFSnkKiSJxC4ntQKWSFFq04k_xG3cmaVpygBtSbnYy0cwXz4zH-QbgZxxag1lFwNGZeVwZGfLYBYqja6MrEGnBU3B-4bev1cmNvpmC1-pfGDpWWa2JxUJtc0N75DuSIg-BAYH803_k1DWKqqtVC40SFqfu5R-mbIPfxwdo3y0pW4ed_TYfdRXgRulwyGXiPI1rsFSGyNMQtM5PEmFTIywV_ayVzcQ5qRH9OmwaYlPUxlkR-54JhfDwudMwqzz05PRneutovKdD4RFGBCWVJ47v7vTz3suD8ARxAau665vEs_XTmG_cW2sBvoziUrZXAmkRply2BHP7VTu4r3CHgGJ7k3I3y1N2iXJNjCJ61LUnc6ybsQ6Cw_EDahpQEn6wy6du0Y6CXZk4TfOeHTCMlNlfuqFT2J29YUX8Btefos9lmMlQ4gowm2jlpBMqCFCV3m6srafTVNsgMaltNhuwXSkwMiMKc-qk0YswlSF9RzV9N-DXeHq_5O54b-JaZY1o9AkPogngGrA5HkalU0Ulzlz-XMzxiQPRx1cLalYcCyT67vpI1r0vaLwxtaaa6PePhf-AuXbn_Cw6O744XYV5SUdqiJE3WIOZ4dOzW8eYaJhsFEBkcPvZyP8PwNQhmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcIFFgk4ISV7q7Xax8QaptGLYUoglTqzbX3AZGCHZpUqH-NX8eMH0l9gFsl37z2WLPf7szsjL8BeJPF1mBUoQM0ZjIIjYiDzOkwQNNGl-a-4in4Mo6OTsNPZ-psC_60_8JQWWW7J1YbtS0NnZEPBHkeHB0CMfBNWcRkOPq4-BVQBynKtLbtNGqInLir3xi-LT8cD3Gu3woxOpweHAVNh4HAhCpeBSJ3UuF-LEJDRGoIYBflObfecEsJQGtFkjsnFK4EFSeGmBWVcZZnkTQx5xLfewu2NUVFPdjePxxPvq5PeMhZQv-gJvaUMtkdLMr51U8uOTEDh11DuPFuu7WZ14zd6D7ca7xUtlfD6gFsueIh3Dlom8M9gu8IL7a3SX6z0rMJyjUZiphTD5_CsVnBpggVFwyphUBN_8EmF7OqOQX7ZjLvy7ldMvSb2T49MK1QwK5xJD6G0xvR6BPoFSjxKTCbq9AJx0OtUZVyN1NWKu-V1bnxNkn68L5VYGoaQnPqqzFPMbAhfacdfffh3Xr4omby-NfAnXY20mZBL9MN_Prwen0blU75laxw5WU1JiJGxAg_TXdmcS2QyLy7d4rZj4rUGwNtypA--7_wV3AbUZ9-Ph6fPIe7gupriJ5X70BvdXHpXqCDtMpfNkhkcH7T4P8LueYnLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Polycaprolactone+in+Three-Dimensional+Printing+Scaffolds+for+Bone+Tissue+Engineering&rft.jtitle=Polymers&rft.au=Yang%2C+Xiangjun&rft.au=Wang%2C+Yuting&rft.au=Zhou%2C+Ying&rft.au=Chen%2C+Junyu&rft.date=2021-08-17&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Fpolym13162754&rft_id=info%3Apmid%2F34451293&rft.externalDocID=PMC8400029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon