Mean square rate of convergence for random walk approximation of forward-backward SDEs
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$-convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the ra...
Saved in:
Published in | Advances in applied probability Vol. 52; no. 3; pp. 735 - 771 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.09.2020
Applied Probability Trust |
Subjects | |
Online Access | Get full text |
ISSN | 0001-8678 1475-6064 |
DOI | 10.1017/apr.2020.17 |
Cover
Loading…
Abstract | Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$-convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in $C^{2,\alpha}$. The proof relies on an approximative representation of $Z^n$ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods. |
---|---|
AbstractList | Let (
Y
,
Z
) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk
$B^n$
from the underlying Brownian motion
B
by Skorokhod embedding, one can show
$L_2$
-convergence of the corresponding solutions
$(Y^n,Z^n)$
to
$(Y, Z).$
We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in
$C^{2,\alpha}$
. The proof relies on an approximative representation of
$Z^n$
and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods. Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk B n from the underlying Brownian motion B by Skorohod embedding, one can show L 2 convergence of the corresponding solutions (Y n , Z n) to (Y, Z). We estimate the rate of convergence in dependence of smoothness properties, especially for a terminal condition function in C 2,α. The proof relies on an approximative representation of Z n and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the PDE associated to the FBSDE as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by stochastic methods. Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk \(B^n\) from the underlying Brownian motion B by Skorokhod embedding, one can show \(L_2\)-convergence of the corresponding solutions \((Y^n,Z^n)\) to \((Y, Z).\) We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in \(C^{2,\alpha}\). The proof relies on an approximative representation of \(Z^n\) and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods. Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk B n from the underlying Brownian motion B by Skorokhod embedding, one can show L₂-convergence of the corresponding solutions (Y ⁿ, Z ⁿ) to (Y, Z). We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in C²,α. The proof relies on an approximative representation of Zⁿ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods. |
Author | Labart, Céline Luoto, Antti Geiss, Christel |
Author_xml | – sequence: 1 givenname: Christel surname: Geiss fullname: Geiss, Christel organization: University of Jyvaskyla – sequence: 2 givenname: Céline surname: Labart fullname: Labart, Céline organization: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA – sequence: 3 givenname: Antti surname: Luoto fullname: Luoto, Antti organization: University of Jyvaskyla |
BackLink | https://hal.science/hal-01838449$$DView record in HAL |
BookMark | eNp1kEtLAzEUhYMo2Kor18KAK5HRJJNJ0mWp9QEVFz62Ia_RqdPJNJm2-u_N2FJBdHUf-e7h5PTBbu1qC8AxghcIInYpG3-BIY4T2wE9RFieUkjJLuhBCFHKKeP7oB_CNI4Z47AHXu6trJMwX0hvEy9bm7gi0a5eWv9qa22Twvm4r42bJStZvSeyabz7KGeyLV3dwRFYSW9SJfV71ySPV-NwCPYKWQV7tKkH4Pl6_DS6TScPN3ej4STVJOdtipWxuSJIWcUxyxTPDOSI40JrM8iMGeQKo8xiQxA1mkuGqYY6J1JZaDWj2QE4W-u-yUo0Ptryn8LJUtwOJ6LbQcQzTshgmUX2dM3GD8wXNrRi6ha-jvYEJiTHDFKKI3W-prR3IXhbbGURFF3IIoYsupAFYpFGv2hdtt_RtF6W1T83J-ubaWid38oTTvPoAsb3dKMpZ8qX5tX-GP1L7wtUh5oU |
CitedBy_id | crossref_primary_10_1214_23_PS18 crossref_primary_10_3150_20_BEJ1259 crossref_primary_10_1515_jnma_2021_0111 |
Cites_doi | 10.1214/105051605000000412 10.1214/07-AAP448 10.1016/j.spa.2013.10.005 10.7151/dmps.1145 10.1007/s007800200094 10.1016/j.spa.2012.02.006 10.1016/j.spa.2017.09.014 10.1080/17442508.2017.1290095 10.1016/j.spa.2014.11.018 10.1214/aoap/1075828058 10.3150/12-BEJ445 10.1111/1467-9965.00022 10.1007/978-3-662-05265-5 10.1214/105051605000000674 10.1214/105051605000000232 10.1016/j.spa.2018.12.009 10.1214/13-AAP943 10.1007/s10915-018-00903-0 10.3150/19-BEJ1120 10.1016/j.spa.2017.03.005 10.1016/j.spa.2010.03.015 10.1214/18-AAP1429 10.1080/07362994.2011.610162 10.1007/978-3-642-02380-4 10.1051/ps:2007025 10.1051/ps:2006006 10.3150/bj/1072215199 10.1007/s10255-006-6005-6 10.1214/ECP.v6-1030 10.1016/j.spa.2016.01.006 10.1137/140977047 10.1137/120902951 10.1051/m2an/2010059 10.1016/j.spa.2004.01.001 10.1214/13-AAP933 10.1080/17442508.2015.1090990 |
ContentType | Journal Article |
Copyright | Applied Probability Trust 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Applied Probability Trust 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V L7M L~C L~D M0C M0N M2O M7S MBDVC P5Z P62 PADUT PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U 1XC VOOES |
DOI | 10.1017/apr.2020.17 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1475-6064 |
EndPage | 771 |
ExternalDocumentID | oai_HAL_hal_01838449v3 10_1017_apr_2020_17 48654520 |
GroupedDBID | -~X 09C 09E 0R~ 23M 2AX 3V. 5GY 6J9 7WY 8FE 8FG 8FL 8G5 8VB AAAVZ AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAKYL AANRG AARAB AASVR AAUKB ABBHK ABEFU ABFAN ABGDZ ABJCF ABJNI ABMWE ABMYL ABQDR ABQTM ABROB ABTAH ABUWG ABXAU ABXSQ ABYWD ABZCX ACBMC ACCHT ACGFO ACGFS ACIWK ACMTB ACNCT ACQFJ ACTCJ ACTMH ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZWT ADACV ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADODI ADOVH ADOVT ADULT ADVJH AEBAK AEBPU AEGXH AEHGV AELKX AELLO AELPN AENCP AENEX AENGE AEUPB AEYYC AFFUJ AFKQG AFKRA AFLVW AFVYC AFXKK AGBYD AGJUD AGOOT AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKBRZ AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARAPS ARZZG AS~ ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BDTQF BENPR BESQT BEZIV BGLVJ BHOJU BJBOZ BKOMP BLZWO BMAJL BPHCQ C-6 CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC CS3 D1I DOHLZ DQDLB DSRWC DWQXO EBS EBU ECEWR EFSUC EGQIC EJD F5P FEDTE FRNLG GIFXF GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF H~9 IH6 IOEEP IOO JAA JAAYA JBMMH JBZCM JENOY JHFFW JHPGK JKQEH JLEZI JLXEF JMS JPL JQKCU JSODD JST K1G K60 K6V K6~ K7- KAFGG KB. KCGVB KFECR L6V LHUNA LW7 M0C M0N M2O M7S NIKVX NZEOI O9- P0- P2P P62 PADUT PDBOC PQBIZ PQQKQ PROAC PTHSS PUASD PYCCK QWB RAMDC RBU RCA RNS ROL RPE S6U SA0 SAAAG T9M TN5 U5U UT1 WFFJZ XFK YYP ZDLDU ZGI ZJOSE ZL0 ZMEZD ZY4 ZYDXJ ~02 ABVZP ABXHF ACDLN ADNIK AECCQ AFZFC AKMAY ALRMG AMVHM IPSME PHGZM PHGZT PQBZA AAWIL AAYXX ABAWQ ABVKB ACDIW ACHJO AGLNM AIHAF CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC VOOES |
ID | FETCH-LOGICAL-c458t-2bde5b41beb8273b83d08182fccd93dd95b213e2d416dc8a726c0c54abe0ec763 |
IEDL.DBID | 8FG |
ISSN | 0001-8678 |
IngestDate | Fri May 09 12:14:34 EDT 2025 Sat Aug 23 14:07:54 EDT 2025 Tue Jul 01 02:36:06 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Thu Jul 03 21:54:24 EDT 2025 Wed Mar 13 05:54:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Backward stochastic differential equations 60H10 60H30 60G50 finite difference equation random walk approximation approximation scheme convergence rate 60H35 random walk approximation 2010 Mathematics Subject Classification: Primary 60H10 60G50 Secondary 60H30 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-2bde5b41beb8273b83d08182fccd93dd95b213e2d416dc8a726c0c54abe0ec763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7909-7703 |
OpenAccessLink | https://hal.science/hal-01838449 |
PQID | 2445270662 |
PQPubID | 31672 |
PageCount | 37 |
ParticipantIDs | hal_primary_oai_HAL_hal_01838449v3 proquest_journals_2445270662 crossref_primary_10_1017_apr_2020_17 crossref_citationtrail_10_1017_apr_2020_17 jstor_primary_48654520 cambridge_journals_10_1017_apr_2020_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Sheffield |
PublicationTitle | Advances in applied probability |
PublicationTitleAlternate | Adv. Appl. Probab |
PublicationYear | 2020 |
Publisher | Cambridge University Press Applied Probability Trust |
Publisher_xml | – name: Cambridge University Press – name: Applied Probability Trust |
References | 26 2018; 128 2006; 10 2015; 125 2008; 18 2015; 53 2006; 16 2002; 12 2019; 79 2017; 89 2014; 24 2010; 120 2016; 126 2019; 129 2007; 11 2007; 12 2012; 32 1997; 7 2013; 19 2004; 111 2001; 6 2004; 14 2003; 7 2003; 9 2019; 29 2008; 24 2011; 45 2014; 52 2005; 15 2011; 29 2014; 124 2016; 88 S0001867820000178_ref40 S0001867820000178_ref41 Tao (S0001867820000178_ref35) 2010 S0001867820000178_ref42 S0001867820000178_ref20 S0001867820000178_ref43 S0001867820000178_ref21 S0001867820000178_ref22 S0001867820000178_ref23 S0001867820000178_ref24 S0001867820000178_ref25 S0001867820000178_ref26 S0001867820000178_ref27 S0001867820000178_ref28 Chassagneux (S0001867820000178_ref12) 2017 S0001867820000178_ref31 S0001867820000178_ref10 S0001867820000178_ref32 S0001867820000178_ref11 S0001867820000178_ref33 S0001867820000178_ref34 S0001867820000178_ref6 Ma (S0001867820000178_ref29) 2007; 12 S0001867820000178_ref5 S0001867820000178_ref13 S0001867820000178_ref36 S0001867820000178_ref4 S0001867820000178_ref14 S0001867820000178_ref15 S0001867820000178_ref3 S0001867820000178_ref37 S0001867820000178_ref38 S0001867820000178_ref16 S0001867820000178_ref2 S0001867820000178_ref1 S0001867820000178_ref17 S0001867820000178_ref18 S0001867820000178_ref19 S0001867820000178_ref9 S0001867820000178_ref8 S0001867820000178_ref7 Ma (S0001867820000178_ref30) 2002; 12 Weinan (S0001867820000178_ref39) 2019; 79 |
References_xml | – volume: 89 start-page: 1201 year: 2017 end-page: 1227 article-title: $L_p$ publication-title: Stochastics – volume: 14 start-page: 459 year: 2004 end-page: 488 article-title: A numerical scheme for BSDEs publication-title: Ann. Appl. Prob. – volume: 29 start-page: 1640 year: 2019 end-page: 1684 article-title: Numerical method for FBSDEs of McKean–Vlasov type publication-title: Ann. Appl. Prob. – volume: 29 start-page: 1008 year: 2011 end-page: 1032 article-title: Numerical method for reflected backward stochastic differential equations publication-title: Stoch. Anal. Appl. – volume: 128 start-page: 2489 year: 2018 end-page: 2537 article-title: Discretizing Malliavin calculus publication-title: Stoch. Proc. Appl. – volume: 129 start-page: 4597 year: 2019 end-page: 4637 article-title: Rate of convergence for discrete-time approximation of reflected BSDEs arising in switching problems publication-title: Stoch. Proc. Appl. – volume: 88 start-page: 491 year: 2016 end-page: 539 article-title: BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration publication-title: Stochastics – volume: 15 start-page: 1798 year: 2005 end-page: 1831 article-title: Representation of solutions to BSDEs associated with a degenerate FSDE publication-title: Ann. Appl. Prob. – volume: 6 start-page: 1 year: 2001 end-page: 14 article-title: Donsker-type theorem for BSDEs publication-title: Electron. Commun. Prob. – volume: 7 start-page: 1 year: 1997 end-page: 71 article-title: Backward stochastic differential equations in finance publication-title: Math. Finance – volume: 24 start-page: 679 year: 2014 end-page: 720 article-title: Runge–Kutta schemes for backward stochastic differential equations publication-title: Ann. Appl. Prob. – volume: 9 start-page: 1003 year: 2003 end-page: 1049 article-title: A quantization algorithm for solving multidimensional discrete-time optimal stopping problems publication-title: Bernoulli – volume: 12 start-page: 1390 year: 2002 end-page: 1418 article-title: Representation theorems for backward stochastic differential equations publication-title: Ann. Appl. Prob. – volume: 24 start-page: 1129 year: 2014 end-page: 1171 article-title: Simulation of BSDEs by Wiener chaos expansion publication-title: Ann. Appl. Prob. – volume: 24 start-page: 1 year: 2008 end-page: 18 article-title: Convergence of solutions of discrete reflected backward SDE’s and simulations publication-title: Acta Math. Appl. Sin. Engl. Ser. – volume: 124 start-page: 1112 year: 2014 end-page: 1140 article-title: A numerical algorithm for a class of BSDEs via the branching process publication-title: Stoch. Proc. Appl. – volume: 32 start-page: 69 year: 2012 end-page: 85 article-title: Discrete approximations of generalized RBSDE with random terminal time publication-title: Discuss. Math. Prob. Statist. – volume: 120 start-page: 1133 year: 2010 end-page: 1158 article-title: On the Monte Carlo simulation of BSDEs: an improvement on the Malliavin weights publication-title: Stoch. Proc. Appl. – volume: 26 start-page: 159 end-page: 190 article-title: 2020). Random walk approximation of BSDEs with Hölder continuous terminal condition publication-title: Bernoulli – volume: 53 start-page: 1172 year: 2015 end-page: 1193 article-title: Numerical stability analysis of the Euler scheme for BSDEs publication-title: SIAM J. Numer. Anal. – volume: 125 start-page: 2206 year: 2015 end-page: 2255 article-title: A cubature based algorithm to solve decoupled McKean–Vlasov forward-backward stochastic differential equations publication-title: Stoch. Proc. Appl. – volume: 15 start-page: 2172 year: 2005 end-page: 2202 article-title: A regression-based Monte Carlo method to solve backward stochastic differential equations publication-title: Ann. Appl. Prob. – volume: 19 start-page: 1047 year: 2013 end-page: 1085 article-title: BS publication-title: Bernoulli – volume: 11 start-page: 381 year: 2007 end-page: 384 article-title: Corrigendum to ‘Stability of solutions of BSDEs with random terminal time’ publication-title: ESAIM Prob. Statist. – volume: 18 start-page: 143 year: 2008 end-page: 177 article-title: Time discretization and Markovian iteration for coupled FBSDEs publication-title: Ann. Appl. Prob. – volume: 52 start-page: 2815 year: 2014 end-page: 2836 article-title: Linear multistep schemes for BSDEs publication-title: SIAM J. Numer. Anal. – volume: 7 start-page: 337 year: 2003 end-page: 361 article-title: The rate of convergence of the binomial tree scheme publication-title: Finance Stoch. – volume: 45 start-page: 335 year: 2011 end-page: 360 article-title: Numerical algorithms for backward stochastic differential equations with 1-d Brownian motion: convergence and simulations publication-title: Math. Modelling Numer. Anal. – volume: 111 start-page: 175 year: 2004 end-page: 206 article-title: Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations publication-title: Stoch. Proc. Appl. – volume: 79 start-page: 1534 year: 2019 end-page: 1571 article-title: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations publication-title: J. Sci. Comput. – volume: 16 start-page: 140 year: 2006 end-page: 184 article-title: A forward-backward stochastic algorithm for quasi-linear PDEs publication-title: Ann. Appl. Prob. – volume: 126 start-page: 2123 year: 2016 end-page: 2162 article-title: Simulation of BSDEs with jumps by Wiener chaos expansion publication-title: Stoch. Proc. Appl. – volume: 12 start-page: 302 year: 2007 end-page: 316 article-title: Numerical method for backward stochastic differential equations publication-title: Ann. Appl. Prob. – volume: 10 start-page: 141 year: 2006 end-page: 163 article-title: Stability of solutions of BSDEs with random terminal time publication-title: ESAIM Prob. Statist. – ident: S0001867820000178_ref23 doi: 10.1214/105051605000000412 – ident: S0001867820000178_ref5 doi: 10.1214/07-AAP448 – ident: S0001867820000178_ref24 doi: 10.1016/j.spa.2013.10.005 – ident: S0001867820000178_ref26 doi: 10.7151/dmps.1145 – ident: S0001867820000178_ref38 doi: 10.1007/s007800200094 – ident: S0001867820000178_ref20 doi: 10.1016/j.spa.2012.02.006 – ident: S0001867820000178_ref4 doi: 10.1016/j.spa.2017.09.014 – ident: S0001867820000178_ref28 doi: 10.1080/17442508.2017.1290095 – ident: S0001867820000178_ref2 – ident: S0001867820000178_ref15 doi: 10.1016/j.spa.2014.11.018 – ident: S0001867820000178_ref42 doi: 10.1214/aoap/1075828058 – ident: S0001867820000178_ref16 doi: 10.3150/12-BEJ445 – ident: S0001867820000178_ref19 doi: 10.1111/1467-9965.00022 – ident: S0001867820000178_ref25 doi: 10.1007/978-3-662-05265-5 – ident: S0001867820000178_ref18 doi: 10.1214/105051605000000674 – volume: 12 start-page: 302 year: 2007 ident: S0001867820000178_ref29 article-title: Numerical method for backward stochastic differential equations publication-title: Ann. Appl. Prob. – ident: S0001867820000178_ref43 doi: 10.1214/105051605000000232 – volume-title: An Epsilon of Room, I: Real Analysis. year: 2010 ident: S0001867820000178_ref35 – ident: S0001867820000178_ref14 doi: 10.1016/j.spa.2018.12.009 – volume: 12 start-page: 1390 year: 2002 ident: S0001867820000178_ref30 article-title: Representation theorems for backward stochastic differential equations publication-title: Ann. Appl. Prob. – ident: S0001867820000178_ref8 doi: 10.1214/13-AAP943 – volume: 79 start-page: 1534 year: 2019 ident: S0001867820000178_ref39 article-title: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-00903-0 – ident: S0001867820000178_ref22 doi: 10.3150/19-BEJ1120 – ident: S0001867820000178_ref40 doi: 10.1016/j.spa.2017.03.005 – ident: S0001867820000178_ref17 doi: 10.1016/j.spa.2010.03.015 – ident: S0001867820000178_ref11 doi: 10.1214/18-AAP1429 – ident: S0001867820000178_ref31 doi: 10.1080/07362994.2011.610162 – ident: S0001867820000178_ref34 doi: 10.1007/978-3-642-02380-4 – ident: S0001867820000178_ref37 doi: 10.1051/ps:2007025 – ident: S0001867820000178_ref1 – year: 2017 ident: S0001867820000178_ref12 – ident: S0001867820000178_ref36 doi: 10.1051/ps:2006006 – ident: S0001867820000178_ref3 doi: 10.3150/bj/1072215199 – ident: S0001867820000178_ref32 doi: 10.1007/s10255-006-6005-6 – ident: S0001867820000178_ref7 doi: 10.1214/ECP.v6-1030 – ident: S0001867820000178_ref21 doi: 10.1016/j.spa.2016.01.006 – ident: S0001867820000178_ref13 doi: 10.1137/140977047 – ident: S0001867820000178_ref9 doi: 10.1137/120902951 – ident: S0001867820000178_ref41 – ident: S0001867820000178_ref33 doi: 10.1051/m2an/2010059 – ident: S0001867820000178_ref6 doi: 10.1016/j.spa.2004.01.001 – ident: S0001867820000178_ref10 doi: 10.1214/13-AAP933 – ident: S0001867820000178_ref27 doi: 10.1080/17442508.2015.1090990 |
SSID | ssj0003780 |
Score | 2.2807865 |
Snippet | Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying... Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk B n from the underlying Brownian... Let ( Y , Z ) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying... Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk \(B^n\) from the underlying... Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk B n from the underlying Brownian motion B by Skorohod embedding, one... |
SourceID | hal proquest crossref jstor cambridge |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 735 |
SubjectTerms | Approximation Brownian motion Convergence Difference equations Differential calculus Finite difference method Mathematical analysis Mathematics Original Article Original Articles Partial differential equations Probabilistic methods Probability Properties (attributes) Random variables Random walk Smoothness |
Title | Mean square rate of convergence for random walk approximation of forward-backward SDEs |
URI | https://www.cambridge.org/core/product/identifier/S0001867820000178/type/journal_article https://www.jstor.org/stable/48654520 https://www.proquest.com/docview/2445270662 https://hal.science/hal-01838449 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9NADLbY-sIepg2oVhjTCU17QIpI7i7N5QmNraVC64TYhvoW5X5piJF2S2H8-diXNB1i4iVKLn6IbMt27j5_BjjEisB5q2XEfWwimQsZlWKIF56b0mshZDiKmZ4PJ1fy0yydtRtudQurXMXEEKjt3NAe-TtMQynPiK_8_eI2oqlRdLrajtDYgF6CmYY8XI0_dpFYZKppQcFfZoVRue3PI8rockFkoByfsoesCn9lp41rwkY2MMV_QnXIP-Md2G4LR3bcWHoXnrjqGWxNO9bV-jl8nbqyYvUtWt0xooBgc88CrDx0WDqGBSquV3b-g92XN99ZIBT__a3pXiRhFAgoWk27enjDLk5H9Qu4Go8uTyZROzchMjJVy4hr61ItE-20wupEK2GJuI57Y2wurM1TzRPhuMVizBpVZnxoYpPKUrvYGQw4fdis5pXbA0bsdjI3widayFwr5bX2sfAyLjMtlBvAUae7ovX-umiQY1mBSi5IyUWSDeDtSrGFadnHaQjGzePCh53woiHdeFzsDVqokyCi7MnxWUFrMUYqJWX-SwygHwzYiUk1pLnq8QD2VxZdf_nay17-__UreEpf0aDN9mFzeffTvcbyZKkPgg8eQO_D6Pzzlz_56eN8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wOIgH44u4itox6MFkwmx3z07PgRgirIvschEIt2H6FQ0wuzir4J_yN1rV8wAj8cZlMo_KpFNVXVXdXfUVwDpGBM5bLSPuYxPJTMioEAO88MwUXgshw1HMZH8wOpSfj5PjBfjd1sJQWmVrE4OhtlNDe-Qb6IYSnhJe-YfZRURdo-h0tW2hUavFnvt1iUu2anN3G-X7lvPhzsHHUdR0FYiMTNQ84tq6RMu-dlqh79ZKWIJ1494Ymwlrs0TzvnDcYqhijSpSPjCxSWShXewMTkf87yIsSyEySiFUw0-d5RepqktecImu0As09YAEUV3MCHyU41N6E8XhL2-4-JVyMeu0yH9cQ_B3w4fwoAlU2VatWY9gwZWP4f6kQ3mtnsDRxBUlqy5QyxwjyAk29SyksYeKTscwIMb3pZ2es8vi7JQFAPOrb3W1JBEjQcja1bSLiDfsy_ZO9RQO74Sjq7BUTkv3DBih6cnMCN_XQmZaKa-1j4WXcZFqoVwP3nW8y5vZVuV1plqaI5NzYnLeT3vwvmVsbhq0c2q6cXY78XpHPKtBPm4ne4MS6igImHu0Nc7pXYyWUUmZ_RQ9WA0C7MikGlAf97gHa61Er0d-rdXP___5NdwbHUzG-Xh3f-8FrNCI6ky3NViaf__hXmJoNNevgj4yOLnrCfAHPYYgBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean+square+rate+of+convergence+for+random+walk+approximation+of+forward-backward+SDEs&rft.jtitle=Advances+in+applied+probability&rft.au=Geiss%2C+Christel&rft.au=Labart%2C+C%C3%A9line&rft.au=Luoto%2C+Antti&rft.date=2020-09-01&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=52&rft.issue=3&rft.spage=735&rft.epage=771&rft_id=info:doi/10.1017%2Fapr.2020.17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_apr_2020_17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon |