Mean square rate of convergence for random walk approximation of forward-backward SDEs

Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$-convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the ra...

Full description

Saved in:
Bibliographic Details
Published inAdvances in applied probability Vol. 52; no. 3; pp. 735 - 771
Main Authors Geiss, Christel, Labart, Céline, Luoto, Antti
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2020
Applied Probability Trust
Subjects
Online AccessGet full text
ISSN0001-8678
1475-6064
DOI10.1017/apr.2020.17

Cover

Loading…
Abstract Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$-convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in $C^{2,\alpha}$. The proof relies on an approximative representation of $Z^n$ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.
AbstractList Let ( Y , Z ) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$ -convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in $C^{2,\alpha}$ . The proof relies on an approximative representation of $Z^n$ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.
Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk B n from the underlying Brownian motion B by Skorohod embedding, one can show L 2 convergence of the corresponding solutions (Y n , Z n) to (Y, Z). We estimate the rate of convergence in dependence of smoothness properties, especially for a terminal condition function in C 2,α. The proof relies on an approximative representation of Z n and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the PDE associated to the FBSDE as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by stochastic methods.
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk \(B^n\) from the underlying Brownian motion B by Skorokhod embedding, one can show \(L_2\)-convergence of the corresponding solutions \((Y^n,Z^n)\) to \((Y, Z).\) We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in \(C^{2,\alpha}\). The proof relies on an approximative representation of \(Z^n\) and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk B n from the underlying Brownian motion B by Skorokhod embedding, one can show L₂-convergence of the corresponding solutions (Y ⁿ, Z ⁿ) to (Y, Z). We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in C²,α. The proof relies on an approximative representation of Zⁿ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.
Author Labart, Céline
Luoto, Antti
Geiss, Christel
Author_xml – sequence: 1
  givenname: Christel
  surname: Geiss
  fullname: Geiss, Christel
  organization: University of Jyvaskyla
– sequence: 2
  givenname: Céline
  surname: Labart
  fullname: Labart, Céline
  organization: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA
– sequence: 3
  givenname: Antti
  surname: Luoto
  fullname: Luoto, Antti
  organization: University of Jyvaskyla
BackLink https://hal.science/hal-01838449$$DView record in HAL
BookMark eNp1kEtLAzEUhYMo2Kor18KAK5HRJJNJ0mWp9QEVFz62Ia_RqdPJNJm2-u_N2FJBdHUf-e7h5PTBbu1qC8AxghcIInYpG3-BIY4T2wE9RFieUkjJLuhBCFHKKeP7oB_CNI4Z47AHXu6trJMwX0hvEy9bm7gi0a5eWv9qa22Twvm4r42bJStZvSeyabz7KGeyLV3dwRFYSW9SJfV71ySPV-NwCPYKWQV7tKkH4Pl6_DS6TScPN3ej4STVJOdtipWxuSJIWcUxyxTPDOSI40JrM8iMGeQKo8xiQxA1mkuGqYY6J1JZaDWj2QE4W-u-yUo0Ptryn8LJUtwOJ6LbQcQzTshgmUX2dM3GD8wXNrRi6ha-jvYEJiTHDFKKI3W-prR3IXhbbGURFF3IIoYsupAFYpFGv2hdtt_RtF6W1T83J-ubaWid38oTTvPoAsb3dKMpZ8qX5tX-GP1L7wtUh5oU
CitedBy_id crossref_primary_10_1214_23_PS18
crossref_primary_10_3150_20_BEJ1259
crossref_primary_10_1515_jnma_2021_0111
Cites_doi 10.1214/105051605000000412
10.1214/07-AAP448
10.1016/j.spa.2013.10.005
10.7151/dmps.1145
10.1007/s007800200094
10.1016/j.spa.2012.02.006
10.1016/j.spa.2017.09.014
10.1080/17442508.2017.1290095
10.1016/j.spa.2014.11.018
10.1214/aoap/1075828058
10.3150/12-BEJ445
10.1111/1467-9965.00022
10.1007/978-3-662-05265-5
10.1214/105051605000000674
10.1214/105051605000000232
10.1016/j.spa.2018.12.009
10.1214/13-AAP943
10.1007/s10915-018-00903-0
10.3150/19-BEJ1120
10.1016/j.spa.2017.03.005
10.1016/j.spa.2010.03.015
10.1214/18-AAP1429
10.1080/07362994.2011.610162
10.1007/978-3-642-02380-4
10.1051/ps:2007025
10.1051/ps:2006006
10.3150/bj/1072215199
10.1007/s10255-006-6005-6
10.1214/ECP.v6-1030
10.1016/j.spa.2016.01.006
10.1137/140977047
10.1137/120902951
10.1051/m2an/2010059
10.1016/j.spa.2004.01.001
10.1214/13-AAP933
10.1080/17442508.2015.1090990
ContentType Journal Article
Copyright Applied Probability Trust 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Applied Probability Trust 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
1XC
VOOES
DOI 10.1017/apr.2020.17
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1475-6064
EndPage 771
ExternalDocumentID oai_HAL_hal_01838449v3
10_1017_apr_2020_17
48654520
GroupedDBID -~X
09C
09E
0R~
23M
2AX
3V.
5GY
6J9
7WY
8FE
8FG
8FL
8G5
8VB
AAAVZ
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAKYL
AANRG
AARAB
AASVR
AAUKB
ABBHK
ABEFU
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABMYL
ABQDR
ABQTM
ABROB
ABTAH
ABUWG
ABXAU
ABXSQ
ABYWD
ABZCX
ACBMC
ACCHT
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACQFJ
ACTCJ
ACTMH
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZWT
ADACV
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AELKX
AELLO
AELPN
AENCP
AENEX
AENGE
AEUPB
AEYYC
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFXKK
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIAGR
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKBRZ
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARAPS
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BDTQF
BENPR
BESQT
BEZIV
BGLVJ
BHOJU
BJBOZ
BKOMP
BLZWO
BMAJL
BPHCQ
C-6
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
D1I
DOHLZ
DQDLB
DSRWC
DWQXO
EBS
EBU
ECEWR
EFSUC
EGQIC
EJD
F5P
FEDTE
FRNLG
GIFXF
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
H~9
IH6
IOEEP
IOO
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JSODD
JST
K1G
K60
K6V
K6~
K7-
KAFGG
KB.
KCGVB
KFECR
L6V
LHUNA
LW7
M0C
M0N
M2O
M7S
NIKVX
NZEOI
O9-
P0-
P2P
P62
PADUT
PDBOC
PQBIZ
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
RNS
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UT1
WFFJZ
XFK
YYP
ZDLDU
ZGI
ZJOSE
ZL0
ZMEZD
ZY4
ZYDXJ
~02
ABVZP
ABXHF
ACDLN
ADNIK
AECCQ
AFZFC
AKMAY
ALRMG
AMVHM
IPSME
PHGZM
PHGZT
PQBZA
AAWIL
AAYXX
ABAWQ
ABVKB
ACDIW
ACHJO
AGLNM
AIHAF
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c458t-2bde5b41beb8273b83d08182fccd93dd95b213e2d416dc8a726c0c54abe0ec763
IEDL.DBID 8FG
ISSN 0001-8678
IngestDate Fri May 09 12:14:34 EDT 2025
Sat Aug 23 14:07:54 EDT 2025
Tue Jul 01 02:36:06 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Thu Jul 03 21:54:24 EDT 2025
Wed Mar 13 05:54:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Backward stochastic differential equations
60H10
60H30
60G50
finite difference equation
random walk approximation
approximation scheme
convergence rate
60H35
random walk approximation 2010 Mathematics Subject Classification: Primary 60H10
60G50 Secondary 60H30
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-2bde5b41beb8273b83d08182fccd93dd95b213e2d416dc8a726c0c54abe0ec763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7909-7703
OpenAccessLink https://hal.science/hal-01838449
PQID 2445270662
PQPubID 31672
PageCount 37
ParticipantIDs hal_primary_oai_HAL_hal_01838449v3
proquest_journals_2445270662
crossref_primary_10_1017_apr_2020_17
crossref_citationtrail_10_1017_apr_2020_17
jstor_primary_48654520
cambridge_journals_10_1017_apr_2020_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Sheffield
PublicationTitle Advances in applied probability
PublicationTitleAlternate Adv. Appl. Probab
PublicationYear 2020
Publisher Cambridge University Press
Applied Probability Trust
Publisher_xml – name: Cambridge University Press
– name: Applied Probability Trust
References 26
2018; 128
2006; 10
2015; 125
2008; 18
2015; 53
2006; 16
2002; 12
2019; 79
2017; 89
2014; 24
2010; 120
2016; 126
2019; 129
2007; 11
2007; 12
2012; 32
1997; 7
2013; 19
2004; 111
2001; 6
2004; 14
2003; 7
2003; 9
2019; 29
2008; 24
2011; 45
2014; 52
2005; 15
2011; 29
2014; 124
2016; 88
S0001867820000178_ref40
S0001867820000178_ref41
Tao (S0001867820000178_ref35) 2010
S0001867820000178_ref42
S0001867820000178_ref20
S0001867820000178_ref43
S0001867820000178_ref21
S0001867820000178_ref22
S0001867820000178_ref23
S0001867820000178_ref24
S0001867820000178_ref25
S0001867820000178_ref26
S0001867820000178_ref27
S0001867820000178_ref28
Chassagneux (S0001867820000178_ref12) 2017
S0001867820000178_ref31
S0001867820000178_ref10
S0001867820000178_ref32
S0001867820000178_ref11
S0001867820000178_ref33
S0001867820000178_ref34
S0001867820000178_ref6
Ma (S0001867820000178_ref29) 2007; 12
S0001867820000178_ref5
S0001867820000178_ref13
S0001867820000178_ref36
S0001867820000178_ref4
S0001867820000178_ref14
S0001867820000178_ref15
S0001867820000178_ref3
S0001867820000178_ref37
S0001867820000178_ref38
S0001867820000178_ref16
S0001867820000178_ref2
S0001867820000178_ref1
S0001867820000178_ref17
S0001867820000178_ref18
S0001867820000178_ref19
S0001867820000178_ref9
S0001867820000178_ref8
S0001867820000178_ref7
Ma (S0001867820000178_ref30) 2002; 12
Weinan (S0001867820000178_ref39) 2019; 79
References_xml – volume: 89
  start-page: 1201
  year: 2017
  end-page: 1227
  article-title: $L_p$
  publication-title: Stochastics
– volume: 14
  start-page: 459
  year: 2004
  end-page: 488
  article-title: A numerical scheme for BSDEs
  publication-title: Ann. Appl. Prob.
– volume: 29
  start-page: 1640
  year: 2019
  end-page: 1684
  article-title: Numerical method for FBSDEs of McKean–Vlasov type
  publication-title: Ann. Appl. Prob.
– volume: 29
  start-page: 1008
  year: 2011
  end-page: 1032
  article-title: Numerical method for reflected backward stochastic differential equations
  publication-title: Stoch. Anal. Appl.
– volume: 128
  start-page: 2489
  year: 2018
  end-page: 2537
  article-title: Discretizing Malliavin calculus
  publication-title: Stoch. Proc. Appl.
– volume: 129
  start-page: 4597
  year: 2019
  end-page: 4637
  article-title: Rate of convergence for discrete-time approximation of reflected BSDEs arising in switching problems
  publication-title: Stoch. Proc. Appl.
– volume: 88
  start-page: 491
  year: 2016
  end-page: 539
  article-title: BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration
  publication-title: Stochastics
– volume: 15
  start-page: 1798
  year: 2005
  end-page: 1831
  article-title: Representation of solutions to BSDEs associated with a degenerate FSDE
  publication-title: Ann. Appl. Prob.
– volume: 6
  start-page: 1
  year: 2001
  end-page: 14
  article-title: Donsker-type theorem for BSDEs
  publication-title: Electron. Commun. Prob.
– volume: 7
  start-page: 1
  year: 1997
  end-page: 71
  article-title: Backward stochastic differential equations in finance
  publication-title: Math. Finance
– volume: 24
  start-page: 679
  year: 2014
  end-page: 720
  article-title: Runge–Kutta schemes for backward stochastic differential equations
  publication-title: Ann. Appl. Prob.
– volume: 9
  start-page: 1003
  year: 2003
  end-page: 1049
  article-title: A quantization algorithm for solving multidimensional discrete-time optimal stopping problems
  publication-title: Bernoulli
– volume: 12
  start-page: 1390
  year: 2002
  end-page: 1418
  article-title: Representation theorems for backward stochastic differential equations
  publication-title: Ann. Appl. Prob.
– volume: 24
  start-page: 1129
  year: 2014
  end-page: 1171
  article-title: Simulation of BSDEs by Wiener chaos expansion
  publication-title: Ann. Appl. Prob.
– volume: 24
  start-page: 1
  year: 2008
  end-page: 18
  article-title: Convergence of solutions of discrete reflected backward SDE’s and simulations
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
– volume: 124
  start-page: 1112
  year: 2014
  end-page: 1140
  article-title: A numerical algorithm for a class of BSDEs via the branching process
  publication-title: Stoch. Proc. Appl.
– volume: 32
  start-page: 69
  year: 2012
  end-page: 85
  article-title: Discrete approximations of generalized RBSDE with random terminal time
  publication-title: Discuss. Math. Prob. Statist.
– volume: 120
  start-page: 1133
  year: 2010
  end-page: 1158
  article-title: On the Monte Carlo simulation of BSDEs: an improvement on the Malliavin weights
  publication-title: Stoch. Proc. Appl.
– volume: 26
  start-page: 159
  end-page: 190
  article-title: 2020). Random walk approximation of BSDEs with Hölder continuous terminal condition
  publication-title: Bernoulli
– volume: 53
  start-page: 1172
  year: 2015
  end-page: 1193
  article-title: Numerical stability analysis of the Euler scheme for BSDEs
  publication-title: SIAM J. Numer. Anal.
– volume: 125
  start-page: 2206
  year: 2015
  end-page: 2255
  article-title: A cubature based algorithm to solve decoupled McKean–Vlasov forward-backward stochastic differential equations
  publication-title: Stoch. Proc. Appl.
– volume: 15
  start-page: 2172
  year: 2005
  end-page: 2202
  article-title: A regression-based Monte Carlo method to solve backward stochastic differential equations
  publication-title: Ann. Appl. Prob.
– volume: 19
  start-page: 1047
  year: 2013
  end-page: 1085
  article-title: BS
  publication-title: Bernoulli
– volume: 11
  start-page: 381
  year: 2007
  end-page: 384
  article-title: Corrigendum to ‘Stability of solutions of BSDEs with random terminal time’
  publication-title: ESAIM Prob. Statist.
– volume: 18
  start-page: 143
  year: 2008
  end-page: 177
  article-title: Time discretization and Markovian iteration for coupled FBSDEs
  publication-title: Ann. Appl. Prob.
– volume: 52
  start-page: 2815
  year: 2014
  end-page: 2836
  article-title: Linear multistep schemes for BSDEs
  publication-title: SIAM J. Numer. Anal.
– volume: 7
  start-page: 337
  year: 2003
  end-page: 361
  article-title: The rate of convergence of the binomial tree scheme
  publication-title: Finance Stoch.
– volume: 45
  start-page: 335
  year: 2011
  end-page: 360
  article-title: Numerical algorithms for backward stochastic differential equations with 1-d Brownian motion: convergence and simulations
  publication-title: Math. Modelling Numer. Anal.
– volume: 111
  start-page: 175
  year: 2004
  end-page: 206
  article-title: Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations
  publication-title: Stoch. Proc. Appl.
– volume: 79
  start-page: 1534
  year: 2019
  end-page: 1571
  article-title: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations
  publication-title: J. Sci. Comput.
– volume: 16
  start-page: 140
  year: 2006
  end-page: 184
  article-title: A forward-backward stochastic algorithm for quasi-linear PDEs
  publication-title: Ann. Appl. Prob.
– volume: 126
  start-page: 2123
  year: 2016
  end-page: 2162
  article-title: Simulation of BSDEs with jumps by Wiener chaos expansion
  publication-title: Stoch. Proc. Appl.
– volume: 12
  start-page: 302
  year: 2007
  end-page: 316
  article-title: Numerical method for backward stochastic differential equations
  publication-title: Ann. Appl. Prob.
– volume: 10
  start-page: 141
  year: 2006
  end-page: 163
  article-title: Stability of solutions of BSDEs with random terminal time
  publication-title: ESAIM Prob. Statist.
– ident: S0001867820000178_ref23
  doi: 10.1214/105051605000000412
– ident: S0001867820000178_ref5
  doi: 10.1214/07-AAP448
– ident: S0001867820000178_ref24
  doi: 10.1016/j.spa.2013.10.005
– ident: S0001867820000178_ref26
  doi: 10.7151/dmps.1145
– ident: S0001867820000178_ref38
  doi: 10.1007/s007800200094
– ident: S0001867820000178_ref20
  doi: 10.1016/j.spa.2012.02.006
– ident: S0001867820000178_ref4
  doi: 10.1016/j.spa.2017.09.014
– ident: S0001867820000178_ref28
  doi: 10.1080/17442508.2017.1290095
– ident: S0001867820000178_ref2
– ident: S0001867820000178_ref15
  doi: 10.1016/j.spa.2014.11.018
– ident: S0001867820000178_ref42
  doi: 10.1214/aoap/1075828058
– ident: S0001867820000178_ref16
  doi: 10.3150/12-BEJ445
– ident: S0001867820000178_ref19
  doi: 10.1111/1467-9965.00022
– ident: S0001867820000178_ref25
  doi: 10.1007/978-3-662-05265-5
– ident: S0001867820000178_ref18
  doi: 10.1214/105051605000000674
– volume: 12
  start-page: 302
  year: 2007
  ident: S0001867820000178_ref29
  article-title: Numerical method for backward stochastic differential equations
  publication-title: Ann. Appl. Prob.
– ident: S0001867820000178_ref43
  doi: 10.1214/105051605000000232
– volume-title: An Epsilon of Room, I: Real Analysis.
  year: 2010
  ident: S0001867820000178_ref35
– ident: S0001867820000178_ref14
  doi: 10.1016/j.spa.2018.12.009
– volume: 12
  start-page: 1390
  year: 2002
  ident: S0001867820000178_ref30
  article-title: Representation theorems for backward stochastic differential equations
  publication-title: Ann. Appl. Prob.
– ident: S0001867820000178_ref8
  doi: 10.1214/13-AAP943
– volume: 79
  start-page: 1534
  year: 2019
  ident: S0001867820000178_ref39
  article-title: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-00903-0
– ident: S0001867820000178_ref22
  doi: 10.3150/19-BEJ1120
– ident: S0001867820000178_ref40
  doi: 10.1016/j.spa.2017.03.005
– ident: S0001867820000178_ref17
  doi: 10.1016/j.spa.2010.03.015
– ident: S0001867820000178_ref11
  doi: 10.1214/18-AAP1429
– ident: S0001867820000178_ref31
  doi: 10.1080/07362994.2011.610162
– ident: S0001867820000178_ref34
  doi: 10.1007/978-3-642-02380-4
– ident: S0001867820000178_ref37
  doi: 10.1051/ps:2007025
– ident: S0001867820000178_ref1
– year: 2017
  ident: S0001867820000178_ref12
– ident: S0001867820000178_ref36
  doi: 10.1051/ps:2006006
– ident: S0001867820000178_ref3
  doi: 10.3150/bj/1072215199
– ident: S0001867820000178_ref32
  doi: 10.1007/s10255-006-6005-6
– ident: S0001867820000178_ref7
  doi: 10.1214/ECP.v6-1030
– ident: S0001867820000178_ref21
  doi: 10.1016/j.spa.2016.01.006
– ident: S0001867820000178_ref13
  doi: 10.1137/140977047
– ident: S0001867820000178_ref9
  doi: 10.1137/120902951
– ident: S0001867820000178_ref41
– ident: S0001867820000178_ref33
  doi: 10.1051/m2an/2010059
– ident: S0001867820000178_ref6
  doi: 10.1016/j.spa.2004.01.001
– ident: S0001867820000178_ref10
  doi: 10.1214/13-AAP933
– ident: S0001867820000178_ref27
  doi: 10.1080/17442508.2015.1090990
SSID ssj0003780
Score 2.2807865
Snippet Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying...
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk B n from the underlying Brownian...
Let ( Y , Z ) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying...
Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk \(B^n\) from the underlying...
Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk B n from the underlying Brownian motion B by Skorohod embedding, one...
SourceID hal
proquest
crossref
jstor
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms Approximation
Brownian motion
Convergence
Difference equations
Differential calculus
Finite difference method
Mathematical analysis
Mathematics
Original Article
Original Articles
Partial differential equations
Probabilistic methods
Probability
Properties (attributes)
Random variables
Random walk
Smoothness
Title Mean square rate of convergence for random walk approximation of forward-backward SDEs
URI https://www.cambridge.org/core/product/identifier/S0001867820000178/type/journal_article
https://www.jstor.org/stable/48654520
https://www.proquest.com/docview/2445270662
https://hal.science/hal-01838449
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9NADLbY-sIepg2oVhjTCU17QIpI7i7N5QmNraVC64TYhvoW5X5piJF2S2H8-diXNB1i4iVKLn6IbMt27j5_BjjEisB5q2XEfWwimQsZlWKIF56b0mshZDiKmZ4PJ1fy0yydtRtudQurXMXEEKjt3NAe-TtMQynPiK_8_eI2oqlRdLrajtDYgF6CmYY8XI0_dpFYZKppQcFfZoVRue3PI8rockFkoByfsoesCn9lp41rwkY2MMV_QnXIP-Md2G4LR3bcWHoXnrjqGWxNO9bV-jl8nbqyYvUtWt0xooBgc88CrDx0WDqGBSquV3b-g92XN99ZIBT__a3pXiRhFAgoWk27enjDLk5H9Qu4Go8uTyZROzchMjJVy4hr61ItE-20wupEK2GJuI57Y2wurM1TzRPhuMVizBpVZnxoYpPKUrvYGQw4fdis5pXbA0bsdjI3widayFwr5bX2sfAyLjMtlBvAUae7ovX-umiQY1mBSi5IyUWSDeDtSrGFadnHaQjGzePCh53woiHdeFzsDVqokyCi7MnxWUFrMUYqJWX-SwygHwzYiUk1pLnq8QD2VxZdf_nay17-__UreEpf0aDN9mFzeffTvcbyZKkPgg8eQO_D6Pzzlz_56eN8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wOIgH44u4itox6MFkwmx3z07PgRgirIvschEIt2H6FQ0wuzir4J_yN1rV8wAj8cZlMo_KpFNVXVXdXfUVwDpGBM5bLSPuYxPJTMioEAO88MwUXgshw1HMZH8wOpSfj5PjBfjd1sJQWmVrE4OhtlNDe-Qb6IYSnhJe-YfZRURdo-h0tW2hUavFnvt1iUu2anN3G-X7lvPhzsHHUdR0FYiMTNQ84tq6RMu-dlqh79ZKWIJ1494Ymwlrs0TzvnDcYqhijSpSPjCxSWShXewMTkf87yIsSyEySiFUw0-d5RepqktecImu0As09YAEUV3MCHyU41N6E8XhL2-4-JVyMeu0yH9cQ_B3w4fwoAlU2VatWY9gwZWP4f6kQ3mtnsDRxBUlqy5QyxwjyAk29SyksYeKTscwIMb3pZ2es8vi7JQFAPOrb3W1JBEjQcja1bSLiDfsy_ZO9RQO74Sjq7BUTkv3DBih6cnMCN_XQmZaKa-1j4WXcZFqoVwP3nW8y5vZVuV1plqaI5NzYnLeT3vwvmVsbhq0c2q6cXY78XpHPKtBPm4ne4MS6igImHu0Nc7pXYyWUUmZ_RQ9WA0C7MikGlAf97gHa61Er0d-rdXP___5NdwbHUzG-Xh3f-8FrNCI6ky3NViaf__hXmJoNNevgj4yOLnrCfAHPYYgBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean+square+rate+of+convergence+for+random+walk+approximation+of+forward-backward+SDEs&rft.jtitle=Advances+in+applied+probability&rft.au=Geiss%2C+Christel&rft.au=Labart%2C+C%C3%A9line&rft.au=Luoto%2C+Antti&rft.date=2020-09-01&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=52&rft.issue=3&rft.spage=735&rft.epage=771&rft_id=info:doi/10.1017%2Fapr.2020.17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_apr_2020_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon