Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases
Abstract The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome–lysosome fus...
Saved in:
Published in | FEMS microbiology reviews Vol. 47; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1574-6976 0168-6445 1574-6976 |
DOI | 10.1093/femsre/fuac041 |
Cover
Loading…
Abstract | Abstract
The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome–lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.
Broad-spectrum therapeutic phagolysosomal targets against various types of pathogens and the available therapeicstics. |
---|---|
AbstractList | The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens. The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens. Keywords: agonist, antagonist, apoptosis, drug target, intracellular pathogens, phagosomes Abstract The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome–lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens. Broad-spectrum therapeutic phagolysosomal targets against various types of pathogens and the available therapeicstics. The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens. |
Audience | Academic |
Author | Selvapandiyan, Angamuthu Alam, Anwar Kumar, Pankaj Griffin, George Puri, Niti Ehtesham, Nasreen Zafar Hasnain, Seyed Ehtesham |
Author_xml | – sequence: 1 givenname: Angamuthu surname: Selvapandiyan fullname: Selvapandiyan, Angamuthu email: selvapandiyan@jamiahamdard.ac.in – sequence: 2 givenname: Niti surname: Puri fullname: Puri, Niti – sequence: 3 givenname: Pankaj surname: Kumar fullname: Kumar, Pankaj – sequence: 4 givenname: Anwar surname: Alam fullname: Alam, Anwar – sequence: 5 givenname: Nasreen Zafar surname: Ehtesham fullname: Ehtesham, Nasreen Zafar – sequence: 6 givenname: George surname: Griffin fullname: Griffin, George – sequence: 7 givenname: Seyed Ehtesham orcidid: 0000-0002-2967-0791 surname: Hasnain fullname: Hasnain, Seyed Ehtesham email: seyed.hasnain@sharda.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36309472$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksluFDEQhlsoiCxw5YgscYHDJHa7N3OLIpZIkZBYLlxa1Z5yj6O23bjciDwJr4tHGQgTgZAPZVvfX_XbVcfFgQ8ei-Kp4KeCK3lm0FHEM7OA5pV4UByJuq1WjWqbgz_2h8Ux0TXnvFZ1_ag4lI3kqmrLo-LHlxCc9SOzngXPdHAuB-vc4pHhNyCbjw71BrwlRywYNkPahBE9bTXzBsYw3VCg4JBesTkk9MnCxIYYYL2iGXWKi2NpgxFmXJLVLEEcMRGDEaynlPOYTNmwEFtbQiCkx8VDAxPhk108KT6_ef3p4t3q6v3by4vzq5Wu6i6tShCtNtCKVjWqAjlI1bRyjaAErzR2nZAoTYUwtFJ2ZaW6rjTG1Dh0w6CMkSfFi9u8cwxfF6TUO0sapwk8Zj992UouRaVKkdHn99DrsESf3fVlV8quUvlP76gRJuzzy0KKoLdJ-_O2lUrWZcMzdfoXKq81Oqtzi43N93uCl3uCzCT8nkZYiPrLjx_22Wc7o8vgcN3P0TqIN_2vrt9V1zFQHh_zGxG8345VfztW_W6ssqC6J9A2Qe6Yz7bt9G_ZznRY5v-V-An-6uRo |
CitedBy_id | crossref_primary_10_3389_fimmu_2025_1517822 crossref_primary_10_1080_07391102_2024_2434026 crossref_primary_10_1080_1040841X_2024_2321494 crossref_primary_10_1007_s12038_024_00420_3 crossref_primary_10_1002_slct_202302415 crossref_primary_10_2174_0109298665299157240327084614 crossref_primary_10_25259_IJMR_1040_2024 crossref_primary_10_1080_10409238_2024_2411264 crossref_primary_10_1021_acsinfecdis_3c00492 crossref_primary_10_3389_fmolb_2023_1348337 |
Cites_doi | 10.1371/journal.ppat.1006165 10.1016/j.tube.2016.02.001 10.3389/fcimb.2018.00330 10.3389/fcimb.2017.00038 10.1016/j.ijid.2020.09.1429 10.1084/jem.20051239 10.1016/j.imlet.2004.12.007 10.3389/fphar.2022.806568 10.1038/s41598-017-12753-1 10.1002/iid3.295 10.1371/journal.pntd.0007424 10.1016/S2213-2600(20)30104-1 10.1128/IAI.74.5.2613-2618.2006 10.1371/journal.ppat.1000628 10.1021/jm010066k 10.3389/fcimb.2017.00347 10.1016/j.bmcl.2019.06.048 10.1074/jbc.M111.286120 10.1083/jcb.202110151 10.1007/s10875-021-01163-8 10.1111/j.1600-0854.2010.01050.x 10.1242/jcs.114.7.1283 10.1007/s11302-016-9544-1 10.1046/j.1365-3083.2000.00808.x 10.1046/j.1365-2958.2003.03657.x 10.1074/jbc.M116.716514 10.1080/07391102.2019.1595150 10.4049/jimmunol.1000702 10.1016/j.fsi.2016.05.028 10.1016/j.intimp.2022.108536 10.1186/s12879-017-2473-y 10.1078/0171-9335-00247 10.1016/j.vaccine.2014.05.009 10.1016/j.mam.2006.08.005 10.4049/jimmunol.180.5.3148 10.1165/rcmb.2005-0140OC 10.1046/j.1462-5822.2001.00127.x 10.3390/microorganisms8071013 10.1016/j.micinf.2008.11.007 10.1016/j.ajpath.2011.05.053 10.1111/j.1469-0691.2010.03237.x 10.2174/1570163817666200121143036 10.3389/fimmu.2021.636078 10.1016/j.molbiopara.2007.12.010 10.1016/j.chom.2017.04.004 10.1038/srep14854 10.1016/j.devcel.2021.10.006 10.1016/j.micinf.2015.05.005 10.3389/fimmu.2022.864031 10.1093/emboj/17.11.3124 10.3389/fmicb.2020.00242 10.1016/j.cell.2011.11.021 10.1038/srep40418 10.1016/j.bjid.2016.10.011 10.3389/fmicb.2019.01173 10.1371/journal.pbio.1001246 10.2147/DDDT.S353494 10.1155/2016/3845247 10.1074/jbc.M111.316125 10.1016/j.csbj.2022.04.002 10.1039/C7MT00284J 10.3389/fmicb.2018.02617 10.1111/jnc.15118 10.1016/j.tube.2010.09.001 10.1038/s41591-021-01397-4 10.1371/journal.ppat.1006551 10.1038/srep16320 10.1016/j.intimp.2015.07.020 10.1016/j.chom.2015.05.005 10.1038/14075 10.1016/S0092-8674(00)80754-0 10.1371/journal.pone.0008769 10.3389/fimmu.2020.598444 10.1111/cmi.12311 10.1128/JVI.00709-20 10.1016/j.cell.2020.10.039 10.1073/pnas.2016650117 10.1080/00325481.2020.1855921 10.1177/1753425919881176 10.3389/fcimb.2021.624094 10.1038/sj.onc.1203084 10.2147/IDR.S346869 10.1038/srep39492 10.1038/mt.2014.31 10.1038/s41421-021-00268-z 10.1128/IAI.68.5.2671-2684.2000 10.1038/s41586-021-03269-w 10.1074/mcp.RA119.001841 10.1371/journal.ppat.1004471 10.1016/j.meegid.2021.105202 10.1016/j.bbrc.2009.06.152 10.1016/j.cell.2005.06.043 10.1126/science.1227026 10.1074/jbc.M402794200 10.1074/jbc.M109.091645 10.1038/nrd4088 10.1165/rcmb.2010-0319OC 10.1007/s10753-016-0417-0 10.1111/febs.15166 10.7554/eLife.23905 10.1021/acs.jmedchem.2c00614 10.1073/pnas.0737613100 10.4049/jimmunol.1101231 10.1139/o02-142 10.1074/jbc.M204232200 10.1016/j.mehy.2020.110380 10.1074/jbc.M304546200 10.1038/srep35917 10.1038/nrmicro2128 10.1016/j.chom.2015.05.004 10.1016/j.chom.2015.05.003 10.1016/j.tube.2010.03.006 10.1073/pnas.160257897 10.1371/journal.ppat.1007982 10.7164/antibiotics.25.343 10.1111/j.1462-5822.2012.01767.x 10.1186/s12967-020-02339-3 10.1074/jbc.M104550200 10.1016/j.ijmm.2018.08.008 10.1016/j.csbj.2021.01.034 10.1111/cmi.13253 10.1371/journal.pntd.0004570 10.1128/IAI.00222-19 10.1155/2019/1356540 10.1107/S2059798321011219 10.3389/fimmu.2020.00962 10.1159/000319864 10.1111/j.1462-5822.2009.01337.x 10.1016/j.ijtb.2018.08.004 10.1371/journal.ppat.1009576 10.1038/s41418-021-00781-4 10.1016/j.metop.2021.100116 10.1002/jmv.26728 10.4049/jimmunol.0900276 10.1016/S0140-6736(00)02727-6 10.1371/journal.pone.0190490 10.4049/jimmunol.181.4.2651 10.1111/j.1348-0421.1998.tb02354.x 10.1016/S1473-3099(20)30132-8 10.3389/fcimb.2018.00084 10.1038/ncb1526 10.1038/s41598-019-45800-0 10.1038/s41598-017-03514-1 10.1016/B978-0-12-394390-3.00003-3 10.1002/jmv.27405 10.3389/fnmol.2020.00093 10.3390/cancers13071511 10.1016/j.apsb.2022.02.011 10.1186/s12964-017-0177-y 10.1046/j.1365-2958.2000.02021.x 10.1038/labinvest.2017.137 10.1038/s41598-019-42687-9 10.1111/j.1365-3083.2011.02663.x 10.3390/pathogens11030310 10.3389/fcimb.2017.00350 10.1128/AAC.01498-21 10.1186/s13578-022-00770-1 10.1038/aps.2015.91 10.1016/j.micinf.2015.03.010 10.1016/j.atherosclerosis.2014.01.014 10.1038/s41577-020-0285-6 10.1016/j.exphem.2010.04.003 10.1042/EBC20220001 10.1007/s00281-020-00794-0 10.1046/j.1365-2958.1998.00846.x 10.1038/s41467-022-30654-4 10.1371/journal.pone.0224239 10.1016/j.cell.2016.08.017 10.1073/pnas.0800404105 10.1128/IAI.67.8.4055-4063.1999 10.1111/cmi.12260 10.1016/j.cbpa.2009.03.021 10.1016/j.celrep.2020.107746 10.1371/journal.ppat.1006459 10.1016/j.smim.2015.03.009 10.1080/15548627.2022.2153569 10.1093/infdis/jiaa445 10.1074/jbc.RA120.012491 10.1016/j.devcel.2020.12.010 10.1155/2021/8874339 10.1128/IAI.01589-06 10.1128/iai.56.2.363-369.1988 10.1016/j.cell.2006.01.034 10.1371/journal.ppat.1003499 10.1016/j.dci.2021.104257 10.1515/hsz-2016-0274 10.1038/s41467-021-27426-x 10.1111/imr.13065 10.1016/j.celrep.2021.109126 10.1016/j.bmc.2020.115940 10.1073/pnas.1902788117 10.1371/journal.pone.0069619 10.1111/pim.12521 10.1111/cmi.13003 10.1016/j.celrep.2022.111282 10.3389/fimmu.2018.01161 10.1016/j.micres.2017.09.001 10.1242/jcs.113.19.3531 10.1111/j.1462-5822.2008.01239.x 10.1016/j.immuni.2016.02.026 10.1007/s00294-021-01198-9 10.1038/sj.emboj.7601511 10.4049/jimmunol.157.8.3559 10.1016/j.cellimm.2007.02.001 10.3389/fmicb.2015.00946 10.1016/j.bbagen.2006.11.016 10.3389/fcimb.2014.00180 10.1016/j.cell.2007.04.043 10.1016/j.cell.2015.05.009 10.1016/j.imbio.2013.03.003 10.1021/acsinfecdis.7b00268 10.1016/j.ejmech.2016.10.028 10.1371/journal.pone.0206459 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. COPYRIGHT 2023 Oxford University Press |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. – notice: COPYRIGHT 2023 Oxford University Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1093/femsre/fuac041 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1574-6976 |
ExternalDocumentID | A773935260 36309472 10_1093_femsre_fuac041 10.1093/femsre/fuac041 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | --- --K -~X .3N .GA .Y3 05W 0R~ 10A 1B1 1OC 1TH 1~5 29H 31~ 36B 3V. 4.4 48X 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 8CJ 8FE 8FH 8FI 8FJ 8UM 930 A03 A8Z AAEDT AAHBH AAHHS AAIMJ AAJQQ AALRI AAMDB AAMVS AAOGV AAONW AAPQZ AAPXW AAQFI AAQXK AARHZ AASNB AAUQX AAVAP AAWDT AAXUO ABCQN ABEFU ABEUO ABIXL ABJNI ABLJU ABMAC ABPTD ABQLI ABSAR ABSMQ ABUWG ABXVV ACBWZ ACCFJ ACFRR ACGFO ACGFS ACIUM ACPRK ACSCC ACUFI ACUTJ ACXQS ADBBV ADEZT ADGZP ADHKW ADHZD ADMUD ADQBN ADRIX ADRTK ADVEK ADYVW ADZOD AEEZP AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFFZL AFGWE AFIYH AFKRA AFOFC AFRAH AFULF AFXEN AFYAG AFZJQ AGINJ AGSYK AHEFC AHMBA AI. AIWBW AJAOE AJBDE AJEEA AKRWK AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APWMN ARIXL ASAOO ATDFG AVWKF AXUDD AYOIW AZBYB BAFTC BAYMD BBNVY BCRHZ BDRZF BENPR BEYMZ BHONS BHPHI BPHCQ BQDIO BSWAC BVXVI BY8 C45 CAG CCPQU CDBKE COF CS3 CXTWN D-E D-F D1J DAKXR DC6 DCZOG DFGAJ DILTD DR2 DU5 EBS EDH EJD EMB EMOBN ESTFP F00 F01 F04 F5P FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FYUFA FZ0 G-S G.N GAUVT GJXCC GODZA H.T H.X H13 HAR HCIFZ HF~ HMCUK HOLLA HVGLF HZI HZ~ IAG IAO IEP IHE IHR ISR ITC IX1 J0M J21 K48 KAQDR KBUDW KOP KSI KSN LC2 LC3 LH4 LK8 LP6 LP7 LW6 LW9 M1P M41 M7P MK4 MM. N04 N05 N9A NF~ NLBLG NOMLY NQ- NVLIB O9- OAWHX ODMLO OIG OJQWA OK1 OVD P2P P2X P4D PAFKI PEELM PQQKQ PROAC PSQYO Q.N Q11 Q5Y QB0 R.K R2- RIG ROL ROX ROZ RPM RPZ RUSNO RX1 RXO SEW SIN SSZ SUPJJ SV3 TCN TEORI TLC TOX UB1 UKHRP V8K VH1 W8V W99 WH7 WQJ WRC WYUIH XG1 XPP Y6R YAYTL YKOAZ YXANX ZCN ZMT ZXP ~02 ~IA ~KM ~WT AAYXX ABEJV ABGNP ABXZS ADGKP AEUYN AHGBF ALXQX AMNDL CITATION JXSIZ NU- PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 |
ID | FETCH-LOGICAL-c458t-2a17cfa7179694a3b39673dea9104ce8813e3f4eab7338249882fff5eb8bb9ff3 |
IEDL.DBID | 7X7 |
ISSN | 1574-6976 0168-6445 |
IngestDate | Mon Jul 21 09:34:47 EDT 2025 Fri Jul 25 12:21:12 EDT 2025 Tue Jun 17 22:21:19 EDT 2025 Tue Jun 10 21:22:53 EDT 2025 Fri Jun 27 06:03:26 EDT 2025 Wed Feb 19 02:25:02 EST 2025 Tue Jul 01 01:56:22 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Wed Aug 28 03:18:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | apoptosis agonist phagosomes antagonist drug target intracellular pathogens |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-2a17cfa7179694a3b39673dea9104ce8813e3f4eab7338249882fff5eb8bb9ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2967-0791 |
PMID | 36309472 |
PQID | 2823849094 |
PQPubID | 986349 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2730314921 proquest_journals_2823849094 gale_infotracmisc_A773935260 gale_infotracacademiconefile_A773935260 gale_incontextgauss_ISR_A773935260 pubmed_primary_36309472 crossref_primary_10_1093_femsre_fuac041 crossref_citationtrail_10_1093_femsre_fuac041 oup_primary_10_1093_femsre_fuac041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Delft |
PublicationTitle | FEMS microbiology reviews |
PublicationTitleAlternate | FEMS Microbiol Rev |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Arango Duque (2023011615070897700_bib6) 2019; 15 Flannagan (2023011615070897700_bib52) 2009; 7 Miao (2023011615070897700_bib120) 2015; 161 Wei (2023011615070897700_bib204) 2020; 94 Mottola (2023011615070897700_bib123) 2014; 4 Muccini (2023011615070897700_bib126) 2022; 40 Gerry (2023011615070897700_bib60) 2014; 233 Madan (2023011615070897700_bib114) 2012; 287 Drevinek (2023011615070897700_bib41) 2010; 16 Kang (2023011615070897700_bib89) 2005; 202 Garcia-Rodriguez (2023011615070897700_bib58) 2020; 8 Selvapandiyan (2023011615070897700_bib168) 2004; 279 Chang (2023011615070897700_bib23) 2022; 12 Elahi (2023011615070897700_bib45) 2022; 105 Canton (2023011615070897700_bib17) 2012; 14 Gupta (2023011615070897700_bib70) 2020; 38 Cui (2023011615070897700_bib31) 2020; 21 Parapini (2023011615070897700_bib143) 2022; 66 Seto (2023011615070897700_bib171) 2009; 387 Naqvi (2023011615070897700_bib131) 2017; 7 Negi (2023011615070897700_bib132) 2019; 10 Miao (2023011615070897700_bib119) 2021; 56 Ranatunga (2023011615070897700_bib149) 2020; 287 Singh (2023011615070897700_bib176) 2019; 14 Gordon (2023011615070897700_bib67) 2016; 44 Soe-Lin (2023011615070897700_bib178) 2010; 38 Zhang (2023011615070897700_bib216) 2021; 7 Dey (2023011615070897700_bib39) 2020; 88 Philips (2023011615070897700_bib146) 2008; 10 Das (2023011615070897700_bib34) 1998; 42 Yin (2023011615070897700_bib213) 2022; 126 Alphonse (2023011615070897700_bib5) 2021; 11 Volchenkov (2023011615070897700_bib198) 2012; 75 Sun (2023011615070897700_bib183) 2013; 9 Yimcharoen (2023011615070897700_bib212) 2022; 15 Yu (2023011615070897700_bib214) 2017; 205 Vaca (2023011615070897700_bib192) 2021; 156 Luo (2023011615070897700_bib112) 2017; 21 Gomez Barroso (2023011615070897700_bib64) 2022; 78 Sharma (2023011615070897700_bib173) 2018; 308 Kim (2023011615070897700_bib93) 2005; 99 Kruger (2023011615070897700_bib100) 2002; 277 Churina (2023011615070897700_bib28) 2012; 2012 Polando (2023011615070897700_bib148) 2018; 40 Pandey (2023011615070897700_bib142) 2017; 7 Chen (2023011615070897700_bib25) 2016; 6 Ismail (2023011615070897700_bib82) 2022; 13 Ho (2023011615070897700_bib76) 2008; 180 Vannier-Santos (2023011615070897700_bib193) 1995; 67 Miorin (2023011615070897700_bib122) 2020; 117 Placido (2023011615070897700_bib147) 2006; 244 Jindani (2023011615070897700_bib87) 2010; 90 Figliuolo (2023011615070897700_bib50) 2017; 13 Wardini (2023011615070897700_bib201) 2019; 9 Chen (2023011615070897700_bib24) 2021; 56 Singh (2023011615070897700_bib177) 2021; 27 Muefong (2023011615070897700_bib127) 2020; 11 Hilda (2023011615070897700_bib75) 2020; 26 Winberg (2023011615070897700_bib207) 2009; 11 Sharma (2023011615070897700_bib174) 2017; 7 Wannigama (2023011615070897700_bib200) 2020; 101 Kifle (2023011615070897700_bib92) 2021; 11 Watson (2023011615070897700_bib203) 2015; 17 Duan (2023011615070897700_bib42) 2016; 55 Choy (2023011615070897700_bib27) 2012; 338 Levy (2023011615070897700_bib106) 2020; 117 Acharya (2023011615070897700_bib3) 2022; 307 Wang (2023011615070897700_bib199) 2018; 13 Kong (2023011615070897700_bib98) 2017; 13 Banerjee (2023011615070897700_bib8) 2020; 22 Vidal (2023011615070897700_bib195) 1996; 157 Gutierrez (2023011615070897700_bib71) 2008; 181 Kolli (2023011615070897700_bib96) 2008; 158 Patel (2023011615070897700_bib144) 2008; 105 Hayn (2023011615070897700_bib74) 2021; 35 Das (2023011615070897700_bib35) 2000; 52 Kolyvushko (2023011615070897700_bib97) 2020; 8 Liu (2023011615070897700_bib110) 2017; 7 Arasaki (2023011615070897700_bib7) 2010; 11 Adam (2023011615070897700_bib4) 2021; 12 Gordon (2023011615070897700_bib66) 2016; 166 Real (2023011615070897700_bib151) 2014; 16 Kushawaha (2023011615070897700_bib101) 2022 Mubin (2023011615070897700_bib125) 2018; 13 Osanya (2023011615070897700_bib139) 2011; 179 Song (2023011615070897700_bib180) 2022; 20 Jang (2023011615070897700_bib83) 2021; 28 Cebrian (2023011615070897700_bib18) 2011; 147 Kircheis (2023011615070897700_bib94) 2020; 11 Black (2023011615070897700_bib10) 2000; 37 Gandhi (2023011615070897700_bib56) 2020; 18 Magnet (2023011615070897700_bib115) 2010; 90 Chen (2023011615070897700_bib26) 2016; 39 Danelishvili (2023011615070897700_bib33) 2015; 17 Satarker (2023011615070897700_bib163) 2021; 133 Boissan (2023011615070897700_bib12) 2018; 98 Dhiman (2023011615070897700_bib40) 2007; 1770 Khalil (2023011615070897700_bib91) 2021; 19 Sun (2023011615070897700_bib184) 2010; 5 Tigano (2023011615070897700_bib190) 2021; 591 McCluskey (2023011615070897700_bib118) 2002; 45 Spath (2023011615070897700_bib181) 2000; 97 Yang (2023011615070897700_bib210) 2017; 6 Duell (2023011615070897700_bib44) 2012; 188 Selvapandiyan (2023011615070897700_bib169) 2014; 32 Jayachandran (2023011615070897700_bib85) 2007; 130 Pahari (2023011615070897700_bib140) 2016; 6 Das (2023011615070897700_bib36) 2019; 9 Gupta (2023011615070897700_bib69) 2021; 68 Huo (2023011615070897700_bib79) 2022; 16 Lenne (2023011615070897700_bib104) 2018; 9 Deng (2023011615070897700_bib37) 2022 Gogulamudi (2023011615070897700_bib63) 2015; 6 Thakur (2023011615070897700_bib188) 2019; 2019 Kreykenbohm (2023011615070897700_bib99) 2002; 81 Kuznik (2023011615070897700_bib102) 2011; 186 Rigano (2023011615070897700_bib155) 2014; 16 Garcia-Aguilar (2023011615070897700_bib57) 2016; 2016 Jiang (2023011615070897700_bib86) 2021; 30 Liu (2023011615070897700_bib111) 2018; 8 Huynh (2023011615070897700_bib81) 2010; 2 O'Leary (2023011615070897700_bib136) 2011; 45 Greene (2023011615070897700_bib68) 2022; 13 Hottiger (2023011615070897700_bib78) 1998; 17 Tsoi (2023011615070897700_bib191) 2021; 13 Zhao (2023011615070897700_bib217) 2012; 69 Campillo-Navarro (2023011615070897700_bib16) 2018; 9 Saeki (2023011615070897700_bib161) 1972; 25 Omahdi (2023011615070897700_bib138) 2020; 295 Schor (2023011615070897700_bib165) 2018; 4 Holm (2023011615070897700_bib77) 2001; 3 Huynh (2023011615070897700_bib80) 2007; 26 Macedo (2023011615070897700_bib113) 2015; 28 Gidon (2023011615070897700_bib62) 2017; 13 Ohashi (2023011615070897700_bib137) 2012; 287 Bowen (2023011615070897700_bib14) 2002; 277 Nairz (2023011615070897700_bib129) 2009; 11 Seif (2023011615070897700_bib166) 2017; 15 Baska (2023011615070897700_bib9) 2022; 11 da Silva Escada (2023011615070897700_bib32) 2017; 17 Fratti (2023011615070897700_bib53) 2003; 100 Reuter (2023011615070897700_bib153) 2020; 19 Nguyen (2023011615070897700_bib134) 2021; 12 Li (2023011615070897700_bib108) 2016; 124 Xu (2023011615070897700_bib209) 2022 Karam (2023011615070897700_bib90) 2021; 93 Verma (2023011615070897700_bib194) 2017; 13 Lerm (2023011615070897700_bib105) 2006; 74 Zhu (2023011615070897700_bib219) 2021; 223 Fu (2023011615070897700_bib54) 2020; 18 Chahar (2023011615070897700_bib19) 2018; 65 Rickard (2023011615070897700_bib154) 2013; 8 Brazier (2023011615070897700_bib15) 2020; 42 La (2023011615070897700_bib103) 2018; 10 Tanaka (2023011615070897700_bib186) 2005; 33 Rink (2023011615070897700_bib156) 2005; 122 Wu (2023011615070897700_bib208) 2015; 36 Fernandez-Figueroa (2023011615070897700_bib48) 2016; 10 Li (2023011615070897700_bib109) 2022; 98 Manik (2023011615070897700_bib117) 2022; 94 Finlay (2023011615070897700_bib51) 2006; 124 Rodrigues (2023011615070897700_bib158) 2019; 21 Naik (2023011615070897700_bib128) 2022; 13 Chakrabarty (2023011615070897700_bib21) 1998; 28 Eskelinen (2023011615070897700_bib46) 2006; 27 Nielsen (2023011615070897700_bib135) 1999; 1 Miklossy (2023011615070897700_bib121) 2013; 12 Santos (2023011615070897700_bib162) 2013; 218 Ferrari (2023011615070897700_bib49) 1999; 97 Sellge (2023011615070897700_bib167) 2015; 27 Stebbing (2023011615070897700_bib182) 2020; 20 Klatt (2023011615070897700_bib95) 2019; 13 Regli (2023011615070897700_bib152) 2020; 31 Zhang (2023011615070897700_bib215) 2022; 65 Fung (2023011615070897700_bib55) 2022; 12 Thepaut (2023011615070897700_bib189) 2021; 17 Netea (2023011615070897700_bib133) 2020; 20 Tasker (2023011615070897700_bib187) 2019; 29 Selvapandiyan (2023011615070897700_bib170) 2009; 183 Zhu (2023011615070897700_bib218) 2015; 5 Ruiz-Ruiz (2023011615070897700_bib159) 2020; 13 Chakaya (2023011615070897700_bib20) 2020; 8 Handa (2023011615070897700_bib72) 2007; 9 Wilson (2023011615070897700_bib206) 1988; 56 Muangsombut (2023011615070897700_bib124) 2017; 7 Wassermann (2023011615070897700_bib202) 2015; 17 Aboudounya (2023011615070897700_bib2) 2021; 2021 Gargouri (2023011615070897700_bib59) 2021; 146 Fan (2023011615070897700_bib47) 2016; 98 Dey (2023011615070897700_bib38) 2007; 75 Man (2023011615070897700_bib116) 2022; 66 Shukla (2023011615070897700_bib175) 2014; 10 Pan (2023011615070897700_bib141) 2014; 22 Whitworth (2023011615070897700_bib205) 2000; 356 Ghosh (2023011615070897700_bib61) 2020; 183 Solvik (2023011615070897700_bib179) 2022; 221 Vintonyak (2023011615070897700_bib197) 2009; 13 Yang (2023011615070897700_bib211) 2017; 2017 Collins (2023011615070897700_bib30) 2015; 17 Harrison (2023011615070897700_bib73) 2002; 80 Schnettger (2023011615070897700_bib164) 2017; 21 Clemens (2023011615070897700_bib29) 2000; 68 Johnson (2023011615070897700_bib88) 2015; 17 Li (2023011615070897700_bib107) 2020; 11 Shang (2023011615070897700_bib172) 1999; 18 Nandan (2023011615070897700_bib130) 1999; 67 Bloomfield (2023011615070897700_bib11) 2022; 42 Rastogi (2023011615070897700_bib150) 2016; 291 Abhishek (2023011615070897700_bib1) 2018; 8 Chandra (2023011615070897700_bib22) 2015; 5 Rupper (2023011615070897700_bib160) 2001; 114 Jani (2023011615070897700_bib84) 2010; 285 Takada (2023011615070897700_bib185) 2004; 279 Boitel (2023011615070897700_bib13) 2003; 49 Goody (2023011615070897700_bib65) 2017; 398 Petit-Jentreau (2023011615070897700_bib145) 2017; 7 Vinet (2023011615070897700_bib196) 2009; 5 Duclos (2023011615070897700_bib43) 2000; 113 Pt 19 Robinson (2023011615070897700_bib157) 2012; 10 |
References_xml | – volume: 13 start-page: e1006165 year: 2017 ident: 2023011615070897700_bib98 article-title: Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006165 – volume: 98 start-page: 13 year: 2016 ident: 2023011615070897700_bib47 article-title: Impaired NK cells' activity and increased numbers of CD4 + CD25+ regulatory T cells in multidrug-resistant Mycobacterium tuberculosis patients publication-title: Tuberculosis doi: 10.1016/j.tube.2016.02.001 – volume: 8 start-page: 330 year: 2018 ident: 2023011615070897700_bib1 article-title: Transcriptional profile of Mycobacterium tuberculosis in an in vitro model of intraocular tuberculosis publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2018.00330 – volume: 7 start-page: 38 year: 2017 ident: 2023011615070897700_bib142 article-title: Mycobacterium tuberculosis peptidyl-prolyl isomerases are immunogenic, alter cytokine profile and aid in intracellular survival publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00038 – volume: 101 start-page: 52 year: 2020 ident: 2023011615070897700_bib200 article-title: NOD2-dependent BCG-induced trained immunity: a way to regulate innate responses to SARS-COV2? publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2020.09.1429 – volume: 202 start-page: 987 year: 2005 ident: 2023011615070897700_bib89 article-title: The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis publication-title: J Exp Med doi: 10.1084/jem.20051239 – volume: 99 start-page: 45 year: 2005 ident: 2023011615070897700_bib93 article-title: LY294002 inhibits LPS-induced no production through a inhibition of NF-KappaB activation: independent mechanism of phosphatidylinositol 3-kinase publication-title: Immunol Lett doi: 10.1016/j.imlet.2004.12.007 – volume: 13 start-page: 806568 year: 2022 ident: 2023011615070897700_bib128 article-title: Kinase inhibitors as potential therapeutic agents in the treatment of COVID-19 publication-title: Front Pharmacol doi: 10.3389/fphar.2022.806568 – volume: 7 start-page: 13240 year: 2017 ident: 2023011615070897700_bib131 article-title: Role of mast cells in clearance of Leishmania through extracellular trap formation publication-title: Sci Rep doi: 10.1038/s41598-017-12753-1 – volume: 8 start-page: 198 year: 2020 ident: 2023011615070897700_bib58 article-title: Human mast cells exhibit an individualized pattern of antimicrobial responses publication-title: Immun Inflamm Dis doi: 10.1002/iid3.295 – volume: 13 start-page: e0007424 year: 2019 ident: 2023011615070897700_bib95 article-title: Leishmania tarentolae: taxonomic classification and its application as a promising biotechnological expression host publication-title: PLoS NeglTrop Dis doi: 10.1371/journal.pntd.0007424 – volume: 8 start-page: 334 year: 2020 ident: 2023011615070897700_bib20 article-title: Programmatic versus personalised approaches to managing the global epidemic of multidrug-resistant tuberculosis publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(20)30104-1 – volume: 74 start-page: 2613 year: 2006 ident: 2023011615070897700_bib105 article-title: Leishmania donovani requires functional Cdc42 and Rac1 to prevent phagosomal maturation publication-title: Infect Immun doi: 10.1128/IAI.74.5.2613-2618.2006 – volume: 5 start-page: e1000628 year: 2009 ident: 2023011615070897700_bib196 article-title: The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000628 – volume: 45 start-page: 1151 year: 2002 ident: 2023011615070897700_bib118 article-title: Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies publication-title: J Med Chem doi: 10.1021/jm010066k – volume: 7 start-page: 347 year: 2017 ident: 2023011615070897700_bib145 article-title: Purinergic signaling: a common path in the macrophage response against Mycobacterium tuberculosis and Toxoplasma gondii publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00347 – volume: 29 start-page: 2008 year: 2019 ident: 2023011615070897700_bib187 article-title: Tapping the therapeutic potential of protein tyrosine phosphatase 4A with small molecule inhibitors publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2019.06.048 – volume: 287 start-page: 5574 year: 2012 ident: 2023011615070897700_bib114 article-title: Salmonella acquires lysosome-associated membrane protein 1 (LAMP1) on phagosomes from Golgi via SipC protein-mediated recruitment of host Syntaxin6 publication-title: J Biol Chem doi: 10.1074/jbc.M111.286120 – volume: 221 start-page: e202110151 year: 2022 ident: 2023011615070897700_bib179 article-title: Secretory autophagy maintains proteostasis upon lysosome inhibition publication-title: J Cell Biol doi: 10.1083/jcb.202110151 – volume: 42 start-page: 266 year: 2022 ident: 2023011615070897700_bib11 article-title: Immunogenicity and safety of COVID-19 mRNA vaccine in STAT1 GOF patients publication-title: J Clin Immunol doi: 10.1007/s10875-021-01163-8 – volume: 11 start-page: 587 year: 2010 ident: 2023011615070897700_bib7 article-title: Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b publication-title: Traffic doi: 10.1111/j.1600-0854.2010.01050.x – volume: 114 start-page: 1283 year: 2001 ident: 2023011615070897700_bib160 article-title: P110-related PI 3-kinases regulate phagosome-phagosome fusion and phagosomal ph through a PKB/Akt dependent pathway in Dictyostelium publication-title: J Cell Sci doi: 10.1242/jcs.114.7.1283 – volume: 13 start-page: 143 year: 2017 ident: 2023011615070897700_bib50 article-title: The role of the P2×7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control publication-title: Purinergic Sig doi: 10.1007/s11302-016-9544-1 – volume: 52 start-page: 515 year: 2000 ident: 2023011615070897700_bib35 article-title: Th1-specific bystander costimulation imparts resistance against Mycobacterium tuberculosis infection publication-title: Scand J Immunol doi: 10.1046/j.1365-3083.2000.00808.x – start-page: 105457 volume-title: Microb Pathog year: 2022 ident: 2023011615070897700_bib101 article-title: Leishmania donovani secretory protein nucleoside diphosphate kinase B localizes in its nucleus and prevents ATP mediated cytolysis of macrophages – volume: 49 start-page: 1493 year: 2003 ident: 2023011615070897700_bib13 article-title: PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03657.x – volume: 291 start-page: 14732 year: 2016 ident: 2023011615070897700_bib150 article-title: Rab5 isoforms specifically regulate different modes of endocytosis in Leishmania publication-title: J Biol Chem doi: 10.1074/jbc.M116.716514 – volume: 38 start-page: 1083 year: 2020 ident: 2023011615070897700_bib70 article-title: Mycobacterium tuberculosis nucleoside diphosphate kinase shows interaction with putative ATP binding cassette (ABC) transporter, Rv1273c publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2019.1595150 – volume: 186 start-page: 4794 year: 2011 ident: 2023011615070897700_bib102 article-title: Mechanism of endosomal tlr inhibition by antimalarial drugs and imidazoquinolines publication-title: J Immunol doi: 10.4049/jimmunol.1000702 – volume: 55 start-page: 123 year: 2016 ident: 2023011615070897700_bib42 article-title: Characterization of ADP ribosylation factor 1 gene from Exopalaemon carinicauda and its immune response to pathogens challenge and ammonia-N stress publication-title: Fish Shellfish Immunol doi: 10.1016/j.fsi.2016.05.028 – volume: 105 start-page: 108536 year: 2022 ident: 2023011615070897700_bib45 article-title: An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19) publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2022.108536 – volume: 17 start-page: 373 year: 2017 ident: 2023011615070897700_bib32 article-title: Mortality in patients with HIV-1 and tuberculosis co-infection in Rio de Janeiro, Brazil - associated factors and causes of death publication-title: BMC Infect Dis doi: 10.1186/s12879-017-2473-y – volume: 81 start-page: 273 year: 2002 ident: 2023011615070897700_bib99 article-title: The SNAREs vti1a and vti1b have distinct localization and snare complex partners publication-title: Eur J Cell Biol doi: 10.1078/0171-9335-00247 – volume: 32 start-page: 3895 year: 2014 ident: 2023011615070897700_bib169 article-title: Generation of growth arrested leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis publication-title: Vaccine doi: 10.1016/j.vaccine.2014.05.009 – volume: 27 start-page: 495 year: 2006 ident: 2023011615070897700_bib46 article-title: Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy publication-title: Mol Aspects Med doi: 10.1016/j.mam.2006.08.005 – volume: 180 start-page: 3148 year: 2008 ident: 2023011615070897700_bib76 article-title: Vesicle-associated membrane protein-8/endobrevin negatively regulates phagocytosis of bacteria in dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.180.5.3148 – volume: 33 start-page: 406 year: 2005 ident: 2023011615070897700_bib186 article-title: Interleukin-10 induces inhibitory C/EBPpbeta through STAT-3 and represses HIV-1 transcription in macrophages publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2005-0140OC – volume: 3 start-page: 439 year: 2001 ident: 2023011615070897700_bib77 article-title: Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: correlation with impaired translocation of PKCalpha and defective phagosome maturation publication-title: Cell Microbiol doi: 10.1046/j.1462-5822.2001.00127.x – volume: 8 start-page: 1013 year: 2020 ident: 2023011615070897700_bib97 article-title: Equine alphaherpesviruses require activation of the small gtpases Rac1 and Cdc for intracellular transport publication-title: Microorganisms doi: 10.3390/microorganisms8071013 – volume: 11 start-page: 215 year: 2009 ident: 2023011615070897700_bib207 article-title: Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts publication-title: Microbes Infect doi: 10.1016/j.micinf.2008.11.007 – volume: 179 start-page: 1329 year: 2011 ident: 2023011615070897700_bib139 article-title: Pathogen-derived oligosaccharides improve innate immune response to intracellular parasite infection publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.05.053 – volume: 16 start-page: 821 year: 2010 ident: 2023011615070897700_bib41 article-title: Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence publication-title: Clin Microbiol Infect doi: 10.1111/j.1469-0691.2010.03237.x – volume: 18 start-page: 307 year: 2020 ident: 2023011615070897700_bib56 article-title: Collocating novel targets for tuberculosis (TB) drug discovery publication-title: Curr Drug Discov Technol doi: 10.2174/1570163817666200121143036 – volume: 12 start-page: 636078 year: 2021 ident: 2023011615070897700_bib134 article-title: Better together: current insights into phagosome-lysosome fusion publication-title: Front Immunol doi: 10.3389/fimmu.2021.636078 – volume: 158 start-page: 163 year: 2008 ident: 2023011615070897700_bib96 article-title: Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages publication-title: Mol Biochem Parasitol doi: 10.1016/j.molbiopara.2007.12.010 – volume: 21 start-page: 619 year: 2017 ident: 2023011615070897700_bib164 article-title: A Rab20-dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.04.004 – volume: 5 start-page: 14854 year: 2015 ident: 2023011615070897700_bib218 article-title: Role of JAK-STAT signaling in maturation of phagosomes containing Staphylococcus aureus publication-title: Sci Rep doi: 10.1038/srep14854 – volume: 56 start-page: 3250 year: 2021 ident: 2023011615070897700_bib24 article-title: ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress publication-title: Dev Cell doi: 10.1016/j.devcel.2021.10.006 – volume: 17 start-page: 628 year: 2015 ident: 2023011615070897700_bib33 article-title: Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation publication-title: Microbes Infect doi: 10.1016/j.micinf.2015.05.005 – volume: 13 start-page: 864031 year: 2022 ident: 2023011615070897700_bib82 article-title: Leishmania major centrin gene-deleted parasites generate skin resident memory T-cell immune response analogous to leishmanization publication-title: Front Immunol doi: 10.3389/fimmu.2022.864031 – volume: 17 start-page: 3124 year: 1998 ident: 2023011615070897700_bib78 article-title: Modulation of cytokine-induced HIV gene expression by competitive binding of transcription factors to the coactivator p300 publication-title: EMBO J doi: 10.1093/emboj/17.11.3124 – volume: 11 start-page: 242 year: 2020 ident: 2023011615070897700_bib107 article-title: Characterization of Zika virus endocytic pathways in human glioblastoma cells publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00242 – volume: 147 start-page: 1355 year: 2011 ident: 2023011615070897700_bib18 article-title: Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells publication-title: Cell doi: 10.1016/j.cell.2011.11.021 – volume: 2012 start-page: 931291 year: 2012 ident: 2023011615070897700_bib28 article-title: The role of Foxp3-expressing regulatory T cells and T helpers in immunopathogenesis of multidrug resistant pulmonary tuberculosis publication-title: Tuberc Res Treat – volume: 7 start-page: 40418 year: 2017 ident: 2023011615070897700_bib110 article-title: Nf-KappaB activation is critical for bacterial lipoprotein tolerance-enhanced bactericidal activity in macrophages during microbial infection publication-title: Sci Rep doi: 10.1038/srep40418 – volume: 67 start-page: 112 year: 1995 ident: 2023011615070897700_bib193 article-title: Leishmanial protein kinase C modulates host cell infection via secreted acid phosphatase publication-title: Eur J Cell Biol – volume: 21 start-page: 155 year: 2017 ident: 2023011615070897700_bib112 article-title: Imbalance of Th17 and Treg in peripheral blood mononuclear cells of active tuberculosis patients publication-title: Braz J Infect Dis doi: 10.1016/j.bjid.2016.10.011 – volume: 10 start-page: 1173 year: 2019 ident: 2023011615070897700_bib132 article-title: Curdlan limits Mycobacterium tuberculosis survival through STAT-1 regulated nitric oxide production publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01173 – volume: 10 start-page: e1001246 year: 2012 ident: 2023011615070897700_bib157 article-title: Rise and fall, and rise again: phagosome maturation is controlled by two kinases and one phosphatase publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001246 – volume: 16 start-page: 991 year: 2022 ident: 2023011615070897700_bib79 article-title: Therapeutic potential of janus kinase inhibitors for the management of interstitial lung disease publication-title: Drug Des Dev Ther doi: 10.2147/DDDT.S353494 – volume: 2016 start-page: 3845247 year: 2016 ident: 2023011615070897700_bib57 article-title: The mannose receptor is involved in the phagocytosis of mycobacteria-induced apoptotic cells publication-title: J Immunol Res doi: 10.1155/2016/3845247 – volume: 287 start-page: 3885 year: 2012 ident: 2023011615070897700_bib137 article-title: AMF-26, a novel inhibitor of the Golgi system, targeting ADP-ribosylation factor 1 (ARF1) with potential for cancer therapy publication-title: J Biol Chem doi: 10.1074/jbc.M111.316125 – volume: 20 start-page: 1785 year: 2022 ident: 2023011615070897700_bib180 article-title: M(6)A-mediated modulation coupled with transcriptional regulation shapes long noncoding RNA repertoire of the cGAS-STING signaling publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2022.04.002 – volume: 10 start-page: 154 year: 2018 ident: 2023011615070897700_bib103 article-title: Mobilization of iron from ferritin: new steps and details publication-title: Metall Integr Biometal Sci doi: 10.1039/C7MT00284J – volume: 9 start-page: 2617 year: 2018 ident: 2023011615070897700_bib104 article-title: Characterization of a protein phosphatase type-1 and a kinase anchoring protein in Plasmodium falciparum publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02617 – volume: 156 start-page: 379 year: 2021 ident: 2023011615070897700_bib192 article-title: Therapeutic potential of novel cell division cycle kinase 7 inhibitors on TDP-43-related pathogenesis such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) publication-title: J Neurochem doi: 10.1111/jnc.15118 – volume: 90 start-page: 354 year: 2010 ident: 2023011615070897700_bib115 article-title: Leads for antitubercular compounds from kinase inhibitor library screens publication-title: Tuberculosis doi: 10.1016/j.tube.2010.09.001 – volume: 27 start-page: 1131 year: 2021 ident: 2023011615070897700_bib177 article-title: SARS-COV-2 variants of concern are emerging in India publication-title: Nat Med doi: 10.1038/s41591-021-01397-4 – volume: 13 start-page: e1006551 year: 2017 ident: 2023011615070897700_bib62 article-title: Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MYD88 in human primary macrophages publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006551 – volume: 5 start-page: 16320 year: 2015 ident: 2023011615070897700_bib22 article-title: Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages publication-title: Sci Rep doi: 10.1038/srep16320 – start-page: 1 year: 2022 ident: 2023011615070897700_bib37 article-title: TRAF6 autophagic degradation by avibirnavirus VP3 inhibits antiviral innate immunity via blocking NFKB/NF-KappaB activation publication-title: Autophagy – volume: 28 start-page: 554 year: 2015 ident: 2023011615070897700_bib113 article-title: The pentavalent antimonial therapy against experimental Leishmania amazonensis infection is more effective under the inhibition of the NF-KappaB pathway publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2015.07.020 – volume: 17 start-page: 820 year: 2015 ident: 2023011615070897700_bib30 article-title: Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.05.005 – volume: 1 start-page: 376 year: 1999 ident: 2023011615070897700_bib135 article-title: Rab5 regulates motility of early endosomes on microtubules publication-title: Nat Cell Biol doi: 10.1038/14075 – volume: 97 start-page: 435 year: 1999 ident: 2023011615070897700_bib49 article-title: A coat protein on phagosomes involved in the intracellular survival of mycobacteria publication-title: Cell doi: 10.1016/S0092-8674(00)80754-0 – volume: 5 start-page: e8769 year: 2010 ident: 2023011615070897700_bib184 article-title: Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine raw 264.7 macrophages publication-title: PLoS ONE doi: 10.1371/journal.pone.0008769 – volume: 11 start-page: 598444 year: 2020 ident: 2023011615070897700_bib94 article-title: NF-KappaB pathway as a potential target for treatment of critical stage COVID-19 patients publication-title: Front Immunol doi: 10.3389/fimmu.2020.598444 – volume: 16 start-page: 1549 year: 2014 ident: 2023011615070897700_bib151 article-title: Cell-to-cell transfer of Leishmania amazonensis amastigotes is mediated by immunomodulatory LAMP-rich parasitophorous extrusions publication-title: Cell Microbiol doi: 10.1111/cmi.12311 – volume: 94 start-page: e00709 year: 2020 ident: 2023011615070897700_bib204 article-title: Porcine reproductive and respiratory syndrome virus utilizes viral apoptotic mimicry as an alternative pathway to infect host cells publication-title: J Virol doi: 10.1128/JVI.00709-20 – volume: 183 start-page: 1520 year: 2020 ident: 2023011615070897700_bib61 article-title: Beta-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway publication-title: Cell doi: 10.1016/j.cell.2020.10.039 – volume: 117 start-page: 28344 year: 2020 ident: 2023011615070897700_bib122 article-title: SARS-COV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.2016650117 – volume: 133 start-page: 489 year: 2021 ident: 2023011615070897700_bib163 article-title: JAK-STAT pathway inhibition and their implications in COVID-19 therapy publication-title: Postgrad Med doi: 10.1080/00325481.2020.1855921 – volume: 26 start-page: 240 year: 2020 ident: 2023011615070897700_bib75 article-title: Role of neutrophils in tuberculosis: a bird's eye view publication-title: Innate Immun doi: 10.1177/1753425919881176 – volume: 11 start-page: 624094 year: 2021 ident: 2023011615070897700_bib5 article-title: Interferons: tug of war between bacteria and their host publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.624094 – volume: 18 start-page: 6725 year: 1999 ident: 2023011615070897700_bib172 article-title: The induction and activation of STAT1 by all-trans-retinoic acid are mediated by RAR beta signaling pathways in breast cancer cells publication-title: Oncogene doi: 10.1038/sj.onc.1203084 – volume: 15 start-page: 399 year: 2022 ident: 2023011615070897700_bib212 article-title: The regulation of ManLAM-related gene expression in Mycobacterium tuberculosis with different drug resistance profiles following isoniazid treatment publication-title: Infect Drug Resist doi: 10.2147/IDR.S346869 – volume: 6 start-page: 39492 year: 2016 ident: 2023011615070897700_bib140 article-title: Infergen stimulated macrophages restrict Mycobacterium tuberculosis growth by autophagy and release of nitric oxide publication-title: Sci Rep doi: 10.1038/srep39492 – volume: 22 start-page: 940 year: 2014 ident: 2023011615070897700_bib141 article-title: Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus monkeys publication-title: Mol Ther J Amer Soc Gene Ther doi: 10.1038/mt.2014.31 – volume: 7 start-page: 31 year: 2021 ident: 2023011615070897700_bib216 article-title: The SARS-COV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes publication-title: Cell Discov doi: 10.1038/s41421-021-00268-z – volume: 68 start-page: 2671 year: 2000 ident: 2023011615070897700_bib29 article-title: Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate publication-title: Infect Immun doi: 10.1128/IAI.68.5.2671-2684.2000 – volume: 591 start-page: 477 year: 2021 ident: 2023011615070897700_bib190 article-title: Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance publication-title: Nature doi: 10.1038/s41586-021-03269-w – volume: 19 start-page: 900 year: 2020 ident: 2023011615070897700_bib153 article-title: Proteomic analysis of Salmonella-modified membranes reveals adaptations to macrophage hosts publication-title: Mol Cell Proteomics doi: 10.1074/mcp.RA119.001841 – volume: 10 start-page: e1004471 year: 2014 ident: 2023011615070897700_bib175 article-title: Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004471 – volume: 98 start-page: 105202 year: 2022 ident: 2023011615070897700_bib109 article-title: Polymorphisms of SLC11A1(NRAMP1) rs17235409 associated with and susceptibility to spinal tuberculosis in a southern Han Chinese population publication-title: Infect Infect Genet Evol doi: 10.1016/j.meegid.2021.105202 – volume: 387 start-page: 272 year: 2009 ident: 2023011615070897700_bib171 article-title: Dissection of Rab7 localization on Mycobacterium tuberculosis phagosome publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.06.152 – volume: 122 start-page: 735 year: 2005 ident: 2023011615070897700_bib156 article-title: Rab conversion as a mechanism of progression from early to late endosomes publication-title: Cell doi: 10.1016/j.cell.2005.06.043 – volume: 21 start-page: 1633 year: 2020 ident: 2023011615070897700_bib31 article-title: Protective effect of GYY4137, a watersoluble hydrogen sulfidereleasing molecule, on intestinal ischemiareperfusion publication-title: Mol Med Rep – volume: 338 start-page: 1072 year: 2012 ident: 2023011615070897700_bib27 article-title: The legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation publication-title: Science doi: 10.1126/science.1227026 – volume: 279 start-page: 25703 year: 2004 ident: 2023011615070897700_bib168 article-title: Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in leishmania publication-title: J Biol Chem doi: 10.1074/jbc.M402794200 – volume: 285 start-page: 19162 year: 2010 ident: 2023011615070897700_bib84 article-title: Inhibition of NF-KappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (trail) or oxaliplatin publication-title: J Biol Chem doi: 10.1074/jbc.M109.091645 – volume: 12 start-page: 611 year: 2013 ident: 2023011615070897700_bib121 article-title: Therapeutic modulators of STAT signalling for human diseases publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4088 – volume: 45 start-page: 172 year: 2011 ident: 2023011615070897700_bib136 article-title: IL-10 blocks phagosome maturation in Mycobacterium tuberculosis-infected human macrophages publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2010-0319OC – volume: 39 start-page: 1814 year: 2016 ident: 2023011615070897700_bib26 article-title: The P2×7 receptor involved in gp120-induced cell injury in BV2 microglia publication-title: Inflammation doi: 10.1007/s10753-016-0417-0 – volume: 287 start-page: 1777 year: 2020 ident: 2023011615070897700_bib149 article-title: Leishmania aethiopica cell-to-cell spreading involves caspase-3, AkT, and NF-KappaB but not PKC-delta activation and involves uptake of LAMP-1-positive bodies containing parasites publication-title: FEBS J doi: 10.1111/febs.15166 – volume: 6 start-page: e23905 year: 2017 ident: 2023011615070897700_bib210 article-title: Elucidation of the anti-autophagy mechanism of the Legionella effector ravz using semisynthetic LC3 proteins publication-title: Elife doi: 10.7554/eLife.23905 – volume: 65 start-page: 10133 year: 2022 ident: 2023011615070897700_bib215 article-title: Polo-like kinase 1 inhibitors in human cancer therapy: development and therapeutic potential publication-title: J Med Chem doi: 10.1021/acs.jmedchem.2c00614 – volume: 100 start-page: 5437 year: 2003 ident: 2023011615070897700_bib53 article-title: Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0737613100 – volume: 188 start-page: 781 year: 2012 ident: 2023011615070897700_bib44 article-title: Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection publication-title: J Immunol doi: 10.4049/jimmunol.1101231 – volume: 80 start-page: 509 year: 2002 ident: 2023011615070897700_bib73 article-title: Phagocytosis and the microtubule cytoskeleton publication-title: Biochem Cell Biol doi: 10.1139/o02-142 – volume: 277 start-page: 34997 year: 2002 ident: 2023011615070897700_bib14 article-title: C-Myc represses and Miz-1 activates the murine natural resistance-associated protein 1 promoter publication-title: J Biol Chem doi: 10.1074/jbc.M204232200 – volume: 146 start-page: 110380 year: 2021 ident: 2023011615070897700_bib59 article-title: Cyclin dependent kinase inhibitors as a new potential therapeutic option in management of COVID-19 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.110380 – volume: 279 start-page: 4750 year: 2004 ident: 2023011615070897700_bib185 article-title: Flavopiridol inhibits NF-KappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9 publication-title: J Biol Chem doi: 10.1074/jbc.M304546200 – volume: 6 start-page: 35917 year: 2016 ident: 2023011615070897700_bib25 article-title: HBV core promoter mutations and AKT upregulate S-phase kinase-associated protein 2 to promote postoperative hepatocellular carcinoma progression publication-title: Sci Rep doi: 10.1038/srep35917 – volume: 7 start-page: 355 year: 2009 ident: 2023011615070897700_bib52 article-title: Antimicrobial mechanisms of phagocytes and bacterial evasion strategies publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2128 – volume: 17 start-page: 811 year: 2015 ident: 2023011615070897700_bib203 article-title: The cytosolic sensor cGAS etects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.05.004 – volume: 17 start-page: 799 year: 2015 ident: 2023011615070897700_bib202 article-title: Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.05.003 – volume: 90 start-page: 168 year: 2010 ident: 2023011615070897700_bib87 article-title: Challenges to the development of new drugs and regimens for tuberculosis publication-title: Tuberculosis doi: 10.1016/j.tube.2010.03.006 – volume: 97 start-page: 9258 year: 2000 ident: 2023011615070897700_bib181 article-title: Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.160257897 – volume: 15 start-page: e1007982 year: 2019 ident: 2023011615070897700_bib6 article-title: The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007982 – volume: 25 start-page: 343 year: 1972 ident: 2023011615070897700_bib161 article-title: Cyclamidomycin (desdanine), an inhibitor of nucleoside diphosphokinase of Escherichia coli publication-title: J Antibiot doi: 10.7164/antibiotics.25.343 – volume: 14 start-page: 937 year: 2012 ident: 2023011615070897700_bib17 article-title: Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2012.01767.x – volume: 18 start-page: 164 year: 2020 ident: 2023011615070897700_bib54 article-title: Why tocilizumab could be an effective treatment for severe COVID-19? publication-title: J Transl Med doi: 10.1186/s12967-020-02339-3 – volume: 277 start-page: 2620 year: 2002 ident: 2023011615070897700_bib100 article-title: Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides publication-title: J Biol Chem doi: 10.1074/jbc.M104550200 – volume: 308 start-page: 1000 year: 2018 ident: 2023011615070897700_bib173 article-title: Mycobacterium indicus pranii protein MIP_05962 induces Th1 cell mediated immune response in mice publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2018.08.008 – volume: 19 start-page: 976 year: 2021 ident: 2023011615070897700_bib91 article-title: Chemokines and chemokine receptors during COVID-19 infection publication-title: Computat Struct Biotechnol J doi: 10.1016/j.csbj.2021.01.034 – volume: 22 start-page: e13253 year: 2020 ident: 2023011615070897700_bib8 article-title: Leishmania infection triggers hepcidin-mediated proteasomal degradation of Nramp1 to increase phagolysosomal iron availability publication-title: Cell Microbiol doi: 10.1111/cmi.13253 – volume: 10 start-page: e0004570 year: 2016 ident: 2023011615070897700_bib48 article-title: Down-regulation of TLR and JAK/STAT pathway genes is associated with diffuse cutaneous leishmaniasis: a gene expression analysis in NK cells from patients infected with Leishmania mexicana publication-title: PLoS NeglTrop Dis doi: 10.1371/journal.pntd.0004570 – volume: 88 start-page: e00222 year: 2020 ident: 2023011615070897700_bib39 article-title: Combination of Mycobacterium indicus pranii and heat-induced promastigotes cures drug-resistant Leishmania infection: critical role of Interleukin-6-producing classical dendritic cells publication-title: Infect Immun doi: 10.1128/IAI.00222-19 – volume: 2019 start-page: 1356540 year: 2019 ident: 2023011615070897700_bib188 article-title: Intracellular pathogens: host immunity and microbial persistence strategies publication-title: J Immunol Res doi: 10.1155/2019/1356540 – volume: 78 start-page: 30 year: 2022 ident: 2023011615070897700_bib64 article-title: X-ray diffraction and in vivo studies reveal the quinary structure of Trypanosoma cruzi nucleoside diphosphate kinase 1: a novel helical oligomer structure publication-title: Acta Crystallogr Sect D Struct Biol doi: 10.1107/S2059798321011219 – volume: 11 start-page: 962 year: 2020 ident: 2023011615070897700_bib127 article-title: Neutrophils in tuberculosis-associated inflammation and lung pathology publication-title: Front Immunol doi: 10.3389/fimmu.2020.00962 – volume: 2 start-page: 522 year: 2010 ident: 2023011615070897700_bib81 article-title: Inactivation of macrophage Rab7 by Burkholderia cenocepacia publication-title: J Innate Immun doi: 10.1159/000319864 – volume: 11 start-page: 1365 year: 2009 ident: 2023011615070897700_bib129 article-title: SLC11A1 limits intracellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2009.01337.x – volume: 65 start-page: 335 year: 2018 ident: 2023011615070897700_bib19 article-title: Potential of adjunctive Mycobacterium W (MIP) immunotherapy in reducing the duration of standard chemotherapy against tuberculosis publication-title: Indian J Tuberc doi: 10.1016/j.ijtb.2018.08.004 – volume: 17 start-page: e1009576 year: 2021 ident: 2023011615070897700_bib189 article-title: DC/L-sign recognition of spike glycoprotein promotes SARS-COV-2 trans-infection and can be inhibited by a glycomimetic antagonist publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009576 – volume: 28 start-page: 2745 year: 2021 ident: 2023011615070897700_bib83 article-title: PLK1/vimentin signaling facilitates immune escape by recruiting SMAD2/3 to PD-L1 promoter in metastatic lung adenocarcinoma publication-title: Cell Death Differ doi: 10.1038/s41418-021-00781-4 – volume: 11 start-page: 100116 year: 2021 ident: 2023011615070897700_bib92 article-title: Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: a review publication-title: Metabol Open doi: 10.1016/j.metop.2021.100116 – volume: 93 start-page: 1843 year: 2021 ident: 2023011615070897700_bib90 article-title: Mtor inhibition in COVID-19: a commentary and review of efficacy in RNA viruses publication-title: J Med Virol doi: 10.1002/jmv.26728 – volume: 183 start-page: 1813 year: 2009 ident: 2023011615070897700_bib170 article-title: Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis publication-title: J Immunol doi: 10.4049/jimmunol.0900276 – volume: 356 start-page: 1051 year: 2000 ident: 2023011615070897700_bib205 article-title: Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study publication-title: Lancet doi: 10.1016/S0140-6736(00)02727-6 – volume: 13 start-page: e0190490 year: 2018 ident: 2023011615070897700_bib199 article-title: The expression profiles of immune genes in Mus musculus macrophages during Staphylococcus aureus infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0190490 – volume: 181 start-page: 2651 year: 2008 ident: 2023011615070897700_bib71 article-title: Nf-Kappa B activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages publication-title: J Immunol doi: 10.4049/jimmunol.181.4.2651 – volume: 42 start-page: 795 year: 1998 ident: 2023011615070897700_bib34 article-title: Leishmania donovani infection of a susceptible host results in apoptosis of Th1-like cells: rescue of anti-leishmanial CMI by providing Th1-specific bystander costimulation publication-title: Microbiol Immunol doi: 10.1111/j.1348-0421.1998.tb02354.x – volume: 20 start-page: 400 year: 2020 ident: 2023011615070897700_bib182 article-title: COVID-19: combining antiviral and anti-inflammatory treatments publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30132-8 – volume: 8 start-page: 84 year: 2018 ident: 2023011615070897700_bib111 article-title: The ATP-P2×7 signaling axis is an essential sentinel for intracellular Clostridium difficile pathogen-induced inflammasome activation publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2018.00084 – volume: 9 start-page: 121 year: 2007 ident: 2023011615070897700_bib72 article-title: Shigella ipgb1 promotes bacterial entry through the ELMO-Dock180 machinery publication-title: Nat Cell Biol doi: 10.1038/ncb1526 – volume: 9 start-page: 9825 year: 2019 ident: 2023011615070897700_bib36 article-title: Nucleic acid sensing activates the innate cytosolic surveillance pathway and promotes parasite survival in visceral leishmaniasis publication-title: Sci Rep doi: 10.1038/s41598-019-45800-0 – volume: 7 start-page: 3354 year: 2017 ident: 2023011615070897700_bib174 article-title: Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial publication-title: Sci Rep doi: 10.1038/s41598-017-03514-1 – volume: 69 start-page: 67 year: 2012 ident: 2023011615070897700_bib217 article-title: Iron transport machinery of human cells: players and their interactions publication-title: Curr Top Membr doi: 10.1016/B978-0-12-394390-3.00003-3 – volume: 94 start-page: 869 year: 2022 ident: 2023011615070897700_bib117 article-title: Role of toll-like receptors in modulation of cytokine storm signaling in SARS-COV-2-induced COVID-19 publication-title: J Med Virol doi: 10.1002/jmv.27405 – volume: 13 start-page: 93 year: 2020 ident: 2023011615070897700_bib159 article-title: P2×7 receptor antagonism as a potential therapy in amyotrophic lateral sclerosis publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2020.00093 – volume: 13 start-page: 1511 year: 2021 ident: 2023011615070897700_bib191 article-title: Targeting the IL-6/STAT3 signalling cascade to reverse tamoxifen resistance in estrogen receptor positive breast cancer publication-title: Cancers doi: 10.3390/cancers13071511 – volume: 12 start-page: 2619 year: 2022 ident: 2023011615070897700_bib23 article-title: Discovery of ARF1-targeting inhibitor demethylzeylasteral as a potential agent against breast cancer publication-title: Acta Pharmaceut Sin B doi: 10.1016/j.apsb.2022.02.011 – volume: 15 start-page: 23 year: 2017 ident: 2023011615070897700_bib166 article-title: The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells publication-title: Cell Commun Signal doi: 10.1186/s12964-017-0177-y – volume: 37 start-page: 515 year: 2000 ident: 2023011615070897700_bib10 article-title: The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin yope is required for antiphagocytic function and virulence publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.02021.x – volume: 98 start-page: 164 year: 2018 ident: 2023011615070897700_bib12 article-title: The NDPK/NME superfamily: state of the art publication-title: Lab Invest doi: 10.1038/labinvest.2017.137 – volume: 9 start-page: 6247 year: 2019 ident: 2023011615070897700_bib201 article-title: Neutrophil properties in healthy and Leishmania infantum-naturally infected dogs publication-title: Sci Rep doi: 10.1038/s41598-019-42687-9 – volume: 75 start-page: 1 year: 2012 ident: 2023011615070897700_bib198 article-title: The 2011 Nobel Prize in physiology or medicine publication-title: Scand J Immunol doi: 10.1111/j.1365-3083.2011.02663.x – volume: 11 start-page: 310 year: 2022 ident: 2023011615070897700_bib9 article-title: The role of nuclear factor Kappa B (NF-KappaB) in the immune response against parasites publication-title: Pathogens doi: 10.3390/pathogens11030310 – volume: 7 start-page: 350 year: 2017 ident: 2023011615070897700_bib124 article-title: Burkholderia pseudomallei evades NRAMP1 (SLS11A1)- and NADPH oxidase-mediated killing in macrophages and exhibits NRAMP1-dependent virulence gene expression publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00350 – volume: 66 start-page: e0149821 year: 2022 ident: 2023011615070897700_bib143 article-title: In vitro antimalarial activity of inhibitors of the human gtpase Rac1 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01498-21 – volume: 12 start-page: 36 year: 2022 ident: 2023011615070897700_bib55 article-title: SARS-COV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1 publication-title: Cell Bioscience doi: 10.1186/s13578-022-00770-1 – volume: 36 start-page: 1395 year: 2015 ident: 2023011615070897700_bib208 article-title: Toll-like receptors: potential targets for lupus treatment publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2015.91 – volume: 17 start-page: 369 year: 2015 ident: 2023011615070897700_bib88 article-title: Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase publication-title: Microbes Infect doi: 10.1016/j.micinf.2015.03.010 – volume: 233 start-page: 537 year: 2014 ident: 2023011615070897700_bib60 article-title: Effect of low extracellular ph on NF-KappaB activation in macrophages publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2014.01.014 – volume: 20 start-page: 375 year: 2020 ident: 2023011615070897700_bib133 article-title: Defining trained immunity and its role in health and disease publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0285-6 – volume: 38 start-page: 609 year: 2010 ident: 2023011615070897700_bib178 article-title: Both NRAMP1 and DMT1 are necessary for efficient macrophage iron recycling publication-title: Exp Hematol doi: 10.1016/j.exphem.2010.04.003 – volume: 66 start-page: 371 year: 2022 ident: 2023011615070897700_bib116 article-title: Mechanisms of resistance to tyrosine kinase inhibitors in liver cancer stem cells and potential therapeutic approaches publication-title: Essays Biochem doi: 10.1042/EBC20220001 – volume: 42 start-page: 315 year: 2020 ident: 2023011615070897700_bib15 article-title: Towards new TB vaccines publication-title: Semin Immunopathol doi: 10.1007/s00281-020-00794-0 – volume: 28 start-page: 875 year: 1998 ident: 2023011615070897700_bib21 article-title: Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell signalling and polysaccharide synthesis publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1998.00846.x – volume: 13 start-page: 3072 year: 2022 ident: 2023011615070897700_bib68 article-title: Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes publication-title: Nat Commun doi: 10.1038/s41467-022-30654-4 – volume: 14 start-page: e0224239 year: 2019 ident: 2023011615070897700_bib176 article-title: Lipoarabinomannan from Mycobacterium indicus pranii shows immunostimulatory activity and induces autophagy in macrophages publication-title: PLoS ONE doi: 10.1371/journal.pone.0224239 – volume: 166 start-page: 1065 year: 2016 ident: 2023011615070897700_bib66 article-title: Phagocytosis: the legacy of Metchnikoff publication-title: Cell doi: 10.1016/j.cell.2016.08.017 – volume: 105 start-page: 3980 year: 2008 ident: 2023011615070897700_bib144 article-title: Leishmania requires Rab7-mediated degradation of endocytosed hemoglobin for their growth publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0800404105 – volume: 67 start-page: 4055 year: 1999 ident: 2023011615070897700_bib130 article-title: Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani publication-title: Infect Immun doi: 10.1128/IAI.67.8.4055-4063.1999 – volume: 16 start-page: 1068 year: 2014 ident: 2023011615070897700_bib155 article-title: Listeria monocytogenes antagonizes the human gtpase Cdc42 to promote bacterial spread publication-title: Cell Microbiol doi: 10.1111/cmi.12260 – volume: 13 start-page: 272 year: 2009 ident: 2023011615070897700_bib197 article-title: The therapeutic potential of phosphatase inhibitors publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2009.03.021 – volume: 31 start-page: 107746 year: 2020 ident: 2023011615070897700_bib152 article-title: Tlr7 sensing by neutrophils is critical for the control of cutaneous leishmaniasis publication-title: Cell Rep doi: 10.1016/j.celrep.2020.107746 – volume: 13 start-page: e1006459 year: 2017 ident: 2023011615070897700_bib194 article-title: Leishmania donovani resides in modified early endosomes by upregulating RAB5a expression via the downregulation of miR-494 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006459 – volume: 27 start-page: 75 year: 2015 ident: 2023011615070897700_bib167 article-title: PRR-signaling pathways: learning from microbial tactics publication-title: Semin Immunol doi: 10.1016/j.smim.2015.03.009 – start-page: 1 year: 2022 ident: 2023011615070897700_bib209 article-title: Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations publication-title: Autophagy doi: 10.1080/15548627.2022.2153569 – volume: 223 start-page: 854 year: 2021 ident: 2023011615070897700_bib219 article-title: Signaling lymphocytic activation molecule family-7 alleviates corneal inflammation by promoting M2 polarization publication-title: J Infect Dis doi: 10.1093/infdis/jiaa445 – volume: 2017 start-page: 5103803 year: 2017 ident: 2023011615070897700_bib211 article-title: Analysis of differentially expressed proteins in Mycobacterium avium-infected macrophages comparing with Mycobacterium tuberculosis-infected macrophages publication-title: Biomed Res Int – volume: 295 start-page: 5807 year: 2020 ident: 2023011615070897700_bib138 article-title: Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR publication-title: J Biol Chem doi: 10.1074/jbc.RA120.012491 – volume: 56 start-page: 427 year: 2021 ident: 2023011615070897700_bib119 article-title: ORF3a of the COVID-19 virus SARS-COV-2 blocks hops complex-mediated assembly of the snare complex required for autolysosome formation publication-title: Dev Cell doi: 10.1016/j.devcel.2020.12.010 – volume: 2021 start-page: 8874339 year: 2021 ident: 2023011615070897700_bib2 article-title: Covid-19 and toll-like receptor 4 (TLR4): Sars-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation publication-title: Mediat Inflamm doi: 10.1155/2021/8874339 – volume: 75 start-page: 2136 year: 2007 ident: 2023011615070897700_bib38 article-title: Leishmania donovani-induced ceramide as the key mediator of AKT dephosphorylation in murine macrophages: role of protein kinase Czeta and phosphatase publication-title: Infect Immun doi: 10.1128/IAI.01589-06 – volume: 56 start-page: 363 year: 1988 ident: 2023011615070897700_bib206 article-title: Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes publication-title: Infect Immun doi: 10.1128/iai.56.2.363-369.1988 – volume: 124 start-page: 767 year: 2006 ident: 2023011615070897700_bib51 article-title: Anti-immunology: evasion of the host immune system by bacterial and viral pathogens publication-title: Cell doi: 10.1016/j.cell.2006.01.034 – volume: 9 start-page: e1003499 year: 2013 ident: 2023011615070897700_bib183 article-title: Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003499 – volume: 126 start-page: 104257 year: 2022 ident: 2023011615070897700_bib213 article-title: Expression and functional characterization of the mannose receptor (MR) from Nile tilapia (Oreochromis niloticus) in response to bacterial infection publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2021.104257 – volume: 398 start-page: 565 year: 2017 ident: 2023011615070897700_bib65 article-title: Mechanisms of action of Rab proteins, key regulators of intracellular vesicular transport publication-title: Biol Chem doi: 10.1515/hsz-2016-0274 – volume: 12 start-page: 7115 year: 2021 ident: 2023011615070897700_bib4 article-title: Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming publication-title: Nat Commun doi: 10.1038/s41467-021-27426-x – volume: 307 start-page: 66 year: 2022 ident: 2023011615070897700_bib3 article-title: Regulatory strategies limiting endosomal toll-like receptor activation in B cells publication-title: Immunol Rev doi: 10.1111/imr.13065 – volume: 35 start-page: 109126 year: 2021 ident: 2023011615070897700_bib74 article-title: Systematic functional analysis of SARS-COV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109126 – volume: 30 start-page: 115940 year: 2021 ident: 2023011615070897700_bib86 article-title: Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer's disease publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2020.115940 – volume: 117 start-page: 1994 year: 2020 ident: 2023011615070897700_bib106 article-title: Innate immune receptor NOD2 mediates LGR5(+) intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1902788117 – volume: 8 start-page: e69619 year: 2013 ident: 2023011615070897700_bib154 article-title: Identification of benzimidazole diamides as selective inhibitors of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0069619 – volume: 40 start-page: e12521 year: 2018 ident: 2023011615070897700_bib148 article-title: Mannose receptor (MR) and toll-like receptor 2 (TLR2) influence phagosome maturation during Leishmania infection publication-title: Parasite Immunol doi: 10.1111/pim.12521 – volume: 21 start-page: e13003 year: 2019 ident: 2023011615070897700_bib158 article-title: Host cell protein LAMP-2 is the receptor for Trypanosoma cruzi surface molecule gp82 that mediates invasion publication-title: Cell Microbiol doi: 10.1111/cmi.13003 – volume: 40 start-page: 111282 year: 2022 ident: 2023011615070897700_bib126 article-title: Structural basis for activation of ARF1 at the Golgi complex publication-title: Cell Rep doi: 10.1016/j.celrep.2022.111282 – volume: 9 start-page: 1161 year: 2018 ident: 2023011615070897700_bib16 article-title: Mycobacterium tuberculosis catalase inhibits the formation of mast cell extracellular traps publication-title: Front Immunol doi: 10.3389/fimmu.2018.01161 – volume: 205 start-page: 125 year: 2017 ident: 2023011615070897700_bib214 article-title: Nucleoside diphosphate kinase (NDK): a pleiotropic effector manipulating bacterial virulence and adaptive responses publication-title: Microbiol Res doi: 10.1016/j.micres.2017.09.001 – volume: 113 Pt 19 start-page: 3531 year: 2000 ident: 2023011615070897700_bib43 article-title: Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in raw 264.7 macrophages publication-title: J Cell Sci doi: 10.1242/jcs.113.19.3531 – volume: 10 start-page: 2408 year: 2008 ident: 2023011615070897700_bib146 article-title: Mycobacterial manipulation of vacuolar sorting publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01239.x – volume: 44 start-page: 463 year: 2016 ident: 2023011615070897700_bib67 article-title: Phagocytosis: an immunobiologic process publication-title: Immunity doi: 10.1016/j.immuni.2016.02.026 – volume: 68 start-page: 15 year: 2021 ident: 2023011615070897700_bib69 article-title: NDK/NME proteins: a host-pathogen interface perspective towards therapeutics publication-title: Curr Genet doi: 10.1007/s00294-021-01198-9 – volume: 26 start-page: 313 year: 2007 ident: 2023011615070897700_bib80 article-title: Lamp proteins are required for fusion of lysosomes with phagosomes publication-title: EMBO J doi: 10.1038/sj.emboj.7601511 – volume: 157 start-page: 3559 year: 1996 ident: 2023011615070897700_bib195 article-title: Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains publication-title: J Immunol doi: 10.4049/jimmunol.157.8.3559 – volume: 244 start-page: 10 year: 2006 ident: 2023011615070897700_bib147 article-title: P2x(7) purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability publication-title: Cell Immunol doi: 10.1016/j.cellimm.2007.02.001 – volume: 6 start-page: 946 year: 2015 ident: 2023011615070897700_bib63 article-title: Downregulation of host tryptophan-aspartate containing coat (TACO) gene restricts the entry and survival of Leishmania donovani in human macrophage model publication-title: Front Microbiol doi: 10.3389/fmicb.2015.00946 – volume: 1770 start-page: 649 year: 2007 ident: 2023011615070897700_bib40 article-title: Differential expression of NF-KappaB in Mycobacteria infected Thp-1 affects apoptosis publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2006.11.016 – volume: 4 start-page: 180 year: 2014 ident: 2023011615070897700_bib123 article-title: The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2014.00180 – volume: 130 start-page: 37 year: 2007 ident: 2023011615070897700_bib85 article-title: Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin publication-title: Cell doi: 10.1016/j.cell.2007.04.043 – volume: 161 start-page: 1306 year: 2015 ident: 2023011615070897700_bib120 article-title: A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion publication-title: Cell doi: 10.1016/j.cell.2015.05.009 – volume: 218 start-page: 1104 year: 2013 ident: 2023011615070897700_bib162 article-title: Implication of purinergic P2×7 receptor in M. tuberculosis infection and host interaction mechanisms: a mouse model study publication-title: Immunobiology doi: 10.1016/j.imbio.2013.03.003 – volume: 4 start-page: 88 year: 2018 ident: 2023011615070897700_bib165 article-title: Combating intracellular pathogens with repurposed host-targeted drugs publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.7b00268 – volume: 124 start-page: 1006 year: 2016 ident: 2023011615070897700_bib108 article-title: Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2016.10.028 – volume: 13 start-page: e0206459 year: 2018 ident: 2023011615070897700_bib125 article-title: Mycobacterium tuberculosis host cell interaction: role of latency associated protein ACR-1 in differential modulation of macrophages publication-title: PLoS ONE doi: 10.1371/journal.pone.0206459 |
SSID | ssj0005955 |
Score | 2.476813 |
SecondaryResourceType | review_article |
Snippet | Abstract
The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes... The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host... |
SourceID | proquest gale pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Acidification Agonists Antigen presentation Antigens Apoptosis Autophagy BCG BCG vaccines Communicable diseases Communicable Diseases - metabolism Cytosol Development and progression Drug development Health aspects Humans Immune Evasion Immune system Infectious diseases Inflammation Inflammatory response Intracellular Lymphocytes T Macrophages - metabolism Macrophages - microbiology Parasitic diseases Pathogenic microorganisms Pathogens Phagocytosis Phagolysosomes Phagosomes Phagosomes - metabolism Phagosomes - microbiology Reactive oxygen species Therapeutic applications Therapeutic targets Zooming |
Title | Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36309472 https://www.proquest.com/docview/2823849094 https://www.proquest.com/docview/2730314921 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgExIviG8KZTITEk9W09iJY17QQJsGEgONTap4iRzHLpWWuMwt0v4S_l3uErcjQsBjlIvt5C7n353vg5CXhQPIVkwzliirmQA9yapMOiZdwmXipkJ2pZQ-nuTH5-LDLJtFh1uIYZUbndgp6tob9JFPwDTghVBgjbxZfmfYNQpPV2MLjZtkF0uXofElZ_I6xENlfQhjXjDY97Nt0UY-cbaBLWji1tokYjrYlKJqHuS7_QE7u-3n6C65E3EjPegZfY_csO19cqvvJHn1gPz8CgAYdiG6aKlvKbwSrJcuMPnDUvtDo0-MNhbTfBehCdQ7ir2IPYhPwGeW3_TcX1wFH3xjw2u69CsMI4IZq0uva9YlZF6uG_pbvhbto8gD1XO9AJRJN4Fd60DjuU94SM6PDs_eHbPYc4EZkRUrluqpNE6DkadyJTSvuMolr60GWCGMLQr0mjphdSXBuAXbDRC6cy6zVVFVyjn-iOy0vrVPCLUSjF8jXK3rSphEF84A3AJ8Z6Sqk1SNCNt89NLEguTYF-Oi7A_GedkzqYxMGpFXW_plX4rjr5T7yMMS61u0GEAz1-sQyvdfTssDiSUAM7DiYLhI5DxMa3TMR4DFY0msAeV4QAk_oBnc3gdR-e-SxhtJKqOWCOW1TI_Ii-1tHB4j31oL_CoBXmKHAZXCEI97CdxOxXMOz8r06b8Hf0ZupwDNesfRmOyAuNjnAKVW1V73v-yR3beHJ59P4ers0-wX65UkDw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiDeFAmYF4mQ1TZw4QUJoBaxa9nGAXaniYhzHLpU2cVm3oP4S_gW_kZk8ulQIOO05k7HlGXu-sedByLPUAmRLhzELMqMYh3OS5bGwTNggEoEdclGXUjo8SkYn_P0knmyRn10uDIZVdmdifVAXTuMd-QBcgyjlGXgjr-dfGXaNwtfVroVGoxb7ZvUdXDb_avwW5Ps8DPfeHb8ZsbarANM8ThcsVEOhrQI3JksyrqI8yhIRFUaB4eTapCneC1puVC7AfQPvBDCotTY2eZrnmbUR8L1ELoPhDTCEUEzEeUhJFjchk0nKAGfE6yKR0cCaEkzewC6VDvhwwwi2pmAjv-4PmFubu70b5HqLU-luo1g3yZapbpErTefK1W3y4xMAbrB6dFZRV1FYQlgfOsNkE0PNN4V3cLQ0mFY886WnzlLsfexAXT3-M_-ipu505Z13pfEv6dwtMGwJRszPnCpYnQB6tizpb_lhtIla91RN1QxQLe0CyZaetu9M_g45uRBp3CXblavMfUKNAGdbc1uoIuc6UKnVAO8AT2qRFUGY9QjrFl3qtgA69uE4lc1DfCQbIclWSD3yYk0_b0p__JVyB2UosZ5GhQE7U7X0Xo4_fpC7AksOxuA1AruWyDoYVqs2_wEmjyW4Nij7G5Sw4fXG5x1Qlf9Oqd9pkmxPJS_P91CPPF1_RvYYaVcZkJcEOIsdDbIQWNxrNHA9VJRE8K8IH_yb-RNydXR8eCAPxkf7D8m1EGBhc2nVJ9ugOuYRwLhF_rjeO5R8vujN-gukj16i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zooming+in+on+common+immune+evasion+mechanisms+of+pathogens+in+phagolysosomes%3A+potential+broad-spectrum+therapeutic+targets+against+infectious+diseases&rft.jtitle=FEMS+microbiology+reviews&rft.au=Selvapandiyan%2C+Angamuthu&rft.au=Puri%2C+Niti&rft.au=Kumar%2C+Pankaj&rft.au=Alam%2C+Anwar&rft.date=2023-01-01&rft.eissn=1574-6976&rft.volume=47&rft.issue=1&rft_id=info:doi/10.1093%2Ffemsre%2Ffuac041&rft_id=info%3Apmid%2F36309472&rft.externalDocID=36309472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-6976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-6976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-6976&client=summon |