Genetic Analysis Reveals That C₁₉-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis

Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we u...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 20; no. 9; pp. 2420 - 2436
Main Authors Rieu, Ivo, Eriksson, Sven, Powers, Stephen J, Gong, Fan, Griffiths, Jayne, Woolley, Lindsey, Benlloch, Reyes, Nilsson, Ove, Thomas, Stephen G, Hedden, Peter, Phillips, Andrew L
Format Journal Article
LanguageEnglish
Published England American Society of Plant Biologists 01.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C₁₉-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C₁₉-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C₁₉-GA 2-oxidases, we show that C₁₉-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C₁₉-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C₁₉-GA 2-oxidation is a major GA inactivation pathway regulating development in ARABIDOPSIS:
AbstractList Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C₁₉-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C₁₉-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C₁₉-GA 2-oxidases, we show that C₁₉-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C₁₉-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C₁₉-GA 2-oxidation is a major GA inactivation pathway regulating development in ARABIDOPSIS:
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C19-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C19-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C19-GA 2-oxidases, we show that C19-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C19-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C19-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C 19 -GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C 19 -GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C 19 -GA 2-oxidases, we show that C 19 -GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C 19 -GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C 19 -GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis .
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.
Author Woolley, Lindsey
Eriksson, Sven
Powers, Stephen J
Benlloch, Reyes
Thomas, Stephen G
Griffiths, Jayne
Gong, Fan
Rieu, Ivo
Nilsson, Ove
Hedden, Peter
Phillips, Andrew L
AuthorAffiliation a Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
b Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90183 Umeå, Sweden
c Centre for Biomathematics and Bioinformatics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
AuthorAffiliation_xml – name: c Centre for Biomathematics and Bioinformatics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
– name: b Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90183 Umeå, Sweden
– name: a Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
Author_xml – sequence: 1
  fullname: Rieu, Ivo
– sequence: 2
  fullname: Eriksson, Sven
– sequence: 3
  fullname: Powers, Stephen J
– sequence: 4
  fullname: Gong, Fan
– sequence: 5
  fullname: Griffiths, Jayne
– sequence: 6
  fullname: Woolley, Lindsey
– sequence: 7
  fullname: Benlloch, Reyes
– sequence: 8
  fullname: Nilsson, Ove
– sequence: 9
  fullname: Thomas, Stephen G
– sequence: 10
  fullname: Hedden, Peter
– sequence: 11
  fullname: Phillips, Andrew L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18805991$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1URP_AlRvgE7cNHq-9a1-QoghCpaIiaCVulu04jaPNOrWdQI70xtfsJ8FlSwRIiJNHM-_9NON3jA760DuEngIZARD-Kq_tCIgYES4EiAfoCHhNKyrF54NSE0Yq1nA4RMcpLQkh0IJ8hA5BCMKlhCMUpq532Vs87nW3Sz7hj27rdJfwxUJnPLm9-XZ7872ajjGtzr_6mc4-9Pg0YY3f62WIeOqNcdF1nS_tXtvst4Pmg86LL3qHS38ctfGzsC74x-jhvNDdk_v3BF2-fXMxeVednU9PJ-OzyjIuckUbbY0W0BjeOpA1I9IQRx04YzizFjQHykFaOaOENLpUVFDr-IxJ2lJTn6DXA3e9MSs3s67PUXdqHf1Kx50K2qs_J71fqKuwVZS3pKW0AF7eA2K43riU1conW-7UvQubpBrZAmcN-6-QCZAN53fE57-vtN_lVxhFwAaBjSGl6ObK-vzzM8uGvlNA1F3mqmReaqGGzItt9JdtT_6X4dlgWKYc4l5NOaWsZk2Zvxjmcx2Uvoo-qctPlEBNgLeNLDf_AL9Xwx8
CitedBy_id crossref_primary_10_1038_nplants_2014_25
crossref_primary_10_1038_srep33344
crossref_primary_10_1007_s00344_013_9385_x
crossref_primary_10_1016_j_scienta_2023_112163
crossref_primary_10_1111_nph_12571
crossref_primary_10_1007_s11105_011_0326_1
crossref_primary_10_1111_tpj_12719
crossref_primary_10_1016_j_bmcl_2010_05_015
crossref_primary_10_1016_j_cub_2021_09_024
crossref_primary_10_1105_tpc_112_108902
crossref_primary_10_1111_tpj_14229
crossref_primary_10_1111_j_1365_313X_2011_04716_x
crossref_primary_10_1186_s12870_017_1035_1
crossref_primary_10_1371_journal_pone_0017458
crossref_primary_10_3389_fpls_2016_01884
crossref_primary_10_1073_pnas_1113666109
crossref_primary_10_1007_s10725_020_00665_6
crossref_primary_10_1093_jxb_erv300
crossref_primary_10_1186_s12870_014_0386_0
crossref_primary_10_1073_pnas_1113632109
crossref_primary_10_1242_dev_080879
crossref_primary_10_1093_jxb_eru334
crossref_primary_10_1093_pcp_pct125
crossref_primary_10_1016_j_micres_2018_01_010
crossref_primary_10_1016_j_plantsci_2021_110857
crossref_primary_10_1016_j_jphotobiol_2016_06_020
crossref_primary_10_15252_msb_20177840
crossref_primary_10_1093_dnares_dss029
crossref_primary_10_1073_pnas_1215788110
crossref_primary_10_1007_s10722_020_00989_2
crossref_primary_10_1101_gad_593410
crossref_primary_10_1016_j_gene_2023_147255
crossref_primary_10_3390_genes13050863
crossref_primary_10_1093_jxb_ery261
crossref_primary_10_1111_j_1365_313X_2011_04596_x
crossref_primary_10_1016_j_micres_2015_11_004
crossref_primary_10_1016_j_pbi_2018_08_001
crossref_primary_10_3390_ijms21207789
crossref_primary_10_1111_pbi_13446
crossref_primary_10_1007_s11103_020_01019_6
crossref_primary_10_3389_fpls_2023_1117069
crossref_primary_10_3390_plants7040111
crossref_primary_10_1016_j_plantsci_2014_05_005
crossref_primary_10_1007_s13580_020_00229_7
crossref_primary_10_3389_fpls_2022_889066
crossref_primary_10_1371_journal_pone_0058588
crossref_primary_10_1093_pcp_pct160
crossref_primary_10_3390_plants10050919
crossref_primary_10_1016_j_indcrop_2019_111951
crossref_primary_10_1007_s00425_011_1485_x
crossref_primary_10_1093_plphys_kiaa093
crossref_primary_10_1007_s00122_015_2498_9
crossref_primary_10_1371_journal_pone_0086217
crossref_primary_10_3390_ijms252212109
crossref_primary_10_3389_fpls_2022_1041181
crossref_primary_10_1186_s12864_020_06811_8
crossref_primary_10_1016_j_plantsci_2018_12_024
crossref_primary_10_1016_j_plaphy_2024_108707
crossref_primary_10_1111_j_1365_313X_2009_04095_x
crossref_primary_10_1038_s41477_019_0511_z
crossref_primary_10_1007_s00299_020_02562_8
crossref_primary_10_1093_pcp_pcr154
crossref_primary_10_3390_ijms21020406
crossref_primary_10_1093_plphys_kiae044
crossref_primary_10_1111_tpj_16725
crossref_primary_10_3389_fpls_2021_670497
crossref_primary_10_1111_j_1469_8137_2011_03714_x
crossref_primary_10_1134_S1062360414010068
crossref_primary_10_3835_plantgenome2016_07_0064
crossref_primary_10_1093_pcp_pcw177
crossref_primary_10_3389_fpls_2019_00614
crossref_primary_10_1007_s12041_012_0186_y
crossref_primary_10_1016_j_scienta_2019_108920
crossref_primary_10_1016_j_semcdb_2020_04_009
crossref_primary_10_1111_pbi_12544
crossref_primary_10_1111_nph_19557
crossref_primary_10_1186_s12284_021_00499_4
crossref_primary_10_1017_S0960258519000047
crossref_primary_10_1073_pnas_1701101114
crossref_primary_10_1093_plcell_koae041
crossref_primary_10_1007_s00344_017_9748_9
crossref_primary_10_3390_plants14020208
crossref_primary_10_3389_fpls_2017_01533
crossref_primary_10_1016_j_tplants_2011_03_007
crossref_primary_10_1038_s41598_019_42407_3
crossref_primary_10_1111_tpj_13109
crossref_primary_10_1371_journal_pone_0099908
crossref_primary_10_1007_s11033_011_1191_6
crossref_primary_10_1186_s12284_020_00444_x
crossref_primary_10_3389_fpls_2020_00113
crossref_primary_10_3390_ijms21051815
crossref_primary_10_1111_tpj_13580
crossref_primary_10_1038_ncomms13245
crossref_primary_10_1186_s12870_024_05708_y
crossref_primary_10_3389_fpls_2022_1062722
crossref_primary_10_1016_j_envexpbot_2023_105339
crossref_primary_10_1093_jxb_ert251
crossref_primary_10_1111_j_1399_3054_2009_01289_x
crossref_primary_10_1104_pp_112_195032
crossref_primary_10_1111_j_1365_313X_2011_04653_x
crossref_primary_10_3390_agronomy14030590
crossref_primary_10_1371_journal_pone_0208771
crossref_primary_10_1186_s12864_018_5356_8
crossref_primary_10_7717_peerj_4690
crossref_primary_10_1016_j_plantsci_2019_110268
crossref_primary_10_3390_ijms20040936
crossref_primary_10_1186_s12864_021_07783_z
crossref_primary_10_1007_s00425_014_2057_7
crossref_primary_10_1007_s10725_013_9844_1
crossref_primary_10_1093_pcp_pcz222
crossref_primary_10_1016_j_gene_2010_10_010
crossref_primary_10_1093_jxb_erab331
crossref_primary_10_1111_tpj_16036
crossref_primary_10_1007_s11103_015_0283_4
crossref_primary_10_1007_s11248_019_00172_z
crossref_primary_10_1371_journal_pone_0057715
crossref_primary_10_3389_fgene_2022_805347
crossref_primary_10_1016_j_plaphy_2015_11_012
crossref_primary_10_1016_j_plaphy_2021_06_043
crossref_primary_10_1093_treephys_tpv099
crossref_primary_10_1007_s13562_022_00782_5
crossref_primary_10_1073_pnas_1403052111
crossref_primary_10_1016_j_plantsci_2019_04_023
crossref_primary_10_2503_hortj_UTD_333
crossref_primary_10_1111_ppl_13146
crossref_primary_10_1134_S1021443721030055
crossref_primary_10_1002_csc2_20825
crossref_primary_10_3389_fagro_2021_648694
crossref_primary_10_1093_jxb_eru289
crossref_primary_10_1007_s00468_020_02021_7
crossref_primary_10_1007_s10725_025_01287_6
crossref_primary_10_1093_plcell_koae198
crossref_primary_10_3390_horticulturae8030241
crossref_primary_10_1016_j_plantsci_2020_110749
crossref_primary_10_1007_s11295_010_0336_4
crossref_primary_10_3390_ijms22020785
crossref_primary_10_7554_eLife_60661
crossref_primary_10_1111_j_1469_8137_2011_03837_x
crossref_primary_10_1111_nph_13941
crossref_primary_10_3389_fpls_2021_715683
crossref_primary_10_3389_fpls_2022_897673
crossref_primary_10_1093_jxb_erp040
crossref_primary_10_1111_j_1467_7652_2009_00480_x
crossref_primary_10_1016_j_molp_2018_03_010
crossref_primary_10_1093_jxb_err345
crossref_primary_10_1093_jxb_ern301
crossref_primary_10_1242_dev_077164
crossref_primary_10_1016_j_tplants_2013_10_001
crossref_primary_10_1016_j_molp_2021_10_007
crossref_primary_10_3390_f10020143
crossref_primary_10_1007_s10725_022_00801_4
crossref_primary_10_1093_jxb_erab024
crossref_primary_10_1631_jzus_B1000161
crossref_primary_10_1016_j_plaphy_2016_11_008
crossref_primary_10_1007_s12355_019_00728_7
crossref_primary_10_1074_jbc_RA120_013708
crossref_primary_10_1073_pnas_1921960118
crossref_primary_10_3389_fgene_2022_807293
crossref_primary_10_1007_s00497_016_0278_6
crossref_primary_10_1071_FP23315
crossref_primary_10_1186_s12870_015_0520_7
crossref_primary_10_1371_journal_pone_0169440
crossref_primary_10_1038_s41477_023_01359_3
crossref_primary_10_1111_j_1365_313X_2008_03781_x
crossref_primary_10_1016_j_tplants_2011_06_007
crossref_primary_10_1093_molbev_msae099
crossref_primary_10_1093_jxb_ert186
crossref_primary_10_3390_ijms23095043
crossref_primary_10_3390_plants9050634
crossref_primary_10_1111_mpp_13240
crossref_primary_10_1093_treephys_tpad039
crossref_primary_10_1007_s00299_017_2102_7
crossref_primary_10_1186_s12864_019_6090_6
crossref_primary_10_1111_plb_13549
crossref_primary_10_1016_j_plantsci_2016_02_018
crossref_primary_10_1007_s13205_021_02887_5
crossref_primary_10_1071_FP15385
crossref_primary_10_3389_fpls_2020_00532
crossref_primary_10_1007_s10142_011_0243_2
crossref_primary_10_1146_annurev_arplant_050312_120221
crossref_primary_10_1007_s00425_018_2884_z
crossref_primary_10_1007_s12374_013_0528_1
crossref_primary_10_1093_jxb_err014
crossref_primary_10_3389_fpls_2021_619158
crossref_primary_10_1111_tpj_16328
crossref_primary_10_1016_j_scitotenv_2021_146206
crossref_primary_10_1111_tpj_13729
crossref_primary_10_1038_ncomms1810
crossref_primary_10_1093_jxb_ers229
crossref_primary_10_1186_s12864_022_08943_5
crossref_primary_10_1186_s12870_020_02512_2
crossref_primary_10_1093_jxb_err383
crossref_primary_10_1134_S1021443723602446
crossref_primary_10_1104_pp_109_152157
crossref_primary_10_1042_BJ20120245
crossref_primary_10_1080_15592324_2021_1967635
crossref_primary_10_1093_jxb_eru534
crossref_primary_10_1007_s11103_011_9825_6
crossref_primary_10_1111_tpj_12648
crossref_primary_10_3389_fpls_2020_00190
crossref_primary_10_1007_s13258_018_0692_2
crossref_primary_10_1073_pnas_2018615118
crossref_primary_10_3389_fpls_2021_666266
crossref_primary_10_3390_ijms21010305
crossref_primary_10_1016_j_cub_2020_02_086
crossref_primary_10_1111_pce_12184
crossref_primary_10_3390_genes10090680
crossref_primary_10_1371_journal_pone_0169897
crossref_primary_10_1186_1471_2229_13_1
crossref_primary_10_1104_pp_114_247700
crossref_primary_10_1007_s00344_022_10725_y
crossref_primary_10_1016_j_molp_2015_12_019
crossref_primary_10_3389_fpls_2019_00228
crossref_primary_10_1016_j_plaphy_2020_01_017
crossref_primary_10_1111_ppl_70084
crossref_primary_10_1016_j_scienta_2024_113350
crossref_primary_10_1111_pbr_12653
crossref_primary_10_1186_s13765_022_00718_6
crossref_primary_10_3389_fpls_2018_00946
crossref_primary_10_1186_s12870_016_0809_1
crossref_primary_10_1073_pnas_1012232108
crossref_primary_10_1111_nph_15331
crossref_primary_10_1111_pbi_12287
crossref_primary_10_1155_2019_1629845
crossref_primary_10_3389_fpls_2022_882517
crossref_primary_10_1186_s40529_020_00288_0
crossref_primary_10_1071_FP23246
crossref_primary_10_1007_s11103_015_0387_x
crossref_primary_10_3389_fpls_2018_00811
crossref_primary_10_1016_j_mod_2014_11_001
crossref_primary_10_3389_fpls_2020_00736
crossref_primary_10_1007_s00425_010_1248_0
Cites_doi 10.1104/pp.100.1.403
10.1111/j.1365-313X.2007.03282.x
10.1093/pcp/pcm023
10.1104/pp.103.030882
10.1007/BF00385009
10.1105/tpc.106.044602
10.2144/04376BIN02
10.1016/S0031-9422(00)86455-9
10.1104/pp.125.3.1508
10.1016/S0304-3940(02)01423-4
10.1111/j.1365-313X.2005.02642.x
10.1016/0031-9422(91)85090-M
10.1104/pp.118.4.1517
10.1111/j.1365-313X.2007.03356.x
10.1104/pp.97.2.736
10.1093/aob/mci083
10.1104/pp.105.063743
10.1016/j.cub.2006.10.057
10.1104/pp.106.3.863
10.1093/pcp/pci141
10.1105/tpc.021261
10.1104/pp.124.4.1465
10.1111/j.1399-3054.1993.tb00167.x
10.1007/BF00399923
10.1242/dev.124.3.645
10.1046/j.1365-313X.1999.00410.x
10.1105/tpc.11.10.1841
10.1104/pp.111.4.1321
10.1105/tpc.005975
10.1104/pp.103.020354
10.1093/jxb/50.337.1351
10.1146/annurev.arplant.54.031902.135029
10.1007/BF00029898
10.1093/genetics/159.2.777
10.1016/j.cub.2005.07.023
10.1046/j.1365-313X.1999.00501.x
10.1007/BF00388388
10.1104/pp.122.2.415
10.1104/pp.108.3.1049
10.1111/j.1365-313X.2006.02773.x
10.1104/pp.113.4.1369
10.1104/pp.121.2.437
10.1105/tpc.105.038455
10.1105/tpc.106.042317
10.1093/nar/30.1.94
10.1023/B:PLAN.0000009297.37235.4a
10.1038/ng1543
10.1104/pp.105.073668
10.1046/j.1365-313X.1995.7030513.x
10.1104/pp.104.056499
10.1104/pp.121.3.775
10.1146/annurev.arplant.56.032604.144046
10.1038/180036a0
10.1007/s00344-007-9014-7
10.1105/tpc.018143
10.1006/anbo.1994.1015
10.1007/BF00265176
10.1016/S1360-1385(00)01790-8
10.1016/j.cell.2006.05.050
10.1093/jxb/erm166
10.1105/tpc.108.058941
10.1126/science.1086391
10.1146/annurev.arplant.57.032905.105231
10.1073/pnas.96.8.4698
10.1104/pp.94.1.194
ContentType Journal Article
Copyright Copyright 2008 American Society of Plant Biologists
Copyright © 2008, American Society of Plant Biologists
Copyright_xml – notice: Copyright 2008 American Society of Plant Biologists
– notice: Copyright © 2008, American Society of Plant Biologists
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1105/tpc.108.058818
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2436
ExternalDocumentID PMC2570722
18805991
10_1105_tpc_108_058818
25224346
US201301576964
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/00004161
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/00004954
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/00004162
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: P19317
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
ADYWZ
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGCDD
AGMDO
AGUYK
AHMBA
AHXOZ
AICQM
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FBQ
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HGD
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
ADXHL
AGORE
PHGZM
AAYXX
CITATION
AHGBF
AJBYB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c458t-26acba816b57e193409b0e2e1ebb54cc1a512519c9d2006a19c282ce5d49272b3
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:25:50 EDT 2025
Tue Aug 05 11:00:17 EDT 2025
Fri Jul 11 12:04:47 EDT 2025
Mon Jul 21 05:47:07 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 02:52:45 EDT 2025
Fri Jun 20 02:31:23 EDT 2025
Thu Apr 03 09:43:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-26acba816b57e193409b0e2e1ebb54cc1a512519c9d2006a19c282ce5d49272b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Address correspondence to andy.phillips@bbsrc.ac.uk.
Online version contains Web-only data.
www.plantcell.org/cgi/doi/10.1105/tpc.108.058818
Current address: Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK.
Current address: CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Andrew L. Phillips (andy.phillips@bbsrc.ac.uk).
Current address: Laboratory of Molecular Genetics and Biotechnology, University of Freiburg, 79104 Freiburg, Germany.
PMID 18805991
PQID 48196552
PQPubID 24069
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570722
proquest_miscellaneous_69715464
proquest_miscellaneous_48196552
pubmed_primary_18805991
crossref_citationtrail_10_1105_tpc_108_058818
crossref_primary_10_1105_tpc_108_058818
jstor_primary_25224346
fao_agris_US201301576964
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2008
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References (2021040620485321100_b46) 2006; 16
(2021040620485321100_b37) 2002; 20
(2021040620485321100_b6) 2003; 132
(2021040620485321100_b11) 2004; 37
(2021040620485321100_b57) 2002; 30
(2021040620485321100_b74) 1999; 121
(2021040620485321100_b45) 2006; 47
(2021040620485321100_b62) 2007; 26
(2021040620485321100_b34) 1957; 180
(2021040620485321100_b31) 2005; 46
(2021040620485321100_b21) 2006
(2021040620485321100_b44) 2006; 126
(2021040620485321100_b43) 1991; 97
(2021040620485321100_b77) 2005; 95
(2021040620485321100_b13) 1990; 94
(2021040620485321100_b23) 1974; 118
(2021040620485321100_b28) 1994; 106
(2021040620485321100_b72) 2002; 3
(2021040620485321100_b81) 2006; 18
(2021040620485321100_b18) 1994; 73
(2021040620485321100_b48) 2006; 140
(2021040620485321100_b36) 1999; 19
(2021040620485321100_b65) 2000; 124
(2021040620485321100_b3) 2003; 301
(2021040620485321100_b24) 1984
(2021040620485321100_b60) 2003; 15
(2021040620485321100_b15) 2004
(2021040620485321100_b54) 2003; 53
(2021040620485321100_b20) 1971; 10
(2021040620485321100_b19) 2001; 159
(2021040620485321100_b41) 2006; 45
(2021040620485321100_b50) 1992; 188
(2021040620485321100_b78) 1998; 10
(2021040620485321100_b27) 2000; 5
(2021040620485321100_b53) 1995; 7
(2021040620485321100_b16) 2000; 122
(2021040620485321100_b10) 1999; 17
(2021040620485321100_b40) 1999; 121
(2021040620485321100_b32) 2003; 54
(2021040620485321100_b68) 1999; 96
(2021040620485321100_b4) 2007; 58
(2021040620485321100_b67) 2006
(2021040620485321100_b51) 2008; 53
(2021040620485321100_b71) 2003; 133
(2021040620485321100_b12) 1999; 50
(2021040620485321100_b49) 2003; 339
(2021040620485321100_b75) 2004; 16
(2021040620485321100_b56) 2001; 125
(2021040620485321100_b47) 1995; 108
(2021040620485321100_b5) 1992; 19
(2021040620485321100_b17) 1993; 89
(2021040620485321100_b59) 1994; 15
(2021040620485321100_b70) 1998; 118
(2021040620485321100_b14) 2005; 139
(2021040620485321100_b25) 2006; 18
(2021040620485321100_b58) 2005; 37
(2021040620485321100_b61) 1981; 51
(2021040620485321100_b30) 2005; 15
(2021040620485321100_b64) 1978; 144
(2021040620485321100_b69) 1999; 11
(2021040620485321100_b79) 2004; 16
(2021040620485321100_b22) 2006; 18
(2021040620485321100_b76) 1992; 100
(2021040620485321100_b29) 1993; 5
(2021040620485321100_b1) 2008; 20
(2021040620485321100_b80) 2007; 48
(2021040620485321100_b73) 2007; 19
(2021040620485321100_b2) 1984; 162
(2021040620485321100_b52) 1993; 20
(2021040620485321100_b42) 2005; 56
(2021040620485321100_b33) 1980; 58
(2021040620485321100_b7) 1995; 7
(2021040620485321100_b55) 2006; 57
(2021040620485321100_b66) 1997; 124
(2021040620485321100_b38) 1997; 113
(2021040620485321100_b26) 1991; 30
(2021040620485321100_b63) 1990; 2
(2021040620485321100_b35) 2005; 138
(2021040620485321100_b8) 1996; 111
(2021040620485321100_b39) 2007; 52
References_xml – volume: 100
  start-page: 403
  year: 1992
  ident: 2021040620485321100_b76
  publication-title: Plant Physiol.
  doi: 10.1104/pp.100.1.403
– volume: 52
  start-page: 865
  year: 2007
  ident: 2021040620485321100_b39
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03282.x
– volume: 48
  start-page: 555
  year: 2007
  ident: 2021040620485321100_b80
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm023
– volume: 133
  start-page: 1643
  year: 2003
  ident: 2021040620485321100_b71
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.030882
– volume: 144
  start-page: 69
  year: 1978
  ident: 2021040620485321100_b64
  publication-title: Planta
  doi: 10.1007/BF00385009
– volume: 19
  start-page: 32
  year: 2007
  ident: 2021040620485321100_b73
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.044602
– volume: 37
  start-page: 990
  year: 2004
  ident: 2021040620485321100_b11
  publication-title: Biotechniques
  doi: 10.2144/04376BIN02
– volume: 10
  start-page: 1891
  year: 1971
  ident: 2021040620485321100_b20
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)86455-9
– volume: 125
  start-page: 1508
  year: 2001
  ident: 2021040620485321100_b56
  publication-title: Plant Physiol.
  doi: 10.1104/pp.125.3.1508
– volume: 188
  start-page: 462
  year: 1992
  ident: 2021040620485321100_b50
  publication-title: Planta
– volume: 339
  start-page: 62
  year: 2003
  ident: 2021040620485321100_b49
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(02)01423-4
– volume: 45
  start-page: 804
  year: 2006
  ident: 2021040620485321100_b41
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02642.x
– volume: 30
  start-page: 2507
  year: 1991
  ident: 2021040620485321100_b26
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(91)85090-M
– year: 2006
  ident: 2021040620485321100_b21
– volume: 118
  start-page: 1517
  year: 1998
  ident: 2021040620485321100_b70
  publication-title: Plant Physiol.
  doi: 10.1104/pp.118.4.1517
– volume: 53
  start-page: 488
  year: 2008
  ident: 2021040620485321100_b51
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03356.x
– volume: 97
  start-page: 736
  year: 1991
  ident: 2021040620485321100_b43
  publication-title: Plant Physiol.
  doi: 10.1104/pp.97.2.736
– volume: 7
  start-page: 195
  year: 1995
  ident: 2021040620485321100_b7
  publication-title: Plant Cell
– volume: 20
  start-page: 585
  year: 1993
  ident: 2021040620485321100_b52
  publication-title: Aust. J. Plant Physiol.
– volume: 95
  start-page: 707
  year: 2005
  ident: 2021040620485321100_b77
  publication-title: Ann. Bot. (Lond.)
  doi: 10.1093/aob/mci083
– volume: 139
  start-page: 5
  year: 2005
  ident: 2021040620485321100_b14
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.063743
– volume: 16
  start-page: 2366
  year: 2006
  ident: 2021040620485321100_b46
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.10.057
– volume: 106
  start-page: 863
  year: 1994
  ident: 2021040620485321100_b28
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.3.863
– volume: 46
  start-page: 1317
  year: 2005
  ident: 2021040620485321100_b31
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci141
– volume: 16
  start-page: 1206
  year: 2004
  ident: 2021040620485321100_b75
  publication-title: Plant Cell
  doi: 10.1105/tpc.021261
– volume: 5
  start-page: 887
  year: 1993
  ident: 2021040620485321100_b29
  publication-title: Plant Cell
– volume: 124
  start-page: 1465
  year: 2000
  ident: 2021040620485321100_b65
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.4.1465
– volume: 89
  start-page: 360
  year: 1993
  ident: 2021040620485321100_b17
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1993.tb00167.x
– year: 1984
  ident: 2021040620485321100_b24
– volume: 10
  start-page: 2115
  year: 1998
  ident: 2021040620485321100_b78
  publication-title: Plant Cell
– volume: 162
  start-page: 560
  year: 1984
  ident: 2021040620485321100_b2
  publication-title: Planta
  doi: 10.1007/BF00399923
– year: 2004
  ident: 2021040620485321100_b15
– volume: 124
  start-page: 645
  year: 1997
  ident: 2021040620485321100_b66
  publication-title: Development
  doi: 10.1242/dev.124.3.645
– volume: 18
  start-page: 3399
  year: 2006
  ident: 2021040620485321100_b25
  publication-title: Plant Cell
– volume: 17
  start-page: 547
  year: 1999
  ident: 2021040620485321100_b10
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00410.x
– volume: 11
  start-page: 1841
  year: 1999
  ident: 2021040620485321100_b69
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.10.1841
– volume: 111
  start-page: 1321
  year: 1996
  ident: 2021040620485321100_b8
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.4.1321
– volume: 15
  start-page: 151
  year: 2003
  ident: 2021040620485321100_b60
  publication-title: Plant Cell
  doi: 10.1105/tpc.005975
– volume: 132
  start-page: 1283
  year: 2003
  ident: 2021040620485321100_b6
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.020354
– volume: 50
  start-page: 1351
  year: 1999
  ident: 2021040620485321100_b12
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/50.337.1351
– volume: 19
  start-page: 401
  year: 1992
  ident: 2021040620485321100_b5
  publication-title: Aust. J. Plant Physiol.
– volume: 54
  start-page: 307
  year: 2003
  ident: 2021040620485321100_b32
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.54.031902.135029
– volume: 15
  start-page: 247
  year: 1994
  ident: 2021040620485321100_b59
  publication-title: Plant Growth Regul.
  doi: 10.1007/BF00029898
– volume: 159
  start-page: 777
  year: 2001
  ident: 2021040620485321100_b19
  publication-title: Genetics
  doi: 10.1093/genetics/159.2.777
– volume: 15
  start-page: 1560
  year: 2005
  ident: 2021040620485321100_b30
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.07.023
– volume: 19
  start-page: 65
  year: 1999
  ident: 2021040620485321100_b36
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1999.00501.x
– volume: 118
  start-page: 123
  year: 1974
  ident: 2021040620485321100_b23
  publication-title: Planta
  doi: 10.1007/BF00388388
– volume: 20
  start-page: 387
  year: 2002
  ident: 2021040620485321100_b37
  publication-title: J. Plant Growth Regul.
– volume: 122
  start-page: 415
  year: 2000
  ident: 2021040620485321100_b16
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.2.415
– volume: 108
  start-page: 1049
  year: 1995
  ident: 2021040620485321100_b47
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.3.1049
– volume: 47
  start-page: 124
  year: 2006
  ident: 2021040620485321100_b45
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02773.x
– volume: 113
  start-page: 1369
  year: 1997
  ident: 2021040620485321100_b38
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.4.1369
– volume: 121
  start-page: 437
  year: 1999
  ident: 2021040620485321100_b74
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.2.437
– volume: 18
  start-page: 442
  year: 2006
  ident: 2021040620485321100_b81
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.038455
– volume: 18
  start-page: 2172
  year: 2006
  ident: 2021040620485321100_b22
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.042317
– volume: 30
  start-page: 94
  year: 2002
  ident: 2021040620485321100_b57
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.94
– volume: 53
  start-page: 247
  year: 2003
  ident: 2021040620485321100_b54
  publication-title: Plant Mol. Biol.
  doi: 10.1023/B:PLAN.0000009297.37235.4a
– volume: 37
  start-page: 501
  year: 2005
  ident: 2021040620485321100_b58
  publication-title: Nat. Genet.
  doi: 10.1038/ng1543
– volume: 140
  start-page: 528
  year: 2006
  ident: 2021040620485321100_b48
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.073668
– volume: 7
  start-page: 513
  year: 1995
  ident: 2021040620485321100_b53
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1995.7030513.x
– volume: 138
  start-page: 243
  year: 2005
  ident: 2021040620485321100_b35
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.056499
– volume: 121
  start-page: 775
  year: 1999
  ident: 2021040620485321100_b40
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.3.775
– volume: 56
  start-page: 165
  year: 2005
  ident: 2021040620485321100_b42
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.56.032604.144046
– volume: 180
  start-page: 36
  year: 1957
  ident: 2021040620485321100_b34
  publication-title: Nature
  doi: 10.1038/180036a0
– volume: 26
  start-page: 211
  year: 2007
  ident: 2021040620485321100_b62
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-007-9014-7
– volume: 51
  start-page: 661
  year: 1981
  ident: 2021040620485321100_b61
  publication-title: Hort. Abstr.
– volume: 3
  start-page: 34.31
  year: 2002
  ident: 2021040620485321100_b72
  publication-title: Genome Biol.
– volume: 2
  start-page: 755
  year: 1990
  ident: 2021040620485321100_b63
  publication-title: Plant Cell
– volume: 16
  start-page: 367
  year: 2004
  ident: 2021040620485321100_b79
  publication-title: Plant Cell
  doi: 10.1105/tpc.018143
– volume: 73
  start-page: 129
  year: 1994
  ident: 2021040620485321100_b18
  publication-title: Ann. Bot. (Lond.)
  doi: 10.1006/anbo.1994.1015
– volume: 58
  start-page: 257
  year: 1980
  ident: 2021040620485321100_b33
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00265176
– volume: 5
  start-page: 523
  year: 2000
  ident: 2021040620485321100_b27
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01790-8
– volume: 126
  start-page: 467
  year: 2006
  ident: 2021040620485321100_b44
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.050
– volume: 58
  start-page: 3213
  year: 2007
  ident: 2021040620485321100_b4
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm166
– volume: 20
  start-page: 2117
  year: 2008
  ident: 2021040620485321100_b1
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.058941
– volume: 301
  start-page: 653
  year: 2003
  ident: 2021040620485321100_b3
  publication-title: Science
  doi: 10.1126/science.1086391
– volume: 57
  start-page: 431
  year: 2006
  ident: 2021040620485321100_b55
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105231
– volume: 96
  start-page: 4698
  year: 1999
  ident: 2021040620485321100_b68
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.8.4698
– volume: 94
  start-page: 194
  year: 1990
  ident: 2021040620485321100_b13
  publication-title: Plant Physiol.
  doi: 10.1104/pp.94.1.194
– start-page: 147
  year: 2006
  ident: 2021040620485321100_b67
SSID ssj0001719
Score 2.4238636
Snippet Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2420
SubjectTerms Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biosynthesis
developmental stages
Flowering
flowers
Flowers - genetics
Flowers - growth & development
Flowers - metabolism
Fruit - genetics
Fruit - growth & development
Fruit - metabolism
Gene Expression Regulation, Plant
Genes
genetic techniques and protocols
Germination - genetics
Germination - physiology
Gibberellins
Gibberellins - metabolism
hormones
Hypocotyl - genetics
Hypocotyl - growth & development
Hypocotyl - metabolism
Inflorescences
Internodes
Models, Genetic
Oxidation-Reduction
Phenotypes
Plant cells
plant hormones
Plant Roots - genetics
Plant Roots - growth & development
Plant Roots - metabolism
Plant Stems - genetics
Plant Stems - growth & development
Plant Stems - metabolism
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - metabolism
seed germination
Seeds
Seeds - genetics
Seeds - growth & development
Seeds - metabolism
shoots
Signal Transduction - genetics
Signal Transduction - physiology
stem elongation
Title Genetic Analysis Reveals That C₁₉-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis
URI https://www.jstor.org/stable/25224346
https://www.ncbi.nlm.nih.gov/pubmed/18805991
https://www.proquest.com/docview/48196552
https://www.proquest.com/docview/69715464
https://pubmed.ncbi.nlm.nih.gov/PMC2570722
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF71QIIXBIW24Qj7gMSD5WJvdn08plFPlFJ6SH2zdp2FmEIcJU44fha_kBl7vXGglaAvlmNvfM3n2Z31N98Q8jqUIeOaMzcd-PiZUXdcqQfcTSWTnhCSBxEmJ_dPgsNLfnwlrlZWfjVYS7NC7aQ_b8wruYtVYRvYFbNk_8Oy9qCwAdbBvrAEC8Pyn2yMmtEouGqVRc70XKMe8sUQ4v4ePJaDrsPc99-zqnKSczR1pNOXn_OJc5AppScox4nTgpjeUE3Oomj_8Jss0wG7E6myQT6eZtPmIBahhcWOCgen_e0nm0zPSo8zz-0wfZJdT01K1_l8kXR2akuzGZKZc7xjiUCGI7xvYFvPSESWclU0kgDQOxneKZL5youqymsCfBvzkD5SGrEge9Uh1V6YuSwuaw5bN828Bhzjps_lZpc2PytFlb_7Bg9lNIpxirzKHU9EUeX5G0AZfy2Rghp1Io79RR9pmYun_R7W_QsZdPvrDEIT9K3vPiwU6v2wLCZjb8sIhcLJ3y6fGuVqzXmWxkSrH2Vek2NvCnv-ZO82hkMXj8hDE8fQbgXKx2RFjzbIvd0cYo0fG-R-r64j-IRcG5TSGqXUoJQiSmmFUtpAKT2aUklLlNIGSmkTpdSglML2Bkqfksv9vYveoWtKfLgpF1HhskCmSkZ-oESoIZbgXqw8zbSvlRI8TX0pcAQep_EA574krLGIpVoMeMxCpjqbZG2Uj_Q2ocyTgScF16HQXHaYilRUfkfvhAOtUt0ibv2Qk9To32MZli9JGQd7IgH7oF5uUtmnRd7Y9uNK-eXWlttgs0R-gm45uTxnSAbwIY6PA94im6Uh7REYxDu8w4MWeVVbNgF74OsqRzqfTRMeocinYLe3COIQAh88-FaFhMX1GUC1SLiEEdsAxeSX94yyYSkqb1D97M7_fE4eLJzBC7JWTGb6JQzYC9Umq-FV2Cbru3snp2ft8n35DWfU6zg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Analysis+Reveals+That+C19-GA+2-Oxidation+Is+a+Major+Gibberellin+Inactivation+Pathway+in+Arabidopsis&rft.jtitle=The+Plant+cell&rft.au=Rieu%2C+Ivo&rft.au=Eriksson%2C+Sven&rft.au=Powers%2C+Stephen+J.&rft.au=Gong%2C+Fan&rft.date=2008-09-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=20&rft.issue=9&rft.spage=2420&rft.epage=2436&rft_id=info:doi/10.1105%2Ftpc.108.058818&rft_id=info%3Apmid%2F18805991&rft.externalDocID=PMC2570722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon