Genetic Analysis Reveals That C₁₉-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we u...
Saved in:
Published in | The Plant cell Vol. 20; no. 9; pp. 2420 - 2436 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
American Society of Plant Biologists
01.09.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C₁₉-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C₁₉-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C₁₉-GA 2-oxidases, we show that C₁₉-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C₁₉-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C₁₉-GA 2-oxidation is a major GA inactivation pathway regulating development in ARABIDOPSIS: |
---|---|
AbstractList | Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C₁₉-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C₁₉-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C₁₉-GA 2-oxidases, we show that C₁₉-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C₁₉-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C₁₉-GA 2-oxidation is a major GA inactivation pathway regulating development in ARABIDOPSIS: Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C19-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C19-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C19-GA 2-oxidases, we show that C19-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C19-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C19-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis. Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2β-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C 19 -GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C 19 -GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C 19 -GA 2-oxidases, we show that C 19 -GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C 19 -GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C 19 -GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis . Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis. Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis. |
Author | Woolley, Lindsey Eriksson, Sven Powers, Stephen J Benlloch, Reyes Thomas, Stephen G Griffiths, Jayne Gong, Fan Rieu, Ivo Nilsson, Ove Hedden, Peter Phillips, Andrew L |
AuthorAffiliation | a Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom b Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90183 Umeå, Sweden c Centre for Biomathematics and Bioinformatics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom |
AuthorAffiliation_xml | – name: c Centre for Biomathematics and Bioinformatics, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom – name: b Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90183 Umeå, Sweden – name: a Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom |
Author_xml | – sequence: 1 fullname: Rieu, Ivo – sequence: 2 fullname: Eriksson, Sven – sequence: 3 fullname: Powers, Stephen J – sequence: 4 fullname: Gong, Fan – sequence: 5 fullname: Griffiths, Jayne – sequence: 6 fullname: Woolley, Lindsey – sequence: 7 fullname: Benlloch, Reyes – sequence: 8 fullname: Nilsson, Ove – sequence: 9 fullname: Thomas, Stephen G – sequence: 10 fullname: Hedden, Peter – sequence: 11 fullname: Phillips, Andrew L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18805991$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEQxS1URP_AlRvgE7cNHq-9a1-QoghCpaIiaCVulu04jaPNOrWdQI70xtfsJ8FlSwRIiJNHM-_9NON3jA760DuEngIZARD-Kq_tCIgYES4EiAfoCHhNKyrF54NSE0Yq1nA4RMcpLQkh0IJ8hA5BCMKlhCMUpq532Vs87nW3Sz7hj27rdJfwxUJnPLm9-XZ7872ajjGtzr_6mc4-9Pg0YY3f62WIeOqNcdF1nS_tXtvst4Pmg86LL3qHS38ctfGzsC74x-jhvNDdk_v3BF2-fXMxeVednU9PJ-OzyjIuckUbbY0W0BjeOpA1I9IQRx04YzizFjQHykFaOaOENLpUVFDr-IxJ2lJTn6DXA3e9MSs3s67PUXdqHf1Kx50K2qs_J71fqKuwVZS3pKW0AF7eA2K43riU1conW-7UvQubpBrZAmcN-6-QCZAN53fE57-vtN_lVxhFwAaBjSGl6ObK-vzzM8uGvlNA1F3mqmReaqGGzItt9JdtT_6X4dlgWKYc4l5NOaWsZk2Zvxjmcx2Uvoo-qctPlEBNgLeNLDf_AL9Xwx8 |
CitedBy_id | crossref_primary_10_1038_nplants_2014_25 crossref_primary_10_1038_srep33344 crossref_primary_10_1007_s00344_013_9385_x crossref_primary_10_1016_j_scienta_2023_112163 crossref_primary_10_1111_nph_12571 crossref_primary_10_1007_s11105_011_0326_1 crossref_primary_10_1111_tpj_12719 crossref_primary_10_1016_j_bmcl_2010_05_015 crossref_primary_10_1016_j_cub_2021_09_024 crossref_primary_10_1105_tpc_112_108902 crossref_primary_10_1111_tpj_14229 crossref_primary_10_1111_j_1365_313X_2011_04716_x crossref_primary_10_1186_s12870_017_1035_1 crossref_primary_10_1371_journal_pone_0017458 crossref_primary_10_3389_fpls_2016_01884 crossref_primary_10_1073_pnas_1113666109 crossref_primary_10_1007_s10725_020_00665_6 crossref_primary_10_1093_jxb_erv300 crossref_primary_10_1186_s12870_014_0386_0 crossref_primary_10_1073_pnas_1113632109 crossref_primary_10_1242_dev_080879 crossref_primary_10_1093_jxb_eru334 crossref_primary_10_1093_pcp_pct125 crossref_primary_10_1016_j_micres_2018_01_010 crossref_primary_10_1016_j_plantsci_2021_110857 crossref_primary_10_1016_j_jphotobiol_2016_06_020 crossref_primary_10_15252_msb_20177840 crossref_primary_10_1093_dnares_dss029 crossref_primary_10_1073_pnas_1215788110 crossref_primary_10_1007_s10722_020_00989_2 crossref_primary_10_1101_gad_593410 crossref_primary_10_1016_j_gene_2023_147255 crossref_primary_10_3390_genes13050863 crossref_primary_10_1093_jxb_ery261 crossref_primary_10_1111_j_1365_313X_2011_04596_x crossref_primary_10_1016_j_micres_2015_11_004 crossref_primary_10_1016_j_pbi_2018_08_001 crossref_primary_10_3390_ijms21207789 crossref_primary_10_1111_pbi_13446 crossref_primary_10_1007_s11103_020_01019_6 crossref_primary_10_3389_fpls_2023_1117069 crossref_primary_10_3390_plants7040111 crossref_primary_10_1016_j_plantsci_2014_05_005 crossref_primary_10_1007_s13580_020_00229_7 crossref_primary_10_3389_fpls_2022_889066 crossref_primary_10_1371_journal_pone_0058588 crossref_primary_10_1093_pcp_pct160 crossref_primary_10_3390_plants10050919 crossref_primary_10_1016_j_indcrop_2019_111951 crossref_primary_10_1007_s00425_011_1485_x crossref_primary_10_1093_plphys_kiaa093 crossref_primary_10_1007_s00122_015_2498_9 crossref_primary_10_1371_journal_pone_0086217 crossref_primary_10_3390_ijms252212109 crossref_primary_10_3389_fpls_2022_1041181 crossref_primary_10_1186_s12864_020_06811_8 crossref_primary_10_1016_j_plantsci_2018_12_024 crossref_primary_10_1016_j_plaphy_2024_108707 crossref_primary_10_1111_j_1365_313X_2009_04095_x crossref_primary_10_1038_s41477_019_0511_z crossref_primary_10_1007_s00299_020_02562_8 crossref_primary_10_1093_pcp_pcr154 crossref_primary_10_3390_ijms21020406 crossref_primary_10_1093_plphys_kiae044 crossref_primary_10_1111_tpj_16725 crossref_primary_10_3389_fpls_2021_670497 crossref_primary_10_1111_j_1469_8137_2011_03714_x crossref_primary_10_1134_S1062360414010068 crossref_primary_10_3835_plantgenome2016_07_0064 crossref_primary_10_1093_pcp_pcw177 crossref_primary_10_3389_fpls_2019_00614 crossref_primary_10_1007_s12041_012_0186_y crossref_primary_10_1016_j_scienta_2019_108920 crossref_primary_10_1016_j_semcdb_2020_04_009 crossref_primary_10_1111_pbi_12544 crossref_primary_10_1111_nph_19557 crossref_primary_10_1186_s12284_021_00499_4 crossref_primary_10_1017_S0960258519000047 crossref_primary_10_1073_pnas_1701101114 crossref_primary_10_1093_plcell_koae041 crossref_primary_10_1007_s00344_017_9748_9 crossref_primary_10_3390_plants14020208 crossref_primary_10_3389_fpls_2017_01533 crossref_primary_10_1016_j_tplants_2011_03_007 crossref_primary_10_1038_s41598_019_42407_3 crossref_primary_10_1111_tpj_13109 crossref_primary_10_1371_journal_pone_0099908 crossref_primary_10_1007_s11033_011_1191_6 crossref_primary_10_1186_s12284_020_00444_x crossref_primary_10_3389_fpls_2020_00113 crossref_primary_10_3390_ijms21051815 crossref_primary_10_1111_tpj_13580 crossref_primary_10_1038_ncomms13245 crossref_primary_10_1186_s12870_024_05708_y crossref_primary_10_3389_fpls_2022_1062722 crossref_primary_10_1016_j_envexpbot_2023_105339 crossref_primary_10_1093_jxb_ert251 crossref_primary_10_1111_j_1399_3054_2009_01289_x crossref_primary_10_1104_pp_112_195032 crossref_primary_10_1111_j_1365_313X_2011_04653_x crossref_primary_10_3390_agronomy14030590 crossref_primary_10_1371_journal_pone_0208771 crossref_primary_10_1186_s12864_018_5356_8 crossref_primary_10_7717_peerj_4690 crossref_primary_10_1016_j_plantsci_2019_110268 crossref_primary_10_3390_ijms20040936 crossref_primary_10_1186_s12864_021_07783_z crossref_primary_10_1007_s00425_014_2057_7 crossref_primary_10_1007_s10725_013_9844_1 crossref_primary_10_1093_pcp_pcz222 crossref_primary_10_1016_j_gene_2010_10_010 crossref_primary_10_1093_jxb_erab331 crossref_primary_10_1111_tpj_16036 crossref_primary_10_1007_s11103_015_0283_4 crossref_primary_10_1007_s11248_019_00172_z crossref_primary_10_1371_journal_pone_0057715 crossref_primary_10_3389_fgene_2022_805347 crossref_primary_10_1016_j_plaphy_2015_11_012 crossref_primary_10_1016_j_plaphy_2021_06_043 crossref_primary_10_1093_treephys_tpv099 crossref_primary_10_1007_s13562_022_00782_5 crossref_primary_10_1073_pnas_1403052111 crossref_primary_10_1016_j_plantsci_2019_04_023 crossref_primary_10_2503_hortj_UTD_333 crossref_primary_10_1111_ppl_13146 crossref_primary_10_1134_S1021443721030055 crossref_primary_10_1002_csc2_20825 crossref_primary_10_3389_fagro_2021_648694 crossref_primary_10_1093_jxb_eru289 crossref_primary_10_1007_s00468_020_02021_7 crossref_primary_10_1007_s10725_025_01287_6 crossref_primary_10_1093_plcell_koae198 crossref_primary_10_3390_horticulturae8030241 crossref_primary_10_1016_j_plantsci_2020_110749 crossref_primary_10_1007_s11295_010_0336_4 crossref_primary_10_3390_ijms22020785 crossref_primary_10_7554_eLife_60661 crossref_primary_10_1111_j_1469_8137_2011_03837_x crossref_primary_10_1111_nph_13941 crossref_primary_10_3389_fpls_2021_715683 crossref_primary_10_3389_fpls_2022_897673 crossref_primary_10_1093_jxb_erp040 crossref_primary_10_1111_j_1467_7652_2009_00480_x crossref_primary_10_1016_j_molp_2018_03_010 crossref_primary_10_1093_jxb_err345 crossref_primary_10_1093_jxb_ern301 crossref_primary_10_1242_dev_077164 crossref_primary_10_1016_j_tplants_2013_10_001 crossref_primary_10_1016_j_molp_2021_10_007 crossref_primary_10_3390_f10020143 crossref_primary_10_1007_s10725_022_00801_4 crossref_primary_10_1093_jxb_erab024 crossref_primary_10_1631_jzus_B1000161 crossref_primary_10_1016_j_plaphy_2016_11_008 crossref_primary_10_1007_s12355_019_00728_7 crossref_primary_10_1074_jbc_RA120_013708 crossref_primary_10_1073_pnas_1921960118 crossref_primary_10_3389_fgene_2022_807293 crossref_primary_10_1007_s00497_016_0278_6 crossref_primary_10_1071_FP23315 crossref_primary_10_1186_s12870_015_0520_7 crossref_primary_10_1371_journal_pone_0169440 crossref_primary_10_1038_s41477_023_01359_3 crossref_primary_10_1111_j_1365_313X_2008_03781_x crossref_primary_10_1016_j_tplants_2011_06_007 crossref_primary_10_1093_molbev_msae099 crossref_primary_10_1093_jxb_ert186 crossref_primary_10_3390_ijms23095043 crossref_primary_10_3390_plants9050634 crossref_primary_10_1111_mpp_13240 crossref_primary_10_1093_treephys_tpad039 crossref_primary_10_1007_s00299_017_2102_7 crossref_primary_10_1186_s12864_019_6090_6 crossref_primary_10_1111_plb_13549 crossref_primary_10_1016_j_plantsci_2016_02_018 crossref_primary_10_1007_s13205_021_02887_5 crossref_primary_10_1071_FP15385 crossref_primary_10_3389_fpls_2020_00532 crossref_primary_10_1007_s10142_011_0243_2 crossref_primary_10_1146_annurev_arplant_050312_120221 crossref_primary_10_1007_s00425_018_2884_z crossref_primary_10_1007_s12374_013_0528_1 crossref_primary_10_1093_jxb_err014 crossref_primary_10_3389_fpls_2021_619158 crossref_primary_10_1111_tpj_16328 crossref_primary_10_1016_j_scitotenv_2021_146206 crossref_primary_10_1111_tpj_13729 crossref_primary_10_1038_ncomms1810 crossref_primary_10_1093_jxb_ers229 crossref_primary_10_1186_s12864_022_08943_5 crossref_primary_10_1186_s12870_020_02512_2 crossref_primary_10_1093_jxb_err383 crossref_primary_10_1134_S1021443723602446 crossref_primary_10_1104_pp_109_152157 crossref_primary_10_1042_BJ20120245 crossref_primary_10_1080_15592324_2021_1967635 crossref_primary_10_1093_jxb_eru534 crossref_primary_10_1007_s11103_011_9825_6 crossref_primary_10_1111_tpj_12648 crossref_primary_10_3389_fpls_2020_00190 crossref_primary_10_1007_s13258_018_0692_2 crossref_primary_10_1073_pnas_2018615118 crossref_primary_10_3389_fpls_2021_666266 crossref_primary_10_3390_ijms21010305 crossref_primary_10_1016_j_cub_2020_02_086 crossref_primary_10_1111_pce_12184 crossref_primary_10_3390_genes10090680 crossref_primary_10_1371_journal_pone_0169897 crossref_primary_10_1186_1471_2229_13_1 crossref_primary_10_1104_pp_114_247700 crossref_primary_10_1007_s00344_022_10725_y crossref_primary_10_1016_j_molp_2015_12_019 crossref_primary_10_3389_fpls_2019_00228 crossref_primary_10_1016_j_plaphy_2020_01_017 crossref_primary_10_1111_ppl_70084 crossref_primary_10_1016_j_scienta_2024_113350 crossref_primary_10_1111_pbr_12653 crossref_primary_10_1186_s13765_022_00718_6 crossref_primary_10_3389_fpls_2018_00946 crossref_primary_10_1186_s12870_016_0809_1 crossref_primary_10_1073_pnas_1012232108 crossref_primary_10_1111_nph_15331 crossref_primary_10_1111_pbi_12287 crossref_primary_10_1155_2019_1629845 crossref_primary_10_3389_fpls_2022_882517 crossref_primary_10_1186_s40529_020_00288_0 crossref_primary_10_1071_FP23246 crossref_primary_10_1007_s11103_015_0387_x crossref_primary_10_3389_fpls_2018_00811 crossref_primary_10_1016_j_mod_2014_11_001 crossref_primary_10_3389_fpls_2020_00736 crossref_primary_10_1007_s00425_010_1248_0 |
Cites_doi | 10.1104/pp.100.1.403 10.1111/j.1365-313X.2007.03282.x 10.1093/pcp/pcm023 10.1104/pp.103.030882 10.1007/BF00385009 10.1105/tpc.106.044602 10.2144/04376BIN02 10.1016/S0031-9422(00)86455-9 10.1104/pp.125.3.1508 10.1016/S0304-3940(02)01423-4 10.1111/j.1365-313X.2005.02642.x 10.1016/0031-9422(91)85090-M 10.1104/pp.118.4.1517 10.1111/j.1365-313X.2007.03356.x 10.1104/pp.97.2.736 10.1093/aob/mci083 10.1104/pp.105.063743 10.1016/j.cub.2006.10.057 10.1104/pp.106.3.863 10.1093/pcp/pci141 10.1105/tpc.021261 10.1104/pp.124.4.1465 10.1111/j.1399-3054.1993.tb00167.x 10.1007/BF00399923 10.1242/dev.124.3.645 10.1046/j.1365-313X.1999.00410.x 10.1105/tpc.11.10.1841 10.1104/pp.111.4.1321 10.1105/tpc.005975 10.1104/pp.103.020354 10.1093/jxb/50.337.1351 10.1146/annurev.arplant.54.031902.135029 10.1007/BF00029898 10.1093/genetics/159.2.777 10.1016/j.cub.2005.07.023 10.1046/j.1365-313X.1999.00501.x 10.1007/BF00388388 10.1104/pp.122.2.415 10.1104/pp.108.3.1049 10.1111/j.1365-313X.2006.02773.x 10.1104/pp.113.4.1369 10.1104/pp.121.2.437 10.1105/tpc.105.038455 10.1105/tpc.106.042317 10.1093/nar/30.1.94 10.1023/B:PLAN.0000009297.37235.4a 10.1038/ng1543 10.1104/pp.105.073668 10.1046/j.1365-313X.1995.7030513.x 10.1104/pp.104.056499 10.1104/pp.121.3.775 10.1146/annurev.arplant.56.032604.144046 10.1038/180036a0 10.1007/s00344-007-9014-7 10.1105/tpc.018143 10.1006/anbo.1994.1015 10.1007/BF00265176 10.1016/S1360-1385(00)01790-8 10.1016/j.cell.2006.05.050 10.1093/jxb/erm166 10.1105/tpc.108.058941 10.1126/science.1086391 10.1146/annurev.arplant.57.032905.105231 10.1073/pnas.96.8.4698 10.1104/pp.94.1.194 |
ContentType | Journal Article |
Copyright | Copyright 2008 American Society of Plant Biologists Copyright © 2008, American Society of Plant Biologists |
Copyright_xml | – notice: Copyright 2008 American Society of Plant Biologists – notice: Copyright © 2008, American Society of Plant Biologists |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1105/tpc.108.058818 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 2436 |
ExternalDocumentID | PMC2570722 18805991 10_1105_tpc_108_058818 25224346 US201301576964 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/00004161 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/00004954 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/00004162 – fundername: Biotechnology and Biological Sciences Research Council grantid: P19317 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAWDT AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABIME ABJNI ABMNT ABPIB ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ABZEO ACBTR ACFRR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ACVCV ACZBC ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW ADYWZ AEEJZ AENEX AEUPB AEUYN AFAZZ AFFNX AFFZL AFGWE AFKRA AFRAH AFYAG AGCDD AGMDO AGUYK AHMBA AHXOZ AICQM AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD APJGH AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P F8P F9R FBQ FLUFQ FOEOM FRP FYUFA GNUQQ GTFYD GX1 H13 HCIFZ HGD HMCUK HTVGU H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2P M2Q M7P MV1 MVM N9A NEJ NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TCN TN5 TR2 U5U UBC UKHRP UKR W8F WH7 WHG WOQ XOL XSW Y6R YBU YR2 YSK ZCA ZCG ZCN ~KM ADXHL AGORE PHGZM AAYXX CITATION AHGBF AJBYB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c458t-26acba816b57e193409b0e2e1ebb54cc1a512519c9d2006a19c282ce5d49272b3 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:25:50 EDT 2025 Tue Aug 05 11:00:17 EDT 2025 Fri Jul 11 12:04:47 EDT 2025 Mon Jul 21 05:47:07 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 02:52:45 EDT 2025 Fri Jun 20 02:31:23 EDT 2025 Thu Apr 03 09:43:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c458t-26acba816b57e193409b0e2e1ebb54cc1a512519c9d2006a19c282ce5d49272b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Address correspondence to andy.phillips@bbsrc.ac.uk. Online version contains Web-only data. www.plantcell.org/cgi/doi/10.1105/tpc.108.058818 Current address: Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK. Current address: CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Andrew L. Phillips (andy.phillips@bbsrc.ac.uk). Current address: Laboratory of Molecular Genetics and Biotechnology, University of Freiburg, 79104 Freiburg, Germany. |
PMID | 18805991 |
PQID | 48196552 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570722 proquest_miscellaneous_69715464 proquest_miscellaneous_48196552 pubmed_primary_18805991 crossref_citationtrail_10_1105_tpc_108_058818 crossref_primary_10_1105_tpc_108_058818 jstor_primary_25224346 fao_agris_US201301576964 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-01 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2008 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | (2021040620485321100_b46) 2006; 16 (2021040620485321100_b37) 2002; 20 (2021040620485321100_b6) 2003; 132 (2021040620485321100_b11) 2004; 37 (2021040620485321100_b57) 2002; 30 (2021040620485321100_b74) 1999; 121 (2021040620485321100_b45) 2006; 47 (2021040620485321100_b62) 2007; 26 (2021040620485321100_b34) 1957; 180 (2021040620485321100_b31) 2005; 46 (2021040620485321100_b21) 2006 (2021040620485321100_b44) 2006; 126 (2021040620485321100_b43) 1991; 97 (2021040620485321100_b77) 2005; 95 (2021040620485321100_b13) 1990; 94 (2021040620485321100_b23) 1974; 118 (2021040620485321100_b28) 1994; 106 (2021040620485321100_b72) 2002; 3 (2021040620485321100_b81) 2006; 18 (2021040620485321100_b18) 1994; 73 (2021040620485321100_b48) 2006; 140 (2021040620485321100_b36) 1999; 19 (2021040620485321100_b65) 2000; 124 (2021040620485321100_b3) 2003; 301 (2021040620485321100_b24) 1984 (2021040620485321100_b60) 2003; 15 (2021040620485321100_b15) 2004 (2021040620485321100_b54) 2003; 53 (2021040620485321100_b20) 1971; 10 (2021040620485321100_b19) 2001; 159 (2021040620485321100_b41) 2006; 45 (2021040620485321100_b50) 1992; 188 (2021040620485321100_b78) 1998; 10 (2021040620485321100_b27) 2000; 5 (2021040620485321100_b53) 1995; 7 (2021040620485321100_b16) 2000; 122 (2021040620485321100_b10) 1999; 17 (2021040620485321100_b40) 1999; 121 (2021040620485321100_b32) 2003; 54 (2021040620485321100_b68) 1999; 96 (2021040620485321100_b4) 2007; 58 (2021040620485321100_b67) 2006 (2021040620485321100_b51) 2008; 53 (2021040620485321100_b71) 2003; 133 (2021040620485321100_b12) 1999; 50 (2021040620485321100_b49) 2003; 339 (2021040620485321100_b75) 2004; 16 (2021040620485321100_b56) 2001; 125 (2021040620485321100_b47) 1995; 108 (2021040620485321100_b5) 1992; 19 (2021040620485321100_b17) 1993; 89 (2021040620485321100_b59) 1994; 15 (2021040620485321100_b70) 1998; 118 (2021040620485321100_b14) 2005; 139 (2021040620485321100_b25) 2006; 18 (2021040620485321100_b58) 2005; 37 (2021040620485321100_b61) 1981; 51 (2021040620485321100_b30) 2005; 15 (2021040620485321100_b64) 1978; 144 (2021040620485321100_b69) 1999; 11 (2021040620485321100_b79) 2004; 16 (2021040620485321100_b22) 2006; 18 (2021040620485321100_b76) 1992; 100 (2021040620485321100_b29) 1993; 5 (2021040620485321100_b1) 2008; 20 (2021040620485321100_b80) 2007; 48 (2021040620485321100_b73) 2007; 19 (2021040620485321100_b2) 1984; 162 (2021040620485321100_b52) 1993; 20 (2021040620485321100_b42) 2005; 56 (2021040620485321100_b33) 1980; 58 (2021040620485321100_b7) 1995; 7 (2021040620485321100_b55) 2006; 57 (2021040620485321100_b66) 1997; 124 (2021040620485321100_b38) 1997; 113 (2021040620485321100_b26) 1991; 30 (2021040620485321100_b63) 1990; 2 (2021040620485321100_b35) 2005; 138 (2021040620485321100_b8) 1996; 111 (2021040620485321100_b39) 2007; 52 |
References_xml | – volume: 100 start-page: 403 year: 1992 ident: 2021040620485321100_b76 publication-title: Plant Physiol. doi: 10.1104/pp.100.1.403 – volume: 52 start-page: 865 year: 2007 ident: 2021040620485321100_b39 publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03282.x – volume: 48 start-page: 555 year: 2007 ident: 2021040620485321100_b80 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm023 – volume: 133 start-page: 1643 year: 2003 ident: 2021040620485321100_b71 publication-title: Plant Physiol. doi: 10.1104/pp.103.030882 – volume: 144 start-page: 69 year: 1978 ident: 2021040620485321100_b64 publication-title: Planta doi: 10.1007/BF00385009 – volume: 19 start-page: 32 year: 2007 ident: 2021040620485321100_b73 publication-title: Plant Cell doi: 10.1105/tpc.106.044602 – volume: 37 start-page: 990 year: 2004 ident: 2021040620485321100_b11 publication-title: Biotechniques doi: 10.2144/04376BIN02 – volume: 10 start-page: 1891 year: 1971 ident: 2021040620485321100_b20 publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)86455-9 – volume: 125 start-page: 1508 year: 2001 ident: 2021040620485321100_b56 publication-title: Plant Physiol. doi: 10.1104/pp.125.3.1508 – volume: 188 start-page: 462 year: 1992 ident: 2021040620485321100_b50 publication-title: Planta – volume: 339 start-page: 62 year: 2003 ident: 2021040620485321100_b49 publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)01423-4 – volume: 45 start-page: 804 year: 2006 ident: 2021040620485321100_b41 publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02642.x – volume: 30 start-page: 2507 year: 1991 ident: 2021040620485321100_b26 publication-title: Phytochemistry doi: 10.1016/0031-9422(91)85090-M – year: 2006 ident: 2021040620485321100_b21 – volume: 118 start-page: 1517 year: 1998 ident: 2021040620485321100_b70 publication-title: Plant Physiol. doi: 10.1104/pp.118.4.1517 – volume: 53 start-page: 488 year: 2008 ident: 2021040620485321100_b51 publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03356.x – volume: 97 start-page: 736 year: 1991 ident: 2021040620485321100_b43 publication-title: Plant Physiol. doi: 10.1104/pp.97.2.736 – volume: 7 start-page: 195 year: 1995 ident: 2021040620485321100_b7 publication-title: Plant Cell – volume: 20 start-page: 585 year: 1993 ident: 2021040620485321100_b52 publication-title: Aust. J. Plant Physiol. – volume: 95 start-page: 707 year: 2005 ident: 2021040620485321100_b77 publication-title: Ann. Bot. (Lond.) doi: 10.1093/aob/mci083 – volume: 139 start-page: 5 year: 2005 ident: 2021040620485321100_b14 publication-title: Plant Physiol. doi: 10.1104/pp.105.063743 – volume: 16 start-page: 2366 year: 2006 ident: 2021040620485321100_b46 publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.10.057 – volume: 106 start-page: 863 year: 1994 ident: 2021040620485321100_b28 publication-title: Plant Physiol. doi: 10.1104/pp.106.3.863 – volume: 46 start-page: 1317 year: 2005 ident: 2021040620485321100_b31 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci141 – volume: 16 start-page: 1206 year: 2004 ident: 2021040620485321100_b75 publication-title: Plant Cell doi: 10.1105/tpc.021261 – volume: 5 start-page: 887 year: 1993 ident: 2021040620485321100_b29 publication-title: Plant Cell – volume: 124 start-page: 1465 year: 2000 ident: 2021040620485321100_b65 publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1465 – volume: 89 start-page: 360 year: 1993 ident: 2021040620485321100_b17 publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1993.tb00167.x – year: 1984 ident: 2021040620485321100_b24 – volume: 10 start-page: 2115 year: 1998 ident: 2021040620485321100_b78 publication-title: Plant Cell – volume: 162 start-page: 560 year: 1984 ident: 2021040620485321100_b2 publication-title: Planta doi: 10.1007/BF00399923 – year: 2004 ident: 2021040620485321100_b15 – volume: 124 start-page: 645 year: 1997 ident: 2021040620485321100_b66 publication-title: Development doi: 10.1242/dev.124.3.645 – volume: 18 start-page: 3399 year: 2006 ident: 2021040620485321100_b25 publication-title: Plant Cell – volume: 17 start-page: 547 year: 1999 ident: 2021040620485321100_b10 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00410.x – volume: 11 start-page: 1841 year: 1999 ident: 2021040620485321100_b69 publication-title: Plant Cell doi: 10.1105/tpc.11.10.1841 – volume: 111 start-page: 1321 year: 1996 ident: 2021040620485321100_b8 publication-title: Plant Physiol. doi: 10.1104/pp.111.4.1321 – volume: 15 start-page: 151 year: 2003 ident: 2021040620485321100_b60 publication-title: Plant Cell doi: 10.1105/tpc.005975 – volume: 132 start-page: 1283 year: 2003 ident: 2021040620485321100_b6 publication-title: Plant Physiol. doi: 10.1104/pp.103.020354 – volume: 50 start-page: 1351 year: 1999 ident: 2021040620485321100_b12 publication-title: J. Exp. Bot. doi: 10.1093/jxb/50.337.1351 – volume: 19 start-page: 401 year: 1992 ident: 2021040620485321100_b5 publication-title: Aust. J. Plant Physiol. – volume: 54 start-page: 307 year: 2003 ident: 2021040620485321100_b32 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.54.031902.135029 – volume: 15 start-page: 247 year: 1994 ident: 2021040620485321100_b59 publication-title: Plant Growth Regul. doi: 10.1007/BF00029898 – volume: 159 start-page: 777 year: 2001 ident: 2021040620485321100_b19 publication-title: Genetics doi: 10.1093/genetics/159.2.777 – volume: 15 start-page: 1560 year: 2005 ident: 2021040620485321100_b30 publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.07.023 – volume: 19 start-page: 65 year: 1999 ident: 2021040620485321100_b36 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00501.x – volume: 118 start-page: 123 year: 1974 ident: 2021040620485321100_b23 publication-title: Planta doi: 10.1007/BF00388388 – volume: 20 start-page: 387 year: 2002 ident: 2021040620485321100_b37 publication-title: J. Plant Growth Regul. – volume: 122 start-page: 415 year: 2000 ident: 2021040620485321100_b16 publication-title: Plant Physiol. doi: 10.1104/pp.122.2.415 – volume: 108 start-page: 1049 year: 1995 ident: 2021040620485321100_b47 publication-title: Plant Physiol. doi: 10.1104/pp.108.3.1049 – volume: 47 start-page: 124 year: 2006 ident: 2021040620485321100_b45 publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02773.x – volume: 113 start-page: 1369 year: 1997 ident: 2021040620485321100_b38 publication-title: Plant Physiol. doi: 10.1104/pp.113.4.1369 – volume: 121 start-page: 437 year: 1999 ident: 2021040620485321100_b74 publication-title: Plant Physiol. doi: 10.1104/pp.121.2.437 – volume: 18 start-page: 442 year: 2006 ident: 2021040620485321100_b81 publication-title: Plant Cell doi: 10.1105/tpc.105.038455 – volume: 18 start-page: 2172 year: 2006 ident: 2021040620485321100_b22 publication-title: Plant Cell doi: 10.1105/tpc.106.042317 – volume: 30 start-page: 94 year: 2002 ident: 2021040620485321100_b57 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.94 – volume: 53 start-page: 247 year: 2003 ident: 2021040620485321100_b54 publication-title: Plant Mol. Biol. doi: 10.1023/B:PLAN.0000009297.37235.4a – volume: 37 start-page: 501 year: 2005 ident: 2021040620485321100_b58 publication-title: Nat. Genet. doi: 10.1038/ng1543 – volume: 140 start-page: 528 year: 2006 ident: 2021040620485321100_b48 publication-title: Plant Physiol. doi: 10.1104/pp.105.073668 – volume: 7 start-page: 513 year: 1995 ident: 2021040620485321100_b53 publication-title: Plant J. doi: 10.1046/j.1365-313X.1995.7030513.x – volume: 138 start-page: 243 year: 2005 ident: 2021040620485321100_b35 publication-title: Plant Physiol. doi: 10.1104/pp.104.056499 – volume: 121 start-page: 775 year: 1999 ident: 2021040620485321100_b40 publication-title: Plant Physiol. doi: 10.1104/pp.121.3.775 – volume: 56 start-page: 165 year: 2005 ident: 2021040620485321100_b42 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.56.032604.144046 – volume: 180 start-page: 36 year: 1957 ident: 2021040620485321100_b34 publication-title: Nature doi: 10.1038/180036a0 – volume: 26 start-page: 211 year: 2007 ident: 2021040620485321100_b62 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-007-9014-7 – volume: 51 start-page: 661 year: 1981 ident: 2021040620485321100_b61 publication-title: Hort. Abstr. – volume: 3 start-page: 34.31 year: 2002 ident: 2021040620485321100_b72 publication-title: Genome Biol. – volume: 2 start-page: 755 year: 1990 ident: 2021040620485321100_b63 publication-title: Plant Cell – volume: 16 start-page: 367 year: 2004 ident: 2021040620485321100_b79 publication-title: Plant Cell doi: 10.1105/tpc.018143 – volume: 73 start-page: 129 year: 1994 ident: 2021040620485321100_b18 publication-title: Ann. Bot. (Lond.) doi: 10.1006/anbo.1994.1015 – volume: 58 start-page: 257 year: 1980 ident: 2021040620485321100_b33 publication-title: Theor. Appl. Genet. doi: 10.1007/BF00265176 – volume: 5 start-page: 523 year: 2000 ident: 2021040620485321100_b27 publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01790-8 – volume: 126 start-page: 467 year: 2006 ident: 2021040620485321100_b44 publication-title: Cell doi: 10.1016/j.cell.2006.05.050 – volume: 58 start-page: 3213 year: 2007 ident: 2021040620485321100_b4 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm166 – volume: 20 start-page: 2117 year: 2008 ident: 2021040620485321100_b1 publication-title: Plant Cell doi: 10.1105/tpc.108.058941 – volume: 301 start-page: 653 year: 2003 ident: 2021040620485321100_b3 publication-title: Science doi: 10.1126/science.1086391 – volume: 57 start-page: 431 year: 2006 ident: 2021040620485321100_b55 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105231 – volume: 96 start-page: 4698 year: 1999 ident: 2021040620485321100_b68 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.8.4698 – volume: 94 start-page: 194 year: 1990 ident: 2021040620485321100_b13 publication-title: Plant Physiol. doi: 10.1104/pp.94.1.194 – start-page: 147 year: 2006 ident: 2021040620485321100_b67 |
SSID | ssj0001719 |
Score | 2.4238636 |
Snippet | Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of... |
SourceID | pubmedcentral proquest pubmed crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2420 |
SubjectTerms | Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biosynthesis developmental stages Flowering flowers Flowers - genetics Flowers - growth & development Flowers - metabolism Fruit - genetics Fruit - growth & development Fruit - metabolism Gene Expression Regulation, Plant Genes genetic techniques and protocols Germination - genetics Germination - physiology Gibberellins Gibberellins - metabolism hormones Hypocotyl - genetics Hypocotyl - growth & development Hypocotyl - metabolism Inflorescences Internodes Models, Genetic Oxidation-Reduction Phenotypes Plant cells plant hormones Plant Roots - genetics Plant Roots - growth & development Plant Roots - metabolism Plant Stems - genetics Plant Stems - growth & development Plant Stems - metabolism Plants Plants, Genetically Modified - genetics Plants, Genetically Modified - growth & development Plants, Genetically Modified - metabolism seed germination Seeds Seeds - genetics Seeds - growth & development Seeds - metabolism shoots Signal Transduction - genetics Signal Transduction - physiology stem elongation |
Title | Genetic Analysis Reveals That C₁₉-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis |
URI | https://www.jstor.org/stable/25224346 https://www.ncbi.nlm.nih.gov/pubmed/18805991 https://www.proquest.com/docview/48196552 https://www.proquest.com/docview/69715464 https://pubmed.ncbi.nlm.nih.gov/PMC2570722 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF71QIIXBIW24Qj7gMSD5WJvdn08plFPlFJ6SH2zdp2FmEIcJU44fha_kBl7vXGglaAvlmNvfM3n2Z31N98Q8jqUIeOaMzcd-PiZUXdcqQfcTSWTnhCSBxEmJ_dPgsNLfnwlrlZWfjVYS7NC7aQ_b8wruYtVYRvYFbNk_8Oy9qCwAdbBvrAEC8Pyn2yMmtEouGqVRc70XKMe8sUQ4v4ePJaDrsPc99-zqnKSczR1pNOXn_OJc5AppScox4nTgpjeUE3Oomj_8Jss0wG7E6myQT6eZtPmIBahhcWOCgen_e0nm0zPSo8zz-0wfZJdT01K1_l8kXR2akuzGZKZc7xjiUCGI7xvYFvPSESWclU0kgDQOxneKZL5youqymsCfBvzkD5SGrEge9Uh1V6YuSwuaw5bN828Bhzjps_lZpc2PytFlb_7Bg9lNIpxirzKHU9EUeX5G0AZfy2Rghp1Io79RR9pmYun_R7W_QsZdPvrDEIT9K3vPiwU6v2wLCZjb8sIhcLJ3y6fGuVqzXmWxkSrH2Vek2NvCnv-ZO82hkMXj8hDE8fQbgXKx2RFjzbIvd0cYo0fG-R-r64j-IRcG5TSGqXUoJQiSmmFUtpAKT2aUklLlNIGSmkTpdSglML2Bkqfksv9vYveoWtKfLgpF1HhskCmSkZ-oESoIZbgXqw8zbSvlRI8TX0pcAQep_EA574krLGIpVoMeMxCpjqbZG2Uj_Q2ocyTgScF16HQXHaYilRUfkfvhAOtUt0ibv2Qk9To32MZli9JGQd7IgH7oF5uUtmnRd7Y9uNK-eXWlttgs0R-gm45uTxnSAbwIY6PA94im6Uh7REYxDu8w4MWeVVbNgF74OsqRzqfTRMeocinYLe3COIQAh88-FaFhMX1GUC1SLiEEdsAxeSX94yyYSkqb1D97M7_fE4eLJzBC7JWTGb6JQzYC9Umq-FV2Cbru3snp2ft8n35DWfU6zg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Analysis+Reveals+That+C19-GA+2-Oxidation+Is+a+Major+Gibberellin+Inactivation+Pathway+in+Arabidopsis&rft.jtitle=The+Plant+cell&rft.au=Rieu%2C+Ivo&rft.au=Eriksson%2C+Sven&rft.au=Powers%2C+Stephen+J.&rft.au=Gong%2C+Fan&rft.date=2008-09-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=20&rft.issue=9&rft.spage=2420&rft.epage=2436&rft_id=info:doi/10.1105%2Ftpc.108.058818&rft_id=info%3Apmid%2F18805991&rft.externalDocID=PMC2570722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |