Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation

Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is a recently emerged, biological ground improvement technique, and that has the potential to enhance the shear strength, modify the surface co...

Full description

Saved in:
Bibliographic Details
Published inSoils and foundations Vol. 60; no. 4; pp. 840 - 855
Main Authors Gowthaman, Sivakumar, Nakashima, Kazunori, Kawasaki, Satoru
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text
ISSN0038-0806
DOI10.1016/j.sandf.2020.05.012

Cover

Loading…
Abstract Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is a recently emerged, biological ground improvement technique, and that has the potential to enhance the shear strength, modify the surface conditions and promote the stability of deposits. This paper presents the experimental works conducted to investigate the durability and shear responses of MICP treated slope soil, demonstrating the feasibility of technique as potential alternative for slope soil stabilization. The first objective is to investigate the freeze–thaw (FT) response of MICP specimens, because FT cycles can affect the aggregate stability in regions with seasonal frost, which in turn impacts runoff and erosion in slopes. FT tests were performed as a credible indicator of durability, and the subjected specimens were monitored nondestructively (mass loss, S-wave, P-wave velocities). Secondly, shear tests were performed, and effective strength properties were analyzed at peak and residual states. FT test results suggest that contact cementation provides additional resistive forces in slope soil against progressive expansion of pore water during FT; however, aggregate stability is attributed to adequate cementation level which facilitates effective particle contacts. Shear test results indicate that MICP has influence on friction and cohesion parameters. However, the residual strength is mainly contributed by friction angle, only a minor effect from cohesion.
AbstractList Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is a recently emerged, biological ground improvement technique, and that has the potential to enhance the shear strength, modify the surface conditions and promote the stability of deposits. This paper presents the experimental works conducted to investigate the durability and shear responses of MICP treated slope soil, demonstrating the feasibility of technique as potential alternative for slope soil stabilization. The first objective is to investigate the freeze–thaw (FT) response of MICP specimens, because FT cycles can affect the aggregate stability in regions with seasonal frost, which in turn impacts runoff and erosion in slopes. FT tests were performed as a credible indicator of durability, and the subjected specimens were monitored nondestructively (mass loss, S-wave, P-wave velocities). Secondly, shear tests were performed, and effective strength properties were analyzed at peak and residual states. FT test results suggest that contact cementation provides additional resistive forces in slope soil against progressive expansion of pore water during FT; however, aggregate stability is attributed to adequate cementation level which facilitates effective particle contacts. Shear test results indicate that MICP has influence on friction and cohesion parameters. However, the residual strength is mainly contributed by friction angle, only a minor effect from cohesion.
Author Kawasaki, Satoru
Gowthaman, Sivakumar
Nakashima, Kazunori
Author_xml – sequence: 1
  givenname: Sivakumar
  surname: Gowthaman
  fullname: Gowthaman, Sivakumar
  email: gowtham1012@outlook.com
  organization: Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
– sequence: 2
  givenname: Kazunori
  surname: Nakashima
  fullname: Nakashima, Kazunori
  email: nakashima@geo-er.eng.hokudai.ac.jp
  organization: Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
– sequence: 3
  givenname: Satoru
  surname: Kawasaki
  fullname: Kawasaki, Satoru
  email: kawasaki@geo-er.eng.hokudai.ac.jp
  organization: Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
BookMark eNqFkD1PwzAQhj0UibbwC1j8BxLOzkedgQFVFJAqscBsOc5FdZXake0WlV-PSzsxwHTSvXpO7z0zMrHOIiF3DHIGrL7f5kHZrs85cMihyoHxCZkCFCIDAfU1mYWwBag5MDYlh5VH_MIsbtQn7fZetWYw8UjTCRo2qDz1GEZnAwbqeqpxhzZiygY3Ig3ODDR6VKdVe6Q7o71rjRqosd1ep6VWvnU25XT0qM1ooorG2Rty1ash4O1lzsnH6ul9-ZKt355fl4_rTJeViBlnDAtR8EULlQbWNdB2Fa8XXKNqKhAaqwZ4U_CuKMtWiAU2vdACBG8YaK2KOSnOd1OvEDz2cvRmp_xRMpAnXXIrf3TJky4JlUy6EtX8ovSld_TKDP-wD2cW01sHg14GbdAmFyYJiLJz5k_-GzYmjac
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2024_134939
crossref_primary_10_1016_j_sandf_2022_101249
crossref_primary_10_1007_s13762_021_03138_z
crossref_primary_10_1016_j_rineng_2024_103235
crossref_primary_10_1007_s11356_022_18621_4
crossref_primary_10_1088_1755_1315_1249_1_012013
crossref_primary_10_1061_JHTRBP_HZENG_1201
crossref_primary_10_1007_s13762_021_03306_1
crossref_primary_10_1016_j_bgtech_2023_100002
crossref_primary_10_3390_ma14185164
crossref_primary_10_1007_s12517_023_11375_4
crossref_primary_10_1016_j_matpr_2021_09_013
crossref_primary_10_3390_app14104140
crossref_primary_10_3390_ma15227891
crossref_primary_10_1038_s41598_022_23823_4
crossref_primary_10_3389_feart_2022_865348
crossref_primary_10_1016_j_conbuildmat_2024_137898
crossref_primary_10_1088_1755_1315_1337_1_012039
crossref_primary_10_1007_s13399_023_03889_4
crossref_primary_10_1038_s41598_024_67548_y
crossref_primary_10_1007_s11368_021_02997_w
crossref_primary_10_1680_jgere_22_00051
crossref_primary_10_1680_jgere_22_00053
crossref_primary_10_1007_s11356_023_28937_4
crossref_primary_10_1016_j_conbuildmat_2021_125432
crossref_primary_10_1007_s40098_021_00576_x
crossref_primary_10_1016_j_bgtech_2024_100098
crossref_primary_10_1016_j_jrmge_2024_05_035
crossref_primary_10_1016_j_jrmge_2021_12_008
crossref_primary_10_3390_hydrology12010014
crossref_primary_10_3390_ma16216827
crossref_primary_10_1016_j_jrmge_2023_08_009
crossref_primary_10_3390_ma15072389
crossref_primary_10_3208_jgssp_v10_OS_45_04
crossref_primary_10_4491_eer_2020_379
crossref_primary_10_1016_j_jclepro_2021_130020
crossref_primary_10_1061__ASCE_GM_1943_5622_0002347
crossref_primary_10_1111_sum_12736
crossref_primary_10_3389_fbuil_2022_1044598
crossref_primary_10_1016_j_coldregions_2025_104459
crossref_primary_10_3389_fenvs_2021_690376
crossref_primary_10_1007_s11356_022_23157_8
crossref_primary_10_1016_j_scitotenv_2021_148369
crossref_primary_10_1016_j_jece_2023_111223
crossref_primary_10_1016_j_jenvman_2023_118181
crossref_primary_10_1016_j_bgtech_2024_100103
crossref_primary_10_1016_j_bgtech_2024_100147
crossref_primary_10_1016_j_jclepro_2021_128782
crossref_primary_10_3390_min13020185
crossref_primary_10_1007_s13399_023_04727_3
crossref_primary_10_1016_j_jenvman_2021_112315
crossref_primary_10_1371_journal_pone_0254676
crossref_primary_10_1016_j_jenvman_2021_113883
crossref_primary_10_3390_cryst12020132
crossref_primary_10_3389_fbuil_2023_1307650
crossref_primary_10_1038_s41598_024_63016_9
crossref_primary_10_1080_01490451_2021_2019858
crossref_primary_10_1007_s11440_022_01612_7
crossref_primary_10_1007_s11600_022_00967_5
crossref_primary_10_1007_s40098_024_00874_0
crossref_primary_10_1038_s41598_023_49401_w
crossref_primary_10_1016_j_conbuildmat_2021_122846
crossref_primary_10_1016_j_cscm_2023_e02086
crossref_primary_10_1016_j_apt_2021_11_004
crossref_primary_10_1016_j_cscm_2025_e04345
crossref_primary_10_1007_s40515_021_00205_3
crossref_primary_10_1016_j_scitotenv_2023_169016
crossref_primary_10_1080_01490451_2024_2401887
crossref_primary_10_3390_ma15175814
crossref_primary_10_1016_j_engfracmech_2025_111049
crossref_primary_10_1007_s40098_024_00975_w
crossref_primary_10_1080_01490451_2024_2445108
crossref_primary_10_1007_s10064_021_02241_2
crossref_primary_10_1016_j_powtec_2021_05_096
crossref_primary_10_1016_j_trgeo_2022_100718
crossref_primary_10_1007_s44242_024_00060_8
crossref_primary_10_1061_JGGEFK_GTENG_11275
crossref_primary_10_1016_j_bgtech_2023_100050
crossref_primary_10_1007_s11440_023_02029_6
crossref_primary_10_1007_s12665_023_11273_8
crossref_primary_10_3390_ma17122978
crossref_primary_10_3390_su14052513
crossref_primary_10_1016_j_geoderma_2021_115359
crossref_primary_10_3390_app14020799
crossref_primary_10_1038_s41598_025_92208_0
crossref_primary_10_1016_j_chemosphere_2023_137894
crossref_primary_10_3390_ma15217754
crossref_primary_10_1016_j_jrmge_2022_08_007
crossref_primary_10_1016_j_pedsph_2023_01_011
crossref_primary_10_3390_cryst11121439
crossref_primary_10_1007_s10706_024_03056_0
crossref_primary_10_1016_j_jrmge_2023_08_024
crossref_primary_10_1007_s12517_023_11806_2
Cites_doi 10.1061/AJGEB6.0001152
10.2320/matertrans.M-M2015842
10.1139/t98-015
10.1016/j.ecoleng.2013.07.034
10.1520/D5312-92R97
10.1016/j.proeng.2016.02.034
10.1139/cgj-2018-0551
10.1080/01490450701436505
10.1016/j.sandf.2018.12.010
10.1002/esp.1209
10.1061/(ASCE)GT.1943-5606.0001383
10.1016/j.iswcr.2017.04.002
10.1016/j.conbuildmat.2015.12.023
10.1016/j.iswcr.2018.07.004
10.1061/(ASCE)GT.1943-5606.0001379
10.1016/j.catena.2006.03.011
10.1016/S1002-0160(14)60015-1
10.1061/(ASCE)MT.1943-5533.0002897
10.2320/matertrans.M-M2017849
10.1061/(ASCE)GT.1943-5606.0000787
10.1680/jgeot.15.P.182
10.1016/0148-9062(74)90479-3
10.1016/j.sandf.2016.11.002
10.1016/S0169-555X(03)00129-6
10.1080/01490451.2016.1225866
10.2136/sssaj2005.0015
10.1061/(ASCE)GT.1943-5606.0002079
10.4141/cjss90-060
10.1061/(ASCE)GT.1943-5606.0000382
10.1016/j.ecoleng.2008.12.029
10.1061/(ASCE)1090-0241(2006)132:11(1381)
10.1016/j.sandf.2019.02.003
10.3141/2657-02
10.1016/j.enggeo.2015.12.027
10.1061/(ASCE)1090-0241(2008)134:10(1476)
10.4141/cjss2012-046
10.1139/cgj-2012-0023
10.1016/S0016-7061(97)00075-X
10.1007/s11440-017-0574-9
10.1016/S0341-8162(02)00177-7
10.1080/01490451.2013.836579
10.1061/(ASCE)GT.1943-5606.0001586
10.1002/joc.5329
10.1007/s42452-019-1508-y
10.1680/geot.SIP13.P.019
10.1061/(ASCE)GT.1943-5606.0001682
10.1061/41165(397)409
10.1016/S0169-555X(99)00092-6
10.1016/j.catena.2017.10.013
10.1016/j.bcab.2020.101544
10.1061/(ASCE)GT.1943-5606.0001302
10.1061/(ASCE)GT.1943-5606.0001089
10.1016/j.conbuildmat.2017.12.119
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.sandf.2020.05.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 855
ExternalDocumentID 10_1016_j_sandf_2020_05_012
S0038080620336945
GroupedDBID -~X
0R~
0SF
123
2WC
4.4
457
5B4
6I.
7.U
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKDD
AALRI
AAXUO
ABCQX
ABMAC
ABTAH
ABVKL
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IXB
JSI
JSP
L7B
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
RJT
ROL
RYR
RZJ
SSZ
TKC
WBO
Y6R
ZY4
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c458t-211e38327b05c01d90bd52672cea9508ce5902932d344b887e9f8c8082910cca3
IEDL.DBID IXB
ISSN 0038-0806
IngestDate Thu Jul 31 00:46:26 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Fri Feb 23 02:49:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Freeze–thaw response
Slope soil
Durability
Shear response
Cementation level
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-211e38327b05c01d90bd52672cea9508ce5902932d344b887e9f8c8082910cca3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0038080620336945
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_sandf_2020_05_012
crossref_citationtrail_10_1016_j_sandf_2020_05_012
elsevier_sciencedirect_doi_10_1016_j_sandf_2020_05_012
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Soils and foundations
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gowthaman, Mitsuyama, Nakashima, Komatsu, Kawasaki (b0125) 2019; 59
Jiang, Tang, Yin, Xie, Shi (b0140) 2019; 31
ASTM D5312-92, 1997. Standard Test Method for Evaluation of Durability of Rock for Erosion Control Under Freezing and Thawing Conditions, ASTM International. West Conshohocken, PA. https://doi.org/10.1520/D5312-92R97.
Perfect, Van Loon, Kay, Groenevelt (b0225) 1990; 70
Fukue, Nakamura, Kato (b0110) 2001; 49–2
Qabany, Mortensen, Martinez, Soga, Dejong (b0240) 2011
Clough, Rad, Bachus, Sitar (b0050) 1981; 107
DeJong, Fritzges, Nüsslein (b0070) 2006; 132
Lin, H., Suleiman, M.T., Brown, D.G., Kavazanjian, E., 2016. Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. J. Geotech. Geoenvironmental Eng. 142, 04015066-1–13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Phan, Hsiao, Nguyen (b0230) 2016; 142
Montoya, De Jong (b0185) 2015; 141
Ng, Lee, Hii (b0200) 2012; 6
Lee, Ng, Tanaka (b0155) 2013; 60
Mujah, Shahin, Cheng (b0195) 2017; 34
Protodyakonov, M.M., 1969. Methods of determining the shearing strength of rocks, in: Mechanical Properties of Rocks. Israel Program for Scientific Translations, pp. 15–27.
Martinez, DeJong, Ginn, Montoya, Barkouki, Hunt, Tanyu, Major (b0170) 2013; 139
Jiang, Soga (b0135) 2019; 59
Amarakoon, Kawasaki (b0005) 2018; 59
Farukh, Yamada (b0085) 2018; 38
Montoya, DeJong, Boulanger (b0190) 2013; 63
Dagesse (b0060) 2013; 93
Whiffin, V.S., 2004. Microbial CaCO
Cui, Zheng, Zhang, Lai, Zhang (b0055) 2017; 12
Zhang, Hu, Guo, Yang, Zhang, Zhang (b0300) 2018; 160
Salifu, MacLachlan, Iyer, Knapp, Tarantino (b0255) 2016; 201
Zamani, A., Montoya, B., Gabr, M., 2019. Investigating the challenges of in situ delivery of MICP in fine grain sands and silty sands. Can. Geotech. J. https://doi.org/10.1139/cgj-2018-0551.
Ferrick, Gatto (b0100) 2005; 30
Vutukuri, V.S., Lama, R.D., Saluja, S.S., 1974. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, Vol. 1. ed. Trans Tech Publications, Clausthal, Germany.
Feng, Montoya (b0095) 2016; 142
Feng, Montoya (b0090) 2017; 143
Kværnø, Øygarden (b0150) 2006; 67
Oliveira, Freitas, Carmona (b0205) 2016; 29
Bao, R., Li, J., Li, L., Cutright, T.J., Chen, L., 2017. Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils Proof of Concept. J. Transp. Res. Board 2657, 10–18. https://doi.org/http://dx.doi.org/10.3141/2657-02.
Matalkah, Soroushian (b0175) 2018; 163
Oztas, Fayetorbay (b0215) 2003; 52
Viklander (b0270) 2011; 35
Dhami, Reddy, Mukherjee (b0080) 2016; 104
Jiang, Soga (b0145) 2017; 67
Gatto (b0115) 2000; 32
Danjo, Kawasaki (b0065) 2016; 57
Whiffin, van Paassen, Harkes (b0290) 2007; 24
Omoregie, Palombo, Ong, Nissom (b0210) 2020; 24
Bareither, Edil, Benson, Mickelson (b0020) 2008; 134
Panta, A., 2018. Strength characteristics of fine-grained soils at dyke slope surfaces. Doctoral thesis, Hokkaido University, Japan. https://doi.org/10.14943/doctoral.k13346.
Sadeghi, Raeisi, Hazbavi (b0250) 2018; 6
Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control, in: Geo-Frontiers 2011. American Society of Civil Engineers, Reston, VA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409.
Cheng, Cord-Ruwisch (b0035) 2014; 31
DeJong, Mortensen, Martinez, Nelson (b0075) 2010; 36
Soon, Lee, Khun, Ling (b0260) 2014; 140
Precipitation for the Production of Biocement. West. Aust. Murdoch Univ. Perth. https://doi.org/http://researchrepository.murdoch.edu.au/399/2/02Whole.pdf.
Gowthaman, Iki, Nakashima, Ebina, Kawasaki (b0120) 2019; 1
Li, Fan (b0160) 2014; 24
Cheng, Cord-Ruwisch, Shahin (b0040) 2013; 50
van Paassen, Ghose, van der Linden, van der Star, van Loosdrecht (b0265) 2010; 136
Wang, Soga, Dejong, Kabla (b0280) 2019; 145
Canakci, Hamed, Celik, Sidik, Eviz (b0030) 2016; 56
Cheng, Shahin, Mujah (b0045) 2016; 143
Behzadfar, Sadeghi, Khanjani, Hazbavi (b0025) 2017; 5
Harden, Scruggs (b0130) 2003; 55
Fox, Bryan, Price (b0105) 1997; 80
Rieke-Zapp, Nearing (b0245) 2005; 69
10.1016/j.sandf.2020.05.012_b0165
Fukue (10.1016/j.sandf.2020.05.012_b0110) 2001; 49–2
10.1016/j.sandf.2020.05.012_b0285
Perfect (10.1016/j.sandf.2020.05.012_b0225) 1990; 70
van Paassen (10.1016/j.sandf.2020.05.012_b0265) 2010; 136
Whiffin (10.1016/j.sandf.2020.05.012_b0290) 2007; 24
Montoya (10.1016/j.sandf.2020.05.012_b0185) 2015; 141
Salifu (10.1016/j.sandf.2020.05.012_b0255) 2016; 201
Wang (10.1016/j.sandf.2020.05.012_b0280) 2019; 145
Dagesse (10.1016/j.sandf.2020.05.012_b0060) 2013; 93
Jiang (10.1016/j.sandf.2020.05.012_b0135) 2019; 59
Martinez (10.1016/j.sandf.2020.05.012_b0170) 2013; 139
Matalkah (10.1016/j.sandf.2020.05.012_b0175) 2018; 163
Qabany (10.1016/j.sandf.2020.05.012_b0240) 2011
Oztas (10.1016/j.sandf.2020.05.012_b0215) 2003; 52
Gowthaman (10.1016/j.sandf.2020.05.012_b0120) 2019; 1
10.1016/j.sandf.2020.05.012_b0015
Cheng (10.1016/j.sandf.2020.05.012_b0035) 2014; 31
Feng (10.1016/j.sandf.2020.05.012_b0095) 2016; 142
Cheng (10.1016/j.sandf.2020.05.012_b0045) 2016; 143
10.1016/j.sandf.2020.05.012_b0010
Li (10.1016/j.sandf.2020.05.012_b0160) 2014; 24
Omoregie (10.1016/j.sandf.2020.05.012_b0210) 2020; 24
Kværnø (10.1016/j.sandf.2020.05.012_b0150) 2006; 67
Gowthaman (10.1016/j.sandf.2020.05.012_b0125) 2019; 59
Montoya (10.1016/j.sandf.2020.05.012_b0190) 2013; 63
Zhang (10.1016/j.sandf.2020.05.012_b0300) 2018; 160
Jiang (10.1016/j.sandf.2020.05.012_b0140) 2019; 31
Cui (10.1016/j.sandf.2020.05.012_b0055) 2017; 12
10.1016/j.sandf.2020.05.012_b0295
Cheng (10.1016/j.sandf.2020.05.012_b0040) 2013; 50
Clough (10.1016/j.sandf.2020.05.012_b0050) 1981; 107
Ng (10.1016/j.sandf.2020.05.012_b0200) 2012; 6
Jiang (10.1016/j.sandf.2020.05.012_b0145) 2017; 67
Bareither (10.1016/j.sandf.2020.05.012_b0020) 2008; 134
DeJong (10.1016/j.sandf.2020.05.012_b0070) 2006; 132
Canakci (10.1016/j.sandf.2020.05.012_b0030) 2016; 56
DeJong (10.1016/j.sandf.2020.05.012_b0075) 2010; 36
10.1016/j.sandf.2020.05.012_b0220
Sadeghi (10.1016/j.sandf.2020.05.012_b0250) 2018; 6
Gatto (10.1016/j.sandf.2020.05.012_b0115) 2000; 32
Dhami (10.1016/j.sandf.2020.05.012_b0080) 2016; 104
Fox (10.1016/j.sandf.2020.05.012_b0105) 1997; 80
Phan (10.1016/j.sandf.2020.05.012_b0230) 2016; 142
Behzadfar (10.1016/j.sandf.2020.05.012_b0025) 2017; 5
Feng (10.1016/j.sandf.2020.05.012_b0090) 2017; 143
Harden (10.1016/j.sandf.2020.05.012_b0130) 2003; 55
Viklander (10.1016/j.sandf.2020.05.012_b0270) 2011; 35
Amarakoon (10.1016/j.sandf.2020.05.012_b0005) 2018; 59
10.1016/j.sandf.2020.05.012_b0180
Rieke-Zapp (10.1016/j.sandf.2020.05.012_b0245) 2005; 69
10.1016/j.sandf.2020.05.012_b0235
Oliveira (10.1016/j.sandf.2020.05.012_b0205) 2016; 29
Danjo (10.1016/j.sandf.2020.05.012_b0065) 2016; 57
10.1016/j.sandf.2020.05.012_b0275
Lee (10.1016/j.sandf.2020.05.012_b0155) 2013; 60
Mujah (10.1016/j.sandf.2020.05.012_b0195) 2017; 34
Farukh (10.1016/j.sandf.2020.05.012_b0085) 2018; 38
Ferrick (10.1016/j.sandf.2020.05.012_b0100) 2005; 30
Soon (10.1016/j.sandf.2020.05.012_b0260) 2014; 140
References_xml – volume: 31
  start-page: 04019250
  year: 2019
  ident: b0140
  article-title: Applicability of microbial calcification method for sandy-slope surface erosion control
  publication-title: J. Mater. Civ. Eng.
– volume: 24
  start-page: 285
  year: 2014
  end-page: 290
  ident: b0160
  article-title: Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China
  publication-title: Pedosphere
– volume: 57
  start-page: 428
  year: 2016
  end-page: 437
  ident: b0065
  article-title: Microbially induced sand cementation method using
  publication-title: Mater. Trans.
– volume: 145
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0280
  article-title: Microscale visualization of microbial-induced calcium carbonate precipitation processes
  publication-title: J. Geotech. Geoenviron. Eng.
– start-page: 3993
  year: 2011
  end-page: 4001
  ident: b0240
  article-title: Microbial carbonate precipitation: Correlation of S-wave velocity with calcite precipitation
  publication-title: Geotechnical Special Publication
– volume: 69
  start-page: 1463
  year: 2005
  ident: b0245
  article-title: Slope Shape Effects on Erosion
  publication-title: Soil Sci. Soc. Am. J.
– volume: 52
  start-page: 1
  year: 2003
  end-page: 8
  ident: b0215
  article-title: Effect of freezing and thawing processes on soil aggregate stability
  publication-title: Catena
– volume: 38
  start-page: 2230
  year: 2018
  end-page: 2238
  ident: b0085
  article-title: Synoptic climatology of winter daily temperature extremes in Sapporo, northern Japan
  publication-title: Int. J. Climatol.
– volume: 55
  start-page: 5
  year: 2003
  end-page: 24
  ident: b0130
  article-title: Infiltration on mountain slopes: a comparison of three environments
  publication-title: Geomorphology
– volume: 31
  start-page: 396
  year: 2014
  end-page: 406
  ident: b0035
  article-title: Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation
  publication-title: Geomicrobiol. J.
– volume: 142
  start-page: 213
  year: 2016
  end-page: 220
  ident: b0230
  article-title: Effects of fines contents on engineering properties of sand-fines mixtures
  publication-title: Procedia Eng.
– reference: Protodyakonov, M.M., 1969. Methods of determining the shearing strength of rocks, in: Mechanical Properties of Rocks. Israel Program for Scientific Translations, pp. 15–27.
– volume: 63
  start-page: 302
  year: 2013
  end-page: 312
  ident: b0190
  article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation
  publication-title: Géotechnique
– volume: 6
  start-page: 275
  year: 2018
  end-page: 279
  ident: b0250
  article-title: Influence of freeze-only and freezing-thawing cycles on splash erosion
  publication-title: Int. Soil Water Conserv. Res.
– reference: Zamani, A., Montoya, B., Gabr, M., 2019. Investigating the challenges of in situ delivery of MICP in fine grain sands and silty sands. Can. Geotech. J. https://doi.org/10.1139/cgj-2018-0551.
– volume: 24
  start-page: 417
  year: 2007
  end-page: 423
  ident: b0290
  article-title: Microbial carbonate precipitation as a soil improvement technique
  publication-title: Geomicrobiol. J.
– volume: 59
  start-page: 699
  year: 2019
  end-page: 709
  ident: b0135
  article-title: Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP)
  publication-title: Soils Found.
– volume: 139
  start-page: 587
  year: 2013
  end-page: 598
  ident: b0170
  article-title: Experimental optimization of microbial-induced carbonate precipitation for soil improvement
  publication-title: J. Geotech. Geoenvironmental Eng.
– reference: Vutukuri, V.S., Lama, R.D., Saluja, S.S., 1974. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, Vol. 1. ed. Trans Tech Publications, Clausthal, Germany.
– reference: Whiffin, V.S., 2004. Microbial CaCO
– volume: 107
  start-page: 799
  year: 1981
  end-page: 817
  ident: b0050
  article-title: Cemented sands under static loading
  publication-title: J. Geotech. Eng. Div.
– volume: 67
  start-page: 42
  year: 2017
  end-page: 55
  ident: b0145
  article-title: The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures
  publication-title: Géotechnique
– volume: 56
  start-page: 965
  year: 2016
  end-page: 972
  ident: b0030
  article-title: Friction characteristics of organic soil with construction materials
  publication-title: Soils Found.
– reference: Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control, in: Geo-Frontiers 2011. American Society of Civil Engineers, Reston, VA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409.
– volume: 59
  start-page: 484
  year: 2019
  end-page: 499
  ident: b0125
  article-title: Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: a feasibility study on Hokkaido expressway soil, Japan
  publication-title: Soils Found.
– volume: 142
  start-page: 04015057
  year: 2016
  ident: b0095
  article-title: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 34
  start-page: 524
  year: 2017
  end-page: 537
  ident: b0195
  article-title: State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization
  publication-title: Geomicrobiol. J.
– reference: Bao, R., Li, J., Li, L., Cutright, T.J., Chen, L., 2017. Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils Proof of Concept. J. Transp. Res. Board 2657, 10–18. https://doi.org/http://dx.doi.org/10.3141/2657-02.
– volume: 29
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0205
  article-title: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement
  publication-title: J. Mater. Civ. Eng.
– volume: 6
  start-page: 188
  year: 2012
  end-page: 194
  ident: b0200
  article-title: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 163
  start-page: 200
  year: 2018
  end-page: 213
  ident: b0175
  article-title: Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement
  publication-title: Constr. Build. Mater.
– volume: 50
  start-page: 81
  year: 2013
  end-page: 90
  ident: b0040
  article-title: Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation
  publication-title: Can. Geotech. J.
– volume: 160
  start-page: 394
  year: 2018
  end-page: 402
  ident: b0300
  article-title: Effects of topographic factors on runoff and soil loss in Southwest China
  publication-title: Catena
– volume: 132
  start-page: 1381
  year: 2006
  end-page: 1392
  ident: b0070
  article-title: Microbially induced cementation to control sand response to undrained shear
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 104
  start-page: 198
  year: 2016
  end-page: 207
  ident: b0080
  article-title: Significant indicators for biomineralisation in sand of varying grain sizes
  publication-title: Constr. Build. Mater.
– volume: 59
  start-page: 72
  year: 2018
  end-page: 81
  ident: b0005
  article-title: Factors affecting sand solidification using MICP with
  publication-title: Mater. Trans.
– volume: 36
  start-page: 197
  year: 2010
  end-page: 210
  ident: b0075
  article-title: Bio-mediated soil improvement
  publication-title: Ecol. Eng.
– volume: 201
  start-page: 96
  year: 2016
  end-page: 105
  ident: b0255
  article-title: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation
  publication-title: Eng. Geol.
– volume: 67
  start-page: 175
  year: 2006
  end-page: 182
  ident: b0150
  article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway
  publication-title: Catena
– volume: 136
  start-page: 1721
  year: 2010
  end-page: 1728
  ident: b0265
  article-title: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 80
  start-page: 181
  year: 1997
  end-page: 194
  ident: b0105
  article-title: The influence of slope angle on final infiltration rate for interrill, conditions
  publication-title: Geoderma
– reference: Panta, A., 2018. Strength characteristics of fine-grained soils at dyke slope surfaces. Doctoral thesis, Hokkaido University, Japan. https://doi.org/10.14943/doctoral.k13346.
– volume: 143
  start-page: 04016083
  year: 2016
  ident: b0045
  article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 143
  start-page: 06017005
  year: 2017
  ident: b0090
  article-title: Quantifying level of microbial-induced cementation for cyclically loaded sand
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 93
  start-page: 473
  year: 2013
  end-page: 483
  ident: b0060
  article-title: Freezing cycle effects on water stability of soil aggregates
  publication-title: Can. J. Soil Sci.
– volume: 24
  year: 2020
  ident: b0210
  article-title: A feasible scale-up production of
  publication-title: Biocatal. Agric. Biotechnol.
– reference: Lin, H., Suleiman, M.T., Brown, D.G., Kavazanjian, E., 2016. Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. J. Geotech. Geoenvironmental Eng. 142, 04015066-1–13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
– volume: 35
  start-page: 471
  year: 2011
  end-page: 477
  ident: b0270
  article-title: Permeability and volume changes in till due to cyclic freeze/thaw
  publication-title: Can. Geotech. J.
– volume: 32
  start-page: 147
  year: 2000
  end-page: 160
  ident: b0115
  article-title: Soil freeze-thaw-induced changes to a simulated rill: Potential impacts on soil erosion
  publication-title: Geomorphology
– volume: 60
  start-page: 142
  year: 2013
  end-page: 149
  ident: b0155
  article-title: Stress-deformation and compressibility responses of bio-mediated residual soils
  publication-title: Ecol. Eng.
– volume: 30
  start-page: 1305
  year: 2005
  end-page: 1326
  ident: b0100
  article-title: Quantifying the effect of a freeze-thaw cycle on soil erosion: laboratory experiments
  publication-title: Earth Surf. Process. Landforms
– volume: 5
  start-page: 95
  year: 2017
  end-page: 101
  ident: b0025
  article-title: Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle
  publication-title: Int. Soil Water Conserv. Res.
– volume: 70
  start-page: 571
  year: 1990
  end-page: 581
  ident: b0225
  article-title: Influence of ice segregation and solutes on soil structural stability
  publication-title: Can. J. Soil Sci.
– reference: Precipitation for the Production of Biocement. West. Aust. Murdoch Univ. Perth. https://doi.org/http://researchrepository.murdoch.edu.au/399/2/02Whole.pdf.
– volume: 1
  start-page: 1480
  year: 2019
  ident: b0120
  article-title: Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region
  publication-title: SN Appl. Sci.
– reference: ASTM D5312-92, 1997. Standard Test Method for Evaluation of Durability of Rock for Erosion Control Under Freezing and Thawing Conditions, ASTM International. West Conshohocken, PA. https://doi.org/10.1520/D5312-92R97.
– volume: 134
  start-page: 1476
  year: 2008
  end-page: 1489
  ident: b0020
  article-title: Geological and physical factors affecting the friction angle of compacted sands
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 12
  start-page: 971
  year: 2017
  end-page: 986
  ident: b0055
  article-title: Influence of cementation level on the strength behaviour of bio-cemented sand
  publication-title: Acta Geotech.
– volume: 140
  start-page: 04014006
  year: 2014
  ident: b0260
  article-title: Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 49–2
  start-page: 9
  year: 2001
  end-page: 12
  ident: b0110
  article-title: A method for determining carbonate content for soils and evaluation of the results
  publication-title: Soils Found. (in Japanese)
– volume: 141
  year: 2015
  ident: b0185
  article-title: Stress-strain behavior of sands cemented by microbially induced calcite precipitation
  publication-title: J. Geotech. Geoenvironmental Eng.
– volume: 107
  start-page: 799
  year: 1981
  ident: 10.1016/j.sandf.2020.05.012_b0050
  article-title: Cemented sands under static loading
  publication-title: J. Geotech. Eng. Div.
  doi: 10.1061/AJGEB6.0001152
– start-page: 3993
  year: 2011
  ident: 10.1016/j.sandf.2020.05.012_b0240
  article-title: Microbial carbonate precipitation: Correlation of S-wave velocity with calcite precipitation
– volume: 57
  start-page: 428
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0065
  article-title: Microbially induced sand cementation method using Pararhodobacter sp. strain SO1, inspired by beachrock formation mechanism
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M-M2015842
– volume: 35
  start-page: 471
  year: 2011
  ident: 10.1016/j.sandf.2020.05.012_b0270
  article-title: Permeability and volume changes in till due to cyclic freeze/thaw
  publication-title: Can. Geotech. J.
  doi: 10.1139/t98-015
– volume: 60
  start-page: 142
  year: 2013
  ident: 10.1016/j.sandf.2020.05.012_b0155
  article-title: Stress-deformation and compressibility responses of bio-mediated residual soils
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.07.034
– ident: 10.1016/j.sandf.2020.05.012_b0010
  doi: 10.1520/D5312-92R97
– volume: 142
  start-page: 213
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0230
  article-title: Effects of fines contents on engineering properties of sand-fines mixtures
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.02.034
– ident: 10.1016/j.sandf.2020.05.012_b0295
  doi: 10.1139/cgj-2018-0551
– volume: 24
  start-page: 417
  year: 2007
  ident: 10.1016/j.sandf.2020.05.012_b0290
  article-title: Microbial carbonate precipitation as a soil improvement technique
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490450701436505
– volume: 59
  start-page: 484
  year: 2019
  ident: 10.1016/j.sandf.2020.05.012_b0125
  article-title: Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: a feasibility study on Hokkaido expressway soil, Japan
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2018.12.010
– volume: 30
  start-page: 1305
  year: 2005
  ident: 10.1016/j.sandf.2020.05.012_b0100
  article-title: Quantifying the effect of a freeze-thaw cycle on soil erosion: laboratory experiments
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/esp.1209
– ident: 10.1016/j.sandf.2020.05.012_b0165
  doi: 10.1061/(ASCE)GT.1943-5606.0001383
– volume: 5
  start-page: 95
  year: 2017
  ident: 10.1016/j.sandf.2020.05.012_b0025
  article-title: Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2017.04.002
– volume: 104
  start-page: 198
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0080
  article-title: Significant indicators for biomineralisation in sand of varying grain sizes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.12.023
– volume: 29
  start-page: 1
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0205
  article-title: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement
  publication-title: J. Mater. Civ. Eng.
– volume: 6
  start-page: 275
  year: 2018
  ident: 10.1016/j.sandf.2020.05.012_b0250
  article-title: Influence of freeze-only and freezing-thawing cycles on splash erosion
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2018.07.004
– volume: 142
  start-page: 04015057
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0095
  article-title: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001379
– volume: 67
  start-page: 175
  year: 2006
  ident: 10.1016/j.sandf.2020.05.012_b0150
  article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway
  publication-title: Catena
  doi: 10.1016/j.catena.2006.03.011
– volume: 24
  start-page: 285
  year: 2014
  ident: 10.1016/j.sandf.2020.05.012_b0160
  article-title: Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(14)60015-1
– volume: 31
  start-page: 04019250
  year: 2019
  ident: 10.1016/j.sandf.2020.05.012_b0140
  article-title: Applicability of microbial calcification method for sandy-slope surface erosion control
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002897
– volume: 59
  start-page: 72
  year: 2018
  ident: 10.1016/j.sandf.2020.05.012_b0005
  article-title: Factors affecting sand solidification using MICP with Pararhodobacter sp
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M-M2017849
– volume: 139
  start-page: 587
  year: 2013
  ident: 10.1016/j.sandf.2020.05.012_b0170
  article-title: Experimental optimization of microbial-induced carbonate precipitation for soil improvement
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000787
– volume: 67
  start-page: 42
  year: 2017
  ident: 10.1016/j.sandf.2020.05.012_b0145
  article-title: The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures
  publication-title: Géotechnique
  doi: 10.1680/jgeot.15.P.182
– ident: 10.1016/j.sandf.2020.05.012_b0235
– ident: 10.1016/j.sandf.2020.05.012_b0275
  doi: 10.1016/0148-9062(74)90479-3
– volume: 49–2
  start-page: 9
  year: 2001
  ident: 10.1016/j.sandf.2020.05.012_b0110
  article-title: A method for determining carbonate content for soils and evaluation of the results
  publication-title: Soils Found. (in Japanese)
– volume: 56
  start-page: 965
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0030
  article-title: Friction characteristics of organic soil with construction materials
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2016.11.002
– volume: 55
  start-page: 5
  year: 2003
  ident: 10.1016/j.sandf.2020.05.012_b0130
  article-title: Infiltration on mountain slopes: a comparison of three environments
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(03)00129-6
– volume: 34
  start-page: 524
  year: 2017
  ident: 10.1016/j.sandf.2020.05.012_b0195
  article-title: State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2016.1225866
– volume: 69
  start-page: 1463
  year: 2005
  ident: 10.1016/j.sandf.2020.05.012_b0245
  article-title: Slope Shape Effects on Erosion
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0015
– volume: 145
  start-page: 1
  year: 2019
  ident: 10.1016/j.sandf.2020.05.012_b0280
  article-title: Microscale visualization of microbial-induced calcium carbonate precipitation processes
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002079
– volume: 70
  start-page: 571
  year: 1990
  ident: 10.1016/j.sandf.2020.05.012_b0225
  article-title: Influence of ice segregation and solutes on soil structural stability
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss90-060
– volume: 136
  start-page: 1721
  year: 2010
  ident: 10.1016/j.sandf.2020.05.012_b0265
  article-title: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000382
– volume: 36
  start-page: 197
  year: 2010
  ident: 10.1016/j.sandf.2020.05.012_b0075
  article-title: Bio-mediated soil improvement
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2008.12.029
– ident: 10.1016/j.sandf.2020.05.012_b0220
– volume: 132
  start-page: 1381
  year: 2006
  ident: 10.1016/j.sandf.2020.05.012_b0070
  article-title: Microbially induced cementation to control sand response to undrained shear
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
– volume: 59
  start-page: 699
  year: 2019
  ident: 10.1016/j.sandf.2020.05.012_b0135
  article-title: Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP)
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2019.02.003
– ident: 10.1016/j.sandf.2020.05.012_b0015
  doi: 10.3141/2657-02
– volume: 201
  start-page: 96
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0255
  article-title: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.12.027
– volume: 134
  start-page: 1476
  year: 2008
  ident: 10.1016/j.sandf.2020.05.012_b0020
  article-title: Geological and physical factors affecting the friction angle of compacted sands
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)1090-0241(2008)134:10(1476)
– volume: 93
  start-page: 473
  year: 2013
  ident: 10.1016/j.sandf.2020.05.012_b0060
  article-title: Freezing cycle effects on water stability of soil aggregates
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss2012-046
– volume: 50
  start-page: 81
  year: 2013
  ident: 10.1016/j.sandf.2020.05.012_b0040
  article-title: Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2012-0023
– volume: 80
  start-page: 181
  year: 1997
  ident: 10.1016/j.sandf.2020.05.012_b0105
  article-title: The influence of slope angle on final infiltration rate for interrill, conditions
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00075-X
– volume: 12
  start-page: 971
  year: 2017
  ident: 10.1016/j.sandf.2020.05.012_b0055
  article-title: Influence of cementation level on the strength behaviour of bio-cemented sand
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-017-0574-9
– volume: 52
  start-page: 1
  year: 2003
  ident: 10.1016/j.sandf.2020.05.012_b0215
  article-title: Effect of freezing and thawing processes on soil aggregate stability
  publication-title: Catena
  doi: 10.1016/S0341-8162(02)00177-7
– volume: 31
  start-page: 396
  year: 2014
  ident: 10.1016/j.sandf.2020.05.012_b0035
  article-title: Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2013.836579
– volume: 143
  start-page: 04016083
  year: 2016
  ident: 10.1016/j.sandf.2020.05.012_b0045
  article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001586
– volume: 38
  start-page: 2230
  year: 2018
  ident: 10.1016/j.sandf.2020.05.012_b0085
  article-title: Synoptic climatology of winter daily temperature extremes in Sapporo, northern Japan
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5329
– volume: 1
  start-page: 1480
  year: 2019
  ident: 10.1016/j.sandf.2020.05.012_b0120
  article-title: Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1508-y
– volume: 63
  start-page: 302
  year: 2013
  ident: 10.1016/j.sandf.2020.05.012_b0190
  article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation
  publication-title: Géotechnique
  doi: 10.1680/geot.SIP13.P.019
– volume: 143
  start-page: 06017005
  year: 2017
  ident: 10.1016/j.sandf.2020.05.012_b0090
  article-title: Quantifying level of microbial-induced cementation for cyclically loaded sand
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001682
– ident: 10.1016/j.sandf.2020.05.012_b0180
  doi: 10.1061/41165(397)409
– volume: 6
  start-page: 188
  year: 2012
  ident: 10.1016/j.sandf.2020.05.012_b0200
  article-title: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 32
  start-page: 147
  year: 2000
  ident: 10.1016/j.sandf.2020.05.012_b0115
  article-title: Soil freeze-thaw-induced changes to a simulated rill: Potential impacts on soil erosion
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(99)00092-6
– volume: 160
  start-page: 394
  year: 2018
  ident: 10.1016/j.sandf.2020.05.012_b0300
  article-title: Effects of topographic factors on runoff and soil loss in Southwest China
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.013
– volume: 24
  year: 2020
  ident: 10.1016/j.sandf.2020.05.012_b0210
  article-title: A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2020.101544
– volume: 141
  year: 2015
  ident: 10.1016/j.sandf.2020.05.012_b0185
  article-title: Stress-strain behavior of sands cemented by microbially induced calcite precipitation
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001302
– volume: 140
  start-page: 04014006
  year: 2014
  ident: 10.1016/j.sandf.2020.05.012_b0260
  article-title: Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation
  publication-title: J. Geotech. Geoenvironmental Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001089
– ident: 10.1016/j.sandf.2020.05.012_b0285
– volume: 163
  start-page: 200
  year: 2018
  ident: 10.1016/j.sandf.2020.05.012_b0175
  article-title: Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.12.119
SSID ssj0062011
Score 2.5381577
Snippet Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 840
SubjectTerms Cementation level
Durability
Freeze–thaw response
Shear response
Slope soil
Title Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation
URI https://dx.doi.org/10.1016/j.sandf.2020.05.012
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEICtqhMMiKcoL3lgJKrjOK8RKqqKgYlK3aLYcURQaaIkBZVfz52doCKhDoxxbNk6W3c-6-47Qm4lmCWZh8oR4CM7Qoa-E3s6cnKRZlznPkLjMNriOZjNxdPCXwzIpM-FwbDKTvdbnW60ddcy7qQ5rooCc3w9hCIGnHleEAtMNEdSCybxLR56bRyggbNoRiQxs6AnD5kYrwa8deR4cmbxnfxv67RlcaaH5KC7KtJ7u5ojMtCrY7K_BRA8IR_TWusv7bSv6SfN1rWFbm8oTEgbrFVNaxsDqxta5lSZt0AN_5ZlpWlTFktqIs2hSW7oe2GoTDAnOOqw5RlVaS3xeV3TCikYVQf0PiXz6ePLZOZ0lRQcJfyodcDL0-CK8lAyXzE3i5nMfB6EXOkUy8BiLhYDw88zTwgJekfHeaQizLt1Geyxd0aGq3Klzwl13VgZiEyq4SqlQEmBl5tyEXoegoHCEeG9BBPVrQqrXSyTPp7sLTFiT1DsCfMTEPuI3P0MqixlY3f3oN-a5NdhScAO7Bp48d-Bl2QPv2zk3xUZtvVaX8NtpJU3xou_MYfuG0F43gg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NT8IwFMAbxIN6MH5G_OzBowul6zZ2VCIBRU6QcGvWrosYZMsGGvzrfW8fBhPDweu6ps1r8z6a936PkFsFZklFnrYExMiWUJ5j-bZpW5EIQm4iB6FxmG0xdHtj8TRxJjXSqWphMK2y1P2FTs-1dfmlWUqzmUynWONrIxTR5cy2XV84W2QbvAEX87r6k4dKHbto4Qo2I6KYmVuhh_IkrwzCdQR5clbwO_nf5mnN5HQPyH7pK9L7YjuHpGbmR2RvjSB4TD66qTFfxlq8Bp80XKYFdXtFYUGaYbNqmhZJsCajcUR1_hhoYGwWJ4Zm8XRG81Rz-KRW9H2aY5lgTYjU4cxDqoNU4fu6oQliMJKS6H1Cxt3HUadnla0ULC2c9sKCMM9ALMo9xRzNWqHPVOhw1-PaBNgHFouxGFh-HtpCKFA8xo_auo2Fty0Gh2yfkvo8npszQlstX-cUmcCAL6VBS0GYG3Dh2TaSgbwG4ZUEpS53he0uZrJKKHuTudglil0yR4LYG-TuZ1JSYDY2_-5WRyN_3RYJhmDTxPP_TrwhO73Ry0AO-sPnC7KLI0Ua4CWpL9KluQLXZKGu86v3DUu74Do
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freeze-thaw+durability+and+shear+responses+of+cemented+slope+soil+treated+by+microbial+induced+carbonate+precipitation&rft.jtitle=Soils+and+foundations&rft.au=Gowthaman%2C+Sivakumar&rft.au=Nakashima%2C+Kazunori&rft.au=Kawasaki%2C+Satoru&rft.date=2020-08-01&rft.issn=0038-0806&rft.volume=60&rft.issue=4&rft.spage=840&rft.epage=855&rft_id=info:doi/10.1016%2Fj.sandf.2020.05.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sandf_2020_05_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon