Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation
Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is a recently emerged, biological ground improvement technique, and that has the potential to enhance the shear strength, modify the surface co...
Saved in:
Published in | Soils and foundations Vol. 60; no. 4; pp. 840 - 855 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0038-0806 |
DOI | 10.1016/j.sandf.2020.05.012 |
Cover
Loading…
Abstract | Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is a recently emerged, biological ground improvement technique, and that has the potential to enhance the shear strength, modify the surface conditions and promote the stability of deposits. This paper presents the experimental works conducted to investigate the durability and shear responses of MICP treated slope soil, demonstrating the feasibility of technique as potential alternative for slope soil stabilization. The first objective is to investigate the freeze–thaw (FT) response of MICP specimens, because FT cycles can affect the aggregate stability in regions with seasonal frost, which in turn impacts runoff and erosion in slopes. FT tests were performed as a credible indicator of durability, and the subjected specimens were monitored nondestructively (mass loss, S-wave, P-wave velocities). Secondly, shear tests were performed, and effective strength properties were analyzed at peak and residual states. FT test results suggest that contact cementation provides additional resistive forces in slope soil against progressive expansion of pore water during FT; however, aggregate stability is attributed to adequate cementation level which facilitates effective particle contacts. Shear test results indicate that MICP has influence on friction and cohesion parameters. However, the residual strength is mainly contributed by friction angle, only a minor effect from cohesion. |
---|---|
AbstractList | Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is a recently emerged, biological ground improvement technique, and that has the potential to enhance the shear strength, modify the surface conditions and promote the stability of deposits. This paper presents the experimental works conducted to investigate the durability and shear responses of MICP treated slope soil, demonstrating the feasibility of technique as potential alternative for slope soil stabilization. The first objective is to investigate the freeze–thaw (FT) response of MICP specimens, because FT cycles can affect the aggregate stability in regions with seasonal frost, which in turn impacts runoff and erosion in slopes. FT tests were performed as a credible indicator of durability, and the subjected specimens were monitored nondestructively (mass loss, S-wave, P-wave velocities). Secondly, shear tests were performed, and effective strength properties were analyzed at peak and residual states. FT test results suggest that contact cementation provides additional resistive forces in slope soil against progressive expansion of pore water during FT; however, aggregate stability is attributed to adequate cementation level which facilitates effective particle contacts. Shear test results indicate that MICP has influence on friction and cohesion parameters. However, the residual strength is mainly contributed by friction angle, only a minor effect from cohesion. |
Author | Kawasaki, Satoru Gowthaman, Sivakumar Nakashima, Kazunori |
Author_xml | – sequence: 1 givenname: Sivakumar surname: Gowthaman fullname: Gowthaman, Sivakumar email: gowtham1012@outlook.com organization: Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan – sequence: 2 givenname: Kazunori surname: Nakashima fullname: Nakashima, Kazunori email: nakashima@geo-er.eng.hokudai.ac.jp organization: Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan – sequence: 3 givenname: Satoru surname: Kawasaki fullname: Kawasaki, Satoru email: kawasaki@geo-er.eng.hokudai.ac.jp organization: Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan |
BookMark | eNqFkD1PwzAQhj0UibbwC1j8BxLOzkedgQFVFJAqscBsOc5FdZXake0WlV-PSzsxwHTSvXpO7z0zMrHOIiF3DHIGrL7f5kHZrs85cMihyoHxCZkCFCIDAfU1mYWwBag5MDYlh5VH_MIsbtQn7fZetWYw8UjTCRo2qDz1GEZnAwbqeqpxhzZiygY3Ig3ODDR6VKdVe6Q7o71rjRqosd1ep6VWvnU25XT0qM1ooorG2Rty1ash4O1lzsnH6ul9-ZKt355fl4_rTJeViBlnDAtR8EULlQbWNdB2Fa8XXKNqKhAaqwZ4U_CuKMtWiAU2vdACBG8YaK2KOSnOd1OvEDz2cvRmp_xRMpAnXXIrf3TJky4JlUy6EtX8ovSld_TKDP-wD2cW01sHg14GbdAmFyYJiLJz5k_-GzYmjac |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2024_134939 crossref_primary_10_1016_j_sandf_2022_101249 crossref_primary_10_1007_s13762_021_03138_z crossref_primary_10_1016_j_rineng_2024_103235 crossref_primary_10_1007_s11356_022_18621_4 crossref_primary_10_1088_1755_1315_1249_1_012013 crossref_primary_10_1061_JHTRBP_HZENG_1201 crossref_primary_10_1007_s13762_021_03306_1 crossref_primary_10_1016_j_bgtech_2023_100002 crossref_primary_10_3390_ma14185164 crossref_primary_10_1007_s12517_023_11375_4 crossref_primary_10_1016_j_matpr_2021_09_013 crossref_primary_10_3390_app14104140 crossref_primary_10_3390_ma15227891 crossref_primary_10_1038_s41598_022_23823_4 crossref_primary_10_3389_feart_2022_865348 crossref_primary_10_1016_j_conbuildmat_2024_137898 crossref_primary_10_1088_1755_1315_1337_1_012039 crossref_primary_10_1007_s13399_023_03889_4 crossref_primary_10_1038_s41598_024_67548_y crossref_primary_10_1007_s11368_021_02997_w crossref_primary_10_1680_jgere_22_00051 crossref_primary_10_1680_jgere_22_00053 crossref_primary_10_1007_s11356_023_28937_4 crossref_primary_10_1016_j_conbuildmat_2021_125432 crossref_primary_10_1007_s40098_021_00576_x crossref_primary_10_1016_j_bgtech_2024_100098 crossref_primary_10_1016_j_jrmge_2024_05_035 crossref_primary_10_1016_j_jrmge_2021_12_008 crossref_primary_10_3390_hydrology12010014 crossref_primary_10_3390_ma16216827 crossref_primary_10_1016_j_jrmge_2023_08_009 crossref_primary_10_3390_ma15072389 crossref_primary_10_3208_jgssp_v10_OS_45_04 crossref_primary_10_4491_eer_2020_379 crossref_primary_10_1016_j_jclepro_2021_130020 crossref_primary_10_1061__ASCE_GM_1943_5622_0002347 crossref_primary_10_1111_sum_12736 crossref_primary_10_3389_fbuil_2022_1044598 crossref_primary_10_1016_j_coldregions_2025_104459 crossref_primary_10_3389_fenvs_2021_690376 crossref_primary_10_1007_s11356_022_23157_8 crossref_primary_10_1016_j_scitotenv_2021_148369 crossref_primary_10_1016_j_jece_2023_111223 crossref_primary_10_1016_j_jenvman_2023_118181 crossref_primary_10_1016_j_bgtech_2024_100103 crossref_primary_10_1016_j_bgtech_2024_100147 crossref_primary_10_1016_j_jclepro_2021_128782 crossref_primary_10_3390_min13020185 crossref_primary_10_1007_s13399_023_04727_3 crossref_primary_10_1016_j_jenvman_2021_112315 crossref_primary_10_1371_journal_pone_0254676 crossref_primary_10_1016_j_jenvman_2021_113883 crossref_primary_10_3390_cryst12020132 crossref_primary_10_3389_fbuil_2023_1307650 crossref_primary_10_1038_s41598_024_63016_9 crossref_primary_10_1080_01490451_2021_2019858 crossref_primary_10_1007_s11440_022_01612_7 crossref_primary_10_1007_s11600_022_00967_5 crossref_primary_10_1007_s40098_024_00874_0 crossref_primary_10_1038_s41598_023_49401_w crossref_primary_10_1016_j_conbuildmat_2021_122846 crossref_primary_10_1016_j_cscm_2023_e02086 crossref_primary_10_1016_j_apt_2021_11_004 crossref_primary_10_1016_j_cscm_2025_e04345 crossref_primary_10_1007_s40515_021_00205_3 crossref_primary_10_1016_j_scitotenv_2023_169016 crossref_primary_10_1080_01490451_2024_2401887 crossref_primary_10_3390_ma15175814 crossref_primary_10_1016_j_engfracmech_2025_111049 crossref_primary_10_1007_s40098_024_00975_w crossref_primary_10_1080_01490451_2024_2445108 crossref_primary_10_1007_s10064_021_02241_2 crossref_primary_10_1016_j_powtec_2021_05_096 crossref_primary_10_1016_j_trgeo_2022_100718 crossref_primary_10_1007_s44242_024_00060_8 crossref_primary_10_1061_JGGEFK_GTENG_11275 crossref_primary_10_1016_j_bgtech_2023_100050 crossref_primary_10_1007_s11440_023_02029_6 crossref_primary_10_1007_s12665_023_11273_8 crossref_primary_10_3390_ma17122978 crossref_primary_10_3390_su14052513 crossref_primary_10_1016_j_geoderma_2021_115359 crossref_primary_10_3390_app14020799 crossref_primary_10_1038_s41598_025_92208_0 crossref_primary_10_1016_j_chemosphere_2023_137894 crossref_primary_10_3390_ma15217754 crossref_primary_10_1016_j_jrmge_2022_08_007 crossref_primary_10_1016_j_pedsph_2023_01_011 crossref_primary_10_3390_cryst11121439 crossref_primary_10_1007_s10706_024_03056_0 crossref_primary_10_1016_j_jrmge_2023_08_024 crossref_primary_10_1007_s12517_023_11806_2 |
Cites_doi | 10.1061/AJGEB6.0001152 10.2320/matertrans.M-M2015842 10.1139/t98-015 10.1016/j.ecoleng.2013.07.034 10.1520/D5312-92R97 10.1016/j.proeng.2016.02.034 10.1139/cgj-2018-0551 10.1080/01490450701436505 10.1016/j.sandf.2018.12.010 10.1002/esp.1209 10.1061/(ASCE)GT.1943-5606.0001383 10.1016/j.iswcr.2017.04.002 10.1016/j.conbuildmat.2015.12.023 10.1016/j.iswcr.2018.07.004 10.1061/(ASCE)GT.1943-5606.0001379 10.1016/j.catena.2006.03.011 10.1016/S1002-0160(14)60015-1 10.1061/(ASCE)MT.1943-5533.0002897 10.2320/matertrans.M-M2017849 10.1061/(ASCE)GT.1943-5606.0000787 10.1680/jgeot.15.P.182 10.1016/0148-9062(74)90479-3 10.1016/j.sandf.2016.11.002 10.1016/S0169-555X(03)00129-6 10.1080/01490451.2016.1225866 10.2136/sssaj2005.0015 10.1061/(ASCE)GT.1943-5606.0002079 10.4141/cjss90-060 10.1061/(ASCE)GT.1943-5606.0000382 10.1016/j.ecoleng.2008.12.029 10.1061/(ASCE)1090-0241(2006)132:11(1381) 10.1016/j.sandf.2019.02.003 10.3141/2657-02 10.1016/j.enggeo.2015.12.027 10.1061/(ASCE)1090-0241(2008)134:10(1476) 10.4141/cjss2012-046 10.1139/cgj-2012-0023 10.1016/S0016-7061(97)00075-X 10.1007/s11440-017-0574-9 10.1016/S0341-8162(02)00177-7 10.1080/01490451.2013.836579 10.1061/(ASCE)GT.1943-5606.0001586 10.1002/joc.5329 10.1007/s42452-019-1508-y 10.1680/geot.SIP13.P.019 10.1061/(ASCE)GT.1943-5606.0001682 10.1061/41165(397)409 10.1016/S0169-555X(99)00092-6 10.1016/j.catena.2017.10.013 10.1016/j.bcab.2020.101544 10.1061/(ASCE)GT.1943-5606.0001302 10.1061/(ASCE)GT.1943-5606.0001089 10.1016/j.conbuildmat.2017.12.119 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.sandf.2020.05.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 855 |
ExternalDocumentID | 10_1016_j_sandf_2020_05_012 S0038080620336945 |
GroupedDBID | -~X 0R~ 0SF 123 2WC 4.4 457 5B4 6I. 7.U AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AAKDD AALRI AAXUO ABCQX ABMAC ABTAH ABVKL ACGFS ADBBV ADEZE AENEX AEXQZ AFPKN AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ HZ~ IXB JSI JSP L7B M41 NCXOZ O-L O9- OK1 P2P RIG RJT ROL RYR RZJ SSZ TKC WBO Y6R ZY4 ~02 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c458t-211e38327b05c01d90bd52672cea9508ce5902932d344b887e9f8c8082910cca3 |
IEDL.DBID | IXB |
ISSN | 0038-0806 |
IngestDate | Thu Jul 31 00:46:26 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 Fri Feb 23 02:49:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Freeze–thaw response Slope soil Durability Shear response Cementation level |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-211e38327b05c01d90bd52672cea9508ce5902932d344b887e9f8c8082910cca3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0038080620336945 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_sandf_2020_05_012 crossref_citationtrail_10_1016_j_sandf_2020_05_012 elsevier_sciencedirect_doi_10_1016_j_sandf_2020_05_012 |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Soils and foundations |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gowthaman, Mitsuyama, Nakashima, Komatsu, Kawasaki (b0125) 2019; 59 Jiang, Tang, Yin, Xie, Shi (b0140) 2019; 31 ASTM D5312-92, 1997. Standard Test Method for Evaluation of Durability of Rock for Erosion Control Under Freezing and Thawing Conditions, ASTM International. West Conshohocken, PA. https://doi.org/10.1520/D5312-92R97. Perfect, Van Loon, Kay, Groenevelt (b0225) 1990; 70 Fukue, Nakamura, Kato (b0110) 2001; 49–2 Qabany, Mortensen, Martinez, Soga, Dejong (b0240) 2011 Clough, Rad, Bachus, Sitar (b0050) 1981; 107 DeJong, Fritzges, Nüsslein (b0070) 2006; 132 Lin, H., Suleiman, M.T., Brown, D.G., Kavazanjian, E., 2016. Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. J. Geotech. Geoenvironmental Eng. 142, 04015066-1–13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383. Phan, Hsiao, Nguyen (b0230) 2016; 142 Montoya, De Jong (b0185) 2015; 141 Ng, Lee, Hii (b0200) 2012; 6 Lee, Ng, Tanaka (b0155) 2013; 60 Mujah, Shahin, Cheng (b0195) 2017; 34 Protodyakonov, M.M., 1969. Methods of determining the shearing strength of rocks, in: Mechanical Properties of Rocks. Israel Program for Scientific Translations, pp. 15–27. Martinez, DeJong, Ginn, Montoya, Barkouki, Hunt, Tanyu, Major (b0170) 2013; 139 Jiang, Soga (b0135) 2019; 59 Amarakoon, Kawasaki (b0005) 2018; 59 Farukh, Yamada (b0085) 2018; 38 Montoya, DeJong, Boulanger (b0190) 2013; 63 Dagesse (b0060) 2013; 93 Whiffin, V.S., 2004. Microbial CaCO Cui, Zheng, Zhang, Lai, Zhang (b0055) 2017; 12 Zhang, Hu, Guo, Yang, Zhang, Zhang (b0300) 2018; 160 Salifu, MacLachlan, Iyer, Knapp, Tarantino (b0255) 2016; 201 Zamani, A., Montoya, B., Gabr, M., 2019. Investigating the challenges of in situ delivery of MICP in fine grain sands and silty sands. Can. Geotech. J. https://doi.org/10.1139/cgj-2018-0551. Ferrick, Gatto (b0100) 2005; 30 Vutukuri, V.S., Lama, R.D., Saluja, S.S., 1974. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, Vol. 1. ed. Trans Tech Publications, Clausthal, Germany. Feng, Montoya (b0095) 2016; 142 Feng, Montoya (b0090) 2017; 143 Kværnø, Øygarden (b0150) 2006; 67 Oliveira, Freitas, Carmona (b0205) 2016; 29 Bao, R., Li, J., Li, L., Cutright, T.J., Chen, L., 2017. Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils Proof of Concept. J. Transp. Res. Board 2657, 10–18. https://doi.org/http://dx.doi.org/10.3141/2657-02. Matalkah, Soroushian (b0175) 2018; 163 Oztas, Fayetorbay (b0215) 2003; 52 Viklander (b0270) 2011; 35 Dhami, Reddy, Mukherjee (b0080) 2016; 104 Jiang, Soga (b0145) 2017; 67 Gatto (b0115) 2000; 32 Danjo, Kawasaki (b0065) 2016; 57 Whiffin, van Paassen, Harkes (b0290) 2007; 24 Omoregie, Palombo, Ong, Nissom (b0210) 2020; 24 Bareither, Edil, Benson, Mickelson (b0020) 2008; 134 Panta, A., 2018. Strength characteristics of fine-grained soils at dyke slope surfaces. Doctoral thesis, Hokkaido University, Japan. https://doi.org/10.14943/doctoral.k13346. Sadeghi, Raeisi, Hazbavi (b0250) 2018; 6 Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control, in: Geo-Frontiers 2011. American Society of Civil Engineers, Reston, VA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409. Cheng, Cord-Ruwisch (b0035) 2014; 31 DeJong, Mortensen, Martinez, Nelson (b0075) 2010; 36 Soon, Lee, Khun, Ling (b0260) 2014; 140 Precipitation for the Production of Biocement. West. Aust. Murdoch Univ. Perth. https://doi.org/http://researchrepository.murdoch.edu.au/399/2/02Whole.pdf. Gowthaman, Iki, Nakashima, Ebina, Kawasaki (b0120) 2019; 1 Li, Fan (b0160) 2014; 24 Cheng, Cord-Ruwisch, Shahin (b0040) 2013; 50 van Paassen, Ghose, van der Linden, van der Star, van Loosdrecht (b0265) 2010; 136 Wang, Soga, Dejong, Kabla (b0280) 2019; 145 Canakci, Hamed, Celik, Sidik, Eviz (b0030) 2016; 56 Cheng, Shahin, Mujah (b0045) 2016; 143 Behzadfar, Sadeghi, Khanjani, Hazbavi (b0025) 2017; 5 Harden, Scruggs (b0130) 2003; 55 Fox, Bryan, Price (b0105) 1997; 80 Rieke-Zapp, Nearing (b0245) 2005; 69 10.1016/j.sandf.2020.05.012_b0165 Fukue (10.1016/j.sandf.2020.05.012_b0110) 2001; 49–2 10.1016/j.sandf.2020.05.012_b0285 Perfect (10.1016/j.sandf.2020.05.012_b0225) 1990; 70 van Paassen (10.1016/j.sandf.2020.05.012_b0265) 2010; 136 Whiffin (10.1016/j.sandf.2020.05.012_b0290) 2007; 24 Montoya (10.1016/j.sandf.2020.05.012_b0185) 2015; 141 Salifu (10.1016/j.sandf.2020.05.012_b0255) 2016; 201 Wang (10.1016/j.sandf.2020.05.012_b0280) 2019; 145 Dagesse (10.1016/j.sandf.2020.05.012_b0060) 2013; 93 Jiang (10.1016/j.sandf.2020.05.012_b0135) 2019; 59 Martinez (10.1016/j.sandf.2020.05.012_b0170) 2013; 139 Matalkah (10.1016/j.sandf.2020.05.012_b0175) 2018; 163 Qabany (10.1016/j.sandf.2020.05.012_b0240) 2011 Oztas (10.1016/j.sandf.2020.05.012_b0215) 2003; 52 Gowthaman (10.1016/j.sandf.2020.05.012_b0120) 2019; 1 10.1016/j.sandf.2020.05.012_b0015 Cheng (10.1016/j.sandf.2020.05.012_b0035) 2014; 31 Feng (10.1016/j.sandf.2020.05.012_b0095) 2016; 142 Cheng (10.1016/j.sandf.2020.05.012_b0045) 2016; 143 10.1016/j.sandf.2020.05.012_b0010 Li (10.1016/j.sandf.2020.05.012_b0160) 2014; 24 Omoregie (10.1016/j.sandf.2020.05.012_b0210) 2020; 24 Kværnø (10.1016/j.sandf.2020.05.012_b0150) 2006; 67 Gowthaman (10.1016/j.sandf.2020.05.012_b0125) 2019; 59 Montoya (10.1016/j.sandf.2020.05.012_b0190) 2013; 63 Zhang (10.1016/j.sandf.2020.05.012_b0300) 2018; 160 Jiang (10.1016/j.sandf.2020.05.012_b0140) 2019; 31 Cui (10.1016/j.sandf.2020.05.012_b0055) 2017; 12 10.1016/j.sandf.2020.05.012_b0295 Cheng (10.1016/j.sandf.2020.05.012_b0040) 2013; 50 Clough (10.1016/j.sandf.2020.05.012_b0050) 1981; 107 Ng (10.1016/j.sandf.2020.05.012_b0200) 2012; 6 Jiang (10.1016/j.sandf.2020.05.012_b0145) 2017; 67 Bareither (10.1016/j.sandf.2020.05.012_b0020) 2008; 134 DeJong (10.1016/j.sandf.2020.05.012_b0070) 2006; 132 Canakci (10.1016/j.sandf.2020.05.012_b0030) 2016; 56 DeJong (10.1016/j.sandf.2020.05.012_b0075) 2010; 36 10.1016/j.sandf.2020.05.012_b0220 Sadeghi (10.1016/j.sandf.2020.05.012_b0250) 2018; 6 Gatto (10.1016/j.sandf.2020.05.012_b0115) 2000; 32 Dhami (10.1016/j.sandf.2020.05.012_b0080) 2016; 104 Fox (10.1016/j.sandf.2020.05.012_b0105) 1997; 80 Phan (10.1016/j.sandf.2020.05.012_b0230) 2016; 142 Behzadfar (10.1016/j.sandf.2020.05.012_b0025) 2017; 5 Feng (10.1016/j.sandf.2020.05.012_b0090) 2017; 143 Harden (10.1016/j.sandf.2020.05.012_b0130) 2003; 55 Viklander (10.1016/j.sandf.2020.05.012_b0270) 2011; 35 Amarakoon (10.1016/j.sandf.2020.05.012_b0005) 2018; 59 10.1016/j.sandf.2020.05.012_b0180 Rieke-Zapp (10.1016/j.sandf.2020.05.012_b0245) 2005; 69 10.1016/j.sandf.2020.05.012_b0235 Oliveira (10.1016/j.sandf.2020.05.012_b0205) 2016; 29 Danjo (10.1016/j.sandf.2020.05.012_b0065) 2016; 57 10.1016/j.sandf.2020.05.012_b0275 Lee (10.1016/j.sandf.2020.05.012_b0155) 2013; 60 Mujah (10.1016/j.sandf.2020.05.012_b0195) 2017; 34 Farukh (10.1016/j.sandf.2020.05.012_b0085) 2018; 38 Ferrick (10.1016/j.sandf.2020.05.012_b0100) 2005; 30 Soon (10.1016/j.sandf.2020.05.012_b0260) 2014; 140 |
References_xml | – volume: 31 start-page: 04019250 year: 2019 ident: b0140 article-title: Applicability of microbial calcification method for sandy-slope surface erosion control publication-title: J. Mater. Civ. Eng. – volume: 24 start-page: 285 year: 2014 end-page: 290 ident: b0160 article-title: Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China publication-title: Pedosphere – volume: 57 start-page: 428 year: 2016 end-page: 437 ident: b0065 article-title: Microbially induced sand cementation method using publication-title: Mater. Trans. – volume: 145 start-page: 1 year: 2019 end-page: 13 ident: b0280 article-title: Microscale visualization of microbial-induced calcium carbonate precipitation processes publication-title: J. Geotech. Geoenviron. Eng. – start-page: 3993 year: 2011 end-page: 4001 ident: b0240 article-title: Microbial carbonate precipitation: Correlation of S-wave velocity with calcite precipitation publication-title: Geotechnical Special Publication – volume: 69 start-page: 1463 year: 2005 ident: b0245 article-title: Slope Shape Effects on Erosion publication-title: Soil Sci. Soc. Am. J. – volume: 52 start-page: 1 year: 2003 end-page: 8 ident: b0215 article-title: Effect of freezing and thawing processes on soil aggregate stability publication-title: Catena – volume: 38 start-page: 2230 year: 2018 end-page: 2238 ident: b0085 article-title: Synoptic climatology of winter daily temperature extremes in Sapporo, northern Japan publication-title: Int. J. Climatol. – volume: 55 start-page: 5 year: 2003 end-page: 24 ident: b0130 article-title: Infiltration on mountain slopes: a comparison of three environments publication-title: Geomorphology – volume: 31 start-page: 396 year: 2014 end-page: 406 ident: b0035 article-title: Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation publication-title: Geomicrobiol. J. – volume: 142 start-page: 213 year: 2016 end-page: 220 ident: b0230 article-title: Effects of fines contents on engineering properties of sand-fines mixtures publication-title: Procedia Eng. – reference: Protodyakonov, M.M., 1969. Methods of determining the shearing strength of rocks, in: Mechanical Properties of Rocks. Israel Program for Scientific Translations, pp. 15–27. – volume: 63 start-page: 302 year: 2013 end-page: 312 ident: b0190 article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation publication-title: Géotechnique – volume: 6 start-page: 275 year: 2018 end-page: 279 ident: b0250 article-title: Influence of freeze-only and freezing-thawing cycles on splash erosion publication-title: Int. Soil Water Conserv. Res. – reference: Zamani, A., Montoya, B., Gabr, M., 2019. Investigating the challenges of in situ delivery of MICP in fine grain sands and silty sands. Can. Geotech. J. https://doi.org/10.1139/cgj-2018-0551. – volume: 24 start-page: 417 year: 2007 end-page: 423 ident: b0290 article-title: Microbial carbonate precipitation as a soil improvement technique publication-title: Geomicrobiol. J. – volume: 59 start-page: 699 year: 2019 end-page: 709 ident: b0135 article-title: Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP) publication-title: Soils Found. – volume: 139 start-page: 587 year: 2013 end-page: 598 ident: b0170 article-title: Experimental optimization of microbial-induced carbonate precipitation for soil improvement publication-title: J. Geotech. Geoenvironmental Eng. – reference: Vutukuri, V.S., Lama, R.D., Saluja, S.S., 1974. Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, Vol. 1. ed. Trans Tech Publications, Clausthal, Germany. – reference: Whiffin, V.S., 2004. Microbial CaCO – volume: 107 start-page: 799 year: 1981 end-page: 817 ident: b0050 article-title: Cemented sands under static loading publication-title: J. Geotech. Eng. Div. – volume: 67 start-page: 42 year: 2017 end-page: 55 ident: b0145 article-title: The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures publication-title: Géotechnique – volume: 56 start-page: 965 year: 2016 end-page: 972 ident: b0030 article-title: Friction characteristics of organic soil with construction materials publication-title: Soils Found. – reference: Meyer, F.D., Bang, S., Min, S., Stetler, L.D., Bang, S.S., 2011. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control, in: Geo-Frontiers 2011. American Society of Civil Engineers, Reston, VA, pp. 4002–4011. https://doi.org/10.1061/41165(397)409. – volume: 59 start-page: 484 year: 2019 end-page: 499 ident: b0125 article-title: Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: a feasibility study on Hokkaido expressway soil, Japan publication-title: Soils Found. – volume: 142 start-page: 04015057 year: 2016 ident: b0095 article-title: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading publication-title: J. Geotech. Geoenvironmental Eng. – volume: 34 start-page: 524 year: 2017 end-page: 537 ident: b0195 article-title: State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization publication-title: Geomicrobiol. J. – reference: Bao, R., Li, J., Li, L., Cutright, T.J., Chen, L., 2017. Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils Proof of Concept. J. Transp. Res. Board 2657, 10–18. https://doi.org/http://dx.doi.org/10.3141/2657-02. – volume: 29 start-page: 1 year: 2016 end-page: 7 ident: b0205 article-title: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement publication-title: J. Mater. Civ. Eng. – volume: 6 start-page: 188 year: 2012 end-page: 194 ident: b0200 article-title: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement publication-title: World Acad. Sci. Eng. Technol. – volume: 163 start-page: 200 year: 2018 end-page: 213 ident: b0175 article-title: Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement publication-title: Constr. Build. Mater. – volume: 50 start-page: 81 year: 2013 end-page: 90 ident: b0040 article-title: Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation publication-title: Can. Geotech. J. – volume: 160 start-page: 394 year: 2018 end-page: 402 ident: b0300 article-title: Effects of topographic factors on runoff and soil loss in Southwest China publication-title: Catena – volume: 132 start-page: 1381 year: 2006 end-page: 1392 ident: b0070 article-title: Microbially induced cementation to control sand response to undrained shear publication-title: J. Geotech. Geoenvironmental Eng. – volume: 104 start-page: 198 year: 2016 end-page: 207 ident: b0080 article-title: Significant indicators for biomineralisation in sand of varying grain sizes publication-title: Constr. Build. Mater. – volume: 59 start-page: 72 year: 2018 end-page: 81 ident: b0005 article-title: Factors affecting sand solidification using MICP with publication-title: Mater. Trans. – volume: 36 start-page: 197 year: 2010 end-page: 210 ident: b0075 article-title: Bio-mediated soil improvement publication-title: Ecol. Eng. – volume: 201 start-page: 96 year: 2016 end-page: 105 ident: b0255 article-title: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation publication-title: Eng. Geol. – volume: 67 start-page: 175 year: 2006 end-page: 182 ident: b0150 article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway publication-title: Catena – volume: 136 start-page: 1721 year: 2010 end-page: 1728 ident: b0265 article-title: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment publication-title: J. Geotech. Geoenvironmental Eng. – volume: 80 start-page: 181 year: 1997 end-page: 194 ident: b0105 article-title: The influence of slope angle on final infiltration rate for interrill, conditions publication-title: Geoderma – reference: Panta, A., 2018. Strength characteristics of fine-grained soils at dyke slope surfaces. Doctoral thesis, Hokkaido University, Japan. https://doi.org/10.14943/doctoral.k13346. – volume: 143 start-page: 04016083 year: 2016 ident: b0045 article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization publication-title: J. Geotech. Geoenvironmental Eng. – volume: 143 start-page: 06017005 year: 2017 ident: b0090 article-title: Quantifying level of microbial-induced cementation for cyclically loaded sand publication-title: J. Geotech. Geoenvironmental Eng. – volume: 93 start-page: 473 year: 2013 end-page: 483 ident: b0060 article-title: Freezing cycle effects on water stability of soil aggregates publication-title: Can. J. Soil Sci. – volume: 24 year: 2020 ident: b0210 article-title: A feasible scale-up production of publication-title: Biocatal. Agric. Biotechnol. – reference: Lin, H., Suleiman, M.T., Brown, D.G., Kavazanjian, E., 2016. Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. J. Geotech. Geoenvironmental Eng. 142, 04015066-1–13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383. – volume: 35 start-page: 471 year: 2011 end-page: 477 ident: b0270 article-title: Permeability and volume changes in till due to cyclic freeze/thaw publication-title: Can. Geotech. J. – volume: 32 start-page: 147 year: 2000 end-page: 160 ident: b0115 article-title: Soil freeze-thaw-induced changes to a simulated rill: Potential impacts on soil erosion publication-title: Geomorphology – volume: 60 start-page: 142 year: 2013 end-page: 149 ident: b0155 article-title: Stress-deformation and compressibility responses of bio-mediated residual soils publication-title: Ecol. Eng. – volume: 30 start-page: 1305 year: 2005 end-page: 1326 ident: b0100 article-title: Quantifying the effect of a freeze-thaw cycle on soil erosion: laboratory experiments publication-title: Earth Surf. Process. Landforms – volume: 5 start-page: 95 year: 2017 end-page: 101 ident: b0025 article-title: Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle publication-title: Int. Soil Water Conserv. Res. – volume: 70 start-page: 571 year: 1990 end-page: 581 ident: b0225 article-title: Influence of ice segregation and solutes on soil structural stability publication-title: Can. J. Soil Sci. – reference: Precipitation for the Production of Biocement. West. Aust. Murdoch Univ. Perth. https://doi.org/http://researchrepository.murdoch.edu.au/399/2/02Whole.pdf. – volume: 1 start-page: 1480 year: 2019 ident: b0120 article-title: Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region publication-title: SN Appl. Sci. – reference: ASTM D5312-92, 1997. Standard Test Method for Evaluation of Durability of Rock for Erosion Control Under Freezing and Thawing Conditions, ASTM International. West Conshohocken, PA. https://doi.org/10.1520/D5312-92R97. – volume: 134 start-page: 1476 year: 2008 end-page: 1489 ident: b0020 article-title: Geological and physical factors affecting the friction angle of compacted sands publication-title: J. Geotech. Geoenvironmental Eng. – volume: 12 start-page: 971 year: 2017 end-page: 986 ident: b0055 article-title: Influence of cementation level on the strength behaviour of bio-cemented sand publication-title: Acta Geotech. – volume: 140 start-page: 04014006 year: 2014 ident: b0260 article-title: Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation publication-title: J. Geotech. Geoenvironmental Eng. – volume: 49–2 start-page: 9 year: 2001 end-page: 12 ident: b0110 article-title: A method for determining carbonate content for soils and evaluation of the results publication-title: Soils Found. (in Japanese) – volume: 141 year: 2015 ident: b0185 article-title: Stress-strain behavior of sands cemented by microbially induced calcite precipitation publication-title: J. Geotech. Geoenvironmental Eng. – volume: 107 start-page: 799 year: 1981 ident: 10.1016/j.sandf.2020.05.012_b0050 article-title: Cemented sands under static loading publication-title: J. Geotech. Eng. Div. doi: 10.1061/AJGEB6.0001152 – start-page: 3993 year: 2011 ident: 10.1016/j.sandf.2020.05.012_b0240 article-title: Microbial carbonate precipitation: Correlation of S-wave velocity with calcite precipitation – volume: 57 start-page: 428 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0065 article-title: Microbially induced sand cementation method using Pararhodobacter sp. strain SO1, inspired by beachrock formation mechanism publication-title: Mater. Trans. doi: 10.2320/matertrans.M-M2015842 – volume: 35 start-page: 471 year: 2011 ident: 10.1016/j.sandf.2020.05.012_b0270 article-title: Permeability and volume changes in till due to cyclic freeze/thaw publication-title: Can. Geotech. J. doi: 10.1139/t98-015 – volume: 60 start-page: 142 year: 2013 ident: 10.1016/j.sandf.2020.05.012_b0155 article-title: Stress-deformation and compressibility responses of bio-mediated residual soils publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.07.034 – ident: 10.1016/j.sandf.2020.05.012_b0010 doi: 10.1520/D5312-92R97 – volume: 142 start-page: 213 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0230 article-title: Effects of fines contents on engineering properties of sand-fines mixtures publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.02.034 – ident: 10.1016/j.sandf.2020.05.012_b0295 doi: 10.1139/cgj-2018-0551 – volume: 24 start-page: 417 year: 2007 ident: 10.1016/j.sandf.2020.05.012_b0290 article-title: Microbial carbonate precipitation as a soil improvement technique publication-title: Geomicrobiol. J. doi: 10.1080/01490450701436505 – volume: 59 start-page: 484 year: 2019 ident: 10.1016/j.sandf.2020.05.012_b0125 article-title: Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: a feasibility study on Hokkaido expressway soil, Japan publication-title: Soils Found. doi: 10.1016/j.sandf.2018.12.010 – volume: 30 start-page: 1305 year: 2005 ident: 10.1016/j.sandf.2020.05.012_b0100 article-title: Quantifying the effect of a freeze-thaw cycle on soil erosion: laboratory experiments publication-title: Earth Surf. Process. Landforms doi: 10.1002/esp.1209 – ident: 10.1016/j.sandf.2020.05.012_b0165 doi: 10.1061/(ASCE)GT.1943-5606.0001383 – volume: 5 start-page: 95 year: 2017 ident: 10.1016/j.sandf.2020.05.012_b0025 article-title: Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2017.04.002 – volume: 104 start-page: 198 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0080 article-title: Significant indicators for biomineralisation in sand of varying grain sizes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.12.023 – volume: 29 start-page: 1 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0205 article-title: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement publication-title: J. Mater. Civ. Eng. – volume: 6 start-page: 275 year: 2018 ident: 10.1016/j.sandf.2020.05.012_b0250 article-title: Influence of freeze-only and freezing-thawing cycles on splash erosion publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2018.07.004 – volume: 142 start-page: 04015057 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0095 article-title: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001379 – volume: 67 start-page: 175 year: 2006 ident: 10.1016/j.sandf.2020.05.012_b0150 article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway publication-title: Catena doi: 10.1016/j.catena.2006.03.011 – volume: 24 start-page: 285 year: 2014 ident: 10.1016/j.sandf.2020.05.012_b0160 article-title: Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China publication-title: Pedosphere doi: 10.1016/S1002-0160(14)60015-1 – volume: 31 start-page: 04019250 year: 2019 ident: 10.1016/j.sandf.2020.05.012_b0140 article-title: Applicability of microbial calcification method for sandy-slope surface erosion control publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002897 – volume: 59 start-page: 72 year: 2018 ident: 10.1016/j.sandf.2020.05.012_b0005 article-title: Factors affecting sand solidification using MICP with Pararhodobacter sp publication-title: Mater. Trans. doi: 10.2320/matertrans.M-M2017849 – volume: 139 start-page: 587 year: 2013 ident: 10.1016/j.sandf.2020.05.012_b0170 article-title: Experimental optimization of microbial-induced carbonate precipitation for soil improvement publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000787 – volume: 67 start-page: 42 year: 2017 ident: 10.1016/j.sandf.2020.05.012_b0145 article-title: The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures publication-title: Géotechnique doi: 10.1680/jgeot.15.P.182 – ident: 10.1016/j.sandf.2020.05.012_b0235 – ident: 10.1016/j.sandf.2020.05.012_b0275 doi: 10.1016/0148-9062(74)90479-3 – volume: 49–2 start-page: 9 year: 2001 ident: 10.1016/j.sandf.2020.05.012_b0110 article-title: A method for determining carbonate content for soils and evaluation of the results publication-title: Soils Found. (in Japanese) – volume: 56 start-page: 965 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0030 article-title: Friction characteristics of organic soil with construction materials publication-title: Soils Found. doi: 10.1016/j.sandf.2016.11.002 – volume: 55 start-page: 5 year: 2003 ident: 10.1016/j.sandf.2020.05.012_b0130 article-title: Infiltration on mountain slopes: a comparison of three environments publication-title: Geomorphology doi: 10.1016/S0169-555X(03)00129-6 – volume: 34 start-page: 524 year: 2017 ident: 10.1016/j.sandf.2020.05.012_b0195 article-title: State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2016.1225866 – volume: 69 start-page: 1463 year: 2005 ident: 10.1016/j.sandf.2020.05.012_b0245 article-title: Slope Shape Effects on Erosion publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0015 – volume: 145 start-page: 1 year: 2019 ident: 10.1016/j.sandf.2020.05.012_b0280 article-title: Microscale visualization of microbial-induced calcium carbonate precipitation processes publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002079 – volume: 70 start-page: 571 year: 1990 ident: 10.1016/j.sandf.2020.05.012_b0225 article-title: Influence of ice segregation and solutes on soil structural stability publication-title: Can. J. Soil Sci. doi: 10.4141/cjss90-060 – volume: 136 start-page: 1721 year: 2010 ident: 10.1016/j.sandf.2020.05.012_b0265 article-title: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000382 – volume: 36 start-page: 197 year: 2010 ident: 10.1016/j.sandf.2020.05.012_b0075 article-title: Bio-mediated soil improvement publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2008.12.029 – ident: 10.1016/j.sandf.2020.05.012_b0220 – volume: 132 start-page: 1381 year: 2006 ident: 10.1016/j.sandf.2020.05.012_b0070 article-title: Microbially induced cementation to control sand response to undrained shear publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381) – volume: 59 start-page: 699 year: 2019 ident: 10.1016/j.sandf.2020.05.012_b0135 article-title: Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP) publication-title: Soils Found. doi: 10.1016/j.sandf.2019.02.003 – ident: 10.1016/j.sandf.2020.05.012_b0015 doi: 10.3141/2657-02 – volume: 201 start-page: 96 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0255 article-title: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.12.027 – volume: 134 start-page: 1476 year: 2008 ident: 10.1016/j.sandf.2020.05.012_b0020 article-title: Geological and physical factors affecting the friction angle of compacted sands publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)1090-0241(2008)134:10(1476) – volume: 93 start-page: 473 year: 2013 ident: 10.1016/j.sandf.2020.05.012_b0060 article-title: Freezing cycle effects on water stability of soil aggregates publication-title: Can. J. Soil Sci. doi: 10.4141/cjss2012-046 – volume: 50 start-page: 81 year: 2013 ident: 10.1016/j.sandf.2020.05.012_b0040 article-title: Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation publication-title: Can. Geotech. J. doi: 10.1139/cgj-2012-0023 – volume: 80 start-page: 181 year: 1997 ident: 10.1016/j.sandf.2020.05.012_b0105 article-title: The influence of slope angle on final infiltration rate for interrill, conditions publication-title: Geoderma doi: 10.1016/S0016-7061(97)00075-X – volume: 12 start-page: 971 year: 2017 ident: 10.1016/j.sandf.2020.05.012_b0055 article-title: Influence of cementation level on the strength behaviour of bio-cemented sand publication-title: Acta Geotech. doi: 10.1007/s11440-017-0574-9 – volume: 52 start-page: 1 year: 2003 ident: 10.1016/j.sandf.2020.05.012_b0215 article-title: Effect of freezing and thawing processes on soil aggregate stability publication-title: Catena doi: 10.1016/S0341-8162(02)00177-7 – volume: 31 start-page: 396 year: 2014 ident: 10.1016/j.sandf.2020.05.012_b0035 article-title: Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2013.836579 – volume: 143 start-page: 04016083 year: 2016 ident: 10.1016/j.sandf.2020.05.012_b0045 article-title: Influence of key environmental conditions on microbially induced cementation for soil stabilization publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001586 – volume: 38 start-page: 2230 year: 2018 ident: 10.1016/j.sandf.2020.05.012_b0085 article-title: Synoptic climatology of winter daily temperature extremes in Sapporo, northern Japan publication-title: Int. J. Climatol. doi: 10.1002/joc.5329 – volume: 1 start-page: 1480 year: 2019 ident: 10.1016/j.sandf.2020.05.012_b0120 article-title: Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1508-y – volume: 63 start-page: 302 year: 2013 ident: 10.1016/j.sandf.2020.05.012_b0190 article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation publication-title: Géotechnique doi: 10.1680/geot.SIP13.P.019 – volume: 143 start-page: 06017005 year: 2017 ident: 10.1016/j.sandf.2020.05.012_b0090 article-title: Quantifying level of microbial-induced cementation for cyclically loaded sand publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001682 – ident: 10.1016/j.sandf.2020.05.012_b0180 doi: 10.1061/41165(397)409 – volume: 6 start-page: 188 year: 2012 ident: 10.1016/j.sandf.2020.05.012_b0200 article-title: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement publication-title: World Acad. Sci. Eng. Technol. – volume: 32 start-page: 147 year: 2000 ident: 10.1016/j.sandf.2020.05.012_b0115 article-title: Soil freeze-thaw-induced changes to a simulated rill: Potential impacts on soil erosion publication-title: Geomorphology doi: 10.1016/S0169-555X(99)00092-6 – volume: 160 start-page: 394 year: 2018 ident: 10.1016/j.sandf.2020.05.012_b0300 article-title: Effects of topographic factors on runoff and soil loss in Southwest China publication-title: Catena doi: 10.1016/j.catena.2017.10.013 – volume: 24 year: 2020 ident: 10.1016/j.sandf.2020.05.012_b0210 article-title: A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2020.101544 – volume: 141 year: 2015 ident: 10.1016/j.sandf.2020.05.012_b0185 article-title: Stress-strain behavior of sands cemented by microbially induced calcite precipitation publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001302 – volume: 140 start-page: 04014006 year: 2014 ident: 10.1016/j.sandf.2020.05.012_b0260 article-title: Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation publication-title: J. Geotech. Geoenvironmental Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001089 – ident: 10.1016/j.sandf.2020.05.012_b0285 – volume: 163 start-page: 200 year: 2018 ident: 10.1016/j.sandf.2020.05.012_b0175 article-title: Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.12.119 |
SSID | ssj0062011 |
Score | 2.5381577 |
Snippet | Instability of slope soils under varying nature is one of the serious concerns in geotechnical engineering. Microbial induced carbonate precipitation (MICP) is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 840 |
SubjectTerms | Cementation level Durability Freeze–thaw response Shear response Slope soil |
Title | Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation |
URI | https://dx.doi.org/10.1016/j.sandf.2020.05.012 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEICtqhMMiKcoL3lgJKrjOK8RKqqKgYlK3aLYcURQaaIkBZVfz52doCKhDoxxbNk6W3c-6-47Qm4lmCWZh8oR4CM7Qoa-E3s6cnKRZlznPkLjMNriOZjNxdPCXwzIpM-FwbDKTvdbnW60ddcy7qQ5rooCc3w9hCIGnHleEAtMNEdSCybxLR56bRyggbNoRiQxs6AnD5kYrwa8deR4cmbxnfxv67RlcaaH5KC7KtJ7u5ojMtCrY7K_BRA8IR_TWusv7bSv6SfN1rWFbm8oTEgbrFVNaxsDqxta5lSZt0AN_5ZlpWlTFktqIs2hSW7oe2GoTDAnOOqw5RlVaS3xeV3TCikYVQf0PiXz6ePLZOZ0lRQcJfyodcDL0-CK8lAyXzE3i5nMfB6EXOkUy8BiLhYDw88zTwgJekfHeaQizLt1Geyxd0aGq3Klzwl13VgZiEyq4SqlQEmBl5tyEXoegoHCEeG9BBPVrQqrXSyTPp7sLTFiT1DsCfMTEPuI3P0MqixlY3f3oN-a5NdhScAO7Bp48d-Bl2QPv2zk3xUZtvVaX8NtpJU3xou_MYfuG0F43gg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NT8IwFMAbxIN6MH5G_OzBowul6zZ2VCIBRU6QcGvWrosYZMsGGvzrfW8fBhPDweu6ps1r8z6a936PkFsFZklFnrYExMiWUJ5j-bZpW5EIQm4iB6FxmG0xdHtj8TRxJjXSqWphMK2y1P2FTs-1dfmlWUqzmUynWONrIxTR5cy2XV84W2QbvAEX87r6k4dKHbto4Qo2I6KYmVuhh_IkrwzCdQR5clbwO_nf5mnN5HQPyH7pK9L7YjuHpGbmR2RvjSB4TD66qTFfxlq8Bp80XKYFdXtFYUGaYbNqmhZJsCajcUR1_hhoYGwWJ4Zm8XRG81Rz-KRW9H2aY5lgTYjU4cxDqoNU4fu6oQliMJKS6H1Cxt3HUadnla0ULC2c9sKCMM9ALMo9xRzNWqHPVOhw1-PaBNgHFouxGFh-HtpCKFA8xo_auo2Fty0Gh2yfkvo8npszQlstX-cUmcCAL6VBS0GYG3Dh2TaSgbwG4ZUEpS53he0uZrJKKHuTudglil0yR4LYG-TuZ1JSYDY2_-5WRyN_3RYJhmDTxPP_TrwhO73Ry0AO-sPnC7KLI0Ua4CWpL9KluQLXZKGu86v3DUu74Do |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freeze-thaw+durability+and+shear+responses+of+cemented+slope+soil+treated+by+microbial+induced+carbonate+precipitation&rft.jtitle=Soils+and+foundations&rft.au=Gowthaman%2C+Sivakumar&rft.au=Nakashima%2C+Kazunori&rft.au=Kawasaki%2C+Satoru&rft.date=2020-08-01&rft.issn=0038-0806&rft.volume=60&rft.issue=4&rft.spage=840&rft.epage=855&rft_id=info:doi/10.1016%2Fj.sandf.2020.05.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sandf_2020_05_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon |