Crystallization by particle attachment in synthetic, biogenic, and geologic environments
Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mecha...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 349; no. 6247; p. 498 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
American Association for the Advancement of Science
31.07.2015
The American Association for the Advancement of Science AAAS |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo
et al.
review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems.
Science
, this issue
10.1126/science.aaa6760
Materials nucleate and grow by the assembly of small particles and multi-ion complexes.
Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. |
---|---|
AbstractList | Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science, this issue 10.1126/science.aaa6760 Numerous lines of evidence challenge the traditional interpretations of how crystals nucleate and grow in synthetic and natural systems. In contrast to the monomer-by-monomer addition described in classical models, crystallization by addition of particles, ranging from multi-ion complexes to fully formed nanocrystals, is now recognized as a common phenomenon. This diverse set of pathways results from the complexity of both the free-energy landscapes and the reaction dynamics that govern particle formation and interaction. Whereas experimental observations clearly demonstrate crystallization by particle attachment (CPA), many fundamental aspects remain unknown--particularly the interplay of solution structure, interfacial forces, and particle motion. Thus, a predictive description that connects molecular details to ensemble behavior is lacking. As that description develops, long-standing interpretations of crystal formation patterns in synthetic systems and natural environments must be revisited. Here, we describe the current understanding of CPA, examine some of the nonclassical thermodynamic and dynamic mechanisms known to give rise to experimentally observed pathways, and highlight the challenges to our understanding of these mechanisms. We also explore the factors determining when particle-attachment pathways dominate growth and discuss their implications for interpreting natural crystallization and controlling nanomaterials synthesis. CPA has been observed or inferred in a wide range of synthetic systems--including oxide, metallic, and semiconductor nanoparticles; and zeolites, organic systems, macromolecules, and common biomineral phases formed biomimetically. CPA in natural environments also occurs in geologic and biological minerals. The species identified as being responsible for growth vary widely and include multi-ion complexes, oligomeric clusters, crystalline or amorphous nanoparticles, and monomer-rich liquid droplets. Particle-based pathways exceed the scope of classical theories, which assume that a new phase appears via monomer-by-monomer addition to an isolated cluster. Theoretical studies have attempted to identify the forces that drive CPA, as well as the thermodynamic basis for appearance of the constituent particles. However, neither a qualitative consensus nor a comprehensive theory has emerged. Nonetheless, concepts from phase transition theory and colloidal physics provide many of the basic features needed for a qualitative framework. There is a free-energy landscape across which assembly takes place and that determines the thermodynamic preference for particle structure, shape, and size distribution. Dynamic processes, including particle diffusion and relaxation, determine whether the growth process follows this preference or another, kinetically controlled pathway. Although observations of CPA in synthetic systems are reported for diverse mineral compositions, efforts to establish the scope of CPA in natural environments have only recently begun. Particle-based mineral formation may have particular importance for biogeochemical cycling of nutrients and metals in aquatic systems, as well as for environmental remediation. CPA is poised to provide a better understanding of biomineral formation with a physical basis for the origins of some compositions, isotopic signatures, and morphologies. It may also explain enigmatic textures and patterns found in carbonate mineral deposits that record Earth's transition from an inorganic to a biological world. A predictive understanding of CPA, which is believed to dominate solution-based growth of important semiconductor, oxide, and metallic nanomaterials, promises advances in nanomaterials design and synthesis for diverse applications. With a mechanism-based understanding, CPA processes can be exploited to produce hierarchical structures that retain the size-dependent attributes of their nanoscale building blocks and create materials with enhanced or novel physical and chemical properties. Particle attachment is influenced by the structure of solvent and ions at solid-solution interfaces and in confined regions of solution between solid surfaces. The details of solution and solid structure create the forces that drive particle motion. However, as the particles move, the local structure and corresponding forces change, taking the particles from a regime of long-range to short-range interactions and eventually leading to particle-attachment events. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science , this issue 10.1126/science.aaa6760 Materials nucleate and grow by the assembly of small particles and multi-ion complexes. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Growing crystals by attaching particlesCrystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems.Science, this issue 10.1126/science.aaa6760 Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. |
Author | Zhang, Hengzhong Penn, R. Lee Michel, F. Marc Cölfen, Helmut Rimer, Jeffrey D. Meldrum, Fiona C. Joester, Derk De Yoreo, James J. Whitelam, Stephen Navrotsky, Alexandra Dove, Patricia M. Gilbert, Pupa U. P. A. Banfield, Jillian F. Sommerdijk, Nico A. J. M. Wallace, Adam F. |
Author_xml | – sequence: 1 givenname: James J. surname: De Yoreo fullname: De Yoreo, James J. – sequence: 2 givenname: Pupa U. P. A. surname: Gilbert fullname: Gilbert, Pupa U. P. A. – sequence: 3 givenname: Nico A. J. M. surname: Sommerdijk fullname: Sommerdijk, Nico A. J. M. – sequence: 4 givenname: R. Lee surname: Penn fullname: Penn, R. Lee – sequence: 5 givenname: Stephen surname: Whitelam fullname: Whitelam, Stephen – sequence: 6 givenname: Derk surname: Joester fullname: Joester, Derk – sequence: 7 givenname: Hengzhong surname: Zhang fullname: Zhang, Hengzhong – sequence: 8 givenname: Jeffrey D. surname: Rimer fullname: Rimer, Jeffrey D. – sequence: 9 givenname: Alexandra surname: Navrotsky fullname: Navrotsky, Alexandra – sequence: 10 givenname: Jillian F. surname: Banfield fullname: Banfield, Jillian F. – sequence: 11 givenname: Adam F. surname: Wallace fullname: Wallace, Adam F. – sequence: 12 givenname: F. Marc surname: Michel fullname: Michel, F. Marc – sequence: 13 givenname: Fiona C. surname: Meldrum fullname: Meldrum, Fiona C. – sequence: 14 givenname: Helmut surname: Cölfen fullname: Cölfen, Helmut – sequence: 15 givenname: Patricia M. surname: Dove fullname: Dove, Patricia M. |
BackLink | https://www.osti.gov/servlets/purl/1512223$$D View this record in Osti.gov |
BookMark | eNp9kUtvEzEURi1UJNKWNSukEWxYdFo_xzNLFAFFqtQNlbqz7Dt3EkcTO9gOUvj1OCRi0QUrW7rn-PF9l-QixICEvGP0ljHe3WXwGABvrbWd7ugrsmB0UO3AqbggC0pF1_ZUqzfkMucNpXU2iAV5XqZDLnae_W9bfAyNOzQ7m4qHGRtbioX1FkNpfGjyIZQ11slN43xcYTjubBibFcY5rjw0GH75FMNRyNfk9WTnjG_P6xV5-vrlx_K-fXj89n35-aEFqfrSMtSCOScs63rtlKJ9p5XgE5fCdXxkIN3IwY0W5aQUUEUVAIWJMaq5G5W4Ih9O58ZcvKkhFIQ1xBAQimGKcc5FhT6doF2KP_eYi9n6DDjPNmDcZ8MGKrlQemAV_fgC3cR9CvULhuljilz2slJ3JwpSzDnhZHbJb206GEbNsQ5zrsOc66iGemHUp_6NvCTr5_9470_eJpeY_l3DpZZ9J7j4AxgqngY |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1021_acs_cgd_0c00151 crossref_primary_10_1016_j_gca_2020_07_018 crossref_primary_10_1039_C9CE01601E crossref_primary_10_1134_S0965544121080016 crossref_primary_10_2138_am_2019_6848 crossref_primary_10_1002_cplu_201600457 crossref_primary_10_1021_acs_cgd_2c00694 crossref_primary_10_2138_am_2021_7777 crossref_primary_10_1016_j_actbio_2016_03_018 crossref_primary_10_1021_acs_est_7b04343 crossref_primary_10_1038_ncomms13799 crossref_primary_10_1016_j_jics_2022_100385 crossref_primary_10_1039_D1FD00093D crossref_primary_10_1016_j_joen_2023_10_013 crossref_primary_10_1021_acs_jpcb_3c07840 crossref_primary_10_1038_s41598_022_11266_w crossref_primary_10_1002_adma_202200364 crossref_primary_10_1016_j_jcat_2018_06_003 crossref_primary_10_1016_j_cej_2022_135874 crossref_primary_10_1021_accountsmr_0c00013 crossref_primary_10_1039_C7CC01342F crossref_primary_10_3390_cryst15040296 crossref_primary_10_1021_acsnano_8b00638 crossref_primary_10_1038_s41563_019_0514_1 crossref_primary_10_1002_cnma_201700005 crossref_primary_10_1016_j_carbpol_2023_121174 crossref_primary_10_1021_acs_jpcc_2c04636 crossref_primary_10_1039_C8EN00994E crossref_primary_10_1039_C6EN00619A crossref_primary_10_1002_adfm_201602207 crossref_primary_10_1039_D0LC00239A crossref_primary_10_1002_anie_201608538 crossref_primary_10_1021_acsbiomaterials_4c01420 crossref_primary_10_3389_frwa_2021_800944 crossref_primary_10_1021_acs_cgd_5b01637 crossref_primary_10_1021_acs_jpcb_2c00523 crossref_primary_10_1007_s13391_021_00314_8 crossref_primary_10_1021_acs_cgd_0c01016 crossref_primary_10_1039_D4CP02981J crossref_primary_10_1021_acs_cgd_4c00766 crossref_primary_10_1016_j_ccst_2022_100073 crossref_primary_10_1021_acsomega_6b00236 crossref_primary_10_1039_D1SM01571K crossref_primary_10_1002_anie_202107599 crossref_primary_10_1039_D1FD00092F crossref_primary_10_1039_C7TA06924C crossref_primary_10_1039_D3EN00930K crossref_primary_10_1146_annurev_physchem_052516_044813 crossref_primary_10_1007_s40843_022_2381_6 crossref_primary_10_1038_s41467_022_28830_7 crossref_primary_10_1021_acs_cgd_2c01511 crossref_primary_10_1021_acs_chemrev_2c00130 crossref_primary_10_1021_acs_jpcc_3c00506 crossref_primary_10_1021_acs_cgd_6b01026 crossref_primary_10_3390_colloids6010013 crossref_primary_10_2109_jcersj2_23093 crossref_primary_10_1016_j_jece_2024_114713 crossref_primary_10_1039_C8CE01546E crossref_primary_10_1016_j_jelechem_2024_118284 crossref_primary_10_1021_acs_langmuir_3c03532 crossref_primary_10_1177_00220345211018405 crossref_primary_10_1021_acs_cgd_6b00171 crossref_primary_10_1039_C6CP08227K crossref_primary_10_1039_C9TC05143K crossref_primary_10_1021_acs_langmuir_5b02901 crossref_primary_10_1002_smll_202402690 crossref_primary_10_1039_C6CS00208K crossref_primary_10_1021_acs_accounts_0c00739 crossref_primary_10_1021_acs_cgd_0c00191 crossref_primary_10_1093_bulcsj_uoae082 crossref_primary_10_1039_C9CP00919A crossref_primary_10_1021_acs_cgd_1c00865 crossref_primary_10_1021_jacs_8b08878 crossref_primary_10_1021_acsanm_2c03818 crossref_primary_10_1073_pnas_1914813117 crossref_primary_10_1021_acs_chemrev_3c00801 crossref_primary_10_1126_sciadv_aar3219 crossref_primary_10_1002_pssb_202100642 crossref_primary_10_1093_nsr_nwad014 crossref_primary_10_1021_acsbiomaterials_0c00364 crossref_primary_10_1016_j_ijepes_2019_105447 crossref_primary_10_1016_j_cattod_2018_02_020 crossref_primary_10_1002_anie_201915144 crossref_primary_10_1016_j_xcrp_2020_100081 crossref_primary_10_1007_s13391_020_00263_8 crossref_primary_10_1021_acsomega_8b01697 crossref_primary_10_1038_srep36449 crossref_primary_10_1103_PhysRevLett_133_248202 crossref_primary_10_1002_ange_202310234 crossref_primary_10_1177_00037028231166950 crossref_primary_10_1016_j_cocis_2022_101663 crossref_primary_10_1021_acs_jpcc_4c01281 crossref_primary_10_1038_s41467_024_44850_x crossref_primary_10_1039_D4GC03302G crossref_primary_10_1021_acs_accounts_7b00107 crossref_primary_10_1039_D1TA01468D crossref_primary_10_1016_j_jsb_2017_12_002 crossref_primary_10_1021_acsnano_0c08088 crossref_primary_10_1002_adma_202000747 crossref_primary_10_1021_acsomega_3c09330 crossref_primary_10_1002_2017GC007183 crossref_primary_10_1515_revic_2020_0004 crossref_primary_10_1007_s12274_023_6336_0 crossref_primary_10_1007_s11434_016_1162_3 crossref_primary_10_1039_D2CS00110A crossref_primary_10_1021_acs_cgd_8b01530 crossref_primary_10_1021_acs_langmuir_6b04532 crossref_primary_10_1130_G51127_1 crossref_primary_10_1021_acs_chemmater_6b03813 crossref_primary_10_3390_cryst10010003 crossref_primary_10_1021_acs_langmuir_1c02980 crossref_primary_10_1016_j_gca_2018_12_036 crossref_primary_10_1002_adma_201605903 crossref_primary_10_1016_j_cemconres_2019_105837 crossref_primary_10_3390_nano9101445 crossref_primary_10_1021_acs_est_4c10093 crossref_primary_10_1017_S1431927620020139 crossref_primary_10_1002_advs_202205037 crossref_primary_10_1029_2023JB027929 crossref_primary_10_1021_acs_est_4c05988 crossref_primary_10_1016_j_jes_2023_12_011 crossref_primary_10_1016_j_yjsbx_2021_100059 crossref_primary_10_1016_j_micromeso_2021_111112 crossref_primary_10_1016_j_jallcom_2018_02_315 crossref_primary_10_1016_j_cemconres_2025_107851 crossref_primary_10_3390_cryst11070738 crossref_primary_10_1002_smll_202308166 crossref_primary_10_1021_acs_langmuir_0c01891 crossref_primary_10_1039_C6CE01252C crossref_primary_10_1016_j_devcel_2020_09_003 crossref_primary_10_1021_acssuschemeng_3c06700 crossref_primary_10_1103_PhysRevX_9_021015 crossref_primary_10_1021_acs_langmuir_2c02818 crossref_primary_10_1016_j_electacta_2024_145198 crossref_primary_10_1021_acscatal_7b01646 crossref_primary_10_1002_cphc_201800976 crossref_primary_10_1039_C6NR06953C crossref_primary_10_1021_acs_iecr_2c00854 crossref_primary_10_1021_acs_jpcb_9b11537 crossref_primary_10_1021_acs_langmuir_6b03212 crossref_primary_10_1016_j_actbio_2025_02_036 crossref_primary_10_1021_acs_jpcc_8b02421 crossref_primary_10_1002_ange_201608417 crossref_primary_10_1021_acs_chemmater_9b04143 crossref_primary_10_1021_jacsau_1c00026 crossref_primary_10_1016_j_jcis_2020_07_083 crossref_primary_10_1017_S1431927622002318 crossref_primary_10_1038_s41467_018_04296_4 crossref_primary_10_1002_ange_202201980 crossref_primary_10_1002_adfm_201706434 crossref_primary_10_1016_j_jcis_2024_11_076 crossref_primary_10_1016_j_plrev_2020_01_001 crossref_primary_10_1038_s41467_023_37814_0 crossref_primary_10_1016_j_cej_2023_143329 crossref_primary_10_1063_1_5058107 crossref_primary_10_1007_s13369_022_07344_w crossref_primary_10_1016_j_chemgeo_2020_119703 crossref_primary_10_1002_adfm_202307026 crossref_primary_10_1126_science_abm1748 crossref_primary_10_1039_C7EM00202E crossref_primary_10_1016_j_gca_2023_03_035 crossref_primary_10_1073_pnas_2011806117 crossref_primary_10_1016_j_cemconres_2023_107301 crossref_primary_10_1021_acsbiomaterials_3c00258 crossref_primary_10_1016_j_mseb_2023_116569 crossref_primary_10_1021_acs_nanolett_4c05556 crossref_primary_10_1016_j_jcis_2024_04_037 crossref_primary_10_1021_acs_langmuir_7b02126 crossref_primary_10_1002_ange_201805877 crossref_primary_10_1038_s41467_023_43428_3 crossref_primary_10_1016_j_oregeorev_2022_104875 crossref_primary_10_1039_C8TA01027G crossref_primary_10_1002_pmic_201900036 crossref_primary_10_1002_adma_201905784 crossref_primary_10_1021_acs_langmuir_6b04595 crossref_primary_10_1038_s42004_018_0081_4 crossref_primary_10_5382_econgeo_5057 crossref_primary_10_1002_ange_202210434 crossref_primary_10_1016_j_micromeso_2022_112312 crossref_primary_10_1021_acs_jpcc_2c04284 crossref_primary_10_1016_j_cej_2023_142440 crossref_primary_10_1021_acs_jpcc_0c10861 crossref_primary_10_1021_acs_jpcc_7b02635 crossref_primary_10_1039_D4TA05512H crossref_primary_10_1021_acs_chemmater_7b04083 crossref_primary_10_1016_j_scitotenv_2023_168846 crossref_primary_10_1021_acs_langmuir_4c01634 crossref_primary_10_1016_j_corsci_2022_110563 crossref_primary_10_1039_C9MH00431A crossref_primary_10_1016_j_chemgeo_2017_01_013 crossref_primary_10_1021_acs_jpcc_2c07323 crossref_primary_10_1186_s11671_019_3038_3 crossref_primary_10_1002_ange_201908216 crossref_primary_10_1021_jacs_2c10395 crossref_primary_10_1073_pnas_1803654115 crossref_primary_10_1016_j_cej_2024_158624 crossref_primary_10_1016_j_jrmge_2023_03_019 crossref_primary_10_1021_acs_biomac_2c01394 crossref_primary_10_1021_acsabm_2c00247 crossref_primary_10_1016_j_mseb_2020_114865 crossref_primary_10_1021_acs_est_2c04971 crossref_primary_10_3390_ma12111818 crossref_primary_10_1002_idm2_12144 crossref_primary_10_1021_jacs_3c05688 crossref_primary_10_1002_advs_202103524 crossref_primary_10_1021_acs_chemmater_3c02346 crossref_primary_10_1021_acs_cgd_6b00547 crossref_primary_10_1002_advs_201900775 crossref_primary_10_1021_acs_nanolett_0c00080 crossref_primary_10_1002_smll_202407539 crossref_primary_10_1021_acs_langmuir_7b03813 crossref_primary_10_1111_jpy_12604 crossref_primary_10_1016_j_nxsust_2024_100094 crossref_primary_10_1063_1_5128122 crossref_primary_10_1016_j_cemconres_2023_107258 crossref_primary_10_1021_acs_cgd_6b00514 crossref_primary_10_1039_C8CE00738A crossref_primary_10_1021_acs_chemrev_7b00285 crossref_primary_10_1002_aic_16356 crossref_primary_10_1039_D0CE00949K crossref_primary_10_1039_C6EE01969B crossref_primary_10_1061__ASCE_GT_1943_5606_0002871 crossref_primary_10_1002_anie_202116850 crossref_primary_10_1016_j_pcrysgrow_2016_04_003 crossref_primary_10_1039_D0NR05640E crossref_primary_10_1021_jacs_1c05488 crossref_primary_10_1021_acs_cgd_5b01180 crossref_primary_10_1039_C8TA02233J crossref_primary_10_1038_s41467_024_54785_y crossref_primary_10_1021_acs_cgd_3c00895 crossref_primary_10_1002_adfm_202316422 crossref_primary_10_1002_asia_201801069 crossref_primary_10_1021_acsearthspacechem_2c00165 crossref_primary_10_1021_acs_cgd_7b01359 crossref_primary_10_1007_s12598_024_03082_0 crossref_primary_10_1016_j_jwpe_2023_103818 crossref_primary_10_1021_acs_nanolett_1c00890 crossref_primary_10_1039_D4TB00867G crossref_primary_10_1016_j_jmrt_2022_12_107 crossref_primary_10_1038_s41598_020_58216_y crossref_primary_10_1021_acs_jpcc_0c10323 crossref_primary_10_1016_j_jenvman_2025_124611 crossref_primary_10_1073_pnas_1804543115 crossref_primary_10_1074_jbc_RA119_010506 crossref_primary_10_1002_jcc_26963 crossref_primary_10_1021_acs_jpcc_2c09120 crossref_primary_10_1126_science_aau8299 crossref_primary_10_1016_j_jfluchem_2016_12_003 crossref_primary_10_1039_D0CE00243G crossref_primary_10_1016_j_jcrysgro_2022_127029 crossref_primary_10_1002_ange_202008100 crossref_primary_10_1016_j_jcrysgro_2022_127024 crossref_primary_10_1149_1945_7111_ac99a0 crossref_primary_10_1039_D2CE00447J crossref_primary_10_1039_D1FD00101A crossref_primary_10_1126_science_aah6902 crossref_primary_10_1016_j_cemconres_2023_107299 crossref_primary_10_1016_j_cej_2021_131598 crossref_primary_10_1016_j_molliq_2020_114018 crossref_primary_10_1021_acs_cgd_4c01142 crossref_primary_10_1002_anie_201603687 crossref_primary_10_1016_j_micromeso_2024_112999 crossref_primary_10_1002_ange_202215728 crossref_primary_10_1038_s41467_020_17795_0 crossref_primary_10_1016_j_chemgeo_2016_06_006 crossref_primary_10_1016_j_actbio_2019_05_036 crossref_primary_10_32607_actanaturae_11815 crossref_primary_10_1002_chem_201601280 crossref_primary_10_1039_D3CE00278K crossref_primary_10_1021_acsnano_4c09056 crossref_primary_10_1007_s00240_016_0951_0 crossref_primary_10_1021_acs_langmuir_9b00909 crossref_primary_10_1126_science_aam6371 crossref_primary_10_1021_acs_jpclett_2c02511 crossref_primary_10_1016_j_ece_2024_07_001 crossref_primary_10_1016_j_chemgeo_2017_12_009 crossref_primary_10_1021_acs_inorgchem_2c01673 crossref_primary_10_1021_acs_cgd_2c00296 crossref_primary_10_1021_acs_cgd_6b00939 crossref_primary_10_1016_j_apsusc_2020_147837 crossref_primary_10_3390_inorganics5010016 crossref_primary_10_1016_j_chemgeo_2021_120614 crossref_primary_10_1039_D4SM00455H crossref_primary_10_1088_1361_6528_ab9e8f crossref_primary_10_1021_acs_inorgchem_8b03446 crossref_primary_10_1021_acs_cgd_2c01149 crossref_primary_10_1029_2022GC010445 crossref_primary_10_1021_acs_cgd_3c00022 crossref_primary_10_1002_cctc_202000116 crossref_primary_10_1016_j_apsusc_2023_156842 crossref_primary_10_1111_gcb_14912 crossref_primary_10_1039_D0CE01173H crossref_primary_10_1021_acs_cgd_0c01512 crossref_primary_10_1021_acs_est_2c01858 crossref_primary_10_1021_acsnano_3c03103 crossref_primary_10_1039_D1CC05980G crossref_primary_10_1021_jacs_4c11264 crossref_primary_10_1038_s41467_024_50323_y crossref_primary_10_1016_j_isci_2022_105343 crossref_primary_10_1016_j_gca_2023_07_027 crossref_primary_10_1021_acsearthspacechem_1c00385 crossref_primary_10_1021_acs_chemrev_7b00208 crossref_primary_10_1002_anie_202209615 crossref_primary_10_1021_acsearthspacechem_3c00314 crossref_primary_10_1021_acsnano_8b08668 crossref_primary_10_1038_s41467_018_03041_1 crossref_primary_10_1007_s00240_018_1060_z crossref_primary_10_1021_acs_nanolett_2c03713 crossref_primary_10_1021_acs_jpcc_2c02981 crossref_primary_10_3390_cryst7070207 crossref_primary_10_1021_acs_cgd_1c00433 crossref_primary_10_1007_s12274_023_5441_4 crossref_primary_10_1021_acs_jpcb_7b10915 crossref_primary_10_1021_acs_chemmater_5b04343 crossref_primary_10_1002_ppsc_201700094 crossref_primary_10_1002_chem_201704287 crossref_primary_10_1021_acs_jpclett_0c03276 crossref_primary_10_1039_C7CE00766C crossref_primary_10_1021_acs_cgd_4c00245 crossref_primary_10_1021_jacs_9b09697 crossref_primary_10_1039_D2RA00756H crossref_primary_10_1002_anie_202104002 crossref_primary_10_1038_s41557_019_0305_y crossref_primary_10_1021_acsbiomaterials_9b00308 crossref_primary_10_1002_ange_201610275 crossref_primary_10_1038_s41467_019_13009_4 crossref_primary_10_1002_smll_202304183 crossref_primary_10_1021_acs_inorgchem_2c02565 crossref_primary_10_3390_catal12101216 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1007_s00126_021_01079_8 crossref_primary_10_1021_acs_jpcc_0c01041 crossref_primary_10_1039_C6CE01202G crossref_primary_10_1021_acsomega_0c02075 crossref_primary_10_1016_j_ibiod_2022_105422 crossref_primary_10_1016_j_actbio_2017_02_006 crossref_primary_10_1016_j_jcrysgro_2020_125991 crossref_primary_10_1002_ange_202101611 crossref_primary_10_1007_s11837_017_2579_0 crossref_primary_10_1107_S2053273319008623 crossref_primary_10_1021_acs_cgd_9b00062 crossref_primary_10_1007_s10854_018_0477_z crossref_primary_10_29121_granthaalayah_v10_i9_2022_4767 crossref_primary_10_1016_j_watres_2020_116250 crossref_primary_10_1016_j_cej_2022_140748 crossref_primary_10_1021_acscentsci_1c00254 crossref_primary_10_3390_ma17061359 crossref_primary_10_1021_acs_biomac_7b00772 crossref_primary_10_1021_acs_cgd_9b00066 crossref_primary_10_1021_acsnano_2c01171 crossref_primary_10_1016_j_apsusc_2022_153466 crossref_primary_10_1021_acsearthspacechem_1c00376 crossref_primary_10_1126_sciadv_abn7087 crossref_primary_10_1126_sciadv_abl9653 crossref_primary_10_1021_acs_nanolett_4c01525 crossref_primary_10_1038_s41467_025_58130_9 crossref_primary_10_1021_acs_inorgchem_4c02970 crossref_primary_10_1016_j_cemconres_2021_106688 crossref_primary_10_1130_G48044_1 crossref_primary_10_1002_advs_201902536 crossref_primary_10_1007_s12274_023_6033_z crossref_primary_10_1021_acs_cgd_0c00241 crossref_primary_10_1002_anie_202117742 crossref_primary_10_1038_s41557_020_0523_3 crossref_primary_10_1021_acs_cgd_9b00085 crossref_primary_10_1039_D3NR00702B crossref_primary_10_1016_j_mencom_2019_07_032 crossref_primary_10_1016_j_actbio_2023_03_034 crossref_primary_10_1111_1462_2920_15174 crossref_primary_10_1016_j_bbrep_2021_100939 crossref_primary_10_1002_aic_16815 crossref_primary_10_1021_acs_cgd_3c01078 crossref_primary_10_1002_anie_202303770 crossref_primary_10_1016_j_jnoncrysol_2017_12_007 crossref_primary_10_1038_s42004_024_01275_3 crossref_primary_10_1007_s11426_021_1015_9 crossref_primary_10_1039_C9CE00982E crossref_primary_10_1021_acs_nanolett_1c04424 crossref_primary_10_1021_jacs_2c10839 crossref_primary_10_1039_D5CE00034C crossref_primary_10_1073_pnas_1712911115 crossref_primary_10_1021_jacs_0c07384 crossref_primary_10_1021_acsnano_4c08955 crossref_primary_10_1021_jacs_1c09174 crossref_primary_10_1021_acs_molpharmaceut_4c00033 crossref_primary_10_1039_C6RA11193A crossref_primary_10_1021_acs_chemrev_2c00468 crossref_primary_10_1039_C6SM00052E crossref_primary_10_1021_acs_langmuir_9b00375 crossref_primary_10_1016_j_lwt_2021_112384 crossref_primary_10_1186_s12932_019_0061_3 crossref_primary_10_1021_acs_cgd_0c01376 crossref_primary_10_1016_j_chemphys_2018_09_032 crossref_primary_10_1017_S1431927620018115 crossref_primary_10_1021_acs_cgd_5c00064 crossref_primary_10_1039_C7CE01450C crossref_primary_10_1016_j_scitotenv_2022_159596 crossref_primary_10_1557_s43580_024_00922_0 crossref_primary_10_1051_matecconf_202236301032 crossref_primary_10_1360_SST_2022_0391 crossref_primary_10_1038_s41467_018_02932_7 crossref_primary_10_1039_C6CS00432F crossref_primary_10_1016_j_jiec_2021_03_032 crossref_primary_10_1007_s10854_017_7782_9 crossref_primary_10_1039_C9CC07087G crossref_primary_10_1038_s41586_021_03355_z crossref_primary_10_1016_j_scriptamat_2020_10_042 crossref_primary_10_1063_1_5054273 crossref_primary_10_1002_adhm_201800700 crossref_primary_10_1021_acs_accounts_1c00279 crossref_primary_10_1021_acs_jpcc_9b07232 crossref_primary_10_1039_C6TB02657E crossref_primary_10_1021_acs_chemmater_7b01522 crossref_primary_10_1002_adma_202001068 crossref_primary_10_1002_anie_201908751 crossref_primary_10_1021_acs_cgd_1c00971 crossref_primary_10_1039_D3SC05790A crossref_primary_10_1080_22297928_2020_1865832 crossref_primary_10_1021_acs_cgd_8b01680 crossref_primary_10_1103_PhysRevMaterials_1_073401 crossref_primary_10_1038_s41368_021_00147_z crossref_primary_10_1038_s41467_019_14168_0 crossref_primary_10_1021_acs_langmuir_3c01469 crossref_primary_10_1016_j_cej_2025_159525 crossref_primary_10_1002_smll_202107735 crossref_primary_10_1039_D3LC00778B crossref_primary_10_3389_feart_2023_1188142 crossref_primary_10_1021_acs_jpcc_9b08577 crossref_primary_10_1007_s11095_018_2374_9 crossref_primary_10_1126_sciadv_adf6138 crossref_primary_10_5802_crchim_125 crossref_primary_10_1021_acs_cgd_1c00503 crossref_primary_10_1021_acs_iecr_7b03326 crossref_primary_10_1038_s42004_024_01199_y crossref_primary_10_1007_s40789_025_00755_8 crossref_primary_10_1039_C5CC09295G crossref_primary_10_1038_s41570_022_00418_1 crossref_primary_10_1126_science_aau4146 crossref_primary_10_1039_C6CC04522G crossref_primary_10_1016_j_scriptamat_2020_10_027 crossref_primary_10_1039_C9NR01497G crossref_primary_10_1073_pnas_2112679119 crossref_primary_10_1016_j_epsl_2020_116476 crossref_primary_10_1039_D0TA11023J crossref_primary_10_3389_fchem_2022_818230 crossref_primary_10_1002_ange_201603687 crossref_primary_10_1016_j_cej_2023_148260 crossref_primary_10_3390_min8080346 crossref_primary_10_3390_biology13110944 crossref_primary_10_1002_ange_202408937 crossref_primary_10_1002_ange_201915144 crossref_primary_10_1039_D4LC00637B crossref_primary_10_1146_annurev_physchem_082720_100947 crossref_primary_10_1002_adfm_202406946 crossref_primary_10_1021_acsmaterialslett_1c00002 crossref_primary_10_1002_sstr_202400146 crossref_primary_10_1002_adma_201906738 crossref_primary_10_1039_D4SC00452C crossref_primary_10_1021_acs_cgd_2c00971 crossref_primary_10_1016_j_gca_2022_10_039 crossref_primary_10_1021_jacs_1c11434 crossref_primary_10_1021_acs_est_5b02819 crossref_primary_10_1016_j_gca_2024_05_005 crossref_primary_10_1039_D4CY00550C crossref_primary_10_1073_pnas_2408628121 crossref_primary_10_1134_S0020168522010010 crossref_primary_10_1039_D4EN00670D crossref_primary_10_1021_jacs_5b07931 crossref_primary_10_2138_am_2022_8758 crossref_primary_10_1016_j_gca_2021_07_026 crossref_primary_10_1021_acs_cgd_2c00960 crossref_primary_10_1016_j_gca_2021_07_023 crossref_primary_10_1103_PhysRevLett_127_018003 crossref_primary_10_1002_slct_202001255 crossref_primary_10_1016_j_actbio_2022_06_010 crossref_primary_10_1021_acs_cgd_7b01668 crossref_primary_10_1016_j_apt_2022_103607 crossref_primary_10_1029_2023JB026961 crossref_primary_10_1007_s11705_019_1852_x crossref_primary_10_1039_D0NH00685H crossref_primary_10_1002_adma_201802309 crossref_primary_10_1021_acsnano_4c04192 crossref_primary_10_1002_aic_18144 crossref_primary_10_1038_s41598_021_81020_1 crossref_primary_10_1126_sciadv_1601144 crossref_primary_10_1016_j_jdent_2024_104838 crossref_primary_10_1098_rsfs_2016_0120 crossref_primary_10_1002_smll_202401052 crossref_primary_10_1016_j_jcis_2022_02_016 crossref_primary_10_1002_adem_202301755 crossref_primary_10_1038_s41467_023_38757_2 crossref_primary_10_1039_D4CE01156B crossref_primary_10_1016_j_pnsc_2022_09_003 crossref_primary_10_1016_j_aqrep_2024_102292 crossref_primary_10_1073_pnas_1918195117 crossref_primary_10_1038_s41467_024_47503_1 crossref_primary_10_1002_adma_202202242 crossref_primary_10_1098_rsos_170622 crossref_primary_10_1002_ange_201608538 crossref_primary_10_1016_j_jhazmat_2023_130973 crossref_primary_10_3390_cryst11020174 crossref_primary_10_1038_s41598_023_30537_8 crossref_primary_10_1021_acs_langmuir_6b03570 crossref_primary_10_1021_acsami_5b10987 crossref_primary_10_2138_am_2022_8309 crossref_primary_10_1039_D0NR03486J crossref_primary_10_3390_nano12234151 crossref_primary_10_1002_anie_201704499 crossref_primary_10_1016_j_jcrysgro_2021_126043 crossref_primary_10_3390_cryst13060938 crossref_primary_10_1021_acs_iecr_8b01695 crossref_primary_10_3390_ma12050814 crossref_primary_10_1039_C8CE00241J crossref_primary_10_1016_j_matt_2024_08_011 crossref_primary_10_1021_acs_nanolett_5b04808 crossref_primary_10_1021_acs_est_2c06668 crossref_primary_10_1016_j_xcrp_2021_100680 crossref_primary_10_1016_j_jece_2024_113572 crossref_primary_10_1038_s41467_017_00756_5 crossref_primary_10_3390_cryst12091234 crossref_primary_10_1016_j_actbio_2015_11_062 crossref_primary_10_1039_D4CP01979B crossref_primary_10_1039_D3CS00312D crossref_primary_10_1002_adma_202100668 crossref_primary_10_1016_j_gca_2019_11_009 crossref_primary_10_1002_anie_201703158 crossref_primary_10_1016_j_mattod_2024_06_002 crossref_primary_10_1007_s12274_021_4030_7 crossref_primary_10_1021_acs_cgd_8b01604 crossref_primary_10_1038_s41467_020_15333_6 crossref_primary_10_1557_s43577_023_00479_7 crossref_primary_10_1021_acsomega_4c02952 crossref_primary_10_1016_j_chemgeo_2022_121215 crossref_primary_10_1021_acs_cgd_5b01792 crossref_primary_10_1002_adfm_202108126 crossref_primary_10_1002_chem_202500120 crossref_primary_10_1002_smll_201907667 crossref_primary_10_1002_cphc_202200480 crossref_primary_10_1021_acs_cgd_1c00908 crossref_primary_10_1073_pnas_2111213118 crossref_primary_10_1021_acs_langmuir_3c01411 crossref_primary_10_1557_s43577_024_00696_8 crossref_primary_10_1039_D3CC04311H crossref_primary_10_1103_PhysRevB_110_144112 crossref_primary_10_1016_j_apsusc_2023_158401 crossref_primary_10_1039_D1CE00763G crossref_primary_10_1021_jacs_2c07296 crossref_primary_10_1016_j_ultsonch_2023_106368 crossref_primary_10_1021_acsnano_2c11672 crossref_primary_10_1021_acs_cgd_0c00920 crossref_primary_10_3390_coatings13091644 crossref_primary_10_3389_fbioe_2024_1382047 crossref_primary_10_1016_j_ccr_2019_213092 crossref_primary_10_1039_C9EN00779B crossref_primary_10_1039_D4SM00181H crossref_primary_10_1016_j_jallcom_2025_179138 crossref_primary_10_1021_jacs_2c00665 crossref_primary_10_1039_C9CP05423E crossref_primary_10_1016_j_chemgeo_2024_121951 crossref_primary_10_1098_rsif_2022_0336 crossref_primary_10_1021_acs_est_2c04859 crossref_primary_10_1093_micmic_ozad142 crossref_primary_10_1002_chem_201605957 crossref_primary_10_1016_j_carbon_2020_05_001 crossref_primary_10_1021_acs_cgd_4c00194 crossref_primary_10_1021_acsaom_4c00297 crossref_primary_10_1016_j_cocis_2016_05_009 crossref_primary_10_1126_sciadv_adg5858 crossref_primary_10_1016_j_jcis_2019_02_047 crossref_primary_10_1002_aic_18672 crossref_primary_10_1002_ange_202405092 crossref_primary_10_1016_j_chemgeo_2019_06_006 crossref_primary_10_1103_PhysRevE_101_052604 crossref_primary_10_1016_j_actamat_2022_117903 crossref_primary_10_1002_adma_202311659 crossref_primary_10_1002_ange_202305353 crossref_primary_10_1039_C8NJ04889D crossref_primary_10_1021_jacs_2c02424 crossref_primary_10_1016_j_nanoen_2022_107575 crossref_primary_10_1016_j_cemconres_2023_107135 crossref_primary_10_1021_jacs_7b12529 crossref_primary_10_1039_C8CP00540K crossref_primary_10_1002_anie_202310419 crossref_primary_10_1016_j_heliyon_2023_e18331 crossref_primary_10_1021_acs_chemmater_8b02884 crossref_primary_10_1039_C6CC06353E crossref_primary_10_1093_jmicro_dfab046 crossref_primary_10_1103_PhysRevLett_124_066101 crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_1021_acsnano_3c10810 crossref_primary_10_1016_j_jcrysgro_2017_12_006 crossref_primary_10_1002_admi_201902047 crossref_primary_10_1016_j_gca_2023_10_023 crossref_primary_10_1039_D0TB01978J crossref_primary_10_1038_s41598_021_85525_7 crossref_primary_10_1039_C8SC05634J crossref_primary_10_1016_j_isci_2021_102956 crossref_primary_10_1021_acsanm_1c03402 crossref_primary_10_1021_acs_nanolett_7b04713 crossref_primary_10_1039_D2EM00118G crossref_primary_10_1021_acs_chemmater_1c03563 crossref_primary_10_1021_acs_cgd_3c00530 crossref_primary_10_3897_j_moem_7_1_73285 crossref_primary_10_1016_j_cej_2023_144256 crossref_primary_10_1039_D2CE00328G crossref_primary_10_1016_j_jorganchem_2018_02_005 crossref_primary_10_1038_s41598_024_68037_y crossref_primary_10_1002_anie_201603794 crossref_primary_10_1021_acsnano_8b07880 crossref_primary_10_1016_j_sedgeo_2017_09_011 crossref_primary_10_1126_sciadv_add8295 crossref_primary_10_1016_j_gca_2023_01_028 crossref_primary_10_1038_s41586_022_04409_6 crossref_primary_10_1038_s41578_023_00637_y crossref_primary_10_1063_1_5096595 crossref_primary_10_1371_journal_pcbi_1008780 crossref_primary_10_1002_anie_202008100 crossref_primary_10_1021_acs_jpcc_8b01605 crossref_primary_10_1021_acsnano_4c16946 crossref_primary_10_1021_acs_chemmater_0c04832 crossref_primary_10_1021_acs_chemmater_7b04223 crossref_primary_10_1111_jmi_12509 crossref_primary_10_1021_acs_cgd_7b00378 crossref_primary_10_1038_nchem_2618 crossref_primary_10_1039_D2CE00896C crossref_primary_10_1038_s41557_018_0009_8 crossref_primary_10_1038_s41598_022_26877_6 crossref_primary_10_1016_j_preme_2025_100019 crossref_primary_10_1021_acsnano_8b07864 crossref_primary_10_3390_cryst8010048 crossref_primary_10_1016_j_cej_2018_11_013 crossref_primary_10_2138_am_2022_8851 crossref_primary_10_1039_D3NR05495K crossref_primary_10_1002_adma_201606730 crossref_primary_10_1002_adfm_202107312 crossref_primary_10_2138_am_2018_6226 crossref_primary_10_1126_science_aaz7555 crossref_primary_10_1038_s41563_020_0753_1 crossref_primary_10_1021_acs_jpcc_8b05189 crossref_primary_10_1073_pnas_1708161114 crossref_primary_10_1039_D0CP03493B crossref_primary_10_1016_j_bgtech_2024_100159 crossref_primary_10_1021_acs_chemmater_7b04245 crossref_primary_10_1021_acscentsci_8b00853 crossref_primary_10_1039_D3SM01302B crossref_primary_10_1126_sciadv_aaw9569 crossref_primary_10_1021_acs_cgd_9b01693 crossref_primary_10_1021_acs_chemmater_5b04266 crossref_primary_10_1021_acsbiomaterials_1c00693 crossref_primary_10_1021_acs_nanolett_4c01017 crossref_primary_10_1007_s00710_017_0528_9 crossref_primary_10_1021_acs_biomac_7b01129 crossref_primary_10_1021_acs_chemrev_8b00318 crossref_primary_10_1557_s43577_024_00702_z crossref_primary_10_1039_C9SM01834D crossref_primary_10_1107_S2053229618007143 crossref_primary_10_1038_s41598_020_75241_z crossref_primary_10_1021_jacs_9b01883 crossref_primary_10_1002_anie_202306885 crossref_primary_10_1016_j_matt_2022_09_027 crossref_primary_10_1021_acsnano_0c08998 crossref_primary_10_3390_pharmaceutics13060889 crossref_primary_10_1038_s42004_022_00787_0 crossref_primary_10_1016_j_matt_2019_05_001 crossref_primary_10_1021_acs_cgd_1c00536 crossref_primary_10_1039_D0TA12533D crossref_primary_10_1021_jacs_0c05591 crossref_primary_10_1038_s41565_024_01815_x crossref_primary_10_1016_j_gca_2024_09_034 crossref_primary_10_1038_s41467_023_43608_1 crossref_primary_10_1016_j_jcis_2023_12_002 crossref_primary_10_1017_S1431927621008448 crossref_primary_10_1038_s41586_023_06326_8 crossref_primary_10_1016_j_chemgeo_2019_119460 crossref_primary_10_1007_s10965_022_03143_x crossref_primary_10_1021_acs_cgd_2c00152 crossref_primary_10_5194_bg_15_2205_2018 crossref_primary_10_1039_C9EN01000A crossref_primary_10_1021_acs_jpcc_9b04268 crossref_primary_10_1073_pnas_1902273116 crossref_primary_10_1002_chem_201900275 crossref_primary_10_1021_acs_chemmater_9b03738 crossref_primary_10_1039_D2FD00061J crossref_primary_10_1021_acsami_1c01308 crossref_primary_10_1371_journal_pone_0186391 crossref_primary_10_1016_S1872_5805_21_60030_6 crossref_primary_10_1002_ejic_201501159 crossref_primary_10_1016_j_jmat_2017_03_001 crossref_primary_10_1021_acs_cgd_1c00563 crossref_primary_10_1038_s41563_019_0511_4 crossref_primary_10_1021_acsnano_0c09814 crossref_primary_10_1038_s41467_022_34330_5 crossref_primary_10_1039_D0CE00076K crossref_primary_10_1021_acs_jpclett_5b01843 crossref_primary_10_1007_s12274_019_2483_8 crossref_primary_10_1177_00220345211053814 crossref_primary_10_1016_j_jcrysgro_2019_125454 crossref_primary_10_1002_adfm_201701658 crossref_primary_10_1002_anie_201805877 crossref_primary_10_1021_acs_cgd_3c00582 crossref_primary_10_3390_pharmaceutics11080420 crossref_primary_10_1021_acs_jpclett_3c03327 crossref_primary_10_1038_s44286_024_00102_9 crossref_primary_10_1039_C8CE02199F crossref_primary_10_1016_j_cemconres_2022_106873 crossref_primary_10_1039_D0NR02899A crossref_primary_10_1038_s41467_020_14719_w crossref_primary_10_1021_acs_jpcc_0c07933 crossref_primary_10_1007_s00338_021_02198_4 crossref_primary_10_1021_acs_chemmater_9b02467 crossref_primary_10_1016_j_jiec_2019_07_020 crossref_primary_10_1021_acs_est_3c03942 crossref_primary_10_1016_j_gca_2025_02_002 crossref_primary_10_1016_j_jcrysgro_2024_127786 crossref_primary_10_1021_acs_chemmater_2c00418 crossref_primary_10_1021_acs_jpcc_7b07745 crossref_primary_10_1016_j_jsb_2016_07_016 crossref_primary_10_1126_sciadv_adf9144 crossref_primary_10_1007_s00249_024_01712_0 crossref_primary_10_1557_jmr_2018_478 crossref_primary_10_1038_s41586_019_1645_x crossref_primary_10_1021_acs_cgd_2c00592 crossref_primary_10_1039_D3SC05179J crossref_primary_10_1021_jacs_4c04674 crossref_primary_10_1126_science_aaz7949 crossref_primary_10_1557_jmr_2019_272 crossref_primary_10_1038_ncomms12206 crossref_primary_10_1002_adem_202000044 crossref_primary_10_1016_j_isci_2022_105472 crossref_primary_10_1016_j_cocis_2018_04_002 crossref_primary_10_1002_slct_201600039 crossref_primary_10_1021_acsnano_4c18704 crossref_primary_10_1021_acs_chemrev_8b00745 crossref_primary_10_1021_acs_cgd_3c01426 crossref_primary_10_1002_anie_201908216 crossref_primary_10_1126_sciadv_adl3075 crossref_primary_10_1038_nchem_2675 crossref_primary_10_1021_acs_jpcc_8b05572 crossref_primary_10_1038_s41570_020_00242_5 crossref_primary_10_1186_s12932_024_00091_x crossref_primary_10_1016_j_chemgeo_2021_120520 crossref_primary_10_1021_acs_nanolett_1c04966 crossref_primary_10_1039_C9NH00308H crossref_primary_10_1002_smll_202100607 crossref_primary_10_3390_ma11122492 crossref_primary_10_1021_acs_chemmater_7b03798 crossref_primary_10_1021_acs_chemmater_9b00417 crossref_primary_10_1016_j_actbio_2022_01_024 crossref_primary_10_1021_acsbiomaterials_7b00420 crossref_primary_10_1021_acs_cgd_0c01245 crossref_primary_10_1021_acs_nanolett_7b04128 crossref_primary_10_1039_D0NR01126F crossref_primary_10_1021_acs_cgd_8b00044 crossref_primary_10_1038_s41467_022_32615_3 crossref_primary_10_1016_j_colsurfa_2025_136487 crossref_primary_10_1021_jacs_3c09370 crossref_primary_10_1021_acs_langmuir_8b00865 crossref_primary_10_1016_j_desal_2025_118616 crossref_primary_10_1021_acs_biomac_0c00667 crossref_primary_10_1021_acsomega_4c05477 crossref_primary_10_1007_s00240_019_01125_1 crossref_primary_10_1016_j_nanoen_2019_103892 crossref_primary_10_1021_acs_cgd_8b01361 crossref_primary_10_1021_acsnano_7b07633 crossref_primary_10_1002_smll_202001423 crossref_primary_10_1021_acs_est_4c07527 crossref_primary_10_1021_jacs_4c17643 crossref_primary_10_1021_acsami_6b14036 crossref_primary_10_1021_acs_jpcc_9b06078 crossref_primary_10_1002_adma_202211244 crossref_primary_10_1021_acsami_0c16653 crossref_primary_10_2110_jsr_2021_016 crossref_primary_10_1038_s41467_017_00955_0 crossref_primary_10_1021_acs_jpclett_4c01026 crossref_primary_10_1016_j_polymer_2020_123150 crossref_primary_10_1016_j_scriptamat_2022_114856 crossref_primary_10_1002_ange_201903662 crossref_primary_10_1021_jacs_6b10490 crossref_primary_10_1021_jacs_3c03619 crossref_primary_10_1021_acs_jpcb_9b05017 crossref_primary_10_1021_acs_jpclett_4c01031 crossref_primary_10_1073_pnas_2012025117 crossref_primary_10_1021_acsami_1c12936 crossref_primary_10_1016_j_sedgeo_2022_106207 crossref_primary_10_1021_acs_chemmater_7b03886 crossref_primary_10_1016_j_gene_2024_148747 crossref_primary_10_1039_C6CE02161A crossref_primary_10_2138_am_2021_7529 crossref_primary_10_1016_j_physb_2021_413282 crossref_primary_10_1016_j_colsurfb_2018_11_009 crossref_primary_10_1038_s41570_019_0129_8 crossref_primary_10_5194_gchron_4_617_2022 crossref_primary_10_1002_chem_202003344 crossref_primary_10_1021_acsnano_0c07359 crossref_primary_10_1038_s42004_024_01285_1 crossref_primary_10_1016_j_actbio_2021_08_051 crossref_primary_10_1126_sciadv_aas9819 crossref_primary_10_1021_acs_jpcc_0c05248 crossref_primary_10_1021_acscentsci_8b00289 crossref_primary_10_1039_D4TA00725E crossref_primary_10_1002_adfm_201802088 crossref_primary_10_1073_pnas_2008880118 crossref_primary_10_1039_C9CE01403A crossref_primary_10_1039_C7CE01681F crossref_primary_10_1021_acs_jpcc_1c09021 crossref_primary_10_29121_granthaalayah_v12_i3_2024_5571 crossref_primary_10_1002_cjoc_202100119 crossref_primary_10_1039_C9NH00175A crossref_primary_10_1021_acs_langmuir_9b00234 crossref_primary_10_3390_ma16052026 crossref_primary_10_1021_jacs_7b03163 crossref_primary_10_1016_j_gca_2017_09_039 crossref_primary_10_1021_acs_jpclett_3c00336 crossref_primary_10_1016_j_actbio_2016_04_005 crossref_primary_10_1002_smll_201902936 crossref_primary_10_1098_rsta_2022_0250 crossref_primary_10_3390_ijms232213810 crossref_primary_10_1002_ange_202209615 crossref_primary_10_1038_s43247_021_00126_6 crossref_primary_10_1021_acs_cgd_8b00479 crossref_primary_10_1039_C6CE01887D crossref_primary_10_1038_s41467_018_07395_4 crossref_primary_10_1016_j_gca_2021_01_016 crossref_primary_10_1021_acs_est_8b00438 crossref_primary_10_1007_s10876_025_02783_5 crossref_primary_10_1126_sciadv_adf8436 crossref_primary_10_1021_acsami_7b02764 crossref_primary_10_1016_j_jsb_2016_09_005 crossref_primary_10_1038_srep24216 crossref_primary_10_1039_C5CE02328A crossref_primary_10_1021_acs_nanolett_6b02586 crossref_primary_10_1021_acs_cgd_8b00025 crossref_primary_10_1002_anie_202408937 crossref_primary_10_1021_acs_cgd_8b00028 crossref_primary_10_1016_j_jhazmat_2022_129367 crossref_primary_10_1021_acs_nanolett_4c04084 crossref_primary_10_1038_s41563_021_01144_7 crossref_primary_10_3390_min12121562 crossref_primary_10_1002_smll_202306175 crossref_primary_10_1038_d41586_018_03801_5 crossref_primary_10_1021_acs_iecr_4c04674 crossref_primary_10_1038_s41467_023_36502_3 crossref_primary_10_1021_acs_langmuir_3c03788 crossref_primary_10_1038_srep40701 crossref_primary_10_1038_s43247_024_01823_8 crossref_primary_10_1073_pnas_2121661119 crossref_primary_10_1021_acs_inorgchem_4c04525 crossref_primary_10_1016_j_chemgeo_2024_122510 crossref_primary_10_1021_acs_cgd_2c00853 crossref_primary_10_1021_acsnano_1c00571 crossref_primary_10_1039_D2CE01709A crossref_primary_10_1007_s10853_018_2052_7 crossref_primary_10_1680_jgeot_22_00301 crossref_primary_10_1016_j_molstruc_2019_07_038 crossref_primary_10_1080_21650373_2025_2453558 crossref_primary_10_1021_acs_chemmater_3c02176 crossref_primary_10_1021_acs_chemmater_5b01542 crossref_primary_10_1038_s41598_022_10627_9 crossref_primary_10_1002_dep2_136 crossref_primary_10_1039_D3CE01063E crossref_primary_10_1039_C9CC02194A crossref_primary_10_1002_ange_201911213 crossref_primary_10_1016_j_powtec_2023_118677 crossref_primary_10_1016_j_cej_2025_159282 crossref_primary_10_1021_acs_cgd_5b01488 crossref_primary_10_1038_s41557_019_0210_4 crossref_primary_10_2138_am_2021_7940 crossref_primary_10_1016_j_chemer_2024_126206 crossref_primary_10_1016_j_cocis_2020_01_003 crossref_primary_10_1021_acs_inorgchem_4c01044 crossref_primary_10_3390_w16050650 crossref_primary_10_1021_acs_cgd_7b01547 crossref_primary_10_1021_acs_cgd_9b00304 crossref_primary_10_1039_C6CP04153A crossref_primary_10_1016_j_chempr_2023_08_002 crossref_primary_10_1016_j_molliq_2025_127395 crossref_primary_10_1039_C8CE00491A crossref_primary_10_1021_jacs_9b04586 crossref_primary_10_3389_fmats_2020_00075 crossref_primary_10_1021_jacs_4c11940 crossref_primary_10_1557_s43580_024_00860_x crossref_primary_10_1021_acs_langmuir_9b02043 crossref_primary_10_1021_acs_cgd_7b01578 crossref_primary_10_1016_j_polymer_2025_128179 crossref_primary_10_1039_C8NA00374B crossref_primary_10_1002_anie_202211254 crossref_primary_10_1016_j_corsci_2022_110775 crossref_primary_10_1021_acs_langmuir_1c01871 crossref_primary_10_1038_s41467_018_04285_7 crossref_primary_10_1016_j_jsb_2020_107489 crossref_primary_10_1038_s41598_019_55103_z crossref_primary_10_1021_acs_cgd_1c01084 crossref_primary_10_1021_acsmacrolett_6b00022 crossref_primary_10_1073_pnas_1707890114 crossref_primary_10_1002_ange_202117839 crossref_primary_10_1038_s41570_020_0161_8 crossref_primary_10_1038_s41598_020_73804_8 crossref_primary_10_1021_acsomega_1c03701 crossref_primary_10_1038_s41467_021_24557_z crossref_primary_10_1021_acs_cgd_8b01302 crossref_primary_10_1021_acs_cgd_1c01092 crossref_primary_10_1073_pnas_2107477118 crossref_primary_10_1016_j_ijpharm_2022_122551 crossref_primary_10_1016_j_gca_2020_06_033 crossref_primary_10_1016_j_gca_2020_06_030 crossref_primary_10_1016_j_susmat_2022_e00447 crossref_primary_10_1073_pnas_2025670118 crossref_primary_10_5194_bg_16_3439_2019 crossref_primary_10_1016_j_jsb_2021_107797 crossref_primary_10_1016_j_matt_2023_06_017 crossref_primary_10_1038_s41563_020_0650_7 crossref_primary_10_1126_sciadv_aaw5912 crossref_primary_10_1016_j_ccr_2024_216035 crossref_primary_10_3390_min13070903 crossref_primary_10_1002_ange_202408429 crossref_primary_10_3390_bioengineering11050465 crossref_primary_10_1002_anie_202413444 crossref_primary_10_1029_2020JE006769 crossref_primary_10_1088_1361_648X_aa8253 crossref_primary_10_3390_min9090503 crossref_primary_10_1126_sciadv_abb1219 crossref_primary_10_1002_jms_4356 crossref_primary_10_1103_PhysRevE_104_064128 crossref_primary_10_1002_ange_202303770 crossref_primary_10_1021_accountsmr_4c00009 crossref_primary_10_1021_acsami_9b22833 crossref_primary_10_1016_j_jcrysgro_2017_07_012 crossref_primary_10_1038_s41467_017_00844_6 crossref_primary_10_1021_acs_energyfuels_1c04072 crossref_primary_10_1021_acsmacrolett_1c00789 crossref_primary_10_1038_s41467_024_53501_0 crossref_primary_10_1038_s41545_024_00324_7 crossref_primary_10_1007_s42860_023_00230_y crossref_primary_10_1002_adma_202310672 crossref_primary_10_1021_acs_cgd_9b00753 crossref_primary_10_1039_D4CP02041C crossref_primary_10_1021_acsomega_8b02380 crossref_primary_10_1002_anie_201509833 crossref_primary_10_1021_acs_cgd_6b00794 crossref_primary_10_1021_jacs_8b13231 crossref_primary_10_1002_anie_201507659 crossref_primary_10_1029_2020JE006782 crossref_primary_10_1021_acsmaterialslett_5c00361 crossref_primary_10_1002_advs_202407984 crossref_primary_10_1002_bkcs_11237 crossref_primary_10_1016_j_clay_2017_09_021 crossref_primary_10_1021_jacs_2c10584 crossref_primary_10_1016_j_dental_2025_02_009 crossref_primary_10_1021_acs_jpclett_2c01829 crossref_primary_10_1002_smll_202402075 crossref_primary_10_1002_anie_202101611 crossref_primary_10_1073_pnas_2105154118 crossref_primary_10_1002_adfm_202405218 crossref_primary_10_1002_smtd_202401990 crossref_primary_10_1039_D4NR02389G crossref_primary_10_1002_smll_202304781 crossref_primary_10_1039_D0NR08517K crossref_primary_10_1021_jacs_9b10869 crossref_primary_10_1016_j_colsurfa_2022_129319 crossref_primary_10_1021_acsnano_2c11169 crossref_primary_10_1038_s41467_020_16034_w crossref_primary_10_1016_j_apsusc_2019_143986 crossref_primary_10_1021_acs_chemmater_1c03477 crossref_primary_10_1002_chem_202301825 crossref_primary_10_1021_acsbiomaterials_9b01029 crossref_primary_10_1016_j_apsusc_2024_159534 crossref_primary_10_1073_pnas_2001613117 crossref_primary_10_1016_j_electacta_2022_140485 crossref_primary_10_1007_s12039_021_01953_y crossref_primary_10_1021_acs_chemmater_6b01000 crossref_primary_10_1016_j_chemgeo_2020_119974 crossref_primary_10_1007_s00126_024_01337_5 crossref_primary_10_3390_cryst10060463 crossref_primary_10_1002_aic_18784 crossref_primary_10_1126_sciadv_1602285 crossref_primary_10_1002_adfm_202007736 crossref_primary_10_1007_s00410_024_02184_3 crossref_primary_10_1002_smtd_202300910 crossref_primary_10_1073_pnas_1905929116 crossref_primary_10_1007_s10562_018_2380_x crossref_primary_10_1021_acs_chemmater_0c00572 crossref_primary_10_3389_fbioe_2023_1160351 crossref_primary_10_1007_s11433_017_9035_8 crossref_primary_10_1002_adfm_202106396 crossref_primary_10_1016_j_actbio_2023_07_028 crossref_primary_10_1038_natrevmats_2016_41 crossref_primary_10_1039_D1NR05767G crossref_primary_10_1021_acs_cgd_6b01616 crossref_primary_10_1039_D2EW00522K crossref_primary_10_1021_acs_inorgchem_3c03892 crossref_primary_10_1016_j_mtadv_2023_100378 crossref_primary_10_1002_aic_17438 crossref_primary_10_1016_j_quascirev_2022_107833 crossref_primary_10_1021_acs_jpca_9b07104 crossref_primary_10_7567_1347_4065_aafb4c crossref_primary_10_1016_j_ijbiomac_2023_123335 crossref_primary_10_1002_chem_201600141 crossref_primary_10_1021_acs_jchemed_9b00159 crossref_primary_10_1021_acssuschemeng_3c00429 crossref_primary_10_1002_adfm_202212339 crossref_primary_10_1002_adfm_201602908 crossref_primary_10_1103_PhysRevB_97_134110 crossref_primary_10_3724_j_1000_4734_2024_44_074 crossref_primary_10_1002_chem_201702251 crossref_primary_10_1016_j_cattod_2022_08_030 crossref_primary_10_1126_science_aax6511 crossref_primary_10_1021_acs_cgd_4c00031 crossref_primary_10_1002_smll_202307858 crossref_primary_10_1016_j_seppur_2023_124424 crossref_primary_10_3390_ma13173762 crossref_primary_10_1073_pnas_1922923117 crossref_primary_10_1021_acsenergylett_7b00667 crossref_primary_10_1111_ggr_12583 crossref_primary_10_1021_acsnano_7b00127 crossref_primary_10_1021_acsbiomaterials_4c01178 crossref_primary_10_1039_D2NR01511K crossref_primary_10_1016_j_cemconres_2017_09_002 crossref_primary_10_1021_acs_chemrev_1c00189 crossref_primary_10_1021_acs_jpcc_8b12122 crossref_primary_10_1021_acsnano_4c01797 crossref_primary_10_1021_acs_jpcc_2c07151 crossref_primary_10_1016_j_jdent_2021_103599 crossref_primary_10_1186_s12943_022_01654_1 crossref_primary_10_1021_acs_jpcc_6b05650 crossref_primary_10_1111_sed_12711 crossref_primary_10_1021_acs_energyfuels_3c04467 crossref_primary_10_1021_acs_cgd_3c00616 crossref_primary_10_3390_app8101921 crossref_primary_10_1038_s41467_018_05493_x crossref_primary_10_1016_j_jcis_2020_03_109 crossref_primary_10_1016_j_jcrysgro_2024_127841 crossref_primary_10_1002_bkcs_12041 crossref_primary_10_1016_j_cherd_2021_03_013 crossref_primary_10_1021_acs_cgd_2c01393 crossref_primary_10_1016_j_carbpol_2024_122938 crossref_primary_10_1002_chem_201702218 crossref_primary_10_1021_acs_biochem_7b00083 crossref_primary_10_1021_jacs_3c01494 crossref_primary_10_1111_sed_13191 crossref_primary_10_3389_fmars_2024_1406446 crossref_primary_10_1021_acsomega_7b00719 crossref_primary_10_3390_geosciences8120466 crossref_primary_10_1039_C7CC03639F crossref_primary_10_1002_ange_202107599 crossref_primary_10_1016_j_conbuildmat_2024_137372 crossref_primary_10_1021_acsami_8b02520 crossref_primary_10_1002_cphc_201900925 crossref_primary_10_1021_acs_chemmater_1c01690 crossref_primary_10_1016_j_jcrysgro_2020_125727 crossref_primary_10_1021_acs_cgd_6b00707 crossref_primary_10_1007_s11157_022_09628_x crossref_primary_10_1021_acs_cgd_9b01196 crossref_primary_10_1021_acs_chemmater_6b01088 crossref_primary_10_1002_adhm_202001271 crossref_primary_10_1002_ange_201603794 crossref_primary_10_1039_C9CE01925A crossref_primary_10_3724_j_1000_4734_2024_44_022 crossref_primary_10_1130_G37774_1 crossref_primary_10_1134_S1063774518070039 crossref_primary_10_1002_anie_202408429 crossref_primary_10_1002_ange_202310419 crossref_primary_10_1016_j_chemgeo_2019_119343 crossref_primary_10_1021_acs_jpcc_2c00554 crossref_primary_10_1016_j_cej_2020_128268 crossref_primary_10_1021_acs_jpcc_0c03402 crossref_primary_10_1021_acsami_3c04067 crossref_primary_10_1021_acssuschemeng_2c05094 crossref_primary_10_34133_2020_4370817 crossref_primary_10_1039_D2CE00117A crossref_primary_10_1371_journal_pone_0228503 crossref_primary_10_1021_jacs_5b07477 crossref_primary_10_1039_D1QM00901J crossref_primary_10_1063_5_0166278 crossref_primary_10_3390_cryst7100302 crossref_primary_10_1021_acs_nanolett_1c02859 crossref_primary_10_1073_pnas_1810203115 crossref_primary_10_1126_sciadv_1700425 crossref_primary_10_1002_smll_201702565 crossref_primary_10_1016_j_actbio_2020_07_038 crossref_primary_10_1021_jacs_6b01929 crossref_primary_10_1038_s41467_023_41443_y crossref_primary_10_1002_adfm_202304685 crossref_primary_10_1038_s41598_017_15364_y crossref_primary_10_1144_jgs2021_050 crossref_primary_10_1021_acs_langmuir_7b01814 crossref_primary_10_1038_s41467_021_25898_5 crossref_primary_10_3390_ma12132117 crossref_primary_10_5194_ejm_36_813_2024 crossref_primary_10_1007_s12274_020_2934_2 crossref_primary_10_1039_D2SC02679A crossref_primary_10_1080_14686996_2021_1927175 crossref_primary_10_1134_S1028335819090076 crossref_primary_10_1111_maps_14174 crossref_primary_10_1038_s41467_021_20953_7 crossref_primary_10_1016_j_gca_2021_05_043 crossref_primary_10_1016_j_gca_2023_08_012 crossref_primary_10_1021_acssynbio_1c00412 crossref_primary_10_1016_j_cemconres_2021_106467 crossref_primary_10_1039_D5NR00265F crossref_primary_10_1021_jacs_2c06535 crossref_primary_10_1021_acsomega_3c07743 crossref_primary_10_1002_aenm_202400281 crossref_primary_10_1039_D4FD00079J crossref_primary_10_1016_j_marchem_2019_03_008 crossref_primary_10_1039_C9ME00068B crossref_primary_10_1038_s41467_022_32241_z crossref_primary_10_1039_D1CE00187F crossref_primary_10_1021_acs_nanolett_0c01125 crossref_primary_10_1021_acsami_2c20328 crossref_primary_10_2465_jmps_231206 crossref_primary_10_1021_acs_chemmater_5b04569 crossref_primary_10_1039_D4MA01186D crossref_primary_10_1016_j_gca_2023_08_028 crossref_primary_10_1007_s40843_020_1619_6 crossref_primary_10_1016_j_lithos_2019_105215 crossref_primary_10_1016_j_pmatsci_2021_100821 crossref_primary_10_1021_acs_chemmater_8b04970 crossref_primary_10_1021_acsearthspacechem_9b00194 crossref_primary_10_1016_j_chempr_2023_10_018 crossref_primary_10_1002_anie_202210434 crossref_primary_10_1021_acs_inorgchem_4c02769 crossref_primary_10_1021_jacs_6b11301 crossref_primary_10_1021_acs_langmuir_4c04458 crossref_primary_10_1021_acsanm_9b00905 crossref_primary_10_1016_j_cocis_2018_10_009 crossref_primary_10_1557_jmr_2019_151 crossref_primary_10_1021_acs_macromol_3c01769 crossref_primary_10_1021_jacs_8b11972 crossref_primary_10_1039_D2CE00379A crossref_primary_10_1039_D0CC01395A crossref_primary_10_1098_rspa_2018_0351 crossref_primary_10_1038_s41557_020_0547_8 crossref_primary_10_3390_nano12091601 crossref_primary_10_1016_j_jcis_2021_03_002 crossref_primary_10_1021_acs_cgd_8b00093 crossref_primary_10_1038_s44160_022_00091_8 crossref_primary_10_1021_acsomega_7b00307 crossref_primary_10_1039_C8FD00121A crossref_primary_10_1039_D0ME00043D crossref_primary_10_1021_acs_nanolett_8b03139 crossref_primary_10_1002_ange_202413444 crossref_primary_10_1016_j_clay_2022_106463 crossref_primary_10_1051_bioconf_202412926019 crossref_primary_10_1021_jacs_2c07423 crossref_primary_10_1039_D2MH00174H crossref_primary_10_1039_C7CE02100C crossref_primary_10_1039_C9NR10435F crossref_primary_10_1038_s41467_018_03745_4 crossref_primary_10_3390_life13030714 crossref_primary_10_1002_admi_202101573 crossref_primary_10_1002_ange_202104002 crossref_primary_10_1002_smtd_202301227 crossref_primary_10_1021_acs_macromol_8b00986 crossref_primary_10_1360_TB_2022_0817 crossref_primary_10_1039_C6RA13041K crossref_primary_10_1016_j_epsl_2024_118712 crossref_primary_10_1111_jace_19743 crossref_primary_10_1039_D3RA06803J crossref_primary_10_1038_s41557_020_0538_9 crossref_primary_10_1021_acs_cgd_8b01008 crossref_primary_10_1016_j_cemconres_2018_01_017 crossref_primary_10_1180_minmag_2017_081_031 crossref_primary_10_1016_j_ecolind_2020_107281 crossref_primary_10_1021_acs_cgd_5b01522 crossref_primary_10_1021_acsnano_8b04909 crossref_primary_10_1021_acs_cgd_2c00794 crossref_primary_10_1002_slct_202003622 crossref_primary_10_1016_j_epsl_2018_05_029 crossref_primary_10_1088_2053_1591_aa5c00 crossref_primary_10_1016_j_jcis_2021_10_125 crossref_primary_10_1002_syst_202000061 crossref_primary_10_1002_adma_202100897 crossref_primary_10_1142_S2811086224300026 crossref_primary_10_1002_anie_201608417 crossref_primary_10_3390_min15030218 crossref_primary_10_1021_acs_jpcc_7b12582 crossref_primary_10_1016_j_bbagen_2018_10_005 crossref_primary_10_1021_acs_macromol_3c02535 crossref_primary_10_1021_acs_jpclett_4c00069 crossref_primary_10_1002_anie_202201980 crossref_primary_10_1016_j_jcis_2021_10_111 crossref_primary_10_1039_C8RA01706A crossref_primary_10_3389_fmars_2018_00450 crossref_primary_10_1021_acs_chemmater_1c01941 crossref_primary_10_1016_j_jcrysgro_2022_126990 crossref_primary_10_1021_acs_cgd_8b01025 crossref_primary_10_1038_s41467_019_10833_6 crossref_primary_10_1039_C7CE00847C crossref_primary_10_1039_C9CC00518H crossref_primary_10_2320_materia_58_727 crossref_primary_10_1039_D1FD00080B crossref_primary_10_1039_D3TA02066E crossref_primary_10_1038_s41563_021_01154_5 crossref_primary_10_1021_acs_nanolett_1c04649 crossref_primary_10_1021_acs_cgd_1c00715 crossref_primary_10_1016_j_jcrysgro_2022_126992 crossref_primary_10_2138_am_2019_6996 crossref_primary_10_1038_s41467_020_18460_2 crossref_primary_10_1038_s41586_019_1918_4 crossref_primary_10_1002_sstr_202100202 crossref_primary_10_1016_j_catcom_2022_106494 crossref_primary_10_1039_C8CP05767B crossref_primary_10_1063_1_4964489 crossref_primary_10_1016_j_gce_2022_04_004 crossref_primary_10_1038_s41467_020_17562_1 crossref_primary_10_3390_min8090370 crossref_primary_10_1016_j_jfluchem_2018_11_018 crossref_primary_10_1016_j_oregeorev_2020_103495 crossref_primary_10_1002_smll_202309100 crossref_primary_10_1007_s41779_024_01143_2 crossref_primary_10_1038_s41565_023_01355_w crossref_primary_10_1557_mrs_2020_229 crossref_primary_10_1021_acsnano_3c12374 crossref_primary_10_1021_acs_cgd_3c01283 crossref_primary_10_1002_anie_202215728 crossref_primary_10_3390_cryst10030166 crossref_primary_10_1002_admi_202300954 crossref_primary_10_1016_j_jcrysgro_2022_126976 crossref_primary_10_1039_C9NR01474H crossref_primary_10_1039_D0NA00124D crossref_primary_10_1016_j_jcis_2022_03_016 crossref_primary_10_1016_j_oregeorev_2021_104630 crossref_primary_10_1039_D1CP05606A crossref_primary_10_1021_acs_est_3c02303 crossref_primary_10_1021_acs_jpclett_6b02977 crossref_primary_10_3390_min12091092 crossref_primary_10_1515_znb_2023_0310 crossref_primary_10_1038_s41467_020_20318_6 crossref_primary_10_1016_j_sedgeo_2021_106044 crossref_primary_10_1021_jacs_4c05361 crossref_primary_10_1038_s41557_025_01741_y crossref_primary_10_1039_D4CP03290J crossref_primary_10_1016_j_cej_2023_148037 crossref_primary_10_1021_acs_nanolett_2c01608 crossref_primary_10_1016_j_jcrysgro_2022_126955 crossref_primary_10_1039_D2FD00077F crossref_primary_10_1016_j_actbio_2020_06_038 crossref_primary_10_1039_D3QI01609A crossref_primary_10_1039_D0NR03334K crossref_primary_10_1021_acs_langmuir_6b01594 crossref_primary_10_1039_D3EM00302G crossref_primary_10_1002_aenm_202202575 crossref_primary_10_1039_C9CE01544B crossref_primary_10_1103_PhysRevLett_126_136001 crossref_primary_10_1021_acs_jpcc_0c08670 crossref_primary_10_1016_j_jechem_2024_08_021 crossref_primary_10_1016_j_micromeso_2017_08_051 crossref_primary_10_1016_j_cis_2021_102543 crossref_primary_10_1039_C9SE00432G crossref_primary_10_1021_acs_jpcc_9b01334 crossref_primary_10_1098_rsif_2016_0665 crossref_primary_10_3390_min14040422 crossref_primary_10_1002_adma_201803855 crossref_primary_10_1021_acs_accounts_2c00063 crossref_primary_10_1039_D1FD00089F crossref_primary_10_1016_j_colsurfa_2019_124374 crossref_primary_10_1039_D0EE02902E crossref_primary_10_1038_s41598_020_61530_0 crossref_primary_10_1038_s42004_020_0284_3 crossref_primary_10_1002_anie_201903662 crossref_primary_10_1021_acs_cgd_8b00553 crossref_primary_10_3390_molecules28176320 crossref_primary_10_1021_jacs_6b09190 crossref_primary_10_1039_C9RA03086G crossref_primary_10_1016_j_msec_2019_01_060 crossref_primary_10_1063_5_0012376 crossref_primary_10_1107_S2052252521010101 crossref_primary_10_1016_j_gca_2024_06_036 crossref_primary_10_1002_ange_202116850 crossref_primary_10_1002_smll_202200992 crossref_primary_10_1021_acs_cgd_7b00129 crossref_primary_10_3390_cryst12070980 crossref_primary_10_1021_acs_cgd_9b01523 crossref_primary_10_1021_acsearthspacechem_4c00097 crossref_primary_10_1016_j_cub_2023_04_067 crossref_primary_10_1557_s43577_024_00698_6 crossref_primary_10_1021_acs_nanolett_8b03627 crossref_primary_10_1002_adma_202005291 crossref_primary_10_1021_jacs_0c12100 crossref_primary_10_1111_sed_12991 crossref_primary_10_1002_adfm_201808172 crossref_primary_10_1002_adma_201701064 crossref_primary_10_1002_smll_201906146 crossref_primary_10_1007_s12274_022_4475_3 crossref_primary_10_1021_acs_inorgchem_1c01806 crossref_primary_10_1007_s00253_022_11938_7 crossref_primary_10_2138_am_2019_6597 crossref_primary_10_1039_C7CE02144E crossref_primary_10_1038_s41565_021_00986_1 crossref_primary_10_1021_acs_jpclett_8b02413 crossref_primary_10_1016_j_oceram_2020_100019 crossref_primary_10_1039_D3QM01263H crossref_primary_10_1016_j_actamat_2022_117655 crossref_primary_10_1038_s41586_021_03300_0 crossref_primary_10_1021_acs_macromol_8b02725 crossref_primary_10_1021_acsnano_8b06706 crossref_primary_10_1039_C8CP01979G crossref_primary_10_2138_am_2021_7625 crossref_primary_10_1186_s40824_022_00288_0 crossref_primary_10_17073_1609_3577_2021_1_63_64 crossref_primary_10_1146_annurev_chembioeng_060817_083953 crossref_primary_10_3390_nano11082122 crossref_primary_10_1016_j_mtsust_2023_100458 crossref_primary_10_1088_1361_6463_aad926 crossref_primary_10_1038_natrevmats_2016_35 crossref_primary_10_1136_ard_2022_222944 crossref_primary_10_1007_s40843_023_2515_0 crossref_primary_10_1016_j_partic_2023_10_005 crossref_primary_10_1021_acsomega_1c02794 crossref_primary_10_1073_pnas_2405963121 crossref_primary_10_1002_adma_202309547 crossref_primary_10_1038_s41467_017_02153_4 crossref_primary_10_1021_acs_cgd_9b00625 crossref_primary_10_1038_natrevmats_2016_34 crossref_primary_10_1039_D1RA06206A crossref_primary_10_1021_acs_chemrev_6b00196 crossref_primary_10_1002_ange_202117742 crossref_primary_10_1016_j_cej_2020_126688 crossref_primary_10_1002_smll_202303872 crossref_primary_10_1021_acsbiomaterials_2c01249 crossref_primary_10_1063_5_0225658 crossref_primary_10_1021_acs_cgd_6b00208 crossref_primary_10_1016_j_actbio_2020_04_049 crossref_primary_10_1039_C9CS00725C crossref_primary_10_1021_acs_jpclett_6b01237 crossref_primary_10_1039_C9SM00383E crossref_primary_10_1021_acscentsci_5b00256 crossref_primary_10_1107_S1600577523002783 crossref_primary_10_1126_sciadv_adi7494 crossref_primary_10_1021_acsami_1c04575 crossref_primary_10_1021_acs_jpclett_2c00855 crossref_primary_10_1557_s43580_024_00861_w crossref_primary_10_1021_acsnano_9b01015 crossref_primary_10_1021_jacs_9b00700 crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1039_C6CE00581K crossref_primary_10_1021_acs_cgd_3c00305 crossref_primary_10_1021_jacs_2c11120 crossref_primary_10_1021_acs_cgd_9b01461 crossref_primary_10_1007_s11051_022_05598_x crossref_primary_10_1073_pnas_2011816117 crossref_primary_10_1016_j_gca_2016_09_004 crossref_primary_10_1021_acs_cgd_1c00361 crossref_primary_10_1021_acs_chemmater_3c01120 crossref_primary_10_3390_ijms18020400 crossref_primary_10_1002_smll_202107006 crossref_primary_10_1016_j_oregeorev_2018_10_001 crossref_primary_10_1016_j_fuel_2025_135120 crossref_primary_10_1021_acsomega_8b03498 crossref_primary_10_1038_ncomms15066 crossref_primary_10_1021_jacs_7b02953 crossref_primary_10_1016_j_apmt_2020_100632 crossref_primary_10_1002_chem_201904807 crossref_primary_10_1021_acs_jpcc_8b01876 crossref_primary_10_1016_j_jcis_2019_03_089 crossref_primary_10_1002_sstr_202300139 crossref_primary_10_1016_j_cossms_2018_12_002 crossref_primary_10_1021_acs_accounts_2c00110 crossref_primary_10_1038_s41586_020_2104_4 crossref_primary_10_1021_acs_cgd_6b00630 crossref_primary_10_1021_acs_cgd_6b00637 crossref_primary_10_1016_j_watres_2022_118500 crossref_primary_10_1016_j_chemgeo_2022_121042 crossref_primary_10_1002_anie_202117839 crossref_primary_10_1039_C8NR03408G crossref_primary_10_1021_acs_jpcc_9b12053 crossref_primary_10_1016_j_ijpharm_2023_123558 crossref_primary_10_1039_D2CE00657J crossref_primary_10_1016_j_cej_2018_10_007 crossref_primary_10_2138_am_2018_6429 crossref_primary_10_1098_rsif_2017_0450 crossref_primary_10_1002_adfm_201700506 crossref_primary_10_1039_D4TA01303D crossref_primary_10_1007_s12551_016_0228_4 crossref_primary_10_1002_anie_201610275 crossref_primary_10_1021_acs_nanolett_6b04160 crossref_primary_10_1016_j_scitotenv_2023_169064 crossref_primary_10_1016_j_cemconres_2023_107367 crossref_primary_10_1021_acs_est_7b00432 crossref_primary_10_1021_acs_langmuir_7b02870 crossref_primary_10_3762_bjnano_10_17 crossref_primary_10_1002_adfm_202306900 crossref_primary_10_1039_D3CC03406B crossref_primary_10_1557_s43579_023_00497_1 crossref_primary_10_1016_j_cis_2020_102313 crossref_primary_10_1038_s41545_024_00404_8 crossref_primary_10_1002_anie_202405092 crossref_primary_10_1021_acs_langmuir_8b03300 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1002_smll_202411965 crossref_primary_10_3390_cryst11080871 crossref_primary_10_1038_s42004_020_0325_y crossref_primary_10_1007_s42235_021_00084_x crossref_primary_10_3389_feart_2021_641760 crossref_primary_10_1016_j_clay_2020_105962 crossref_primary_10_1021_jacs_4c14629 crossref_primary_10_1002_anie_202305353 crossref_primary_10_1002_tcr_201800003 crossref_primary_10_1021_acscatal_3c04255 crossref_primary_10_1073_pnas_2108674119 crossref_primary_10_1021_acs_chemmater_4c01087 crossref_primary_10_1021_acsomega_3c09406 crossref_primary_10_1063_5_0006100 crossref_primary_10_1016_j_seppur_2024_130414 crossref_primary_10_1021_acs_chemmater_2c01903 crossref_primary_10_1039_C9CE00473D crossref_primary_10_1002_ange_202211254 crossref_primary_10_1038_s41563_024_02025_5 crossref_primary_10_1073_pnas_1621186114 crossref_primary_10_1021_jacs_2c05731 crossref_primary_10_1103_PhysRevResearch_7_013036 crossref_primary_10_1002_adma_202101358 crossref_primary_10_1021_jacs_3c04031 crossref_primary_10_1002_ange_202306885 crossref_primary_10_1021_acs_jpcc_2c08157 crossref_primary_10_1039_C7ME00097A crossref_primary_10_1016_j_gca_2018_06_019 crossref_primary_10_1016_j_gca_2018_06_013 crossref_primary_10_1039_D2PY00071G crossref_primary_10_1016_j_earscirev_2018_02_015 crossref_primary_10_1002_ange_201908751 crossref_primary_10_1002_adma_202209876 crossref_primary_10_1039_D1CE01687C crossref_primary_10_1073_pnas_2022339118 crossref_primary_10_1002_cnma_201900186 crossref_primary_10_1016_j_mattod_2017_03_020 crossref_primary_10_1016_j_micromeso_2021_111349 crossref_primary_10_1021_acs_cgd_4c01263 crossref_primary_10_1021_acs_cgd_9b01444 crossref_primary_10_1016_j_cej_2021_132334 crossref_primary_10_1002_cctc_201902285 crossref_primary_10_1557_mrs_2016_89 crossref_primary_10_1021_acs_chemrev_2c00700 crossref_primary_10_1038_s41557_020_0542_0 crossref_primary_10_1021_acs_chemrev_3c00259 crossref_primary_10_1039_D4SC05188B crossref_primary_10_1016_j_actamat_2016_08_061 crossref_primary_10_1007_s10008_020_04676_1 crossref_primary_10_1021_jacs_7b09169 crossref_primary_10_1038_s41596_018_0027_4 crossref_primary_10_1039_D3QM00191A crossref_primary_10_1021_acs_iecr_2c01505 crossref_primary_10_1021_acs_langmuir_7b02423 crossref_primary_10_1557_mrs_2016_91 crossref_primary_10_1557_mrs_2016_90 crossref_primary_10_1021_acs_cgd_2c01276 crossref_primary_10_1002_anie_201911213 crossref_primary_10_1016_j_jmst_2019_05_010 crossref_primary_10_1039_D1CP02619D crossref_primary_10_1016_j_jsb_2016_06_013 crossref_primary_10_1021_acs_chemmater_0c01929 crossref_primary_10_1186_s12951_021_01133_7 crossref_primary_10_1002_smll_202206718 crossref_primary_10_1021_acs_chemrev_7b00582 crossref_primary_10_1002_anie_202310234 crossref_primary_10_1016_j_chemgeo_2020_119469 crossref_primary_10_2138_am_2023_9214 crossref_primary_10_1021_acs_chemmater_1c00243 crossref_primary_10_1021_acsnano_3c02145 crossref_primary_10_1039_D1CE01463C crossref_primary_10_1007_s00604_024_06243_1 crossref_primary_10_1021_acs_jpclett_7b02096 crossref_primary_10_1016_j_jclepro_2022_134395 crossref_primary_10_1038_s41598_017_06458_8 crossref_primary_10_1021_jacsau_2c00325 crossref_primary_10_1038_s41598_020_75937_2 crossref_primary_10_1021_acs_cgd_3c01232 crossref_primary_10_1021_acs_cgd_1c00776 crossref_primary_10_1002_ange_201703158 crossref_primary_10_1021_acs_cgd_9b01077 crossref_primary_10_1126_sciadv_abg0454 crossref_primary_10_1016_j_jsb_2022_107909 crossref_primary_10_1039_D4RA04356A crossref_primary_10_1002_adfm_202408443 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1002_ange_201704499 crossref_primary_10_1126_science_aao1257 crossref_primary_10_1002_adma_202300373 crossref_primary_10_1021_acs_chemmater_7b05302 crossref_primary_10_1021_acs_inorgchem_4c01757 crossref_primary_10_1021_acsearthspacechem_2c00026 crossref_primary_10_1021_acs_chemmater_7b03121 crossref_primary_10_1021_acsnano_1c07424 crossref_primary_10_3389_fmars_2018_00067 crossref_primary_10_1007_s11814_024_00366_0 crossref_primary_10_1021_acs_jpcc_3c00206 crossref_primary_10_1021_acs_jpcb_8b04112 crossref_primary_10_1016_j_colsurfa_2024_134603 crossref_primary_10_1038_s41467_018_05713_4 crossref_primary_10_1016_j_cis_2016_01_005 crossref_primary_10_1021_acsearthspacechem_1c00055 crossref_primary_10_1016_j_gca_2018_08_033 crossref_primary_10_1016_j_jcrysgro_2022_126914 crossref_primary_10_1016_j_jcrysgro_2022_126911 crossref_primary_10_1021_acs_cgd_0c01655 crossref_primary_10_1021_acs_nanolett_7b01047 crossref_primary_10_1007_s10856_020_06413_6 crossref_primary_10_1016_j_nanoen_2020_104565 crossref_primary_10_1016_j_cocis_2018_03_002 crossref_primary_10_1002_slct_201901174 crossref_primary_10_1126_science_abj9472 crossref_primary_10_1002_smll_202306417 crossref_primary_10_3389_feart_2019_00151 crossref_primary_10_1002_adma_202106229 crossref_primary_10_1002_ange_201509833 crossref_primary_10_1002_ange_201507659 crossref_primary_10_1038_s41467_019_12168_8 crossref_primary_10_1039_D0NA00130A crossref_primary_10_1038_nmat4891 crossref_primary_10_3390_app14010131 crossref_primary_10_1039_D3NA00108C crossref_primary_10_1021_acs_chemmater_1c02868 crossref_primary_10_1038_ncomms15933 crossref_primary_10_1002_adhm_202201248 crossref_primary_10_1002_smll_202308665 crossref_primary_10_1002_ijch_201600088 crossref_primary_10_1039_C7NJ03984K crossref_primary_10_1021_acs_jafc_3c00708 crossref_primary_10_1016_j_jcrysgro_2018_04_030 crossref_primary_10_1016_j_chemgeo_2020_119497 crossref_primary_10_1039_D3NR04672A crossref_primary_10_1016_j_gca_2018_08_019 crossref_primary_10_1016_j_jcrysgro_2019_125208 crossref_primary_10_1073_pnas_1700342114 crossref_primary_10_1680_jgeot_24_00002 crossref_primary_10_1002_adsu_202000189 crossref_primary_10_1021_acsanm_0c01015 crossref_primary_10_1038_s41563_020_0768_7 crossref_primary_10_1007_s10347_021_00628_x crossref_primary_10_1002_advs_201701000 crossref_primary_10_1073_pnas_2216099120 crossref_primary_10_1021_acs_cgd_2c00352 crossref_primary_10_1107_S2052252524007838 crossref_primary_10_1557_s43577_024_00700_1 crossref_primary_10_1021_acs_chemmater_6b03550 crossref_primary_10_1021_acs_est_7b05772 crossref_primary_10_1039_C9RE00142E crossref_primary_10_1016_j_jcis_2021_12_095 crossref_primary_10_1021_acsanm_0c01023 crossref_primary_10_1016_j_jfluchem_2019_109374 crossref_primary_10_1016_j_chemgeo_2019_119274 crossref_primary_10_1002_smll_201700051 crossref_primary_10_1002_solr_202400226 crossref_primary_10_1038_s41467_019_08898_4 crossref_primary_10_1111_sed_13081 crossref_primary_10_1002_ppsc_201600225 crossref_primary_10_1021_acs_chemmater_6b03563 crossref_primary_10_1002_pmic_201800194 crossref_primary_10_1016_j_nanoen_2020_104527 crossref_primary_10_1021_acs_chemmater_0c01515 crossref_primary_10_1021_acsnano_4c01290 crossref_primary_10_1039_C6RA15960E crossref_primary_10_1039_D0CE00847H |
Cites_doi | 10.1002/cphc.201100129 10.1038/46509 10.1126/science.1114920 10.1021/ja050107s 10.1039/B708296G 10.1002/app.1995.070571212 10.1529/biophysj.107.116152 10.1070/RCR4453 10.1007/BF01017860 10.1126/science.1164271 10.1002/smll.200800520 10.1038/nature00785 10.1016/S0022-5320(67)80015-7 10.1002/adma.200300381 10.1073/pnas.0333065100 10.1039/c2fd20080e 10.1002/adfm.201300861 10.1016/0022-1902(81)80482-4 10.1103/PhysRevB.81.125444 10.1021/ja8063167 10.1021/cg2012342 10.1021/ja800984y 10.1021/jz301161j 10.1126/science.1215648 10.2110/pec.00.67.0003 10.1021/ja909769a 10.1039/b701450c 10.1002/9780470994603 10.1002/jez.90004 10.1016/j.jsb.2008.02.007 10.1126/science.289.5480.751 10.1038/ncomms2490 10.1063/1.1531614 10.1021/cm702032v 10.1073/pnas.0404778101 10.1126/science.1230915 10.1016/S0016-7037(99)00037-X 10.1021/nn503145w 10.1098/rsta.1951.0006 10.1002/adma.200801614 10.1021/jp204044k 10.1038/ncomms5341 10.1021/ja0564261 10.1039/C0NR00697A 10.1021/acscentsci.5b00001 10.1073/pnas.0914218107 10.1002/mabi.200600191 10.1073/pnas.0806604105 10.1103/PhysRevLett.97.065701 10.1021/j100068a027 10.1021/cg4001939 10.1021/ja909735y 10.1021/ja907063z 10.1103/PhysRevLett.92.155501 10.1038/nature01845 10.2138/am-1997-7-809 10.1038/nmat2900 10.1002/adma.200901365 10.1073/pnas.1106228108 10.1039/c2sm26038g 10.1002/anie.200500338 10.1126/science.1169434 10.1021/ja102439r 10.1039/c1ce05153a 10.1073/pnas.1312833110 10.1073/pnas.1118085109 10.1103/PhysRevE.87.042407 10.1002/anie.200500496 10.1006/bbrc.1999.1907 10.1073/pnas.0910170107 10.1021/jp068813i 10.1038/ncomms4169 10.1038/nmat1636 10.1016/j.jsb.2009.02.001 10.1126/science.1219643 10.1098/rspa.1985.0043 10.1021/nl073193y 10.1039/C4CS00106K 10.1126/science.1252642 10.1088/0953-8984/21/32/322201 10.1039/c4cc01457j 10.1021/cg301388e 10.1016/S0022-0248(99)00749-6 10.1080/00018730110117433 10.1126/science.1250984 10.1093/oso/9780195049770.001.0001 10.1016/j.gca.2012.10.044 10.1038/ncomms1604 10.1073/pnas.1222162110 10.1002/jmor.10311 10.1126/science.1254051 10.1098/rspb.1997.0066 10.1002/adfm.201400676 10.1021/cg500816z 10.1039/b912095e 10.1073/pnas.122055299 10.1002/adfm.201102385 10.1038/nmat3558 10.1126/science.1102289 10.1073/pnas.0803354105 10.1126/science.277.5334.1975 10.1073/pnas.1009959107 10.1002/anie.201210329 10.1021/nl404533k 10.1002/adfm.201203400 10.1126/science.281.5379.969 10.1007/978-3-642-81835-6 10.1038/nmat2875 10.1088/0957-4484/23/19/194005 10.1017/S1431927614000294 10.1002/1521-4095(200010)12:20<1543::AID-ADMA1543>3.0.CO;2-P 10.1002/adfm.201000248 10.1126/science.1173793 10.1021/bm049314v 10.1146/annurev.earth.27.1.313 10.1039/c2fd20124k |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Association for the Advancement of Science Copyright © 2015, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2015 American Association for the Advancement of Science – notice: Copyright © 2015, American Association for the Advancement of Science |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 OIOZB OTOTI |
DOI | 10.1126/science.aaa6760 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts |
DatabaseTitleList | Materials Research Database CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Physics |
EISSN | 1095-9203 |
EndPage | 498 |
ExternalDocumentID | 1512223 3764623981 10_1126_science_aaa6760 24748632 |
Genre | Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 0B8 ADACV B-7 DOOOF ESX GX1 IGG JSODD OIOZB OK1 OTOTI RHF UIG VQA YCJ |
ID | FETCH-LOGICAL-c458t-1e731bb3a1687b550867532f243b62d1c4bd2cbdae4f55c0505cc0cf11072bd53 |
ISSN | 0036-8075 |
IngestDate | Mon Nov 25 02:39:04 EST 2024 Fri Jul 11 06:19:58 EDT 2025 Fri Jul 25 19:19:07 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 04:10:44 EDT 2025 Thu Jul 03 22:31:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6247 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c458t-1e731bb3a1687b550867532f243b62d1c4bd2cbdae4f55c0505cc0cf11072bd53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1512223 |
PQID | 1700362484 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | osti_scitechconnect_1512223 proquest_miscellaneous_1904235791 proquest_journals_1700362484 crossref_primary_10_1126_science_aaa6760 crossref_citationtrail_10_1126_science_aaa6760 jstor_primary_24748632 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150731 2015-07-31 |
PublicationDateYYYYMMDD | 2015-07-31 |
PublicationDate_xml | – month: 7 year: 2015 text: 20150731 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington – name: United States |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2015 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_1_118_2 e_1_3_1_81_2 e_1_3_1_114_2 e_1_3_1_110_2 e_1_3_1_43_2 e_1_3_1_66_2 e_1_3_1_89_2 e_1_3_1_24_2 e_1_3_1_62_2 e_1_3_1_85_2 e_1_3_1_20_2 e_1_3_1_6_2 e_1_3_1_47_2 e_1_3_1_2_2 e_1_3_1_28_2 e_1_3_1_106_2 e_1_3_1_70_2 e_1_3_1_93_2 e_1_3_1_102_2 e_1_3_1_121_2 e_1_3_1_32_2 e_1_3_1_55_2 e_1_3_1_78_2 e_1_3_1_13_2 e_1_3_1_51_2 e_1_3_1_74_2 e_1_3_1_97_2 e_1_3_1_17_2 e_1_3_1_36_2 e_1_3_1_59_2 e_1_3_1_119_2 e_1_3_1_115_2 Derjaguin B. (e_1_3_1_86_2) 1945; 15 e_1_3_1_80_2 e_1_3_1_111_2 e_1_3_1_65_2 e_1_3_1_23_2 e_1_3_1_46_2 e_1_3_1_88_2 e_1_3_1_7_2 e_1_3_1_61_2 e_1_3_1_42_2 e_1_3_1_84_2 e_1_3_1_3_2 Gribb A. A. (e_1_3_1_64_2) 1997; 82 e_1_3_1_69_2 e_1_3_1_27_2 e_1_3_1_103_2 e_1_3_1_92_2 e_1_3_1_54_2 e_1_3_1_35_2 e_1_3_1_77_2 e_1_3_1_12_2 e_1_3_1_50_2 e_1_3_1_96_2 e_1_3_1_31_2 e_1_3_1_73_2 e_1_3_1_16_2 e_1_3_1_58_2 e_1_3_1_39_2 e_1_3_1_116_2 e_1_3_1_60_2 e_1_3_1_112_2 e_1_3_1_22_2 e_1_3_1_45_2 e_1_3_1_68_2 e_1_3_1_87_2 e_1_3_1_8_2 e_1_3_1_41_2 e_1_3_1_83_2 e_1_3_1_4_2 e_1_3_1_26_2 e_1_3_1_49_2 e_1_3_1_108_2 e_1_3_1_91_2 e_1_3_1_104_2 e_1_3_1_100_2 e_1_3_1_57_2 e_1_3_1_76_2 e_1_3_1_99_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_53_2 e_1_3_1_72_2 e_1_3_1_95_2 e_1_3_1_15_2 e_1_3_1_19_2 e_1_3_1_38_2 Kim Y. Y. (e_1_3_1_34_2) 2014; 5 e_1_3_1_117_2 e_1_3_1_82_2 e_1_3_1_113_2 Lobo R. F. (e_1_3_1_107_2) 1995; 21 e_1_3_1_21_2 e_1_3_1_44_2 e_1_3_1_67_2 e_1_3_1_40_2 e_1_3_1_9_2 e_1_3_1_63_2 e_1_3_1_29_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_48_2 e_1_3_1_109_2 e_1_3_1_71_2 e_1_3_1_105_2 e_1_3_1_90_2 e_1_3_1_101_2 e_1_3_1_120_2 e_1_3_1_33_2 e_1_3_1_79_2 e_1_3_1_56_2 e_1_3_1_98_2 e_1_3_1_75_2 e_1_3_1_10_2 e_1_3_1_52_2 e_1_3_1_94_2 e_1_3_1_14_2 e_1_3_1_37_2 e_1_3_1_18_2 |
References_xml | – ident: e_1_3_1_60_2 doi: 10.1002/cphc.201100129 – ident: e_1_3_1_24_2 doi: 10.1038/46509 – ident: e_1_3_1_68_2 doi: 10.1126/science.1114920 – ident: e_1_3_1_7_2 doi: 10.1021/ja050107s – ident: e_1_3_1_110_2 doi: 10.1039/B708296G – ident: e_1_3_1_79_2 doi: 10.1002/app.1995.070571212 – ident: e_1_3_1_55_2 doi: 10.1529/biophysj.107.116152 – ident: e_1_3_1_121_2 doi: 10.1070/RCR4453 – ident: e_1_3_1_42_2 doi: 10.1007/BF01017860 – ident: e_1_3_1_56_2 doi: 10.1126/science.1164271 – ident: e_1_3_1_114_2 doi: 10.1002/smll.200800520 – ident: e_1_3_1_116_2 doi: 10.1038/nature00785 – ident: e_1_3_1_20_2 doi: 10.1016/S0022-5320(67)80015-7 – ident: e_1_3_1_76_2 doi: 10.1002/adma.200300381 – ident: e_1_3_1_5_2 doi: 10.1073/pnas.0333065100 – ident: e_1_3_1_54_2 doi: 10.1039/c2fd20080e – ident: e_1_3_1_94_2 doi: 10.1002/adfm.201300861 – ident: e_1_3_1_80_2 doi: 10.1016/0022-1902(81)80482-4 – ident: e_1_3_1_81_2 doi: 10.1103/PhysRevB.81.125444 – ident: e_1_3_1_118_2 doi: 10.1021/ja8063167 – ident: e_1_3_1_32_2 doi: 10.1021/cg2012342 – ident: e_1_3_1_53_2 doi: 10.1021/ja800984y – ident: e_1_3_1_89_2 doi: 10.1021/jz301161j – ident: e_1_3_1_57_2 doi: 10.1126/science.1215648 – ident: e_1_3_1_9_2 doi: 10.2110/pec.00.67.0003 – ident: e_1_3_1_63_2 doi: 10.1021/ja909769a – ident: e_1_3_1_67_2 doi: 10.1039/b701450c – ident: e_1_3_1_91_2 – ident: e_1_3_1_10_2 doi: 10.1002/9780470994603 – ident: e_1_3_1_19_2 doi: 10.1002/jez.90004 – ident: e_1_3_1_18_2 doi: 10.1016/j.jsb.2008.02.007 – volume: 15 start-page: 663 year: 1945 ident: e_1_3_1_86_2 article-title: Theory of stability of highly charged liophobic sols and adhesion of highly charged particles in solutions of electrolytes. publication-title: Zhurnal Eksperimentalnoi Teor. Fiz. – ident: e_1_3_1_108_2 doi: 10.1126/science.289.5480.751 – ident: e_1_3_1_6_2 doi: 10.1038/ncomms2490 – ident: e_1_3_1_2_2 doi: 10.1063/1.1531614 – ident: e_1_3_1_47_2 doi: 10.1021/cm702032v – ident: e_1_3_1_59_2 doi: 10.1073/pnas.0404778101 – ident: e_1_3_1_41_2 doi: 10.1126/science.1230915 – ident: e_1_3_1_117_2 doi: 10.1016/S0016-7037(99)00037-X – ident: e_1_3_1_88_2 doi: 10.1021/nn503145w – ident: e_1_3_1_3_2 doi: 10.1098/rsta.1951.0006 – ident: e_1_3_1_99_2 doi: 10.1002/adma.200801614 – ident: e_1_3_1_90_2 doi: 10.1021/jp204044k – volume: 5 start-page: 4341 year: 2014 ident: e_1_3_1_34_2 article-title: A critical analysis of calcium carbonate mesocrystals publication-title: Nat. Commun. doi: 10.1038/ncomms5341 – ident: e_1_3_1_97_2 doi: 10.1021/ja0564261 – ident: e_1_3_1_77_2 doi: 10.1039/C0NR00697A – ident: e_1_3_1_30_2 doi: 10.1021/acscentsci.5b00001 – ident: e_1_3_1_120_2 doi: 10.1073/pnas.0914218107 – ident: e_1_3_1_33_2 doi: 10.1002/mabi.200600191 – ident: e_1_3_1_65_2 doi: 10.1073/pnas.0806604105 – ident: e_1_3_1_93_2 doi: 10.1103/PhysRevLett.97.065701 – ident: e_1_3_1_21_2 doi: 10.1021/j100068a027 – ident: e_1_3_1_36_2 doi: 10.1021/cg4001939 – ident: e_1_3_1_106_2 doi: 10.1021/ja909735y – ident: e_1_3_1_14_2 doi: 10.1021/ja907063z – ident: e_1_3_1_82_2 doi: 10.1103/PhysRevLett.92.155501 – ident: e_1_3_1_75_2 doi: 10.1038/nature01845 – volume: 82 start-page: 717 year: 1997 ident: e_1_3_1_64_2 article-title: Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 publication-title: Am. Mineral. doi: 10.2138/am-1997-7-809 – ident: e_1_3_1_45_2 doi: 10.1038/nmat2900 – ident: e_1_3_1_39_2 doi: 10.1002/adma.200901365 – ident: e_1_3_1_26_2 doi: 10.1073/pnas.1106228108 – ident: e_1_3_1_92_2 doi: 10.1039/c2sm26038g – ident: e_1_3_1_119_2 doi: 10.1002/anie.200500338 – ident: e_1_3_1_48_2 doi: 10.1126/science.1169434 – ident: e_1_3_1_70_2 doi: 10.1021/ja102439r – ident: e_1_3_1_73_2 doi: 10.1039/c1ce05153a – ident: e_1_3_1_96_2 doi: 10.1073/pnas.1312833110 – ident: e_1_3_1_12_2 doi: 10.1073/pnas.1118085109 – ident: e_1_3_1_44_2 doi: 10.1103/PhysRevE.87.042407 – ident: e_1_3_1_38_2 doi: 10.1002/anie.200500496 – ident: e_1_3_1_104_2 doi: 10.1006/bbrc.1999.1907 – volume: 21 start-page: 47 year: 1995 ident: e_1_3_1_107_2 article-title: Structure-direction in zeolite synthesis publication-title: J. Incl. Phenom. Mol. Recogn. Chem. – ident: e_1_3_1_83_2 doi: 10.1073/pnas.0910170107 – ident: e_1_3_1_25_2 doi: 10.1021/jp068813i – ident: e_1_3_1_71_2 doi: 10.1038/ncomms4169 – ident: e_1_3_1_69_2 doi: 10.1038/nmat1636 – ident: e_1_3_1_15_2 doi: 10.1016/j.jsb.2009.02.001 – ident: e_1_3_1_28_2 doi: 10.1126/science.1219643 – ident: e_1_3_1_46_2 doi: 10.1098/rspa.1985.0043 – ident: e_1_3_1_111_2 doi: 10.1021/nl073193y – ident: e_1_3_1_115_2 doi: 10.1039/C4CS00106K – ident: e_1_3_1_40_2 doi: 10.1126/science.1252642 – ident: e_1_3_1_84_2 doi: 10.1088/0953-8984/21/32/322201 – ident: e_1_3_1_95_2 doi: 10.1039/c4cc01457j – ident: e_1_3_1_61_2 doi: 10.1021/cg301388e – ident: e_1_3_1_22_2 doi: 10.1016/S0022-0248(99)00749-6 – ident: e_1_3_1_43_2 doi: 10.1080/00018730110117433 – ident: e_1_3_1_29_2 doi: 10.1126/science.1250984 – ident: e_1_3_1_8_2 doi: 10.1093/oso/9780195049770.001.0001 – ident: e_1_3_1_51_2 doi: 10.1016/j.gca.2012.10.044 – ident: e_1_3_1_27_2 doi: 10.1038/ncomms1604 – ident: e_1_3_1_4_2 doi: 10.1073/pnas.1222162110 – ident: e_1_3_1_17_2 doi: 10.1002/jmor.10311 – ident: e_1_3_1_31_2 doi: 10.1126/science.1254051 – ident: e_1_3_1_11_2 doi: 10.1098/rspb.1997.0066 – ident: e_1_3_1_37_2 doi: 10.1002/adfm.201400676 – ident: e_1_3_1_102_2 doi: 10.1021/cg500816z – ident: e_1_3_1_112_2 doi: 10.1039/b912095e – ident: e_1_3_1_87_2 – ident: e_1_3_1_50_2 doi: 10.1073/pnas.122055299 – ident: e_1_3_1_101_2 doi: 10.1002/adfm.201102385 – ident: e_1_3_1_58_2 doi: 10.1038/nmat3558 – ident: e_1_3_1_13_2 doi: 10.1126/science.1102289 – ident: e_1_3_1_16_2 doi: 10.1073/pnas.0803354105 – ident: e_1_3_1_52_2 doi: 10.1126/science.277.5334.1975 – ident: e_1_3_1_66_2 doi: 10.1073/pnas.1009959107 – ident: e_1_3_1_49_2 doi: 10.1002/anie.201210329 – ident: e_1_3_1_62_2 doi: 10.1021/nl404533k – ident: e_1_3_1_78_2 doi: 10.1002/adfm.201203400 – ident: e_1_3_1_23_2 doi: 10.1126/science.281.5379.969 – ident: e_1_3_1_85_2 doi: 10.1007/978-3-642-81835-6 – ident: e_1_3_1_98_2 doi: 10.1038/nmat2875 – ident: e_1_3_1_113_2 doi: 10.1088/0957-4484/23/19/194005 – ident: e_1_3_1_35_2 doi: 10.1017/S1431927614000294 – ident: e_1_3_1_100_2 doi: 10.1002/1521-4095(200010)12:20<1543::AID-ADMA1543>3.0.CO;2-P – ident: e_1_3_1_72_2 doi: 10.1002/adfm.201000248 – ident: e_1_3_1_103_2 doi: 10.1126/science.1173793 – ident: e_1_3_1_105_2 doi: 10.1021/bm049314v – ident: e_1_3_1_109_2 doi: 10.1146/annurev.earth.27.1.313 – ident: e_1_3_1_74_2 doi: 10.1039/c2fd20124k |
SSID | ssj0009593 |
Score | 2.6700938 |
SecondaryResourceType | review_article |
Snippet | Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo
et al.
review the mounting... Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting... Growing crystals by attaching particlesCrystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes.... Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully... |
SourceID | osti proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 498 |
SubjectTerms | Aquatic ecosystems Aquatic environment Attachment Biogeochemical cycles Chemical properties Chemical speciation Crystal growth Crystallization Crystals Dynamical systems Dynamics Environmental cleanup INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Materials science Mathematical models Mineralization Motion Nanotechnology Natural environment Nutrient cycles Pathways Physics Prediction models REVIEW SUMMARY Thermodynamics Trace elements |
Title | Crystallization by particle attachment in synthetic, biogenic, and geologic environments |
URI | https://www.jstor.org/stable/24748632 https://www.proquest.com/docview/1700362484 https://www.proquest.com/docview/1904235791 https://www.osti.gov/servlets/purl/1512223 |
Volume | 349 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBtMlA1kJB6GskSN7bjJY7cxTRNDCFZpb5F_pFCo0mpLH8p_xX_IXe2k6UalwUOjKHacKPf18vly_o6Qd1ymfa2ECllmbSiYkGGqRzzM-jruKYGcGQP6l5_k-VBcXCfXnc7vVtbSvNKR-fXXdSX_Y1U4BnbFVbL_YNlmUDgA-2Bf2IKFYfsgG5_cLIDcTSZ-LSVSyZnvFqiqUub78lP_uERhAmB60IKPVI-nMKTbx7j5t8J5wLVVb23WWjsAYKPNF56WXZtUxYFLKKjzC_xprWDDaYEaUS48u8zPDS6iJgNojHJbLml4PlPBMAo-R8Ggaf86xRi7Hf_4WSMYGuH84DJa-XfHxr9EwceiaAc04qSOlK6ctNdIdq8o55d7WFKS9XjbcXMnduoRKpmT7rz_TmhVsSwipZTsuxIG6-rbd96KTa7icpbEZO4HyP0Aj8g2g5kJuNbtwfHp8dlGpWevJ9VaqVXfwxoVctmwQAym4NrvEYMl27l6Rp76aQodODDtkE5R7pLHrnDpYpfseNPe0kOvW_7-Obm-A0eqF7SGI13BkY5L2sDxiNZgPKIARVpDkbah-IIMzz5cnZyHvnBHaESSVmFc9HmsNVcxegKYA6cwLeVsxATXktnYCG2Z0VYVYpQkBospGtMzI4xFMG0Tvke2ymlZvCTUqp6wMRZZkDB2JjOtlU1SbkfSwo91SVQ_w9x4VXssrjLJN9itSw6bE2ZO0GVz172lUZp-gDCRSg4X3UcrYX9UWjaYkmaqHMkzsO0uOaiNl3tncZujDCZwRZGKLnnbNIMrx-9zqiymc-iTYZJa0s_iVw-_yX3yZPUnOiBb1c28eA08udJvPDL_AEdnwCI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization+by+particle+attachment+in+synthetic%2C+biogenic%2C+and+geologic+environments&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=De+Yoreo%2C+James+J.&rft.au=Gilbert%2C+Pupa+U.+P.+A.&rft.au=Sommerdijk%2C+Nico+A.+J.+M.&rft.au=Penn%2C+R.+Lee&rft.date=2015-07-31&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=349&rft.issue=6247&rft_id=info:doi/10.1126%2Fscience.aaa6760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaa6760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |