Crystallization by particle attachment in synthetic, biogenic, and geologic environments

Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mecha...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 349; no. 6247; p. 498
Main Authors De Yoreo, James J., Gilbert, Pupa U. P. A., Sommerdijk, Nico A. J. M., Penn, R. Lee, Whitelam, Stephen, Joester, Derk, Zhang, Hengzhong, Rimer, Jeffrey D., Navrotsky, Alexandra, Banfield, Jillian F., Wallace, Adam F., Michel, F. Marc, Meldrum, Fiona C., Cölfen, Helmut, Dove, Patricia M.
Format Journal Article
LanguageEnglish
Published Washington American Association for the Advancement of Science 31.07.2015
The American Association for the Advancement of Science
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science , this issue 10.1126/science.aaa6760 Materials nucleate and grow by the assembly of small particles and multi-ion complexes. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.
AbstractList Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science, this issue 10.1126/science.aaa6760 Numerous lines of evidence challenge the traditional interpretations of how crystals nucleate and grow in synthetic and natural systems. In contrast to the monomer-by-monomer addition described in classical models, crystallization by addition of particles, ranging from multi-ion complexes to fully formed nanocrystals, is now recognized as a common phenomenon. This diverse set of pathways results from the complexity of both the free-energy landscapes and the reaction dynamics that govern particle formation and interaction. Whereas experimental observations clearly demonstrate crystallization by particle attachment (CPA), many fundamental aspects remain unknown--particularly the interplay of solution structure, interfacial forces, and particle motion. Thus, a predictive description that connects molecular details to ensemble behavior is lacking. As that description develops, long-standing interpretations of crystal formation patterns in synthetic systems and natural environments must be revisited. Here, we describe the current understanding of CPA, examine some of the nonclassical thermodynamic and dynamic mechanisms known to give rise to experimentally observed pathways, and highlight the challenges to our understanding of these mechanisms. We also explore the factors determining when particle-attachment pathways dominate growth and discuss their implications for interpreting natural crystallization and controlling nanomaterials synthesis. CPA has been observed or inferred in a wide range of synthetic systems--including oxide, metallic, and semiconductor nanoparticles; and zeolites, organic systems, macromolecules, and common biomineral phases formed biomimetically. CPA in natural environments also occurs in geologic and biological minerals. The species identified as being responsible for growth vary widely and include multi-ion complexes, oligomeric clusters, crystalline or amorphous nanoparticles, and monomer-rich liquid droplets. Particle-based pathways exceed the scope of classical theories, which assume that a new phase appears via monomer-by-monomer addition to an isolated cluster. Theoretical studies have attempted to identify the forces that drive CPA, as well as the thermodynamic basis for appearance of the constituent particles. However, neither a qualitative consensus nor a comprehensive theory has emerged. Nonetheless, concepts from phase transition theory and colloidal physics provide many of the basic features needed for a qualitative framework. There is a free-energy landscape across which assembly takes place and that determines the thermodynamic preference for particle structure, shape, and size distribution. Dynamic processes, including particle diffusion and relaxation, determine whether the growth process follows this preference or another, kinetically controlled pathway. Although observations of CPA in synthetic systems are reported for diverse mineral compositions, efforts to establish the scope of CPA in natural environments have only recently begun. Particle-based mineral formation may have particular importance for biogeochemical cycling of nutrients and metals in aquatic systems, as well as for environmental remediation. CPA is poised to provide a better understanding of biomineral formation with a physical basis for the origins of some compositions, isotopic signatures, and morphologies. It may also explain enigmatic textures and patterns found in carbonate mineral deposits that record Earth's transition from an inorganic to a biological world. A predictive understanding of CPA, which is believed to dominate solution-based growth of important semiconductor, oxide, and metallic nanomaterials, promises advances in nanomaterials design and synthesis for diverse applications. With a mechanism-based understanding, CPA processes can be exploited to produce hierarchical structures that retain the size-dependent attributes of their nanoscale building blocks and create materials with enhanced or novel physical and chemical properties. Particle attachment is influenced by the structure of solvent and ions at solid-solution interfaces and in confined regions of solution between solid surfaces. The details of solution and solid structure create the forces that drive particle motion. However, as the particles move, the local structure and corresponding forces change, taking the particles from a regime of long-range to short-range interactions and eventually leading to particle-attachment events. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.
Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.
Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems. Science , this issue 10.1126/science.aaa6760 Materials nucleate and grow by the assembly of small particles and multi-ion complexes. Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.
Growing crystals by attaching particlesCrystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting evidence for these nonclassical pathways from new observational and computational techniques, and the thermodynamic basis for these growth mechanisms. Developing predictive models for these crystal growth and nucleation pathways will improve materials synthesis strategies. These approaches will also improve fundamental understanding of natural processes such as biomineralization and trace element cycling in aquatic ecosystems.Science, this issue 10.1126/science.aaa6760 Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.
Author Zhang, Hengzhong
Penn, R. Lee
Michel, F. Marc
Cölfen, Helmut
Rimer, Jeffrey D.
Meldrum, Fiona C.
Joester, Derk
De Yoreo, James J.
Whitelam, Stephen
Navrotsky, Alexandra
Dove, Patricia M.
Gilbert, Pupa U. P. A.
Banfield, Jillian F.
Sommerdijk, Nico A. J. M.
Wallace, Adam F.
Author_xml – sequence: 1
  givenname: James J.
  surname: De Yoreo
  fullname: De Yoreo, James J.
– sequence: 2
  givenname: Pupa U. P. A.
  surname: Gilbert
  fullname: Gilbert, Pupa U. P. A.
– sequence: 3
  givenname: Nico A. J. M.
  surname: Sommerdijk
  fullname: Sommerdijk, Nico A. J. M.
– sequence: 4
  givenname: R. Lee
  surname: Penn
  fullname: Penn, R. Lee
– sequence: 5
  givenname: Stephen
  surname: Whitelam
  fullname: Whitelam, Stephen
– sequence: 6
  givenname: Derk
  surname: Joester
  fullname: Joester, Derk
– sequence: 7
  givenname: Hengzhong
  surname: Zhang
  fullname: Zhang, Hengzhong
– sequence: 8
  givenname: Jeffrey D.
  surname: Rimer
  fullname: Rimer, Jeffrey D.
– sequence: 9
  givenname: Alexandra
  surname: Navrotsky
  fullname: Navrotsky, Alexandra
– sequence: 10
  givenname: Jillian F.
  surname: Banfield
  fullname: Banfield, Jillian F.
– sequence: 11
  givenname: Adam F.
  surname: Wallace
  fullname: Wallace, Adam F.
– sequence: 12
  givenname: F. Marc
  surname: Michel
  fullname: Michel, F. Marc
– sequence: 13
  givenname: Fiona C.
  surname: Meldrum
  fullname: Meldrum, Fiona C.
– sequence: 14
  givenname: Helmut
  surname: Cölfen
  fullname: Cölfen, Helmut
– sequence: 15
  givenname: Patricia M.
  surname: Dove
  fullname: Dove, Patricia M.
BackLink https://www.osti.gov/servlets/purl/1512223$$D View this record in Osti.gov
BookMark eNp9kUtvEzEURi1UJNKWNSukEWxYdFo_xzNLFAFFqtQNlbqz7Dt3EkcTO9gOUvj1OCRi0QUrW7rn-PF9l-QixICEvGP0ljHe3WXwGABvrbWd7ugrsmB0UO3AqbggC0pF1_ZUqzfkMucNpXU2iAV5XqZDLnae_W9bfAyNOzQ7m4qHGRtbioX1FkNpfGjyIZQ11slN43xcYTjubBibFcY5rjw0GH75FMNRyNfk9WTnjG_P6xV5-vrlx_K-fXj89n35-aEFqfrSMtSCOScs63rtlKJ9p5XgE5fCdXxkIN3IwY0W5aQUUEUVAIWJMaq5G5W4Ih9O58ZcvKkhFIQ1xBAQimGKcc5FhT6doF2KP_eYi9n6DDjPNmDcZ8MGKrlQemAV_fgC3cR9CvULhuljilz2slJ3JwpSzDnhZHbJb206GEbNsQ5zrsOc66iGemHUp_6NvCTr5_9470_eJpeY_l3DpZZ9J7j4AxgqngY
CODEN SCIEAS
CitedBy_id crossref_primary_10_1021_acs_cgd_0c00151
crossref_primary_10_1016_j_gca_2020_07_018
crossref_primary_10_1039_C9CE01601E
crossref_primary_10_1134_S0965544121080016
crossref_primary_10_2138_am_2019_6848
crossref_primary_10_1002_cplu_201600457
crossref_primary_10_1021_acs_cgd_2c00694
crossref_primary_10_2138_am_2021_7777
crossref_primary_10_1016_j_actbio_2016_03_018
crossref_primary_10_1021_acs_est_7b04343
crossref_primary_10_1038_ncomms13799
crossref_primary_10_1016_j_jics_2022_100385
crossref_primary_10_1039_D1FD00093D
crossref_primary_10_1016_j_joen_2023_10_013
crossref_primary_10_1021_acs_jpcb_3c07840
crossref_primary_10_1038_s41598_022_11266_w
crossref_primary_10_1002_adma_202200364
crossref_primary_10_1016_j_jcat_2018_06_003
crossref_primary_10_1016_j_cej_2022_135874
crossref_primary_10_1021_accountsmr_0c00013
crossref_primary_10_1039_C7CC01342F
crossref_primary_10_3390_cryst15040296
crossref_primary_10_1021_acsnano_8b00638
crossref_primary_10_1038_s41563_019_0514_1
crossref_primary_10_1002_cnma_201700005
crossref_primary_10_1016_j_carbpol_2023_121174
crossref_primary_10_1021_acs_jpcc_2c04636
crossref_primary_10_1039_C8EN00994E
crossref_primary_10_1039_C6EN00619A
crossref_primary_10_1002_adfm_201602207
crossref_primary_10_1039_D0LC00239A
crossref_primary_10_1002_anie_201608538
crossref_primary_10_1021_acsbiomaterials_4c01420
crossref_primary_10_3389_frwa_2021_800944
crossref_primary_10_1021_acs_cgd_5b01637
crossref_primary_10_1021_acs_jpcb_2c00523
crossref_primary_10_1007_s13391_021_00314_8
crossref_primary_10_1021_acs_cgd_0c01016
crossref_primary_10_1039_D4CP02981J
crossref_primary_10_1021_acs_cgd_4c00766
crossref_primary_10_1016_j_ccst_2022_100073
crossref_primary_10_1021_acsomega_6b00236
crossref_primary_10_1039_D1SM01571K
crossref_primary_10_1002_anie_202107599
crossref_primary_10_1039_D1FD00092F
crossref_primary_10_1039_C7TA06924C
crossref_primary_10_1039_D3EN00930K
crossref_primary_10_1146_annurev_physchem_052516_044813
crossref_primary_10_1007_s40843_022_2381_6
crossref_primary_10_1038_s41467_022_28830_7
crossref_primary_10_1021_acs_cgd_2c01511
crossref_primary_10_1021_acs_chemrev_2c00130
crossref_primary_10_1021_acs_jpcc_3c00506
crossref_primary_10_1021_acs_cgd_6b01026
crossref_primary_10_3390_colloids6010013
crossref_primary_10_2109_jcersj2_23093
crossref_primary_10_1016_j_jece_2024_114713
crossref_primary_10_1039_C8CE01546E
crossref_primary_10_1016_j_jelechem_2024_118284
crossref_primary_10_1021_acs_langmuir_3c03532
crossref_primary_10_1177_00220345211018405
crossref_primary_10_1021_acs_cgd_6b00171
crossref_primary_10_1039_C6CP08227K
crossref_primary_10_1039_C9TC05143K
crossref_primary_10_1021_acs_langmuir_5b02901
crossref_primary_10_1002_smll_202402690
crossref_primary_10_1039_C6CS00208K
crossref_primary_10_1021_acs_accounts_0c00739
crossref_primary_10_1021_acs_cgd_0c00191
crossref_primary_10_1093_bulcsj_uoae082
crossref_primary_10_1039_C9CP00919A
crossref_primary_10_1021_acs_cgd_1c00865
crossref_primary_10_1021_jacs_8b08878
crossref_primary_10_1021_acsanm_2c03818
crossref_primary_10_1073_pnas_1914813117
crossref_primary_10_1021_acs_chemrev_3c00801
crossref_primary_10_1126_sciadv_aar3219
crossref_primary_10_1002_pssb_202100642
crossref_primary_10_1093_nsr_nwad014
crossref_primary_10_1021_acsbiomaterials_0c00364
crossref_primary_10_1016_j_ijepes_2019_105447
crossref_primary_10_1016_j_cattod_2018_02_020
crossref_primary_10_1002_anie_201915144
crossref_primary_10_1016_j_xcrp_2020_100081
crossref_primary_10_1007_s13391_020_00263_8
crossref_primary_10_1021_acsomega_8b01697
crossref_primary_10_1038_srep36449
crossref_primary_10_1103_PhysRevLett_133_248202
crossref_primary_10_1002_ange_202310234
crossref_primary_10_1177_00037028231166950
crossref_primary_10_1016_j_cocis_2022_101663
crossref_primary_10_1021_acs_jpcc_4c01281
crossref_primary_10_1038_s41467_024_44850_x
crossref_primary_10_1039_D4GC03302G
crossref_primary_10_1021_acs_accounts_7b00107
crossref_primary_10_1039_D1TA01468D
crossref_primary_10_1016_j_jsb_2017_12_002
crossref_primary_10_1021_acsnano_0c08088
crossref_primary_10_1002_adma_202000747
crossref_primary_10_1021_acsomega_3c09330
crossref_primary_10_1002_2017GC007183
crossref_primary_10_1515_revic_2020_0004
crossref_primary_10_1007_s12274_023_6336_0
crossref_primary_10_1007_s11434_016_1162_3
crossref_primary_10_1039_D2CS00110A
crossref_primary_10_1021_acs_cgd_8b01530
crossref_primary_10_1021_acs_langmuir_6b04532
crossref_primary_10_1130_G51127_1
crossref_primary_10_1021_acs_chemmater_6b03813
crossref_primary_10_3390_cryst10010003
crossref_primary_10_1021_acs_langmuir_1c02980
crossref_primary_10_1016_j_gca_2018_12_036
crossref_primary_10_1002_adma_201605903
crossref_primary_10_1016_j_cemconres_2019_105837
crossref_primary_10_3390_nano9101445
crossref_primary_10_1021_acs_est_4c10093
crossref_primary_10_1017_S1431927620020139
crossref_primary_10_1002_advs_202205037
crossref_primary_10_1029_2023JB027929
crossref_primary_10_1021_acs_est_4c05988
crossref_primary_10_1016_j_jes_2023_12_011
crossref_primary_10_1016_j_yjsbx_2021_100059
crossref_primary_10_1016_j_micromeso_2021_111112
crossref_primary_10_1016_j_jallcom_2018_02_315
crossref_primary_10_1016_j_cemconres_2025_107851
crossref_primary_10_3390_cryst11070738
crossref_primary_10_1002_smll_202308166
crossref_primary_10_1021_acs_langmuir_0c01891
crossref_primary_10_1039_C6CE01252C
crossref_primary_10_1016_j_devcel_2020_09_003
crossref_primary_10_1021_acssuschemeng_3c06700
crossref_primary_10_1103_PhysRevX_9_021015
crossref_primary_10_1021_acs_langmuir_2c02818
crossref_primary_10_1016_j_electacta_2024_145198
crossref_primary_10_1021_acscatal_7b01646
crossref_primary_10_1002_cphc_201800976
crossref_primary_10_1039_C6NR06953C
crossref_primary_10_1021_acs_iecr_2c00854
crossref_primary_10_1021_acs_jpcb_9b11537
crossref_primary_10_1021_acs_langmuir_6b03212
crossref_primary_10_1016_j_actbio_2025_02_036
crossref_primary_10_1021_acs_jpcc_8b02421
crossref_primary_10_1002_ange_201608417
crossref_primary_10_1021_acs_chemmater_9b04143
crossref_primary_10_1021_jacsau_1c00026
crossref_primary_10_1016_j_jcis_2020_07_083
crossref_primary_10_1017_S1431927622002318
crossref_primary_10_1038_s41467_018_04296_4
crossref_primary_10_1002_ange_202201980
crossref_primary_10_1002_adfm_201706434
crossref_primary_10_1016_j_jcis_2024_11_076
crossref_primary_10_1016_j_plrev_2020_01_001
crossref_primary_10_1038_s41467_023_37814_0
crossref_primary_10_1016_j_cej_2023_143329
crossref_primary_10_1063_1_5058107
crossref_primary_10_1007_s13369_022_07344_w
crossref_primary_10_1016_j_chemgeo_2020_119703
crossref_primary_10_1002_adfm_202307026
crossref_primary_10_1126_science_abm1748
crossref_primary_10_1039_C7EM00202E
crossref_primary_10_1016_j_gca_2023_03_035
crossref_primary_10_1073_pnas_2011806117
crossref_primary_10_1016_j_cemconres_2023_107301
crossref_primary_10_1021_acsbiomaterials_3c00258
crossref_primary_10_1016_j_mseb_2023_116569
crossref_primary_10_1021_acs_nanolett_4c05556
crossref_primary_10_1016_j_jcis_2024_04_037
crossref_primary_10_1021_acs_langmuir_7b02126
crossref_primary_10_1002_ange_201805877
crossref_primary_10_1038_s41467_023_43428_3
crossref_primary_10_1016_j_oregeorev_2022_104875
crossref_primary_10_1039_C8TA01027G
crossref_primary_10_1002_pmic_201900036
crossref_primary_10_1002_adma_201905784
crossref_primary_10_1021_acs_langmuir_6b04595
crossref_primary_10_1038_s42004_018_0081_4
crossref_primary_10_5382_econgeo_5057
crossref_primary_10_1002_ange_202210434
crossref_primary_10_1016_j_micromeso_2022_112312
crossref_primary_10_1021_acs_jpcc_2c04284
crossref_primary_10_1016_j_cej_2023_142440
crossref_primary_10_1021_acs_jpcc_0c10861
crossref_primary_10_1021_acs_jpcc_7b02635
crossref_primary_10_1039_D4TA05512H
crossref_primary_10_1021_acs_chemmater_7b04083
crossref_primary_10_1016_j_scitotenv_2023_168846
crossref_primary_10_1021_acs_langmuir_4c01634
crossref_primary_10_1016_j_corsci_2022_110563
crossref_primary_10_1039_C9MH00431A
crossref_primary_10_1016_j_chemgeo_2017_01_013
crossref_primary_10_1021_acs_jpcc_2c07323
crossref_primary_10_1186_s11671_019_3038_3
crossref_primary_10_1002_ange_201908216
crossref_primary_10_1021_jacs_2c10395
crossref_primary_10_1073_pnas_1803654115
crossref_primary_10_1016_j_cej_2024_158624
crossref_primary_10_1016_j_jrmge_2023_03_019
crossref_primary_10_1021_acs_biomac_2c01394
crossref_primary_10_1021_acsabm_2c00247
crossref_primary_10_1016_j_mseb_2020_114865
crossref_primary_10_1021_acs_est_2c04971
crossref_primary_10_3390_ma12111818
crossref_primary_10_1002_idm2_12144
crossref_primary_10_1021_jacs_3c05688
crossref_primary_10_1002_advs_202103524
crossref_primary_10_1021_acs_chemmater_3c02346
crossref_primary_10_1021_acs_cgd_6b00547
crossref_primary_10_1002_advs_201900775
crossref_primary_10_1021_acs_nanolett_0c00080
crossref_primary_10_1002_smll_202407539
crossref_primary_10_1021_acs_langmuir_7b03813
crossref_primary_10_1111_jpy_12604
crossref_primary_10_1016_j_nxsust_2024_100094
crossref_primary_10_1063_1_5128122
crossref_primary_10_1016_j_cemconres_2023_107258
crossref_primary_10_1021_acs_cgd_6b00514
crossref_primary_10_1039_C8CE00738A
crossref_primary_10_1021_acs_chemrev_7b00285
crossref_primary_10_1002_aic_16356
crossref_primary_10_1039_D0CE00949K
crossref_primary_10_1039_C6EE01969B
crossref_primary_10_1061__ASCE_GT_1943_5606_0002871
crossref_primary_10_1002_anie_202116850
crossref_primary_10_1016_j_pcrysgrow_2016_04_003
crossref_primary_10_1039_D0NR05640E
crossref_primary_10_1021_jacs_1c05488
crossref_primary_10_1021_acs_cgd_5b01180
crossref_primary_10_1039_C8TA02233J
crossref_primary_10_1038_s41467_024_54785_y
crossref_primary_10_1021_acs_cgd_3c00895
crossref_primary_10_1002_adfm_202316422
crossref_primary_10_1002_asia_201801069
crossref_primary_10_1021_acsearthspacechem_2c00165
crossref_primary_10_1021_acs_cgd_7b01359
crossref_primary_10_1007_s12598_024_03082_0
crossref_primary_10_1016_j_jwpe_2023_103818
crossref_primary_10_1021_acs_nanolett_1c00890
crossref_primary_10_1039_D4TB00867G
crossref_primary_10_1016_j_jmrt_2022_12_107
crossref_primary_10_1038_s41598_020_58216_y
crossref_primary_10_1021_acs_jpcc_0c10323
crossref_primary_10_1016_j_jenvman_2025_124611
crossref_primary_10_1073_pnas_1804543115
crossref_primary_10_1074_jbc_RA119_010506
crossref_primary_10_1002_jcc_26963
crossref_primary_10_1021_acs_jpcc_2c09120
crossref_primary_10_1126_science_aau8299
crossref_primary_10_1016_j_jfluchem_2016_12_003
crossref_primary_10_1039_D0CE00243G
crossref_primary_10_1016_j_jcrysgro_2022_127029
crossref_primary_10_1002_ange_202008100
crossref_primary_10_1016_j_jcrysgro_2022_127024
crossref_primary_10_1149_1945_7111_ac99a0
crossref_primary_10_1039_D2CE00447J
crossref_primary_10_1039_D1FD00101A
crossref_primary_10_1126_science_aah6902
crossref_primary_10_1016_j_cemconres_2023_107299
crossref_primary_10_1016_j_cej_2021_131598
crossref_primary_10_1016_j_molliq_2020_114018
crossref_primary_10_1021_acs_cgd_4c01142
crossref_primary_10_1002_anie_201603687
crossref_primary_10_1016_j_micromeso_2024_112999
crossref_primary_10_1002_ange_202215728
crossref_primary_10_1038_s41467_020_17795_0
crossref_primary_10_1016_j_chemgeo_2016_06_006
crossref_primary_10_1016_j_actbio_2019_05_036
crossref_primary_10_32607_actanaturae_11815
crossref_primary_10_1002_chem_201601280
crossref_primary_10_1039_D3CE00278K
crossref_primary_10_1021_acsnano_4c09056
crossref_primary_10_1007_s00240_016_0951_0
crossref_primary_10_1021_acs_langmuir_9b00909
crossref_primary_10_1126_science_aam6371
crossref_primary_10_1021_acs_jpclett_2c02511
crossref_primary_10_1016_j_ece_2024_07_001
crossref_primary_10_1016_j_chemgeo_2017_12_009
crossref_primary_10_1021_acs_inorgchem_2c01673
crossref_primary_10_1021_acs_cgd_2c00296
crossref_primary_10_1021_acs_cgd_6b00939
crossref_primary_10_1016_j_apsusc_2020_147837
crossref_primary_10_3390_inorganics5010016
crossref_primary_10_1016_j_chemgeo_2021_120614
crossref_primary_10_1039_D4SM00455H
crossref_primary_10_1088_1361_6528_ab9e8f
crossref_primary_10_1021_acs_inorgchem_8b03446
crossref_primary_10_1021_acs_cgd_2c01149
crossref_primary_10_1029_2022GC010445
crossref_primary_10_1021_acs_cgd_3c00022
crossref_primary_10_1002_cctc_202000116
crossref_primary_10_1016_j_apsusc_2023_156842
crossref_primary_10_1111_gcb_14912
crossref_primary_10_1039_D0CE01173H
crossref_primary_10_1021_acs_cgd_0c01512
crossref_primary_10_1021_acs_est_2c01858
crossref_primary_10_1021_acsnano_3c03103
crossref_primary_10_1039_D1CC05980G
crossref_primary_10_1021_jacs_4c11264
crossref_primary_10_1038_s41467_024_50323_y
crossref_primary_10_1016_j_isci_2022_105343
crossref_primary_10_1016_j_gca_2023_07_027
crossref_primary_10_1021_acsearthspacechem_1c00385
crossref_primary_10_1021_acs_chemrev_7b00208
crossref_primary_10_1002_anie_202209615
crossref_primary_10_1021_acsearthspacechem_3c00314
crossref_primary_10_1021_acsnano_8b08668
crossref_primary_10_1038_s41467_018_03041_1
crossref_primary_10_1007_s00240_018_1060_z
crossref_primary_10_1021_acs_nanolett_2c03713
crossref_primary_10_1021_acs_jpcc_2c02981
crossref_primary_10_3390_cryst7070207
crossref_primary_10_1021_acs_cgd_1c00433
crossref_primary_10_1007_s12274_023_5441_4
crossref_primary_10_1021_acs_jpcb_7b10915
crossref_primary_10_1021_acs_chemmater_5b04343
crossref_primary_10_1002_ppsc_201700094
crossref_primary_10_1002_chem_201704287
crossref_primary_10_1021_acs_jpclett_0c03276
crossref_primary_10_1039_C7CE00766C
crossref_primary_10_1021_acs_cgd_4c00245
crossref_primary_10_1021_jacs_9b09697
crossref_primary_10_1039_D2RA00756H
crossref_primary_10_1002_anie_202104002
crossref_primary_10_1038_s41557_019_0305_y
crossref_primary_10_1021_acsbiomaterials_9b00308
crossref_primary_10_1002_ange_201610275
crossref_primary_10_1038_s41467_019_13009_4
crossref_primary_10_1002_smll_202304183
crossref_primary_10_1021_acs_inorgchem_2c02565
crossref_primary_10_3390_catal12101216
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1007_s00126_021_01079_8
crossref_primary_10_1021_acs_jpcc_0c01041
crossref_primary_10_1039_C6CE01202G
crossref_primary_10_1021_acsomega_0c02075
crossref_primary_10_1016_j_ibiod_2022_105422
crossref_primary_10_1016_j_actbio_2017_02_006
crossref_primary_10_1016_j_jcrysgro_2020_125991
crossref_primary_10_1002_ange_202101611
crossref_primary_10_1007_s11837_017_2579_0
crossref_primary_10_1107_S2053273319008623
crossref_primary_10_1021_acs_cgd_9b00062
crossref_primary_10_1007_s10854_018_0477_z
crossref_primary_10_29121_granthaalayah_v10_i9_2022_4767
crossref_primary_10_1016_j_watres_2020_116250
crossref_primary_10_1016_j_cej_2022_140748
crossref_primary_10_1021_acscentsci_1c00254
crossref_primary_10_3390_ma17061359
crossref_primary_10_1021_acs_biomac_7b00772
crossref_primary_10_1021_acs_cgd_9b00066
crossref_primary_10_1021_acsnano_2c01171
crossref_primary_10_1016_j_apsusc_2022_153466
crossref_primary_10_1021_acsearthspacechem_1c00376
crossref_primary_10_1126_sciadv_abn7087
crossref_primary_10_1126_sciadv_abl9653
crossref_primary_10_1021_acs_nanolett_4c01525
crossref_primary_10_1038_s41467_025_58130_9
crossref_primary_10_1021_acs_inorgchem_4c02970
crossref_primary_10_1016_j_cemconres_2021_106688
crossref_primary_10_1130_G48044_1
crossref_primary_10_1002_advs_201902536
crossref_primary_10_1007_s12274_023_6033_z
crossref_primary_10_1021_acs_cgd_0c00241
crossref_primary_10_1002_anie_202117742
crossref_primary_10_1038_s41557_020_0523_3
crossref_primary_10_1021_acs_cgd_9b00085
crossref_primary_10_1039_D3NR00702B
crossref_primary_10_1016_j_mencom_2019_07_032
crossref_primary_10_1016_j_actbio_2023_03_034
crossref_primary_10_1111_1462_2920_15174
crossref_primary_10_1016_j_bbrep_2021_100939
crossref_primary_10_1002_aic_16815
crossref_primary_10_1021_acs_cgd_3c01078
crossref_primary_10_1002_anie_202303770
crossref_primary_10_1016_j_jnoncrysol_2017_12_007
crossref_primary_10_1038_s42004_024_01275_3
crossref_primary_10_1007_s11426_021_1015_9
crossref_primary_10_1039_C9CE00982E
crossref_primary_10_1021_acs_nanolett_1c04424
crossref_primary_10_1021_jacs_2c10839
crossref_primary_10_1039_D5CE00034C
crossref_primary_10_1073_pnas_1712911115
crossref_primary_10_1021_jacs_0c07384
crossref_primary_10_1021_acsnano_4c08955
crossref_primary_10_1021_jacs_1c09174
crossref_primary_10_1021_acs_molpharmaceut_4c00033
crossref_primary_10_1039_C6RA11193A
crossref_primary_10_1021_acs_chemrev_2c00468
crossref_primary_10_1039_C6SM00052E
crossref_primary_10_1021_acs_langmuir_9b00375
crossref_primary_10_1016_j_lwt_2021_112384
crossref_primary_10_1186_s12932_019_0061_3
crossref_primary_10_1021_acs_cgd_0c01376
crossref_primary_10_1016_j_chemphys_2018_09_032
crossref_primary_10_1017_S1431927620018115
crossref_primary_10_1021_acs_cgd_5c00064
crossref_primary_10_1039_C7CE01450C
crossref_primary_10_1016_j_scitotenv_2022_159596
crossref_primary_10_1557_s43580_024_00922_0
crossref_primary_10_1051_matecconf_202236301032
crossref_primary_10_1360_SST_2022_0391
crossref_primary_10_1038_s41467_018_02932_7
crossref_primary_10_1039_C6CS00432F
crossref_primary_10_1016_j_jiec_2021_03_032
crossref_primary_10_1007_s10854_017_7782_9
crossref_primary_10_1039_C9CC07087G
crossref_primary_10_1038_s41586_021_03355_z
crossref_primary_10_1016_j_scriptamat_2020_10_042
crossref_primary_10_1063_1_5054273
crossref_primary_10_1002_adhm_201800700
crossref_primary_10_1021_acs_accounts_1c00279
crossref_primary_10_1021_acs_jpcc_9b07232
crossref_primary_10_1039_C6TB02657E
crossref_primary_10_1021_acs_chemmater_7b01522
crossref_primary_10_1002_adma_202001068
crossref_primary_10_1002_anie_201908751
crossref_primary_10_1021_acs_cgd_1c00971
crossref_primary_10_1039_D3SC05790A
crossref_primary_10_1080_22297928_2020_1865832
crossref_primary_10_1021_acs_cgd_8b01680
crossref_primary_10_1103_PhysRevMaterials_1_073401
crossref_primary_10_1038_s41368_021_00147_z
crossref_primary_10_1038_s41467_019_14168_0
crossref_primary_10_1021_acs_langmuir_3c01469
crossref_primary_10_1016_j_cej_2025_159525
crossref_primary_10_1002_smll_202107735
crossref_primary_10_1039_D3LC00778B
crossref_primary_10_3389_feart_2023_1188142
crossref_primary_10_1021_acs_jpcc_9b08577
crossref_primary_10_1007_s11095_018_2374_9
crossref_primary_10_1126_sciadv_adf6138
crossref_primary_10_5802_crchim_125
crossref_primary_10_1021_acs_cgd_1c00503
crossref_primary_10_1021_acs_iecr_7b03326
crossref_primary_10_1038_s42004_024_01199_y
crossref_primary_10_1007_s40789_025_00755_8
crossref_primary_10_1039_C5CC09295G
crossref_primary_10_1038_s41570_022_00418_1
crossref_primary_10_1126_science_aau4146
crossref_primary_10_1039_C6CC04522G
crossref_primary_10_1016_j_scriptamat_2020_10_027
crossref_primary_10_1039_C9NR01497G
crossref_primary_10_1073_pnas_2112679119
crossref_primary_10_1016_j_epsl_2020_116476
crossref_primary_10_1039_D0TA11023J
crossref_primary_10_3389_fchem_2022_818230
crossref_primary_10_1002_ange_201603687
crossref_primary_10_1016_j_cej_2023_148260
crossref_primary_10_3390_min8080346
crossref_primary_10_3390_biology13110944
crossref_primary_10_1002_ange_202408937
crossref_primary_10_1002_ange_201915144
crossref_primary_10_1039_D4LC00637B
crossref_primary_10_1146_annurev_physchem_082720_100947
crossref_primary_10_1002_adfm_202406946
crossref_primary_10_1021_acsmaterialslett_1c00002
crossref_primary_10_1002_sstr_202400146
crossref_primary_10_1002_adma_201906738
crossref_primary_10_1039_D4SC00452C
crossref_primary_10_1021_acs_cgd_2c00971
crossref_primary_10_1016_j_gca_2022_10_039
crossref_primary_10_1021_jacs_1c11434
crossref_primary_10_1021_acs_est_5b02819
crossref_primary_10_1016_j_gca_2024_05_005
crossref_primary_10_1039_D4CY00550C
crossref_primary_10_1073_pnas_2408628121
crossref_primary_10_1134_S0020168522010010
crossref_primary_10_1039_D4EN00670D
crossref_primary_10_1021_jacs_5b07931
crossref_primary_10_2138_am_2022_8758
crossref_primary_10_1016_j_gca_2021_07_026
crossref_primary_10_1021_acs_cgd_2c00960
crossref_primary_10_1016_j_gca_2021_07_023
crossref_primary_10_1103_PhysRevLett_127_018003
crossref_primary_10_1002_slct_202001255
crossref_primary_10_1016_j_actbio_2022_06_010
crossref_primary_10_1021_acs_cgd_7b01668
crossref_primary_10_1016_j_apt_2022_103607
crossref_primary_10_1029_2023JB026961
crossref_primary_10_1007_s11705_019_1852_x
crossref_primary_10_1039_D0NH00685H
crossref_primary_10_1002_adma_201802309
crossref_primary_10_1021_acsnano_4c04192
crossref_primary_10_1002_aic_18144
crossref_primary_10_1038_s41598_021_81020_1
crossref_primary_10_1126_sciadv_1601144
crossref_primary_10_1016_j_jdent_2024_104838
crossref_primary_10_1098_rsfs_2016_0120
crossref_primary_10_1002_smll_202401052
crossref_primary_10_1016_j_jcis_2022_02_016
crossref_primary_10_1002_adem_202301755
crossref_primary_10_1038_s41467_023_38757_2
crossref_primary_10_1039_D4CE01156B
crossref_primary_10_1016_j_pnsc_2022_09_003
crossref_primary_10_1016_j_aqrep_2024_102292
crossref_primary_10_1073_pnas_1918195117
crossref_primary_10_1038_s41467_024_47503_1
crossref_primary_10_1002_adma_202202242
crossref_primary_10_1098_rsos_170622
crossref_primary_10_1002_ange_201608538
crossref_primary_10_1016_j_jhazmat_2023_130973
crossref_primary_10_3390_cryst11020174
crossref_primary_10_1038_s41598_023_30537_8
crossref_primary_10_1021_acs_langmuir_6b03570
crossref_primary_10_1021_acsami_5b10987
crossref_primary_10_2138_am_2022_8309
crossref_primary_10_1039_D0NR03486J
crossref_primary_10_3390_nano12234151
crossref_primary_10_1002_anie_201704499
crossref_primary_10_1016_j_jcrysgro_2021_126043
crossref_primary_10_3390_cryst13060938
crossref_primary_10_1021_acs_iecr_8b01695
crossref_primary_10_3390_ma12050814
crossref_primary_10_1039_C8CE00241J
crossref_primary_10_1016_j_matt_2024_08_011
crossref_primary_10_1021_acs_nanolett_5b04808
crossref_primary_10_1021_acs_est_2c06668
crossref_primary_10_1016_j_xcrp_2021_100680
crossref_primary_10_1016_j_jece_2024_113572
crossref_primary_10_1038_s41467_017_00756_5
crossref_primary_10_3390_cryst12091234
crossref_primary_10_1016_j_actbio_2015_11_062
crossref_primary_10_1039_D4CP01979B
crossref_primary_10_1039_D3CS00312D
crossref_primary_10_1002_adma_202100668
crossref_primary_10_1016_j_gca_2019_11_009
crossref_primary_10_1002_anie_201703158
crossref_primary_10_1016_j_mattod_2024_06_002
crossref_primary_10_1007_s12274_021_4030_7
crossref_primary_10_1021_acs_cgd_8b01604
crossref_primary_10_1038_s41467_020_15333_6
crossref_primary_10_1557_s43577_023_00479_7
crossref_primary_10_1021_acsomega_4c02952
crossref_primary_10_1016_j_chemgeo_2022_121215
crossref_primary_10_1021_acs_cgd_5b01792
crossref_primary_10_1002_adfm_202108126
crossref_primary_10_1002_chem_202500120
crossref_primary_10_1002_smll_201907667
crossref_primary_10_1002_cphc_202200480
crossref_primary_10_1021_acs_cgd_1c00908
crossref_primary_10_1073_pnas_2111213118
crossref_primary_10_1021_acs_langmuir_3c01411
crossref_primary_10_1557_s43577_024_00696_8
crossref_primary_10_1039_D3CC04311H
crossref_primary_10_1103_PhysRevB_110_144112
crossref_primary_10_1016_j_apsusc_2023_158401
crossref_primary_10_1039_D1CE00763G
crossref_primary_10_1021_jacs_2c07296
crossref_primary_10_1016_j_ultsonch_2023_106368
crossref_primary_10_1021_acsnano_2c11672
crossref_primary_10_1021_acs_cgd_0c00920
crossref_primary_10_3390_coatings13091644
crossref_primary_10_3389_fbioe_2024_1382047
crossref_primary_10_1016_j_ccr_2019_213092
crossref_primary_10_1039_C9EN00779B
crossref_primary_10_1039_D4SM00181H
crossref_primary_10_1016_j_jallcom_2025_179138
crossref_primary_10_1021_jacs_2c00665
crossref_primary_10_1039_C9CP05423E
crossref_primary_10_1016_j_chemgeo_2024_121951
crossref_primary_10_1098_rsif_2022_0336
crossref_primary_10_1021_acs_est_2c04859
crossref_primary_10_1093_micmic_ozad142
crossref_primary_10_1002_chem_201605957
crossref_primary_10_1016_j_carbon_2020_05_001
crossref_primary_10_1021_acs_cgd_4c00194
crossref_primary_10_1021_acsaom_4c00297
crossref_primary_10_1016_j_cocis_2016_05_009
crossref_primary_10_1126_sciadv_adg5858
crossref_primary_10_1016_j_jcis_2019_02_047
crossref_primary_10_1002_aic_18672
crossref_primary_10_1002_ange_202405092
crossref_primary_10_1016_j_chemgeo_2019_06_006
crossref_primary_10_1103_PhysRevE_101_052604
crossref_primary_10_1016_j_actamat_2022_117903
crossref_primary_10_1002_adma_202311659
crossref_primary_10_1002_ange_202305353
crossref_primary_10_1039_C8NJ04889D
crossref_primary_10_1021_jacs_2c02424
crossref_primary_10_1016_j_nanoen_2022_107575
crossref_primary_10_1016_j_cemconres_2023_107135
crossref_primary_10_1021_jacs_7b12529
crossref_primary_10_1039_C8CP00540K
crossref_primary_10_1002_anie_202310419
crossref_primary_10_1016_j_heliyon_2023_e18331
crossref_primary_10_1021_acs_chemmater_8b02884
crossref_primary_10_1039_C6CC06353E
crossref_primary_10_1093_jmicro_dfab046
crossref_primary_10_1103_PhysRevLett_124_066101
crossref_primary_10_1021_acs_chemrev_2c00905
crossref_primary_10_1021_acsnano_3c10810
crossref_primary_10_1016_j_jcrysgro_2017_12_006
crossref_primary_10_1002_admi_201902047
crossref_primary_10_1016_j_gca_2023_10_023
crossref_primary_10_1039_D0TB01978J
crossref_primary_10_1038_s41598_021_85525_7
crossref_primary_10_1039_C8SC05634J
crossref_primary_10_1016_j_isci_2021_102956
crossref_primary_10_1021_acsanm_1c03402
crossref_primary_10_1021_acs_nanolett_7b04713
crossref_primary_10_1039_D2EM00118G
crossref_primary_10_1021_acs_chemmater_1c03563
crossref_primary_10_1021_acs_cgd_3c00530
crossref_primary_10_3897_j_moem_7_1_73285
crossref_primary_10_1016_j_cej_2023_144256
crossref_primary_10_1039_D2CE00328G
crossref_primary_10_1016_j_jorganchem_2018_02_005
crossref_primary_10_1038_s41598_024_68037_y
crossref_primary_10_1002_anie_201603794
crossref_primary_10_1021_acsnano_8b07880
crossref_primary_10_1016_j_sedgeo_2017_09_011
crossref_primary_10_1126_sciadv_add8295
crossref_primary_10_1016_j_gca_2023_01_028
crossref_primary_10_1038_s41586_022_04409_6
crossref_primary_10_1038_s41578_023_00637_y
crossref_primary_10_1063_1_5096595
crossref_primary_10_1371_journal_pcbi_1008780
crossref_primary_10_1002_anie_202008100
crossref_primary_10_1021_acs_jpcc_8b01605
crossref_primary_10_1021_acsnano_4c16946
crossref_primary_10_1021_acs_chemmater_0c04832
crossref_primary_10_1021_acs_chemmater_7b04223
crossref_primary_10_1111_jmi_12509
crossref_primary_10_1021_acs_cgd_7b00378
crossref_primary_10_1038_nchem_2618
crossref_primary_10_1039_D2CE00896C
crossref_primary_10_1038_s41557_018_0009_8
crossref_primary_10_1038_s41598_022_26877_6
crossref_primary_10_1016_j_preme_2025_100019
crossref_primary_10_1021_acsnano_8b07864
crossref_primary_10_3390_cryst8010048
crossref_primary_10_1016_j_cej_2018_11_013
crossref_primary_10_2138_am_2022_8851
crossref_primary_10_1039_D3NR05495K
crossref_primary_10_1002_adma_201606730
crossref_primary_10_1002_adfm_202107312
crossref_primary_10_2138_am_2018_6226
crossref_primary_10_1126_science_aaz7555
crossref_primary_10_1038_s41563_020_0753_1
crossref_primary_10_1021_acs_jpcc_8b05189
crossref_primary_10_1073_pnas_1708161114
crossref_primary_10_1039_D0CP03493B
crossref_primary_10_1016_j_bgtech_2024_100159
crossref_primary_10_1021_acs_chemmater_7b04245
crossref_primary_10_1021_acscentsci_8b00853
crossref_primary_10_1039_D3SM01302B
crossref_primary_10_1126_sciadv_aaw9569
crossref_primary_10_1021_acs_cgd_9b01693
crossref_primary_10_1021_acs_chemmater_5b04266
crossref_primary_10_1021_acsbiomaterials_1c00693
crossref_primary_10_1021_acs_nanolett_4c01017
crossref_primary_10_1007_s00710_017_0528_9
crossref_primary_10_1021_acs_biomac_7b01129
crossref_primary_10_1021_acs_chemrev_8b00318
crossref_primary_10_1557_s43577_024_00702_z
crossref_primary_10_1039_C9SM01834D
crossref_primary_10_1107_S2053229618007143
crossref_primary_10_1038_s41598_020_75241_z
crossref_primary_10_1021_jacs_9b01883
crossref_primary_10_1002_anie_202306885
crossref_primary_10_1016_j_matt_2022_09_027
crossref_primary_10_1021_acsnano_0c08998
crossref_primary_10_3390_pharmaceutics13060889
crossref_primary_10_1038_s42004_022_00787_0
crossref_primary_10_1016_j_matt_2019_05_001
crossref_primary_10_1021_acs_cgd_1c00536
crossref_primary_10_1039_D0TA12533D
crossref_primary_10_1021_jacs_0c05591
crossref_primary_10_1038_s41565_024_01815_x
crossref_primary_10_1016_j_gca_2024_09_034
crossref_primary_10_1038_s41467_023_43608_1
crossref_primary_10_1016_j_jcis_2023_12_002
crossref_primary_10_1017_S1431927621008448
crossref_primary_10_1038_s41586_023_06326_8
crossref_primary_10_1016_j_chemgeo_2019_119460
crossref_primary_10_1007_s10965_022_03143_x
crossref_primary_10_1021_acs_cgd_2c00152
crossref_primary_10_5194_bg_15_2205_2018
crossref_primary_10_1039_C9EN01000A
crossref_primary_10_1021_acs_jpcc_9b04268
crossref_primary_10_1073_pnas_1902273116
crossref_primary_10_1002_chem_201900275
crossref_primary_10_1021_acs_chemmater_9b03738
crossref_primary_10_1039_D2FD00061J
crossref_primary_10_1021_acsami_1c01308
crossref_primary_10_1371_journal_pone_0186391
crossref_primary_10_1016_S1872_5805_21_60030_6
crossref_primary_10_1002_ejic_201501159
crossref_primary_10_1016_j_jmat_2017_03_001
crossref_primary_10_1021_acs_cgd_1c00563
crossref_primary_10_1038_s41563_019_0511_4
crossref_primary_10_1021_acsnano_0c09814
crossref_primary_10_1038_s41467_022_34330_5
crossref_primary_10_1039_D0CE00076K
crossref_primary_10_1021_acs_jpclett_5b01843
crossref_primary_10_1007_s12274_019_2483_8
crossref_primary_10_1177_00220345211053814
crossref_primary_10_1016_j_jcrysgro_2019_125454
crossref_primary_10_1002_adfm_201701658
crossref_primary_10_1002_anie_201805877
crossref_primary_10_1021_acs_cgd_3c00582
crossref_primary_10_3390_pharmaceutics11080420
crossref_primary_10_1021_acs_jpclett_3c03327
crossref_primary_10_1038_s44286_024_00102_9
crossref_primary_10_1039_C8CE02199F
crossref_primary_10_1016_j_cemconres_2022_106873
crossref_primary_10_1039_D0NR02899A
crossref_primary_10_1038_s41467_020_14719_w
crossref_primary_10_1021_acs_jpcc_0c07933
crossref_primary_10_1007_s00338_021_02198_4
crossref_primary_10_1021_acs_chemmater_9b02467
crossref_primary_10_1016_j_jiec_2019_07_020
crossref_primary_10_1021_acs_est_3c03942
crossref_primary_10_1016_j_gca_2025_02_002
crossref_primary_10_1016_j_jcrysgro_2024_127786
crossref_primary_10_1021_acs_chemmater_2c00418
crossref_primary_10_1021_acs_jpcc_7b07745
crossref_primary_10_1016_j_jsb_2016_07_016
crossref_primary_10_1126_sciadv_adf9144
crossref_primary_10_1007_s00249_024_01712_0
crossref_primary_10_1557_jmr_2018_478
crossref_primary_10_1038_s41586_019_1645_x
crossref_primary_10_1021_acs_cgd_2c00592
crossref_primary_10_1039_D3SC05179J
crossref_primary_10_1021_jacs_4c04674
crossref_primary_10_1126_science_aaz7949
crossref_primary_10_1557_jmr_2019_272
crossref_primary_10_1038_ncomms12206
crossref_primary_10_1002_adem_202000044
crossref_primary_10_1016_j_isci_2022_105472
crossref_primary_10_1016_j_cocis_2018_04_002
crossref_primary_10_1002_slct_201600039
crossref_primary_10_1021_acsnano_4c18704
crossref_primary_10_1021_acs_chemrev_8b00745
crossref_primary_10_1021_acs_cgd_3c01426
crossref_primary_10_1002_anie_201908216
crossref_primary_10_1126_sciadv_adl3075
crossref_primary_10_1038_nchem_2675
crossref_primary_10_1021_acs_jpcc_8b05572
crossref_primary_10_1038_s41570_020_00242_5
crossref_primary_10_1186_s12932_024_00091_x
crossref_primary_10_1016_j_chemgeo_2021_120520
crossref_primary_10_1021_acs_nanolett_1c04966
crossref_primary_10_1039_C9NH00308H
crossref_primary_10_1002_smll_202100607
crossref_primary_10_3390_ma11122492
crossref_primary_10_1021_acs_chemmater_7b03798
crossref_primary_10_1021_acs_chemmater_9b00417
crossref_primary_10_1016_j_actbio_2022_01_024
crossref_primary_10_1021_acsbiomaterials_7b00420
crossref_primary_10_1021_acs_cgd_0c01245
crossref_primary_10_1021_acs_nanolett_7b04128
crossref_primary_10_1039_D0NR01126F
crossref_primary_10_1021_acs_cgd_8b00044
crossref_primary_10_1038_s41467_022_32615_3
crossref_primary_10_1016_j_colsurfa_2025_136487
crossref_primary_10_1021_jacs_3c09370
crossref_primary_10_1021_acs_langmuir_8b00865
crossref_primary_10_1016_j_desal_2025_118616
crossref_primary_10_1021_acs_biomac_0c00667
crossref_primary_10_1021_acsomega_4c05477
crossref_primary_10_1007_s00240_019_01125_1
crossref_primary_10_1016_j_nanoen_2019_103892
crossref_primary_10_1021_acs_cgd_8b01361
crossref_primary_10_1021_acsnano_7b07633
crossref_primary_10_1002_smll_202001423
crossref_primary_10_1021_acs_est_4c07527
crossref_primary_10_1021_jacs_4c17643
crossref_primary_10_1021_acsami_6b14036
crossref_primary_10_1021_acs_jpcc_9b06078
crossref_primary_10_1002_adma_202211244
crossref_primary_10_1021_acsami_0c16653
crossref_primary_10_2110_jsr_2021_016
crossref_primary_10_1038_s41467_017_00955_0
crossref_primary_10_1021_acs_jpclett_4c01026
crossref_primary_10_1016_j_polymer_2020_123150
crossref_primary_10_1016_j_scriptamat_2022_114856
crossref_primary_10_1002_ange_201903662
crossref_primary_10_1021_jacs_6b10490
crossref_primary_10_1021_jacs_3c03619
crossref_primary_10_1021_acs_jpcb_9b05017
crossref_primary_10_1021_acs_jpclett_4c01031
crossref_primary_10_1073_pnas_2012025117
crossref_primary_10_1021_acsami_1c12936
crossref_primary_10_1016_j_sedgeo_2022_106207
crossref_primary_10_1021_acs_chemmater_7b03886
crossref_primary_10_1016_j_gene_2024_148747
crossref_primary_10_1039_C6CE02161A
crossref_primary_10_2138_am_2021_7529
crossref_primary_10_1016_j_physb_2021_413282
crossref_primary_10_1016_j_colsurfb_2018_11_009
crossref_primary_10_1038_s41570_019_0129_8
crossref_primary_10_5194_gchron_4_617_2022
crossref_primary_10_1002_chem_202003344
crossref_primary_10_1021_acsnano_0c07359
crossref_primary_10_1038_s42004_024_01285_1
crossref_primary_10_1016_j_actbio_2021_08_051
crossref_primary_10_1126_sciadv_aas9819
crossref_primary_10_1021_acs_jpcc_0c05248
crossref_primary_10_1021_acscentsci_8b00289
crossref_primary_10_1039_D4TA00725E
crossref_primary_10_1002_adfm_201802088
crossref_primary_10_1073_pnas_2008880118
crossref_primary_10_1039_C9CE01403A
crossref_primary_10_1039_C7CE01681F
crossref_primary_10_1021_acs_jpcc_1c09021
crossref_primary_10_29121_granthaalayah_v12_i3_2024_5571
crossref_primary_10_1002_cjoc_202100119
crossref_primary_10_1039_C9NH00175A
crossref_primary_10_1021_acs_langmuir_9b00234
crossref_primary_10_3390_ma16052026
crossref_primary_10_1021_jacs_7b03163
crossref_primary_10_1016_j_gca_2017_09_039
crossref_primary_10_1021_acs_jpclett_3c00336
crossref_primary_10_1016_j_actbio_2016_04_005
crossref_primary_10_1002_smll_201902936
crossref_primary_10_1098_rsta_2022_0250
crossref_primary_10_3390_ijms232213810
crossref_primary_10_1002_ange_202209615
crossref_primary_10_1038_s43247_021_00126_6
crossref_primary_10_1021_acs_cgd_8b00479
crossref_primary_10_1039_C6CE01887D
crossref_primary_10_1038_s41467_018_07395_4
crossref_primary_10_1016_j_gca_2021_01_016
crossref_primary_10_1021_acs_est_8b00438
crossref_primary_10_1007_s10876_025_02783_5
crossref_primary_10_1126_sciadv_adf8436
crossref_primary_10_1021_acsami_7b02764
crossref_primary_10_1016_j_jsb_2016_09_005
crossref_primary_10_1038_srep24216
crossref_primary_10_1039_C5CE02328A
crossref_primary_10_1021_acs_nanolett_6b02586
crossref_primary_10_1021_acs_cgd_8b00025
crossref_primary_10_1002_anie_202408937
crossref_primary_10_1021_acs_cgd_8b00028
crossref_primary_10_1016_j_jhazmat_2022_129367
crossref_primary_10_1021_acs_nanolett_4c04084
crossref_primary_10_1038_s41563_021_01144_7
crossref_primary_10_3390_min12121562
crossref_primary_10_1002_smll_202306175
crossref_primary_10_1038_d41586_018_03801_5
crossref_primary_10_1021_acs_iecr_4c04674
crossref_primary_10_1038_s41467_023_36502_3
crossref_primary_10_1021_acs_langmuir_3c03788
crossref_primary_10_1038_srep40701
crossref_primary_10_1038_s43247_024_01823_8
crossref_primary_10_1073_pnas_2121661119
crossref_primary_10_1021_acs_inorgchem_4c04525
crossref_primary_10_1016_j_chemgeo_2024_122510
crossref_primary_10_1021_acs_cgd_2c00853
crossref_primary_10_1021_acsnano_1c00571
crossref_primary_10_1039_D2CE01709A
crossref_primary_10_1007_s10853_018_2052_7
crossref_primary_10_1680_jgeot_22_00301
crossref_primary_10_1016_j_molstruc_2019_07_038
crossref_primary_10_1080_21650373_2025_2453558
crossref_primary_10_1021_acs_chemmater_3c02176
crossref_primary_10_1021_acs_chemmater_5b01542
crossref_primary_10_1038_s41598_022_10627_9
crossref_primary_10_1002_dep2_136
crossref_primary_10_1039_D3CE01063E
crossref_primary_10_1039_C9CC02194A
crossref_primary_10_1002_ange_201911213
crossref_primary_10_1016_j_powtec_2023_118677
crossref_primary_10_1016_j_cej_2025_159282
crossref_primary_10_1021_acs_cgd_5b01488
crossref_primary_10_1038_s41557_019_0210_4
crossref_primary_10_2138_am_2021_7940
crossref_primary_10_1016_j_chemer_2024_126206
crossref_primary_10_1016_j_cocis_2020_01_003
crossref_primary_10_1021_acs_inorgchem_4c01044
crossref_primary_10_3390_w16050650
crossref_primary_10_1021_acs_cgd_7b01547
crossref_primary_10_1021_acs_cgd_9b00304
crossref_primary_10_1039_C6CP04153A
crossref_primary_10_1016_j_chempr_2023_08_002
crossref_primary_10_1016_j_molliq_2025_127395
crossref_primary_10_1039_C8CE00491A
crossref_primary_10_1021_jacs_9b04586
crossref_primary_10_3389_fmats_2020_00075
crossref_primary_10_1021_jacs_4c11940
crossref_primary_10_1557_s43580_024_00860_x
crossref_primary_10_1021_acs_langmuir_9b02043
crossref_primary_10_1021_acs_cgd_7b01578
crossref_primary_10_1016_j_polymer_2025_128179
crossref_primary_10_1039_C8NA00374B
crossref_primary_10_1002_anie_202211254
crossref_primary_10_1016_j_corsci_2022_110775
crossref_primary_10_1021_acs_langmuir_1c01871
crossref_primary_10_1038_s41467_018_04285_7
crossref_primary_10_1016_j_jsb_2020_107489
crossref_primary_10_1038_s41598_019_55103_z
crossref_primary_10_1021_acs_cgd_1c01084
crossref_primary_10_1021_acsmacrolett_6b00022
crossref_primary_10_1073_pnas_1707890114
crossref_primary_10_1002_ange_202117839
crossref_primary_10_1038_s41570_020_0161_8
crossref_primary_10_1038_s41598_020_73804_8
crossref_primary_10_1021_acsomega_1c03701
crossref_primary_10_1038_s41467_021_24557_z
crossref_primary_10_1021_acs_cgd_8b01302
crossref_primary_10_1021_acs_cgd_1c01092
crossref_primary_10_1073_pnas_2107477118
crossref_primary_10_1016_j_ijpharm_2022_122551
crossref_primary_10_1016_j_gca_2020_06_033
crossref_primary_10_1016_j_gca_2020_06_030
crossref_primary_10_1016_j_susmat_2022_e00447
crossref_primary_10_1073_pnas_2025670118
crossref_primary_10_5194_bg_16_3439_2019
crossref_primary_10_1016_j_jsb_2021_107797
crossref_primary_10_1016_j_matt_2023_06_017
crossref_primary_10_1038_s41563_020_0650_7
crossref_primary_10_1126_sciadv_aaw5912
crossref_primary_10_1016_j_ccr_2024_216035
crossref_primary_10_3390_min13070903
crossref_primary_10_1002_ange_202408429
crossref_primary_10_3390_bioengineering11050465
crossref_primary_10_1002_anie_202413444
crossref_primary_10_1029_2020JE006769
crossref_primary_10_1088_1361_648X_aa8253
crossref_primary_10_3390_min9090503
crossref_primary_10_1126_sciadv_abb1219
crossref_primary_10_1002_jms_4356
crossref_primary_10_1103_PhysRevE_104_064128
crossref_primary_10_1002_ange_202303770
crossref_primary_10_1021_accountsmr_4c00009
crossref_primary_10_1021_acsami_9b22833
crossref_primary_10_1016_j_jcrysgro_2017_07_012
crossref_primary_10_1038_s41467_017_00844_6
crossref_primary_10_1021_acs_energyfuels_1c04072
crossref_primary_10_1021_acsmacrolett_1c00789
crossref_primary_10_1038_s41467_024_53501_0
crossref_primary_10_1038_s41545_024_00324_7
crossref_primary_10_1007_s42860_023_00230_y
crossref_primary_10_1002_adma_202310672
crossref_primary_10_1021_acs_cgd_9b00753
crossref_primary_10_1039_D4CP02041C
crossref_primary_10_1021_acsomega_8b02380
crossref_primary_10_1002_anie_201509833
crossref_primary_10_1021_acs_cgd_6b00794
crossref_primary_10_1021_jacs_8b13231
crossref_primary_10_1002_anie_201507659
crossref_primary_10_1029_2020JE006782
crossref_primary_10_1021_acsmaterialslett_5c00361
crossref_primary_10_1002_advs_202407984
crossref_primary_10_1002_bkcs_11237
crossref_primary_10_1016_j_clay_2017_09_021
crossref_primary_10_1021_jacs_2c10584
crossref_primary_10_1016_j_dental_2025_02_009
crossref_primary_10_1021_acs_jpclett_2c01829
crossref_primary_10_1002_smll_202402075
crossref_primary_10_1002_anie_202101611
crossref_primary_10_1073_pnas_2105154118
crossref_primary_10_1002_adfm_202405218
crossref_primary_10_1002_smtd_202401990
crossref_primary_10_1039_D4NR02389G
crossref_primary_10_1002_smll_202304781
crossref_primary_10_1039_D0NR08517K
crossref_primary_10_1021_jacs_9b10869
crossref_primary_10_1016_j_colsurfa_2022_129319
crossref_primary_10_1021_acsnano_2c11169
crossref_primary_10_1038_s41467_020_16034_w
crossref_primary_10_1016_j_apsusc_2019_143986
crossref_primary_10_1021_acs_chemmater_1c03477
crossref_primary_10_1002_chem_202301825
crossref_primary_10_1021_acsbiomaterials_9b01029
crossref_primary_10_1016_j_apsusc_2024_159534
crossref_primary_10_1073_pnas_2001613117
crossref_primary_10_1016_j_electacta_2022_140485
crossref_primary_10_1007_s12039_021_01953_y
crossref_primary_10_1021_acs_chemmater_6b01000
crossref_primary_10_1016_j_chemgeo_2020_119974
crossref_primary_10_1007_s00126_024_01337_5
crossref_primary_10_3390_cryst10060463
crossref_primary_10_1002_aic_18784
crossref_primary_10_1126_sciadv_1602285
crossref_primary_10_1002_adfm_202007736
crossref_primary_10_1007_s00410_024_02184_3
crossref_primary_10_1002_smtd_202300910
crossref_primary_10_1073_pnas_1905929116
crossref_primary_10_1007_s10562_018_2380_x
crossref_primary_10_1021_acs_chemmater_0c00572
crossref_primary_10_3389_fbioe_2023_1160351
crossref_primary_10_1007_s11433_017_9035_8
crossref_primary_10_1002_adfm_202106396
crossref_primary_10_1016_j_actbio_2023_07_028
crossref_primary_10_1038_natrevmats_2016_41
crossref_primary_10_1039_D1NR05767G
crossref_primary_10_1021_acs_cgd_6b01616
crossref_primary_10_1039_D2EW00522K
crossref_primary_10_1021_acs_inorgchem_3c03892
crossref_primary_10_1016_j_mtadv_2023_100378
crossref_primary_10_1002_aic_17438
crossref_primary_10_1016_j_quascirev_2022_107833
crossref_primary_10_1021_acs_jpca_9b07104
crossref_primary_10_7567_1347_4065_aafb4c
crossref_primary_10_1016_j_ijbiomac_2023_123335
crossref_primary_10_1002_chem_201600141
crossref_primary_10_1021_acs_jchemed_9b00159
crossref_primary_10_1021_acssuschemeng_3c00429
crossref_primary_10_1002_adfm_202212339
crossref_primary_10_1002_adfm_201602908
crossref_primary_10_1103_PhysRevB_97_134110
crossref_primary_10_3724_j_1000_4734_2024_44_074
crossref_primary_10_1002_chem_201702251
crossref_primary_10_1016_j_cattod_2022_08_030
crossref_primary_10_1126_science_aax6511
crossref_primary_10_1021_acs_cgd_4c00031
crossref_primary_10_1002_smll_202307858
crossref_primary_10_1016_j_seppur_2023_124424
crossref_primary_10_3390_ma13173762
crossref_primary_10_1073_pnas_1922923117
crossref_primary_10_1021_acsenergylett_7b00667
crossref_primary_10_1111_ggr_12583
crossref_primary_10_1021_acsnano_7b00127
crossref_primary_10_1021_acsbiomaterials_4c01178
crossref_primary_10_1039_D2NR01511K
crossref_primary_10_1016_j_cemconres_2017_09_002
crossref_primary_10_1021_acs_chemrev_1c00189
crossref_primary_10_1021_acs_jpcc_8b12122
crossref_primary_10_1021_acsnano_4c01797
crossref_primary_10_1021_acs_jpcc_2c07151
crossref_primary_10_1016_j_jdent_2021_103599
crossref_primary_10_1186_s12943_022_01654_1
crossref_primary_10_1021_acs_jpcc_6b05650
crossref_primary_10_1111_sed_12711
crossref_primary_10_1021_acs_energyfuels_3c04467
crossref_primary_10_1021_acs_cgd_3c00616
crossref_primary_10_3390_app8101921
crossref_primary_10_1038_s41467_018_05493_x
crossref_primary_10_1016_j_jcis_2020_03_109
crossref_primary_10_1016_j_jcrysgro_2024_127841
crossref_primary_10_1002_bkcs_12041
crossref_primary_10_1016_j_cherd_2021_03_013
crossref_primary_10_1021_acs_cgd_2c01393
crossref_primary_10_1016_j_carbpol_2024_122938
crossref_primary_10_1002_chem_201702218
crossref_primary_10_1021_acs_biochem_7b00083
crossref_primary_10_1021_jacs_3c01494
crossref_primary_10_1111_sed_13191
crossref_primary_10_3389_fmars_2024_1406446
crossref_primary_10_1021_acsomega_7b00719
crossref_primary_10_3390_geosciences8120466
crossref_primary_10_1039_C7CC03639F
crossref_primary_10_1002_ange_202107599
crossref_primary_10_1016_j_conbuildmat_2024_137372
crossref_primary_10_1021_acsami_8b02520
crossref_primary_10_1002_cphc_201900925
crossref_primary_10_1021_acs_chemmater_1c01690
crossref_primary_10_1016_j_jcrysgro_2020_125727
crossref_primary_10_1021_acs_cgd_6b00707
crossref_primary_10_1007_s11157_022_09628_x
crossref_primary_10_1021_acs_cgd_9b01196
crossref_primary_10_1021_acs_chemmater_6b01088
crossref_primary_10_1002_adhm_202001271
crossref_primary_10_1002_ange_201603794
crossref_primary_10_1039_C9CE01925A
crossref_primary_10_3724_j_1000_4734_2024_44_022
crossref_primary_10_1130_G37774_1
crossref_primary_10_1134_S1063774518070039
crossref_primary_10_1002_anie_202408429
crossref_primary_10_1002_ange_202310419
crossref_primary_10_1016_j_chemgeo_2019_119343
crossref_primary_10_1021_acs_jpcc_2c00554
crossref_primary_10_1016_j_cej_2020_128268
crossref_primary_10_1021_acs_jpcc_0c03402
crossref_primary_10_1021_acsami_3c04067
crossref_primary_10_1021_acssuschemeng_2c05094
crossref_primary_10_34133_2020_4370817
crossref_primary_10_1039_D2CE00117A
crossref_primary_10_1371_journal_pone_0228503
crossref_primary_10_1021_jacs_5b07477
crossref_primary_10_1039_D1QM00901J
crossref_primary_10_1063_5_0166278
crossref_primary_10_3390_cryst7100302
crossref_primary_10_1021_acs_nanolett_1c02859
crossref_primary_10_1073_pnas_1810203115
crossref_primary_10_1126_sciadv_1700425
crossref_primary_10_1002_smll_201702565
crossref_primary_10_1016_j_actbio_2020_07_038
crossref_primary_10_1021_jacs_6b01929
crossref_primary_10_1038_s41467_023_41443_y
crossref_primary_10_1002_adfm_202304685
crossref_primary_10_1038_s41598_017_15364_y
crossref_primary_10_1144_jgs2021_050
crossref_primary_10_1021_acs_langmuir_7b01814
crossref_primary_10_1038_s41467_021_25898_5
crossref_primary_10_3390_ma12132117
crossref_primary_10_5194_ejm_36_813_2024
crossref_primary_10_1007_s12274_020_2934_2
crossref_primary_10_1039_D2SC02679A
crossref_primary_10_1080_14686996_2021_1927175
crossref_primary_10_1134_S1028335819090076
crossref_primary_10_1111_maps_14174
crossref_primary_10_1038_s41467_021_20953_7
crossref_primary_10_1016_j_gca_2021_05_043
crossref_primary_10_1016_j_gca_2023_08_012
crossref_primary_10_1021_acssynbio_1c00412
crossref_primary_10_1016_j_cemconres_2021_106467
crossref_primary_10_1039_D5NR00265F
crossref_primary_10_1021_jacs_2c06535
crossref_primary_10_1021_acsomega_3c07743
crossref_primary_10_1002_aenm_202400281
crossref_primary_10_1039_D4FD00079J
crossref_primary_10_1016_j_marchem_2019_03_008
crossref_primary_10_1039_C9ME00068B
crossref_primary_10_1038_s41467_022_32241_z
crossref_primary_10_1039_D1CE00187F
crossref_primary_10_1021_acs_nanolett_0c01125
crossref_primary_10_1021_acsami_2c20328
crossref_primary_10_2465_jmps_231206
crossref_primary_10_1021_acs_chemmater_5b04569
crossref_primary_10_1039_D4MA01186D
crossref_primary_10_1016_j_gca_2023_08_028
crossref_primary_10_1007_s40843_020_1619_6
crossref_primary_10_1016_j_lithos_2019_105215
crossref_primary_10_1016_j_pmatsci_2021_100821
crossref_primary_10_1021_acs_chemmater_8b04970
crossref_primary_10_1021_acsearthspacechem_9b00194
crossref_primary_10_1016_j_chempr_2023_10_018
crossref_primary_10_1002_anie_202210434
crossref_primary_10_1021_acs_inorgchem_4c02769
crossref_primary_10_1021_jacs_6b11301
crossref_primary_10_1021_acs_langmuir_4c04458
crossref_primary_10_1021_acsanm_9b00905
crossref_primary_10_1016_j_cocis_2018_10_009
crossref_primary_10_1557_jmr_2019_151
crossref_primary_10_1021_acs_macromol_3c01769
crossref_primary_10_1021_jacs_8b11972
crossref_primary_10_1039_D2CE00379A
crossref_primary_10_1039_D0CC01395A
crossref_primary_10_1098_rspa_2018_0351
crossref_primary_10_1038_s41557_020_0547_8
crossref_primary_10_3390_nano12091601
crossref_primary_10_1016_j_jcis_2021_03_002
crossref_primary_10_1021_acs_cgd_8b00093
crossref_primary_10_1038_s44160_022_00091_8
crossref_primary_10_1021_acsomega_7b00307
crossref_primary_10_1039_C8FD00121A
crossref_primary_10_1039_D0ME00043D
crossref_primary_10_1021_acs_nanolett_8b03139
crossref_primary_10_1002_ange_202413444
crossref_primary_10_1016_j_clay_2022_106463
crossref_primary_10_1051_bioconf_202412926019
crossref_primary_10_1021_jacs_2c07423
crossref_primary_10_1039_D2MH00174H
crossref_primary_10_1039_C7CE02100C
crossref_primary_10_1039_C9NR10435F
crossref_primary_10_1038_s41467_018_03745_4
crossref_primary_10_3390_life13030714
crossref_primary_10_1002_admi_202101573
crossref_primary_10_1002_ange_202104002
crossref_primary_10_1002_smtd_202301227
crossref_primary_10_1021_acs_macromol_8b00986
crossref_primary_10_1360_TB_2022_0817
crossref_primary_10_1039_C6RA13041K
crossref_primary_10_1016_j_epsl_2024_118712
crossref_primary_10_1111_jace_19743
crossref_primary_10_1039_D3RA06803J
crossref_primary_10_1038_s41557_020_0538_9
crossref_primary_10_1021_acs_cgd_8b01008
crossref_primary_10_1016_j_cemconres_2018_01_017
crossref_primary_10_1180_minmag_2017_081_031
crossref_primary_10_1016_j_ecolind_2020_107281
crossref_primary_10_1021_acs_cgd_5b01522
crossref_primary_10_1021_acsnano_8b04909
crossref_primary_10_1021_acs_cgd_2c00794
crossref_primary_10_1002_slct_202003622
crossref_primary_10_1016_j_epsl_2018_05_029
crossref_primary_10_1088_2053_1591_aa5c00
crossref_primary_10_1016_j_jcis_2021_10_125
crossref_primary_10_1002_syst_202000061
crossref_primary_10_1002_adma_202100897
crossref_primary_10_1142_S2811086224300026
crossref_primary_10_1002_anie_201608417
crossref_primary_10_3390_min15030218
crossref_primary_10_1021_acs_jpcc_7b12582
crossref_primary_10_1016_j_bbagen_2018_10_005
crossref_primary_10_1021_acs_macromol_3c02535
crossref_primary_10_1021_acs_jpclett_4c00069
crossref_primary_10_1002_anie_202201980
crossref_primary_10_1016_j_jcis_2021_10_111
crossref_primary_10_1039_C8RA01706A
crossref_primary_10_3389_fmars_2018_00450
crossref_primary_10_1021_acs_chemmater_1c01941
crossref_primary_10_1016_j_jcrysgro_2022_126990
crossref_primary_10_1021_acs_cgd_8b01025
crossref_primary_10_1038_s41467_019_10833_6
crossref_primary_10_1039_C7CE00847C
crossref_primary_10_1039_C9CC00518H
crossref_primary_10_2320_materia_58_727
crossref_primary_10_1039_D1FD00080B
crossref_primary_10_1039_D3TA02066E
crossref_primary_10_1038_s41563_021_01154_5
crossref_primary_10_1021_acs_nanolett_1c04649
crossref_primary_10_1021_acs_cgd_1c00715
crossref_primary_10_1016_j_jcrysgro_2022_126992
crossref_primary_10_2138_am_2019_6996
crossref_primary_10_1038_s41467_020_18460_2
crossref_primary_10_1038_s41586_019_1918_4
crossref_primary_10_1002_sstr_202100202
crossref_primary_10_1016_j_catcom_2022_106494
crossref_primary_10_1039_C8CP05767B
crossref_primary_10_1063_1_4964489
crossref_primary_10_1016_j_gce_2022_04_004
crossref_primary_10_1038_s41467_020_17562_1
crossref_primary_10_3390_min8090370
crossref_primary_10_1016_j_jfluchem_2018_11_018
crossref_primary_10_1016_j_oregeorev_2020_103495
crossref_primary_10_1002_smll_202309100
crossref_primary_10_1007_s41779_024_01143_2
crossref_primary_10_1038_s41565_023_01355_w
crossref_primary_10_1557_mrs_2020_229
crossref_primary_10_1021_acsnano_3c12374
crossref_primary_10_1021_acs_cgd_3c01283
crossref_primary_10_1002_anie_202215728
crossref_primary_10_3390_cryst10030166
crossref_primary_10_1002_admi_202300954
crossref_primary_10_1016_j_jcrysgro_2022_126976
crossref_primary_10_1039_C9NR01474H
crossref_primary_10_1039_D0NA00124D
crossref_primary_10_1016_j_jcis_2022_03_016
crossref_primary_10_1016_j_oregeorev_2021_104630
crossref_primary_10_1039_D1CP05606A
crossref_primary_10_1021_acs_est_3c02303
crossref_primary_10_1021_acs_jpclett_6b02977
crossref_primary_10_3390_min12091092
crossref_primary_10_1515_znb_2023_0310
crossref_primary_10_1038_s41467_020_20318_6
crossref_primary_10_1016_j_sedgeo_2021_106044
crossref_primary_10_1021_jacs_4c05361
crossref_primary_10_1038_s41557_025_01741_y
crossref_primary_10_1039_D4CP03290J
crossref_primary_10_1016_j_cej_2023_148037
crossref_primary_10_1021_acs_nanolett_2c01608
crossref_primary_10_1016_j_jcrysgro_2022_126955
crossref_primary_10_1039_D2FD00077F
crossref_primary_10_1016_j_actbio_2020_06_038
crossref_primary_10_1039_D3QI01609A
crossref_primary_10_1039_D0NR03334K
crossref_primary_10_1021_acs_langmuir_6b01594
crossref_primary_10_1039_D3EM00302G
crossref_primary_10_1002_aenm_202202575
crossref_primary_10_1039_C9CE01544B
crossref_primary_10_1103_PhysRevLett_126_136001
crossref_primary_10_1021_acs_jpcc_0c08670
crossref_primary_10_1016_j_jechem_2024_08_021
crossref_primary_10_1016_j_micromeso_2017_08_051
crossref_primary_10_1016_j_cis_2021_102543
crossref_primary_10_1039_C9SE00432G
crossref_primary_10_1021_acs_jpcc_9b01334
crossref_primary_10_1098_rsif_2016_0665
crossref_primary_10_3390_min14040422
crossref_primary_10_1002_adma_201803855
crossref_primary_10_1021_acs_accounts_2c00063
crossref_primary_10_1039_D1FD00089F
crossref_primary_10_1016_j_colsurfa_2019_124374
crossref_primary_10_1039_D0EE02902E
crossref_primary_10_1038_s41598_020_61530_0
crossref_primary_10_1038_s42004_020_0284_3
crossref_primary_10_1002_anie_201903662
crossref_primary_10_1021_acs_cgd_8b00553
crossref_primary_10_3390_molecules28176320
crossref_primary_10_1021_jacs_6b09190
crossref_primary_10_1039_C9RA03086G
crossref_primary_10_1016_j_msec_2019_01_060
crossref_primary_10_1063_5_0012376
crossref_primary_10_1107_S2052252521010101
crossref_primary_10_1016_j_gca_2024_06_036
crossref_primary_10_1002_ange_202116850
crossref_primary_10_1002_smll_202200992
crossref_primary_10_1021_acs_cgd_7b00129
crossref_primary_10_3390_cryst12070980
crossref_primary_10_1021_acs_cgd_9b01523
crossref_primary_10_1021_acsearthspacechem_4c00097
crossref_primary_10_1016_j_cub_2023_04_067
crossref_primary_10_1557_s43577_024_00698_6
crossref_primary_10_1021_acs_nanolett_8b03627
crossref_primary_10_1002_adma_202005291
crossref_primary_10_1021_jacs_0c12100
crossref_primary_10_1111_sed_12991
crossref_primary_10_1002_adfm_201808172
crossref_primary_10_1002_adma_201701064
crossref_primary_10_1002_smll_201906146
crossref_primary_10_1007_s12274_022_4475_3
crossref_primary_10_1021_acs_inorgchem_1c01806
crossref_primary_10_1007_s00253_022_11938_7
crossref_primary_10_2138_am_2019_6597
crossref_primary_10_1039_C7CE02144E
crossref_primary_10_1038_s41565_021_00986_1
crossref_primary_10_1021_acs_jpclett_8b02413
crossref_primary_10_1016_j_oceram_2020_100019
crossref_primary_10_1039_D3QM01263H
crossref_primary_10_1016_j_actamat_2022_117655
crossref_primary_10_1038_s41586_021_03300_0
crossref_primary_10_1021_acs_macromol_8b02725
crossref_primary_10_1021_acsnano_8b06706
crossref_primary_10_1039_C8CP01979G
crossref_primary_10_2138_am_2021_7625
crossref_primary_10_1186_s40824_022_00288_0
crossref_primary_10_17073_1609_3577_2021_1_63_64
crossref_primary_10_1146_annurev_chembioeng_060817_083953
crossref_primary_10_3390_nano11082122
crossref_primary_10_1016_j_mtsust_2023_100458
crossref_primary_10_1088_1361_6463_aad926
crossref_primary_10_1038_natrevmats_2016_35
crossref_primary_10_1136_ard_2022_222944
crossref_primary_10_1007_s40843_023_2515_0
crossref_primary_10_1016_j_partic_2023_10_005
crossref_primary_10_1021_acsomega_1c02794
crossref_primary_10_1073_pnas_2405963121
crossref_primary_10_1002_adma_202309547
crossref_primary_10_1038_s41467_017_02153_4
crossref_primary_10_1021_acs_cgd_9b00625
crossref_primary_10_1038_natrevmats_2016_34
crossref_primary_10_1039_D1RA06206A
crossref_primary_10_1021_acs_chemrev_6b00196
crossref_primary_10_1002_ange_202117742
crossref_primary_10_1016_j_cej_2020_126688
crossref_primary_10_1002_smll_202303872
crossref_primary_10_1021_acsbiomaterials_2c01249
crossref_primary_10_1063_5_0225658
crossref_primary_10_1021_acs_cgd_6b00208
crossref_primary_10_1016_j_actbio_2020_04_049
crossref_primary_10_1039_C9CS00725C
crossref_primary_10_1021_acs_jpclett_6b01237
crossref_primary_10_1039_C9SM00383E
crossref_primary_10_1021_acscentsci_5b00256
crossref_primary_10_1107_S1600577523002783
crossref_primary_10_1126_sciadv_adi7494
crossref_primary_10_1021_acsami_1c04575
crossref_primary_10_1021_acs_jpclett_2c00855
crossref_primary_10_1557_s43580_024_00861_w
crossref_primary_10_1021_acsnano_9b01015
crossref_primary_10_1021_jacs_9b00700
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1039_C6CE00581K
crossref_primary_10_1021_acs_cgd_3c00305
crossref_primary_10_1021_jacs_2c11120
crossref_primary_10_1021_acs_cgd_9b01461
crossref_primary_10_1007_s11051_022_05598_x
crossref_primary_10_1073_pnas_2011816117
crossref_primary_10_1016_j_gca_2016_09_004
crossref_primary_10_1021_acs_cgd_1c00361
crossref_primary_10_1021_acs_chemmater_3c01120
crossref_primary_10_3390_ijms18020400
crossref_primary_10_1002_smll_202107006
crossref_primary_10_1016_j_oregeorev_2018_10_001
crossref_primary_10_1016_j_fuel_2025_135120
crossref_primary_10_1021_acsomega_8b03498
crossref_primary_10_1038_ncomms15066
crossref_primary_10_1021_jacs_7b02953
crossref_primary_10_1016_j_apmt_2020_100632
crossref_primary_10_1002_chem_201904807
crossref_primary_10_1021_acs_jpcc_8b01876
crossref_primary_10_1016_j_jcis_2019_03_089
crossref_primary_10_1002_sstr_202300139
crossref_primary_10_1016_j_cossms_2018_12_002
crossref_primary_10_1021_acs_accounts_2c00110
crossref_primary_10_1038_s41586_020_2104_4
crossref_primary_10_1021_acs_cgd_6b00630
crossref_primary_10_1021_acs_cgd_6b00637
crossref_primary_10_1016_j_watres_2022_118500
crossref_primary_10_1016_j_chemgeo_2022_121042
crossref_primary_10_1002_anie_202117839
crossref_primary_10_1039_C8NR03408G
crossref_primary_10_1021_acs_jpcc_9b12053
crossref_primary_10_1016_j_ijpharm_2023_123558
crossref_primary_10_1039_D2CE00657J
crossref_primary_10_1016_j_cej_2018_10_007
crossref_primary_10_2138_am_2018_6429
crossref_primary_10_1098_rsif_2017_0450
crossref_primary_10_1002_adfm_201700506
crossref_primary_10_1039_D4TA01303D
crossref_primary_10_1007_s12551_016_0228_4
crossref_primary_10_1002_anie_201610275
crossref_primary_10_1021_acs_nanolett_6b04160
crossref_primary_10_1016_j_scitotenv_2023_169064
crossref_primary_10_1016_j_cemconres_2023_107367
crossref_primary_10_1021_acs_est_7b00432
crossref_primary_10_1021_acs_langmuir_7b02870
crossref_primary_10_3762_bjnano_10_17
crossref_primary_10_1002_adfm_202306900
crossref_primary_10_1039_D3CC03406B
crossref_primary_10_1557_s43579_023_00497_1
crossref_primary_10_1016_j_cis_2020_102313
crossref_primary_10_1038_s41545_024_00404_8
crossref_primary_10_1002_anie_202405092
crossref_primary_10_1021_acs_langmuir_8b03300
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1002_smll_202411965
crossref_primary_10_3390_cryst11080871
crossref_primary_10_1038_s42004_020_0325_y
crossref_primary_10_1007_s42235_021_00084_x
crossref_primary_10_3389_feart_2021_641760
crossref_primary_10_1016_j_clay_2020_105962
crossref_primary_10_1021_jacs_4c14629
crossref_primary_10_1002_anie_202305353
crossref_primary_10_1002_tcr_201800003
crossref_primary_10_1021_acscatal_3c04255
crossref_primary_10_1073_pnas_2108674119
crossref_primary_10_1021_acs_chemmater_4c01087
crossref_primary_10_1021_acsomega_3c09406
crossref_primary_10_1063_5_0006100
crossref_primary_10_1016_j_seppur_2024_130414
crossref_primary_10_1021_acs_chemmater_2c01903
crossref_primary_10_1039_C9CE00473D
crossref_primary_10_1002_ange_202211254
crossref_primary_10_1038_s41563_024_02025_5
crossref_primary_10_1073_pnas_1621186114
crossref_primary_10_1021_jacs_2c05731
crossref_primary_10_1103_PhysRevResearch_7_013036
crossref_primary_10_1002_adma_202101358
crossref_primary_10_1021_jacs_3c04031
crossref_primary_10_1002_ange_202306885
crossref_primary_10_1021_acs_jpcc_2c08157
crossref_primary_10_1039_C7ME00097A
crossref_primary_10_1016_j_gca_2018_06_019
crossref_primary_10_1016_j_gca_2018_06_013
crossref_primary_10_1039_D2PY00071G
crossref_primary_10_1016_j_earscirev_2018_02_015
crossref_primary_10_1002_ange_201908751
crossref_primary_10_1002_adma_202209876
crossref_primary_10_1039_D1CE01687C
crossref_primary_10_1073_pnas_2022339118
crossref_primary_10_1002_cnma_201900186
crossref_primary_10_1016_j_mattod_2017_03_020
crossref_primary_10_1016_j_micromeso_2021_111349
crossref_primary_10_1021_acs_cgd_4c01263
crossref_primary_10_1021_acs_cgd_9b01444
crossref_primary_10_1016_j_cej_2021_132334
crossref_primary_10_1002_cctc_201902285
crossref_primary_10_1557_mrs_2016_89
crossref_primary_10_1021_acs_chemrev_2c00700
crossref_primary_10_1038_s41557_020_0542_0
crossref_primary_10_1021_acs_chemrev_3c00259
crossref_primary_10_1039_D4SC05188B
crossref_primary_10_1016_j_actamat_2016_08_061
crossref_primary_10_1007_s10008_020_04676_1
crossref_primary_10_1021_jacs_7b09169
crossref_primary_10_1038_s41596_018_0027_4
crossref_primary_10_1039_D3QM00191A
crossref_primary_10_1021_acs_iecr_2c01505
crossref_primary_10_1021_acs_langmuir_7b02423
crossref_primary_10_1557_mrs_2016_91
crossref_primary_10_1557_mrs_2016_90
crossref_primary_10_1021_acs_cgd_2c01276
crossref_primary_10_1002_anie_201911213
crossref_primary_10_1016_j_jmst_2019_05_010
crossref_primary_10_1039_D1CP02619D
crossref_primary_10_1016_j_jsb_2016_06_013
crossref_primary_10_1021_acs_chemmater_0c01929
crossref_primary_10_1186_s12951_021_01133_7
crossref_primary_10_1002_smll_202206718
crossref_primary_10_1021_acs_chemrev_7b00582
crossref_primary_10_1002_anie_202310234
crossref_primary_10_1016_j_chemgeo_2020_119469
crossref_primary_10_2138_am_2023_9214
crossref_primary_10_1021_acs_chemmater_1c00243
crossref_primary_10_1021_acsnano_3c02145
crossref_primary_10_1039_D1CE01463C
crossref_primary_10_1007_s00604_024_06243_1
crossref_primary_10_1021_acs_jpclett_7b02096
crossref_primary_10_1016_j_jclepro_2022_134395
crossref_primary_10_1038_s41598_017_06458_8
crossref_primary_10_1021_jacsau_2c00325
crossref_primary_10_1038_s41598_020_75937_2
crossref_primary_10_1021_acs_cgd_3c01232
crossref_primary_10_1021_acs_cgd_1c00776
crossref_primary_10_1002_ange_201703158
crossref_primary_10_1021_acs_cgd_9b01077
crossref_primary_10_1126_sciadv_abg0454
crossref_primary_10_1016_j_jsb_2022_107909
crossref_primary_10_1039_D4RA04356A
crossref_primary_10_1002_adfm_202408443
crossref_primary_10_1039_D2CS00513A
crossref_primary_10_1002_ange_201704499
crossref_primary_10_1126_science_aao1257
crossref_primary_10_1002_adma_202300373
crossref_primary_10_1021_acs_chemmater_7b05302
crossref_primary_10_1021_acs_inorgchem_4c01757
crossref_primary_10_1021_acsearthspacechem_2c00026
crossref_primary_10_1021_acs_chemmater_7b03121
crossref_primary_10_1021_acsnano_1c07424
crossref_primary_10_3389_fmars_2018_00067
crossref_primary_10_1007_s11814_024_00366_0
crossref_primary_10_1021_acs_jpcc_3c00206
crossref_primary_10_1021_acs_jpcb_8b04112
crossref_primary_10_1016_j_colsurfa_2024_134603
crossref_primary_10_1038_s41467_018_05713_4
crossref_primary_10_1016_j_cis_2016_01_005
crossref_primary_10_1021_acsearthspacechem_1c00055
crossref_primary_10_1016_j_gca_2018_08_033
crossref_primary_10_1016_j_jcrysgro_2022_126914
crossref_primary_10_1016_j_jcrysgro_2022_126911
crossref_primary_10_1021_acs_cgd_0c01655
crossref_primary_10_1021_acs_nanolett_7b01047
crossref_primary_10_1007_s10856_020_06413_6
crossref_primary_10_1016_j_nanoen_2020_104565
crossref_primary_10_1016_j_cocis_2018_03_002
crossref_primary_10_1002_slct_201901174
crossref_primary_10_1126_science_abj9472
crossref_primary_10_1002_smll_202306417
crossref_primary_10_3389_feart_2019_00151
crossref_primary_10_1002_adma_202106229
crossref_primary_10_1002_ange_201509833
crossref_primary_10_1002_ange_201507659
crossref_primary_10_1038_s41467_019_12168_8
crossref_primary_10_1039_D0NA00130A
crossref_primary_10_1038_nmat4891
crossref_primary_10_3390_app14010131
crossref_primary_10_1039_D3NA00108C
crossref_primary_10_1021_acs_chemmater_1c02868
crossref_primary_10_1038_ncomms15933
crossref_primary_10_1002_adhm_202201248
crossref_primary_10_1002_smll_202308665
crossref_primary_10_1002_ijch_201600088
crossref_primary_10_1039_C7NJ03984K
crossref_primary_10_1021_acs_jafc_3c00708
crossref_primary_10_1016_j_jcrysgro_2018_04_030
crossref_primary_10_1016_j_chemgeo_2020_119497
crossref_primary_10_1039_D3NR04672A
crossref_primary_10_1016_j_gca_2018_08_019
crossref_primary_10_1016_j_jcrysgro_2019_125208
crossref_primary_10_1073_pnas_1700342114
crossref_primary_10_1680_jgeot_24_00002
crossref_primary_10_1002_adsu_202000189
crossref_primary_10_1021_acsanm_0c01015
crossref_primary_10_1038_s41563_020_0768_7
crossref_primary_10_1007_s10347_021_00628_x
crossref_primary_10_1002_advs_201701000
crossref_primary_10_1073_pnas_2216099120
crossref_primary_10_1021_acs_cgd_2c00352
crossref_primary_10_1107_S2052252524007838
crossref_primary_10_1557_s43577_024_00700_1
crossref_primary_10_1021_acs_chemmater_6b03550
crossref_primary_10_1021_acs_est_7b05772
crossref_primary_10_1039_C9RE00142E
crossref_primary_10_1016_j_jcis_2021_12_095
crossref_primary_10_1021_acsanm_0c01023
crossref_primary_10_1016_j_jfluchem_2019_109374
crossref_primary_10_1016_j_chemgeo_2019_119274
crossref_primary_10_1002_smll_201700051
crossref_primary_10_1002_solr_202400226
crossref_primary_10_1038_s41467_019_08898_4
crossref_primary_10_1111_sed_13081
crossref_primary_10_1002_ppsc_201600225
crossref_primary_10_1021_acs_chemmater_6b03563
crossref_primary_10_1002_pmic_201800194
crossref_primary_10_1016_j_nanoen_2020_104527
crossref_primary_10_1021_acs_chemmater_0c01515
crossref_primary_10_1021_acsnano_4c01290
crossref_primary_10_1039_C6RA15960E
crossref_primary_10_1039_D0CE00847H
Cites_doi 10.1002/cphc.201100129
10.1038/46509
10.1126/science.1114920
10.1021/ja050107s
10.1039/B708296G
10.1002/app.1995.070571212
10.1529/biophysj.107.116152
10.1070/RCR4453
10.1007/BF01017860
10.1126/science.1164271
10.1002/smll.200800520
10.1038/nature00785
10.1016/S0022-5320(67)80015-7
10.1002/adma.200300381
10.1073/pnas.0333065100
10.1039/c2fd20080e
10.1002/adfm.201300861
10.1016/0022-1902(81)80482-4
10.1103/PhysRevB.81.125444
10.1021/ja8063167
10.1021/cg2012342
10.1021/ja800984y
10.1021/jz301161j
10.1126/science.1215648
10.2110/pec.00.67.0003
10.1021/ja909769a
10.1039/b701450c
10.1002/9780470994603
10.1002/jez.90004
10.1016/j.jsb.2008.02.007
10.1126/science.289.5480.751
10.1038/ncomms2490
10.1063/1.1531614
10.1021/cm702032v
10.1073/pnas.0404778101
10.1126/science.1230915
10.1016/S0016-7037(99)00037-X
10.1021/nn503145w
10.1098/rsta.1951.0006
10.1002/adma.200801614
10.1021/jp204044k
10.1038/ncomms5341
10.1021/ja0564261
10.1039/C0NR00697A
10.1021/acscentsci.5b00001
10.1073/pnas.0914218107
10.1002/mabi.200600191
10.1073/pnas.0806604105
10.1103/PhysRevLett.97.065701
10.1021/j100068a027
10.1021/cg4001939
10.1021/ja909735y
10.1021/ja907063z
10.1103/PhysRevLett.92.155501
10.1038/nature01845
10.2138/am-1997-7-809
10.1038/nmat2900
10.1002/adma.200901365
10.1073/pnas.1106228108
10.1039/c2sm26038g
10.1002/anie.200500338
10.1126/science.1169434
10.1021/ja102439r
10.1039/c1ce05153a
10.1073/pnas.1312833110
10.1073/pnas.1118085109
10.1103/PhysRevE.87.042407
10.1002/anie.200500496
10.1006/bbrc.1999.1907
10.1073/pnas.0910170107
10.1021/jp068813i
10.1038/ncomms4169
10.1038/nmat1636
10.1016/j.jsb.2009.02.001
10.1126/science.1219643
10.1098/rspa.1985.0043
10.1021/nl073193y
10.1039/C4CS00106K
10.1126/science.1252642
10.1088/0953-8984/21/32/322201
10.1039/c4cc01457j
10.1021/cg301388e
10.1016/S0022-0248(99)00749-6
10.1080/00018730110117433
10.1126/science.1250984
10.1093/oso/9780195049770.001.0001
10.1016/j.gca.2012.10.044
10.1038/ncomms1604
10.1073/pnas.1222162110
10.1002/jmor.10311
10.1126/science.1254051
10.1098/rspb.1997.0066
10.1002/adfm.201400676
10.1021/cg500816z
10.1039/b912095e
10.1073/pnas.122055299
10.1002/adfm.201102385
10.1038/nmat3558
10.1126/science.1102289
10.1073/pnas.0803354105
10.1126/science.277.5334.1975
10.1073/pnas.1009959107
10.1002/anie.201210329
10.1021/nl404533k
10.1002/adfm.201203400
10.1126/science.281.5379.969
10.1007/978-3-642-81835-6
10.1038/nmat2875
10.1088/0957-4484/23/19/194005
10.1017/S1431927614000294
10.1002/1521-4095(200010)12:20<1543::AID-ADMA1543>3.0.CO;2-P
10.1002/adfm.201000248
10.1126/science.1173793
10.1021/bm049314v
10.1146/annurev.earth.27.1.313
10.1039/c2fd20124k
ContentType Journal Article
Copyright Copyright © 2015 American Association for the Advancement of Science
Copyright © 2015, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2015 American Association for the Advancement of Science
– notice: Copyright © 2015, American Association for the Advancement of Science
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
OIOZB
OTOTI
DOI 10.1126/science.aaa6760
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
DatabaseTitleList Materials Research Database

CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Physics
EISSN 1095-9203
EndPage 498
ExternalDocumentID 1512223
3764623981
10_1126_science_aaa6760
24748632
Genre Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
0B8
ADACV
B-7
DOOOF
ESX
GX1
IGG
JSODD
OIOZB
OK1
OTOTI
RHF
UIG
VQA
YCJ
ID FETCH-LOGICAL-c458t-1e731bb3a1687b550867532f243b62d1c4bd2cbdae4f55c0505cc0cf11072bd53
ISSN 0036-8075
IngestDate Mon Nov 25 02:39:04 EST 2024
Fri Jul 11 06:19:58 EDT 2025
Fri Jul 25 19:19:07 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 04:10:44 EDT 2025
Thu Jul 03 22:31:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6247
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-1e731bb3a1687b550867532f243b62d1c4bd2cbdae4f55c0505cc0cf11072bd53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OpenAccessLink https://www.osti.gov/servlets/purl/1512223
PQID 1700362484
PQPubID 1256
PageCount 1
ParticipantIDs osti_scitechconnect_1512223
proquest_miscellaneous_1904235791
proquest_journals_1700362484
crossref_primary_10_1126_science_aaa6760
crossref_citationtrail_10_1126_science_aaa6760
jstor_primary_24748632
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150731
2015-07-31
PublicationDateYYYYMMDD 2015-07-31
PublicationDate_xml – month: 7
  year: 2015
  text: 20150731
  day: 31
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2015
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
AAAS
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_1_118_2
e_1_3_1_81_2
e_1_3_1_114_2
e_1_3_1_110_2
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_24_2
e_1_3_1_62_2
e_1_3_1_85_2
e_1_3_1_20_2
e_1_3_1_6_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_106_2
e_1_3_1_70_2
e_1_3_1_93_2
e_1_3_1_102_2
e_1_3_1_121_2
e_1_3_1_32_2
e_1_3_1_55_2
e_1_3_1_78_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_74_2
e_1_3_1_97_2
e_1_3_1_17_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_119_2
e_1_3_1_115_2
Derjaguin B. (e_1_3_1_86_2) 1945; 15
e_1_3_1_80_2
e_1_3_1_111_2
e_1_3_1_65_2
e_1_3_1_23_2
e_1_3_1_46_2
e_1_3_1_88_2
e_1_3_1_7_2
e_1_3_1_61_2
e_1_3_1_42_2
e_1_3_1_84_2
e_1_3_1_3_2
Gribb A. A. (e_1_3_1_64_2) 1997; 82
e_1_3_1_69_2
e_1_3_1_27_2
e_1_3_1_103_2
e_1_3_1_92_2
e_1_3_1_54_2
e_1_3_1_35_2
e_1_3_1_77_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_96_2
e_1_3_1_31_2
e_1_3_1_73_2
e_1_3_1_16_2
e_1_3_1_58_2
e_1_3_1_39_2
e_1_3_1_116_2
e_1_3_1_60_2
e_1_3_1_112_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_68_2
e_1_3_1_87_2
e_1_3_1_8_2
e_1_3_1_41_2
e_1_3_1_83_2
e_1_3_1_4_2
e_1_3_1_26_2
e_1_3_1_49_2
e_1_3_1_108_2
e_1_3_1_91_2
e_1_3_1_104_2
e_1_3_1_100_2
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_99_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_53_2
e_1_3_1_72_2
e_1_3_1_95_2
e_1_3_1_15_2
e_1_3_1_19_2
e_1_3_1_38_2
Kim Y. Y. (e_1_3_1_34_2) 2014; 5
e_1_3_1_117_2
e_1_3_1_82_2
e_1_3_1_113_2
Lobo R. F. (e_1_3_1_107_2) 1995; 21
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_67_2
e_1_3_1_40_2
e_1_3_1_9_2
e_1_3_1_63_2
e_1_3_1_29_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_109_2
e_1_3_1_71_2
e_1_3_1_105_2
e_1_3_1_90_2
e_1_3_1_101_2
e_1_3_1_120_2
e_1_3_1_33_2
e_1_3_1_79_2
e_1_3_1_56_2
e_1_3_1_98_2
e_1_3_1_75_2
e_1_3_1_10_2
e_1_3_1_52_2
e_1_3_1_94_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_18_2
References_xml – ident: e_1_3_1_60_2
  doi: 10.1002/cphc.201100129
– ident: e_1_3_1_24_2
  doi: 10.1038/46509
– ident: e_1_3_1_68_2
  doi: 10.1126/science.1114920
– ident: e_1_3_1_7_2
  doi: 10.1021/ja050107s
– ident: e_1_3_1_110_2
  doi: 10.1039/B708296G
– ident: e_1_3_1_79_2
  doi: 10.1002/app.1995.070571212
– ident: e_1_3_1_55_2
  doi: 10.1529/biophysj.107.116152
– ident: e_1_3_1_121_2
  doi: 10.1070/RCR4453
– ident: e_1_3_1_42_2
  doi: 10.1007/BF01017860
– ident: e_1_3_1_56_2
  doi: 10.1126/science.1164271
– ident: e_1_3_1_114_2
  doi: 10.1002/smll.200800520
– ident: e_1_3_1_116_2
  doi: 10.1038/nature00785
– ident: e_1_3_1_20_2
  doi: 10.1016/S0022-5320(67)80015-7
– ident: e_1_3_1_76_2
  doi: 10.1002/adma.200300381
– ident: e_1_3_1_5_2
  doi: 10.1073/pnas.0333065100
– ident: e_1_3_1_54_2
  doi: 10.1039/c2fd20080e
– ident: e_1_3_1_94_2
  doi: 10.1002/adfm.201300861
– ident: e_1_3_1_80_2
  doi: 10.1016/0022-1902(81)80482-4
– ident: e_1_3_1_81_2
  doi: 10.1103/PhysRevB.81.125444
– ident: e_1_3_1_118_2
  doi: 10.1021/ja8063167
– ident: e_1_3_1_32_2
  doi: 10.1021/cg2012342
– ident: e_1_3_1_53_2
  doi: 10.1021/ja800984y
– ident: e_1_3_1_89_2
  doi: 10.1021/jz301161j
– ident: e_1_3_1_57_2
  doi: 10.1126/science.1215648
– ident: e_1_3_1_9_2
  doi: 10.2110/pec.00.67.0003
– ident: e_1_3_1_63_2
  doi: 10.1021/ja909769a
– ident: e_1_3_1_67_2
  doi: 10.1039/b701450c
– ident: e_1_3_1_91_2
– ident: e_1_3_1_10_2
  doi: 10.1002/9780470994603
– ident: e_1_3_1_19_2
  doi: 10.1002/jez.90004
– ident: e_1_3_1_18_2
  doi: 10.1016/j.jsb.2008.02.007
– volume: 15
  start-page: 663
  year: 1945
  ident: e_1_3_1_86_2
  article-title: Theory of stability of highly charged liophobic sols and adhesion of highly charged particles in solutions of electrolytes.
  publication-title: Zhurnal Eksperimentalnoi Teor. Fiz.
– ident: e_1_3_1_108_2
  doi: 10.1126/science.289.5480.751
– ident: e_1_3_1_6_2
  doi: 10.1038/ncomms2490
– ident: e_1_3_1_2_2
  doi: 10.1063/1.1531614
– ident: e_1_3_1_47_2
  doi: 10.1021/cm702032v
– ident: e_1_3_1_59_2
  doi: 10.1073/pnas.0404778101
– ident: e_1_3_1_41_2
  doi: 10.1126/science.1230915
– ident: e_1_3_1_117_2
  doi: 10.1016/S0016-7037(99)00037-X
– ident: e_1_3_1_88_2
  doi: 10.1021/nn503145w
– ident: e_1_3_1_3_2
  doi: 10.1098/rsta.1951.0006
– ident: e_1_3_1_99_2
  doi: 10.1002/adma.200801614
– ident: e_1_3_1_90_2
  doi: 10.1021/jp204044k
– volume: 5
  start-page: 4341
  year: 2014
  ident: e_1_3_1_34_2
  article-title: A critical analysis of calcium carbonate mesocrystals
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5341
– ident: e_1_3_1_97_2
  doi: 10.1021/ja0564261
– ident: e_1_3_1_77_2
  doi: 10.1039/C0NR00697A
– ident: e_1_3_1_30_2
  doi: 10.1021/acscentsci.5b00001
– ident: e_1_3_1_120_2
  doi: 10.1073/pnas.0914218107
– ident: e_1_3_1_33_2
  doi: 10.1002/mabi.200600191
– ident: e_1_3_1_65_2
  doi: 10.1073/pnas.0806604105
– ident: e_1_3_1_93_2
  doi: 10.1103/PhysRevLett.97.065701
– ident: e_1_3_1_21_2
  doi: 10.1021/j100068a027
– ident: e_1_3_1_36_2
  doi: 10.1021/cg4001939
– ident: e_1_3_1_106_2
  doi: 10.1021/ja909735y
– ident: e_1_3_1_14_2
  doi: 10.1021/ja907063z
– ident: e_1_3_1_82_2
  doi: 10.1103/PhysRevLett.92.155501
– ident: e_1_3_1_75_2
  doi: 10.1038/nature01845
– volume: 82
  start-page: 717
  year: 1997
  ident: e_1_3_1_64_2
  article-title: Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2
  publication-title: Am. Mineral.
  doi: 10.2138/am-1997-7-809
– ident: e_1_3_1_45_2
  doi: 10.1038/nmat2900
– ident: e_1_3_1_39_2
  doi: 10.1002/adma.200901365
– ident: e_1_3_1_26_2
  doi: 10.1073/pnas.1106228108
– ident: e_1_3_1_92_2
  doi: 10.1039/c2sm26038g
– ident: e_1_3_1_119_2
  doi: 10.1002/anie.200500338
– ident: e_1_3_1_48_2
  doi: 10.1126/science.1169434
– ident: e_1_3_1_70_2
  doi: 10.1021/ja102439r
– ident: e_1_3_1_73_2
  doi: 10.1039/c1ce05153a
– ident: e_1_3_1_96_2
  doi: 10.1073/pnas.1312833110
– ident: e_1_3_1_12_2
  doi: 10.1073/pnas.1118085109
– ident: e_1_3_1_44_2
  doi: 10.1103/PhysRevE.87.042407
– ident: e_1_3_1_38_2
  doi: 10.1002/anie.200500496
– ident: e_1_3_1_104_2
  doi: 10.1006/bbrc.1999.1907
– volume: 21
  start-page: 47
  year: 1995
  ident: e_1_3_1_107_2
  article-title: Structure-direction in zeolite synthesis
  publication-title: J. Incl. Phenom. Mol. Recogn. Chem.
– ident: e_1_3_1_83_2
  doi: 10.1073/pnas.0910170107
– ident: e_1_3_1_25_2
  doi: 10.1021/jp068813i
– ident: e_1_3_1_71_2
  doi: 10.1038/ncomms4169
– ident: e_1_3_1_69_2
  doi: 10.1038/nmat1636
– ident: e_1_3_1_15_2
  doi: 10.1016/j.jsb.2009.02.001
– ident: e_1_3_1_28_2
  doi: 10.1126/science.1219643
– ident: e_1_3_1_46_2
  doi: 10.1098/rspa.1985.0043
– ident: e_1_3_1_111_2
  doi: 10.1021/nl073193y
– ident: e_1_3_1_115_2
  doi: 10.1039/C4CS00106K
– ident: e_1_3_1_40_2
  doi: 10.1126/science.1252642
– ident: e_1_3_1_84_2
  doi: 10.1088/0953-8984/21/32/322201
– ident: e_1_3_1_95_2
  doi: 10.1039/c4cc01457j
– ident: e_1_3_1_61_2
  doi: 10.1021/cg301388e
– ident: e_1_3_1_22_2
  doi: 10.1016/S0022-0248(99)00749-6
– ident: e_1_3_1_43_2
  doi: 10.1080/00018730110117433
– ident: e_1_3_1_29_2
  doi: 10.1126/science.1250984
– ident: e_1_3_1_8_2
  doi: 10.1093/oso/9780195049770.001.0001
– ident: e_1_3_1_51_2
  doi: 10.1016/j.gca.2012.10.044
– ident: e_1_3_1_27_2
  doi: 10.1038/ncomms1604
– ident: e_1_3_1_4_2
  doi: 10.1073/pnas.1222162110
– ident: e_1_3_1_17_2
  doi: 10.1002/jmor.10311
– ident: e_1_3_1_31_2
  doi: 10.1126/science.1254051
– ident: e_1_3_1_11_2
  doi: 10.1098/rspb.1997.0066
– ident: e_1_3_1_37_2
  doi: 10.1002/adfm.201400676
– ident: e_1_3_1_102_2
  doi: 10.1021/cg500816z
– ident: e_1_3_1_112_2
  doi: 10.1039/b912095e
– ident: e_1_3_1_87_2
– ident: e_1_3_1_50_2
  doi: 10.1073/pnas.122055299
– ident: e_1_3_1_101_2
  doi: 10.1002/adfm.201102385
– ident: e_1_3_1_58_2
  doi: 10.1038/nmat3558
– ident: e_1_3_1_13_2
  doi: 10.1126/science.1102289
– ident: e_1_3_1_16_2
  doi: 10.1073/pnas.0803354105
– ident: e_1_3_1_52_2
  doi: 10.1126/science.277.5334.1975
– ident: e_1_3_1_66_2
  doi: 10.1073/pnas.1009959107
– ident: e_1_3_1_49_2
  doi: 10.1002/anie.201210329
– ident: e_1_3_1_62_2
  doi: 10.1021/nl404533k
– ident: e_1_3_1_78_2
  doi: 10.1002/adfm.201203400
– ident: e_1_3_1_23_2
  doi: 10.1126/science.281.5379.969
– ident: e_1_3_1_85_2
  doi: 10.1007/978-3-642-81835-6
– ident: e_1_3_1_98_2
  doi: 10.1038/nmat2875
– ident: e_1_3_1_113_2
  doi: 10.1088/0957-4484/23/19/194005
– ident: e_1_3_1_35_2
  doi: 10.1017/S1431927614000294
– ident: e_1_3_1_100_2
  doi: 10.1002/1521-4095(200010)12:20<1543::AID-ADMA1543>3.0.CO;2-P
– ident: e_1_3_1_72_2
  doi: 10.1002/adfm.201000248
– ident: e_1_3_1_103_2
  doi: 10.1126/science.1173793
– ident: e_1_3_1_105_2
  doi: 10.1021/bm049314v
– ident: e_1_3_1_109_2
  doi: 10.1146/annurev.earth.27.1.313
– ident: e_1_3_1_74_2
  doi: 10.1039/c2fd20124k
SSID ssj0009593
Score 2.6700938
SecondaryResourceType review_article
Snippet Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting...
Crystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes. De Yoreo et al. review the mounting...
Growing crystals by attaching particlesCrystals grow in a number a ways, including pathways involving the assembly of other particles and multi-ion complexes....
Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully...
SourceID osti
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 498
SubjectTerms Aquatic ecosystems
Aquatic environment
Attachment
Biogeochemical cycles
Chemical properties
Chemical speciation
Crystal growth
Crystallization
Crystals
Dynamical systems
Dynamics
Environmental cleanup
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Materials science
Mathematical models
Mineralization
Motion
Nanotechnology
Natural environment
Nutrient cycles
Pathways
Physics
Prediction models
REVIEW SUMMARY
Thermodynamics
Trace elements
Title Crystallization by particle attachment in synthetic, biogenic, and geologic environments
URI https://www.jstor.org/stable/24748632
https://www.proquest.com/docview/1700362484
https://www.proquest.com/docview/1904235791
https://www.osti.gov/servlets/purl/1512223
Volume 349
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBtMlA1kJB6GskSN7bjJY7cxTRNDCFZpb5F_pFCo0mpLH8p_xX_IXe2k6UalwUOjKHacKPf18vly_o6Qd1ymfa2ECllmbSiYkGGqRzzM-jruKYGcGQP6l5_k-VBcXCfXnc7vVtbSvNKR-fXXdSX_Y1U4BnbFVbL_YNlmUDgA-2Bf2IKFYfsgG5_cLIDcTSZ-LSVSyZnvFqiqUub78lP_uERhAmB60IKPVI-nMKTbx7j5t8J5wLVVb23WWjsAYKPNF56WXZtUxYFLKKjzC_xprWDDaYEaUS48u8zPDS6iJgNojHJbLml4PlPBMAo-R8Ggaf86xRi7Hf_4WSMYGuH84DJa-XfHxr9EwceiaAc04qSOlK6ctNdIdq8o55d7WFKS9XjbcXMnduoRKpmT7rz_TmhVsSwipZTsuxIG6-rbd96KTa7icpbEZO4HyP0Aj8g2g5kJuNbtwfHp8dlGpWevJ9VaqVXfwxoVctmwQAym4NrvEYMl27l6Rp76aQodODDtkE5R7pLHrnDpYpfseNPe0kOvW_7-Obm-A0eqF7SGI13BkY5L2sDxiNZgPKIARVpDkbah-IIMzz5cnZyHvnBHaESSVmFc9HmsNVcxegKYA6cwLeVsxATXktnYCG2Z0VYVYpQkBospGtMzI4xFMG0Tvke2ymlZvCTUqp6wMRZZkDB2JjOtlU1SbkfSwo91SVQ_w9x4VXssrjLJN9itSw6bE2ZO0GVz172lUZp-gDCRSg4X3UcrYX9UWjaYkmaqHMkzsO0uOaiNl3tncZujDCZwRZGKLnnbNIMrx-9zqiymc-iTYZJa0s_iVw-_yX3yZPUnOiBb1c28eA08udJvPDL_AEdnwCI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallization+by+particle+attachment+in+synthetic%2C+biogenic%2C+and+geologic+environments&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=De+Yoreo%2C+James+J.&rft.au=Gilbert%2C+Pupa+U.+P.+A.&rft.au=Sommerdijk%2C+Nico+A.+J.+M.&rft.au=Penn%2C+R.+Lee&rft.date=2015-07-31&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=349&rft.issue=6247&rft_id=info:doi/10.1126%2Fscience.aaa6760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaa6760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon