Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections
There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme...
Saved in:
Published in | Bioengineered Vol. 5; no. 2; pp. 143 - 147 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.03.2014
Landes Bioscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme's electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. |
---|---|
AbstractList | There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme's electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme's electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose.There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme's electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. |
Author | Leclair, Laurie W Griswold, Karl E Bement, Jenna L Scanlon, Thomas C Teneback, Charlotte C Wargo, Matthew J |
Author_xml | – sequence: 1 givenname: Karl E surname: Griswold fullname: Griswold, Karl E email: Karl.E.Griswold@dartmouth.edu – sequence: 2 givenname: Jenna L surname: Bement fullname: Bement, Jenna L – sequence: 3 givenname: Charlotte C surname: Teneback fullname: Teneback, Charlotte C – sequence: 4 givenname: Thomas C surname: Scanlon fullname: Scanlon, Thomas C – sequence: 5 givenname: Matthew J surname: Wargo fullname: Wargo, Matthew J – sequence: 6 givenname: Laurie W surname: Leclair fullname: Leclair, Laurie W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24637705$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9rFTEUxYO02Fq78QPILKXw2mSSTGY2ghb_QUEXunETbjI3r5FM8kxmLM9Pb15fW1S6yoWc3zlwzjNyEFNEQl4wei5Yxy6MT3je9pzLJ-S4ZZ1cyaFXBw-3Go7IaSk_KKWMciFV_5QctaLjSlF5TL6_rXxc-4iYcWzCtqTf2wkbHxubJuMjzD7FZr7GDBuPpXEpN18KLmOaUoTSAOal4qlAE5a4rqBDu2PKc3LoIBQ8vXtPyLf3775eflxdff7w6fLN1coK2c8rxpAOrWHU2pEyY0CCHSxn2KoBwBjHnDMMHQMYsLfCyN5gNzKuWNcDCn5CXu99N4uZcLQY5wxBb7KfIG91Aq___Yn-Wq_TLy2oGAaqqsGrO4Ocfi5YZj35YjEEiJiWopnkrVBDy_sqffl31kPIfaFVQPcCm1MpGZ22fr7tsEb7oBnVu9n0bjZ9O1tFzv5D7l0fFcu9uPac8gQ3KYdRz7ANKbsM0fqi-SPcH2m2r3g |
CitedBy_id | crossref_primary_10_1002_2211_5463_13094 crossref_primary_10_1021_acs_biomac_7b00640 crossref_primary_10_1021_cb500976y crossref_primary_10_1038_s41467_018_04996_x crossref_primary_10_3390_molecules26041073 crossref_primary_10_1002_fsn3_3314 crossref_primary_10_12688_f1000research_125074_2 crossref_primary_10_1038_s41598_019_40440_w crossref_primary_10_1016_j_copbio_2018_03_010 crossref_primary_10_12688_f1000research_125074_1 crossref_primary_10_1016_j_jff_2022_104932 crossref_primary_10_1099_jmm_0_001167 crossref_primary_10_1080_21655979_2022_2084496 crossref_primary_10_1021_acs_jafc_9b05364 crossref_primary_10_31083_j_fbs1403023 crossref_primary_10_3389_fimmu_2023_1214514 crossref_primary_10_1371_journal_pone_0181932 crossref_primary_10_3389_fnut_2022_1033779 crossref_primary_10_2217_fvl_2020_0170 crossref_primary_10_3390_ijms21051635 crossref_primary_10_1016_j_bioorg_2021_105415 crossref_primary_10_1039_C6NR09736G crossref_primary_10_1093_femsle_fnu035 crossref_primary_10_1111_brv_12830 crossref_primary_10_3390_antibiotics10121534 |
Cites_doi | 10.1086/499406 10.1111/nyas.12005 10.1086/668770 10.1126/science.321.5887.356 10.1124/pr.55.1.2 10.1128/AAC.00500-13 10.1007/s12038-010-0015-5 10.1007/s00018-007-6475-6 10.3109/01902140903154608 10.1016/j.chembiol.2008.11.006 10.1186/1472-6750-9-95 10.1128/IAI.37.2.662-669.1982 10.1002/bip.22250 10.1002/jcc.10100 10.4049/jimmunol.177.1.519 10.1128/CMR.16.4.673-687.2003 10.1016/S0014-5793(01)02872-1 10.1021/cb1001119 10.1016/S0924-8579(09)70549-7 10.1021/ja803925n 10.3109/01902148.2011.609578 10.4049/jimmunol.169.12.6985 10.1517/17425247.2010.515208 10.1080/713610448 10.1099/jmm.0.061028-0 10.1371/journal.pone.0016788 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Landes Bioscience 2014 |
Copyright_xml | – notice: Copyright © 2014 Landes Bioscience 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.4161/bioe.28335 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2165-5987 |
EndPage | 147 |
ExternalDocumentID | PMC4049907 24637705 10_4161_bioe_28335 10928335 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI103003 |
GroupedDBID | 0YH 4.4 53G ABCCY ABPEM ACGFS ADBBV ADCVX AENEX AIJEM ALMA_UNASSIGNED_HOLDINGS AOIJS DGEBU EBS EMOBN GROUPED_DOAJ GTTXZ H13 HYE M4Z OK1 OVD RPM SV3 TDBHL TEORI TFL TFW TTHFI AAYXX BCNDV CITATION EJD IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c458t-11e092b10ccd01bba5ac9c31e279aabbf1ffb1ef1aa9e8c4b58be6d137168ae43 |
IEDL.DBID | 0YH |
ISSN | 2165-5979 2165-5987 |
IngestDate | Thu Aug 21 14:07:47 EDT 2025 Fri Jul 11 03:32:38 EDT 2025 Thu Apr 03 07:00:51 EDT 2025 Tue Jul 01 03:52:37 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Wed Dec 25 09:01:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | biotherapeutics lytic enzymes protein engineering lysozyme cystic fibrosis Pseudomonas aeruginosa lung infection model drug resistance antibiotics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-11e092b10ccd01bba5ac9c31e279aabbf1ffb1ef1aa9e8c4b58be6d137168ae43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current affiliation: Avitide; Lebanon, NH USA |
PMID | 24637705 |
PQID | 1532479238 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | informaworld_taylorfrancis_310_4161_bioe_28335 crossref_primary_10_4161_bioe_28335 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4049907 pubmed_primary_24637705 crossref_citationtrail_10_4161_bioe_28335 proquest_miscellaneous_1532479238 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Bioengineered |
PublicationTitleAlternate | Bioengineered |
PublicationYear | 2014 |
Publisher | Taylor & Francis Landes Bioscience |
Publisher_xml | – name: Taylor & Francis – name: Landes Bioscience |
References | R21 R20 R23 R25 R24 Ohman DE (R22) 1982; 37 R27 R26 R29 R28 R1 R2 R3 R4 R5 R7 R8 R9 Parisien A (R6) 2008; 104 R10 R12 R11 R14 R13 R16 R15 R18 R17 R19 11591365 - FEBS Lett. 2001 Sep 28;506(1):27-32 19596110 - Int J Antimicrob Agents. 2009 Aug;34 Suppl 3:S2-5 20413917 - J Biosci. 2010 Mar;35(1):127-60 18171378 - J Appl Microbiol. 2008 Jan;104(1):1-13 16355321 - Clin Infect Dis. 2006 Jan 15;42 Suppl 2:S82-9 16785549 - J Immunol. 2006 Jul 1;177(1):519-26 20205599 - Exp Lung Res. 2010 Mar;36(2):94-100 19930565 - BMC Biotechnol. 2009;9:95 20836624 - Expert Opin Drug Deliv. 2010 Oct;7(10):1145-58 23221186 - Infect Control Hosp Epidemiol. 2013 Jan;34(1):1-14 23553602 - Biopolymers. 2013 Nov;100(6):572-83 12615953 - Pharmacol Rev. 2003 Mar;55(1):27-55 19171306 - Chem Biol. 2009 Jan 30;16(1):58-69 12214315 - J Comput Chem. 2002 Nov 15;23(14):1323-36 17310278 - Cell Mol Life Sci. 2007 Apr;64(7-8):922-33 21967196 - Exp Lung Res. 2011 Nov;37(9):536-41 12471133 - J Immunol. 2002 Dec 15;169(12):6985-91 18635788 - Science. 2008 Jul 18;321(5887):356-61 14557293 - Clin Microbiol Rev. 2003 Oct;16(4):673-87 14582617 - Crit Rev Microbiol. 2003;29(3):191-214 21408218 - PLoS One. 2011;6(3):e16788 19072156 - J Am Chem Soc. 2009 Jan 21;131(2):486-93 23302022 - Ann N Y Acad Sci. 2013 Jan;1277:127-38 22748813 - Adv Virus Res. 2012;83:299-365 20604527 - ACS Chem Biol. 2010 Sep 17;5(9):809-18 23813275 - J Med Microbiol. 2013 Oct;62(Pt 10):1506-16 6811437 - Infect Immun. 1982 Aug;37(2):662-9 23979752 - Antimicrob Agents Chemother. 2013 Nov;57(11):5559-64 |
References_xml | – ident: R3 doi: 10.1086/499406 – ident: R9 doi: 10.1111/nyas.12005 – ident: R21 doi: 10.1086/668770 – ident: R2 doi: 10.1126/science.321.5887.356 – volume: 104 start-page: 1 year: 2008 ident: R6 publication-title: J Appl Microbiol – ident: R24 doi: 10.1124/pr.55.1.2 – ident: R20 doi: 10.1128/AAC.00500-13 – ident: R12 doi: 10.1007/s12038-010-0015-5 – ident: R23 doi: 10.1007/s00018-007-6475-6 – ident: R10 doi: 10.3109/01902140903154608 – ident: R26 doi: 10.1016/j.chembiol.2008.11.006 – ident: R5 – ident: R18 doi: 10.1186/1472-6750-9-95 – volume: 37 start-page: 662 year: 1982 ident: R22 publication-title: Infect Immun doi: 10.1128/IAI.37.2.662-669.1982 – ident: R25 doi: 10.1002/bip.22250 – ident: R29 doi: 10.1002/jcc.10100 – ident: R16 doi: 10.4049/jimmunol.177.1.519 – ident: R8 doi: 10.1128/CMR.16.4.673-687.2003 – ident: R14 doi: 10.1016/S0014-5793(01)02872-1 – ident: R17 doi: 10.1021/cb1001119 – ident: R1 doi: 10.1016/S0924-8579(09)70549-7 – ident: R27 doi: 10.1021/ja803925n – ident: R11 doi: 10.3109/01902148.2011.609578 – ident: R13 doi: 10.4049/jimmunol.169.12.6985 – ident: R28 doi: 10.1517/17425247.2010.515208 – ident: R15 doi: 10.1080/713610448 – ident: R7 doi: 10.1099/jmm.0.061028-0 – ident: R4 – ident: R19 doi: 10.1371/journal.pone.0016788 – reference: 12214315 - J Comput Chem. 2002 Nov 15;23(14):1323-36 – reference: 20604527 - ACS Chem Biol. 2010 Sep 17;5(9):809-18 – reference: 12615953 - Pharmacol Rev. 2003 Mar;55(1):27-55 – reference: 14557293 - Clin Microbiol Rev. 2003 Oct;16(4):673-87 – reference: 12471133 - J Immunol. 2002 Dec 15;169(12):6985-91 – reference: 19596110 - Int J Antimicrob Agents. 2009 Aug;34 Suppl 3:S2-5 – reference: 20836624 - Expert Opin Drug Deliv. 2010 Oct;7(10):1145-58 – reference: 23979752 - Antimicrob Agents Chemother. 2013 Nov;57(11):5559-64 – reference: 20413917 - J Biosci. 2010 Mar;35(1):127-60 – reference: 22748813 - Adv Virus Res. 2012;83:299-365 – reference: 23813275 - J Med Microbiol. 2013 Oct;62(Pt 10):1506-16 – reference: 14582617 - Crit Rev Microbiol. 2003;29(3):191-214 – reference: 6811437 - Infect Immun. 1982 Aug;37(2):662-9 – reference: 21408218 - PLoS One. 2011;6(3):e16788 – reference: 11591365 - FEBS Lett. 2001 Sep 28;506(1):27-32 – reference: 21967196 - Exp Lung Res. 2011 Nov;37(9):536-41 – reference: 19072156 - J Am Chem Soc. 2009 Jan 21;131(2):486-93 – reference: 17310278 - Cell Mol Life Sci. 2007 Apr;64(7-8):922-33 – reference: 19930565 - BMC Biotechnol. 2009;9:95 – reference: 23553602 - Biopolymers. 2013 Nov;100(6):572-83 – reference: 23302022 - Ann N Y Acad Sci. 2013 Jan;1277:127-38 – reference: 16355321 - Clin Infect Dis. 2006 Jan 15;42 Suppl 2:S82-9 – reference: 18171378 - J Appl Microbiol. 2008 Jan;104(1):1-13 – reference: 18635788 - Science. 2008 Jul 18;321(5887):356-61 – reference: 19171306 - Chem Biol. 2009 Jan 30;16(1):58-69 – reference: 20205599 - Exp Lung Res. 2010 Mar;36(2):94-100 – reference: 23221186 - Infect Control Hosp Epidemiol. 2013 Jan;34(1):1-14 – reference: 16785549 - J Immunol. 2006 Jul 1;177(1):519-26 |
SSID | ssj0001034578 |
Score | 2.0827472 |
Snippet | There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 143 |
SubjectTerms | Addendum Animals Anti-Bacterial Agents - therapeutic use antibiotics Bioengineering - methods biotherapeutics Cell Survival - drug effects cystic fibrosis Drug Design drug resistance Drug Therapy, Combination - methods lung infection model lysozyme lytic enzymes Mice Mice, Inbred C57BL Muramidase - genetics Muramidase - therapeutic use Pneumonia, Bacterial - diagnosis Pneumonia, Bacterial - drug therapy Pneumonia, Bacterial - microbiology protein engineering Protein Engineering - methods Pseudomonas aeruginosa Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - physiology Pseudomonas Infections - diagnosis Pseudomonas Infections - drug therapy Pseudomonas Infections - microbiology Treatment Outcome |
Title | Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections |
URI | https://www.tandfonline.com/doi/abs/10.4161/bioe.28335 https://www.ncbi.nlm.nih.gov/pubmed/24637705 https://www.proquest.com/docview/1532479238 https://pubmed.ncbi.nlm.nih.gov/PMC4049907 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAg3pSXjGBhCPiZxwiIqkICMYAELJHt2KJSSRBph_LrOTttaVEX1sSWnbvz-T7n_B1CZ1niHATyAHJIINWWLFJOJpErmCacZbJwHijeP8SdZ3H3Il8WUDy-C-PTKj2Gdg1RRPDVfnErHSqQ-HD8Uncre8H8baFFtMy8iYIdk9fO79kK4UIGJ8xoLCOImbOGmfRP95m9aIapdF68-Tdtcmofaq-jtVEAia8ajW-gBVtuotUpWsEt9HYNY48e2AL3hnX1PfywuFti-FCAwkEbuLl6BUgZw4zwY20HRQVGqWqs7NcAule1wj1wBnicsVXW2-i5fft004lGNRQiI2Tajyi1JGOaEmMKQrVWUpnMcGpZkimltaPOaWodVSqzqRFaptrGBeWAo1JlBd9BS2VV2j2EiUmLlHIB2uNCFcYz_xmXCQN7vjDatdD5WJq5GRGM-zoXvRyAhpd87iWfB8m30Omk7WdDqzG31cW0UvJ-OMRwTcWRnM_rcDJWWw7LxP_7UKWtBnUOjp0Jz5WYttBuo8bJwEzEPEkI9E5mFDxp4Cm4Z9-U3fdAxS08YiTJ_n8neoBWIPISTTLbIVrqfw3sEUQ3fX0cTPkHy9j9ng |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4HIADguVVXmvEXjgE_GySIyBQ2QXEASSWi2U7tqhUEkTaA_x6xklaWtQL18QjOzP2vDL-BqE_aew9OPIQ5JAKVFuySHsZRz5jhnCWysyHQPHmtt15EH8f5WOTuiibssoQQ_saKKLS1eFwh2R0OOHBHz8x3cIds3BdaBbNS7C4oWcD-d_5Sq4QLmSlhRltywic5rSGJv1GPmGMJqBKpzmc3-smxwzR5QpabjxIfFqLfBXNuPwXWhrDFVxDT2cwd_PAZbj3XhYf7y8Od3MMXwqxcCUOXN-9glAZw4rwXekGWQG7UpdYu7cBkBelxj3QBnhYspWX6-jh8uL-vBM1TRQiK2TSjyh1JGWGEmszQo3RUtvUcupYnGptjKfeG-o81Tp1iRVGJsa1M8ohkEq0E3wDzeVF7rYQJjbJEsoFiI8LndkA_Wd9KiwYfWGNb6GjITeVbRDGQ6OLnoJII3BeBc6rivMtdDga-1rjakwddTwuFNWvshi-bjmi-DSCg6HYFJyT8PND564YlAo0OxMBLDFpoc1ajKOJmWjzOCZAHU8IeDQgYHBPvsm7zxUWtwghI4m3f7rQ32ihc39zra6vbv_toEVww0Rd2baL5vpvA7cHrk7f7Ffb-hOEZQEh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VIiF6QLS8QqG4gguHLX7u41geUaCl6oFKhYvlp4iU7lbd5FB-PePdJCRVLlx3PbJ3xp6Zzzv-DPCuKmLERB5BDu1ItRXPTFRFFj23VPBK-ZiA4vezfHQhv12qyy3IF2dhUlllwtCxJ4rofHVa3Nc-pgWe0vEPdtyEI55OC92D-6rEAI_zmP4c_dtboUKqzglzlqsMc-aqZya9I74Wi9aYSjflm3fLJlfi0PAxPJonkOS4t_gubIV6D3ZWaAWfwK-P2Pf8QfBkcts2f26vAhnXBD8UoXBnDdIfvUKkTHBE5LwNM9_gpDQtMeFmhuJNa8gEnQFZVGzV7VO4GH758WmUze9QyJxU5TRjLNCKW0ad85RZa5RxlRMs8KIyxtrIYrQsRGZMFUonrSptyD0TiKNKE6R4Btt1U4cXQKgrfcmEROsJabxLzH8uVtJhzJfOxgG8X2hTuznBeLrnYqIRaCTN66R53Wl-AG-Xba97Wo2NrY5WjaKn3SZG7G8c0WKTwOHCbBqXSfr3YerQzFqNjp3LxJVYDuB5b8Zlx1zmoigoShdrBl42SBTc62_q8e-OilsmxEiLl_870Dfw4PzzUJ9-PTvZh4eYhMm-ru0VbE9vZuE1JjpTe9DN6r8Q1ABT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioengineered+lysozyme+in+combination+therapies+for+Pseudomonas+aeruginosa+lung+infections&rft.jtitle=Bioengineered&rft.au=Griswold%2C+Karl+E&rft.au=Bement%2C+Jenna+L&rft.au=Teneback%2C+Charlotte+C&rft.au=Scanlon%2C+Thomas+C&rft.date=2014-03-01&rft.pub=Taylor+%26+Francis&rft.issn=2165-5979&rft.eissn=2165-5987&rft.volume=5&rft.issue=2&rft.spage=143&rft.epage=147&rft_id=info:doi/10.4161%2Fbioe.28335&rft.externalDocID=10928335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-5979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-5979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-5979&client=summon |