Mycobacterium tuberculosis‐specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb‐specific CD8+ T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb‐specific CD8+ T cells in 326 subjects with latent Mtb infection (LTBI) or active T...
Saved in:
Published in | European journal of immunology Vol. 43; no. 6; pp. 1568 - 1577 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb‐specific CD8+ T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb‐specific CD8+ T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb‐specific CD8+ T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb‐specific CD8+ T cells in LTBI subjects were mostly TEMRA cells (CD45RA+CCR7−), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA−CCR7−), expressing 2B4 but lacking PD‐1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb‐specific CD8+ T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro‐expanded Mtb‐specific CD8+ T cells expressed perforin and granulysin. Finally, Mtb‐specific CD8+ T‐cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb‐specific CD8+ T‐cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb‐specific CD8+ T‐cell responses. These results provide new insights in the interaction between Mtb and the host immune response. |
---|---|
AbstractList | Protective immunity to
Mycobacterium tuberculosis
(
Mtb
) remains poorly understood and the role of
Mtb
‐specific CD8
+
T cells is controversial. Here we performed a broad phenotypic and functional characterization of
Mtb
‐specific CD8
+
T cells in 326 subjects with latent
Mtb
infection (LTBI) or active TB disease (TB).
Mtb
‐specific CD8
+
T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude.
Mtb
‐specific CD8
+
T cells in LTBI subjects were mostly T
EMRA
cells (CD45RA
+
CCR7
−
), coexpressing 2B4 and CD160, and in TB patients were mostly T
EM
cells (CD45RA
−
CCR7
−
), expressing 2B4 but lacking PD‐1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore,
Mtb
‐specific CD8
+
T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro‐expanded
Mtb
‐specific CD8
+
T cells expressed perforin and granulysin. Finally,
Mtb
‐specific CD8
+
T‐cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients.
Mtb
‐specific CD8
+
T‐cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of
Mtb
infection and clinical presentation are associated with distinct profiles of
Mtb
‐specific CD8
+
T‐cell responses. These results provide new insights in the interaction between
Mtb
and the host immune response. Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb‐specific CD8+ T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb‐specific CD8+ T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb‐specific CD8+ T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb‐specific CD8+ T cells in LTBI subjects were mostly TEMRA cells (CD45RA+CCR7−), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA−CCR7−), expressing 2B4 but lacking PD‐1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb‐specific CD8+ T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro‐expanded Mtb‐specific CD8+ T cells expressed perforin and granulysin. Finally, Mtb‐specific CD8+ T‐cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb‐specific CD8+ T‐cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb‐specific CD8+ T‐cell responses. These results provide new insights in the interaction between Mtb and the host immune response. Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8+ T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8+ T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8+ T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8+ T cells in LTBI subjects were mostly TEMRA cells (CD45RA+CCR7-), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA-CCR7-), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8+ T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8+ T cells expressed perforin and granulysin. Finally, Mtb-specific CD8+ T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8+ T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8+ T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response. [PUBLICATION ABSTRACT] Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response. Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response. |
Author | Nicod, Laurent Idrizi, Elita Petruccioli, Elisa Mazza‐Stalder, Jesica Bart, Pierre‐Alexandre Rozot, Virginie Day, Cheryl L. Perreau, Matthieu Pantaleo, Giuseppe Lazor‐Blanchet, Catherine Hanekom, Willem Goletti, Delia Harari, Alexandre Vigano, Selena |
AuthorAffiliation | 3 South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town, South Africa 1 Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland 4 Division of Occupational Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland 5 National Institute for Infectious Diseases, Rome, Italy 2 Division of Pneumology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland 6 Swiss Vaccine Research Institute, Lausanne, Switzerland |
AuthorAffiliation_xml | – name: 2 Division of Pneumology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland – name: 4 Division of Occupational Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland – name: 5 National Institute for Infectious Diseases, Rome, Italy – name: 3 South African Tuberculosis Vaccine Initiative, University of Cape Town, Cape Town, South Africa – name: 1 Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland – name: 6 Swiss Vaccine Research Institute, Lausanne, Switzerland |
Author_xml | – sequence: 1 givenname: Virginie surname: Rozot fullname: Rozot, Virginie organization: University of Lausanne – sequence: 2 givenname: Selena surname: Vigano fullname: Vigano, Selena organization: University of Lausanne – sequence: 3 givenname: Jesica surname: Mazza‐Stalder fullname: Mazza‐Stalder, Jesica organization: University of Lausanne – sequence: 4 givenname: Elita surname: Idrizi fullname: Idrizi, Elita organization: University of Lausanne – sequence: 5 givenname: Cheryl L. surname: Day fullname: Day, Cheryl L. organization: University of Cape Town – sequence: 6 givenname: Matthieu surname: Perreau fullname: Perreau, Matthieu organization: University of Lausanne – sequence: 7 givenname: Catherine surname: Lazor‐Blanchet fullname: Lazor‐Blanchet, Catherine organization: University of Lausanne – sequence: 8 givenname: Elisa surname: Petruccioli fullname: Petruccioli, Elisa organization: National Institute for Infectious Diseases – sequence: 9 givenname: Willem surname: Hanekom fullname: Hanekom, Willem organization: University of Cape Town – sequence: 10 givenname: Delia surname: Goletti fullname: Goletti, Delia organization: National Institute for Infectious Diseases – sequence: 11 givenname: Pierre‐Alexandre surname: Bart fullname: Bart, Pierre‐Alexandre organization: University of Lausanne – sequence: 12 givenname: Laurent surname: Nicod fullname: Nicod, Laurent organization: University of Lausanne – sequence: 13 givenname: Giuseppe surname: Pantaleo fullname: Pantaleo, Giuseppe organization: Swiss Vaccine Research Institute – sequence: 14 givenname: Alexandre surname: Harari fullname: Harari, Alexandre organization: Swiss Vaccine Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23456989$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEUhS1URNPCki0aiQ1SNcX_M94gVaFAURGbsrY8nmvqaGIHe6ZVdjwAiz4jT4KTlAgqwcqy_Z1zr6_PEToIMQBCzwk-JRjT17DwpxQTyhmV9BGaEUFJzQknB2iGMeE1VS0-REc5LzDGSgr1BB1SxoVUrZqhH5_WNnbGjpD8tKzGqYNkpyFmn39-v8srsN55W83ftifVVWVhGHJlElRuCnb0MZhhWFcm9NXqGkIc1ytvt0e9dw4ShLHqYLwFCNVgxs3WBwdb5VZVCvsbKHQGk-EpeuzMkOHZ_XqMvrw7v5p_qC8_v7-Yn13WlotW1UJ12AHpwLTYYNEICg3DjINTVna8EUr2VjrmBG26vuFKOmiannDHZeOoY8fozc53NXVL6G3pK5lBr5JfmrTW0Xj9903w1_prvNFSMIEVKQav7g1S_DZBHvXS581wTIA4ZU1YgyVrJRUFffkAXcQplbntKMwbJlmhXvzZ0b6V3x9VgHoH2BRzTuD2CMF6EwRdgqD3QSg8e8BbP5rN3MuD_PBPFd2pbv0A6_-X0OcfL6hQiv0C8xzJyA |
CODEN | EJIMAF |
CitedBy_id | crossref_primary_10_3389_fimmu_2017_00968 crossref_primary_10_1371_journal_pone_0138952 crossref_primary_10_3389_fimmu_2017_00208 crossref_primary_10_1183_13993003_02033_2015 crossref_primary_10_2217_fmb_15_11 crossref_primary_10_1002_eji_201747184 crossref_primary_10_1016_j_jinf_2015_07_009 crossref_primary_10_1128_microbiolspec_GPP3_0022_2018 crossref_primary_10_3390_computation4040039 crossref_primary_10_3389_fimmu_2021_648182 crossref_primary_10_1007_s00430_018_00576_4 crossref_primary_10_1183_13993003_01084_2016 crossref_primary_10_1186_s12887_021_02524_3 crossref_primary_10_1111_aji_12745 crossref_primary_10_1128_CMR_00038_17 crossref_primary_10_1186_s12879_023_08943_0 crossref_primary_10_3389_fimmu_2020_605338 crossref_primary_10_1016_j_tube_2015_05_016 crossref_primary_10_1371_journal_pcbi_1004804 crossref_primary_10_1155_2017_8909834 crossref_primary_10_1016_j_tube_2015_11_008 crossref_primary_10_1016_j_ijmm_2017_12_001 crossref_primary_10_1016_j_jinf_2024_106295 crossref_primary_10_1111_resp_13272 crossref_primary_10_3389_fimmu_2020_613638 crossref_primary_10_4236_jtr_2024_123009 crossref_primary_10_3904_kjim_2019_002 crossref_primary_10_1093_cid_ciu795 crossref_primary_10_12688_gatesopenres_13191_2 crossref_primary_10_1038_s41598_018_36403_2 crossref_primary_10_12688_gatesopenres_13191_3 crossref_primary_10_1016_j_diagmicrobio_2016_06_007 crossref_primary_10_12688_gatesopenres_13191_1 crossref_primary_10_1016_j_jctube_2021_100223 crossref_primary_10_1111_imm_12833 crossref_primary_10_1016_j_jinf_2016_09_008 crossref_primary_10_1172_JCI125810 crossref_primary_10_3390_vaccines10111892 crossref_primary_10_1016_j_imlet_2014_03_009 crossref_primary_10_2147_IDR_S476492 crossref_primary_10_3389_fimmu_2021_716857 crossref_primary_10_1016_j_intimp_2016_01_012 crossref_primary_10_1080_17476348_2019_1615888 crossref_primary_10_1111_resp_13346 crossref_primary_10_1371_journal_pone_0094192 crossref_primary_10_1007_s00281_015_0490_8 crossref_primary_10_3389_fcimb_2024_1485825 crossref_primary_10_1016_j_jinf_2019_01_008 crossref_primary_10_3389_fimmu_2019_02430 crossref_primary_10_3389_fimmu_2021_725447 crossref_primary_10_3389_fimmu_2020_00103 crossref_primary_10_3389_fimmu_2021_706723 crossref_primary_10_1016_j_lpm_2017_01_015 crossref_primary_10_1371_journal_pntd_0005817 crossref_primary_10_1016_j_jtbi_2022_111042 crossref_primary_10_1183_13993003_02053_2018 crossref_primary_10_1016_j_smim_2014_09_003 crossref_primary_10_1016_j_smim_2014_10_003 crossref_primary_10_1128_spectrum_01870_21 crossref_primary_10_1128_JCM_02498_16 crossref_primary_10_1038_srep17918 crossref_primary_10_1371_journal_pntd_0005241 crossref_primary_10_1038_mi_2015_24 crossref_primary_10_1128_CMR_00021_18 crossref_primary_10_1016_j_intimp_2024_113782 crossref_primary_10_1016_j_medj_2020_11_003 crossref_primary_10_1002_14651858_CD013693_pub2 crossref_primary_10_1016_j_tube_2018_06_005 crossref_primary_10_1038_s41598_018_33825_w crossref_primary_10_3389_fimmu_2025_1545537 crossref_primary_10_3389_fimmu_2018_01995 crossref_primary_10_3389_fimmu_2018_03094 crossref_primary_10_1016_j_advms_2019_09_001 crossref_primary_10_1172_JCI77990 crossref_primary_10_1016_j_jinf_2014_06_009 crossref_primary_10_1183_13993003_01089_2018 crossref_primary_10_1128_JCM_00629_18 crossref_primary_10_1164_rccm_201509_1746OC crossref_primary_10_3389_fimmu_2024_1339971 crossref_primary_10_1016_j_jinf_2019_08_018 crossref_primary_10_1016_j_jinf_2020_02_009 crossref_primary_10_1002_eji_201343956 crossref_primary_10_1038_s41598_024_66858_5 crossref_primary_10_1136_thoraxjnl_2017_211147 crossref_primary_10_1007_s15010_020_01451_2 crossref_primary_10_1016_j_tube_2018_10_014 crossref_primary_10_3389_fimmu_2019_00431 crossref_primary_10_1183_13993003_01727_2020 crossref_primary_10_1186_s12889_025_21954_7 crossref_primary_10_1016_j_intimp_2021_107898 crossref_primary_10_58395_pipd_v47i1_15 crossref_primary_10_1080_23744235_2018_1425550 crossref_primary_10_1111_jebm_12477 crossref_primary_10_1016_j_diagmicrobio_2015_05_007 crossref_primary_10_1165_rcmb_2016_0321OC crossref_primary_10_2217_fmb_16_15 crossref_primary_10_1016_j_jiac_2021_08_003 crossref_primary_10_1128_JVI_01728_18 crossref_primary_10_3389_fimmu_2019_01595 crossref_primary_10_1183_13993003_01012_2016 crossref_primary_10_12998_wjcc_v11_i28_6908 crossref_primary_10_1002_14651858_CD013693 crossref_primary_10_2217_bmm_13_53 crossref_primary_10_3389_fmed_2022_998972 crossref_primary_10_1007_s00430_015_0424_z crossref_primary_10_1002_JLB_MA0318_117R crossref_primary_10_1128_microbiolspec_TBTB2_0016_2016 crossref_primary_10_1186_s12967_016_0819_7 crossref_primary_10_1016_j_resinv_2023_04_010 crossref_primary_10_1371_journal_pcbi_1007280 crossref_primary_10_3389_fmicb_2022_825021 crossref_primary_10_1128_iai_00297_24 crossref_primary_10_1155_2016_1478340 crossref_primary_10_3389_fcimb_2023_1162420 crossref_primary_10_1016_j_ijmyco_2015_10_005 crossref_primary_10_1155_2015_854507 crossref_primary_10_3389_fmicb_2021_745592 crossref_primary_10_1016_j_tube_2020_101966 crossref_primary_10_1155_2014_764028 crossref_primary_10_1155_2015_217287 crossref_primary_10_4049_jimmunol_2000672 crossref_primary_10_1371_journal_pone_0234700 crossref_primary_10_5808_gi_23021 crossref_primary_10_1371_journal_pone_0094949 crossref_primary_10_1183_13993003_01976_2016 crossref_primary_10_3390_ijms241713261 crossref_primary_10_1128_CVI_00554_15 crossref_primary_10_3390_ijerph14030236 crossref_primary_10_1128_Spectrum_00096_21 crossref_primary_10_1515_cclm_2023_0293 crossref_primary_10_3390_app112311400 crossref_primary_10_1128_JCM_01950_19 crossref_primary_10_1016_j_ccm_2019_07_002 crossref_primary_10_3389_fcimb_2022_1071880 crossref_primary_10_3389_fcimb_2023_1107884 crossref_primary_10_1016_j_jinf_2020_03_064 crossref_primary_10_1093_cid_ciad030 crossref_primary_10_1002_jcb_26078 crossref_primary_10_1128_JCM_00427_18 crossref_primary_10_3389_fimmu_2018_02247 crossref_primary_10_1002_eji_201545545 crossref_primary_10_1093_cid_ciaa1822 crossref_primary_10_1016_j_cca_2023_117559 crossref_primary_10_1038_s41598_020_78374_3 crossref_primary_10_1371_journal_pone_0281559 crossref_primary_10_1128_JCM_00614_18 crossref_primary_10_1183_13993003_00510_2016 |
Cites_doi | 10.4049/jimmunol.165.1.353 10.1084/jem.189.12.1973 10.1183/09031936.00000712 10.1038/nature09657 10.4049/jimmunol.180.3.1962 10.1371/journal.ppat.1000392 10.1007/978-1-4615-5355-7_11 10.1164/rccm.200306-837OC 10.1038/nri2960 10.4049/jimmunol.177.8.5647 10.2353/ajpath.2009.080941 10.1016/j.tube.2005.09.001 10.1016/j.tim.2009.02.005 10.4049/jimmunol.1000801 10.1155/2012/485781 10.4049/jimmunol.162.9.5407 10.1371/journal.pone.0028754 10.1038/nm.2299 10.1086/518937 10.1038/nrmicro2236 10.1172/JCI38482 10.1371/journal.pone.0005528 10.1155/2011/438463 10.1126/science.276.5319.1684 10.1182/blood-2010-12-322727 10.1073/pnas.0707570104 10.1016/j.tube.2007.11.002 10.4049/jimmunol.1101122 10.4049/jimmunol.177.1.437 10.1084/jem.178.6.2249 10.1016/j.bbrc.2010.02.141 10.1086/651494 10.1111/j.0105-2896.2006.00395.x 10.1146/annurev.immunol.021908.132703 10.1615/CritRevImmunol.v26.i4.30 10.1378/chest.06-2471 10.1073/pnas.89.24.12013 10.1002/cyto.a.21015 10.1038/ncprheum0336 10.1164/rccm.201107-1355OC 10.1073/pnas.95.1.270 10.1073/pnas.0502393102 10.1128/IAI.00307-08 10.1126/science.282.5386.121 10.1084/jem.192.3.347 10.1084/jem.20020609 10.1128/IAI.00624-07 10.1128/IAI.69.7.4195-4201.2001 10.1128/JVI.02528-08 |
ContentType | Journal Article |
Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1002/eji.201243262 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1521-4141 |
EndPage | 1577 |
ExternalDocumentID | PMC6535091 3000957891 23456989 10_1002_eji_201243262 EJI2599 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Swiss National Science Foundation – fundername: European Community's Seventh Framework Programme funderid: FP7/2007‐2013; FP7/2007‐2011 – fundername: Swiss vaccine Research Institute – fundername: NIAID NIH HHS grantid: R01 AI083156 |
GroupedDBID | --- .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 UPT V2E VH1 W8V W99 WBKPD WHWMO WIB WIH WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4589-59b0fe1bea80a05752e73034ef9c6b47596dc6f3f527bd7496fe77d14f467f2f3 |
IEDL.DBID | DR2 |
ISSN | 0014-2980 1521-4141 |
IngestDate | Thu Aug 21 18:43:06 EDT 2025 Fri Jul 11 16:26:32 EDT 2025 Fri Jul 25 12:23:38 EDT 2025 Wed Feb 19 02:32:29 EST 2025 Tue Jul 01 01:05:29 EDT 2025 Thu Apr 24 22:58:07 EDT 2025 Wed Jan 22 16:45:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4589-59b0fe1bea80a05752e73034ef9c6b47596dc6f3f527bd7496fe77d14f467f2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://zenodo.org/record/3442622 |
PMID | 23456989 |
PQID | 1370047363 |
PQPubID | 986365 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6535091 proquest_miscellaneous_1370638625 proquest_journals_1370047363 pubmed_primary_23456989 crossref_primary_10_1002_eji_201243262 crossref_citationtrail_10_1002_eji_201243262 wiley_primary_10_1002_eji_201243262_EJI2599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2013 2013-06-00 2013-Jun 20130601 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: June 2013 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | European journal of immunology |
PublicationTitleAlternate | Eur J Immunol |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2012; 2012 2011; 117 2009; 83 2002; 196 1997; 276 2011; 79A 1999; 162 2011; 11 2010; 185 2008; 76 2011; 17 2007; 75 2009; 119 2006; 211 2006; 177 2005; 102 2006; 26 2007; 131 2010; 396 2000; 165 1998; 95 2003; 168 1992; 89 1998; 282 1993; 178 2009; 17 2012; 185 2011 2009; 174 2006; 2 1999; 189 1998; 452 2011; 6 2001; 69 2009; 27 2000; 192 2008; 180 2011; 2011 2006; 86 2011; 469 2007; 196 2009; 7 2008; 88 2009; 5 2009; 4 2010; 50 2011; 187 2012; 40 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 17 start-page: 183 year: 2009 end-page: 188 article-title: Eliminating latent tuberculosis publication-title: Trends Microbiol. – volume: 40 start-page: 990 year: 2012 end-page: 1013 article-title: The risk of tuberculosis in transplant candidates and recipients: a TBNET consensus statement publication-title: Eur. Respir. J. – volume: 76 start-page: 4199 year: 2008 end-page: 4205 article-title: Bacterial protein secretion is required for priming of CD8+ T cells specific for the antigen CFP10 publication-title: Infect. Immun. – volume: 282 start-page: 121 year: 1998 end-page: 125 article-title: An antimicrobial activity of cytolytic T cells mediated by granulysin publication-title: Science – volume: 5 start-page: e1000392 year: 2009 article-title: A critical role for CD8 T cells in a nonhuman primate model of tuberculosis publication-title: PLoS Pathog. – volume: 187 start-page: 2222 year: 2011 end-page: 2232 article-title: Functional capacity of ‐specific T cell responses in humans is associated with mycobacterial load publication-title: J. Immunol. – volume: 177 start-page: 5647 year: 2006 end-page: 5651 article-title: Bacillus Calmette Guerin vaccination of human newborns induces a specific, functional CD8+ T cell response publication-title: J. Immunol. – year: 2011 article-title: WHO (World Health Organization) Report – volume: 104 start-page: 16233 year: 2007 end-page: 16238 article-title: Skewed association of polyfunctional antigen‐specific CD8 T cell populations with HLA‐B genotype publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 343 year: 2011 end-page: 354 article-title: Immunological biomarkers of tuberculosis publication-title: Nat. Rev. Immunol. – volume: 168 start-page: 1346 year: 2003 end-page: 1352 article-title: ‐specific CD8+ T cells preferentially recognize heavily infected cells publication-title: Am. J. Respir. Crit. Care Med. – volume: 211 start-page: 236 year: 2006 end-page: 254 article-title: Functional signatures of protective antiviral T‐cell immunity in human virus infections publication-title: Immunol. Rev. – volume: 185 start-page: 206 year: 2012 end-page: 212 article-title: CD8+ T cells provide an immunologic signature of tuberculosis in young children publication-title: Am. J. Respir. Crit. Care Med. – volume: 165 start-page: 353 year: 2000 end-page: 363 article-title: CD8 +CTL from lungs of ‐infected mice express perforin in vivo and lyse infected macrophages publication-title: J. Immunol. – volume: 174 start-page: 2211 year: 2009 end-page: 2224 article-title: Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions publication-title: Am. J. Pathol. – volume: 79A start-page: 167 year: 2011 end-page: 174 article-title: SPICE: exploration and analysis of post‐cytometric complex multivariate datasets publication-title: Cytometry A – volume: 192 start-page: 347 year: 2000 end-page: 358 article-title: Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2 publication-title: J. Exp. Med. – volume: 6 start-page: e28754 year: 2011 article-title: Novel M tuberculosis antigen‐specific T‐cells are early markers of infection and disease progression publication-title: PLoS One – volume: 185 start-page: 4336 year: 2010 end-page: 4343 article-title: Secreted immunodominant antigens are processed by the cytosolic pathway publication-title: J. Immunol. – volume: 86 start-page: 337 year: 2006 end-page: 348 article-title: Animal models of cavitation in pulmonary tuberculosis publication-title: Tuberculosis (Edinb.) – volume: 50 start-page: S215 issue: Suppl 3 year: 2010 end-page: S222 article-title: Prevention of tuberculosis in people living with HIV publication-title: Clin. Infect. Dis. – volume: 75 start-page: 5210 year: 2007 end-page: 5222 article-title: Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis publication-title: Infect. Immun. – volume: 196 start-page: 1473 year: 2002 end-page: 1481 article-title: HLA‐E‐dependent presentation of Mtb‐derived antigen to human CD8+ T cells publication-title: J. Exp. Med. – volume: 162 start-page: 5407 year: 1999 end-page: 5416 article-title: Mice deficient in CD4 T cells have only transiently diminished levels of IFN‐gamma, yet succumb to tuberculosis publication-title: J. Immunol. – volume: 178 start-page: 2249 year: 1993 end-page: 2254 article-title: An essential role for interferon gamma in resistance to infection publication-title: J. Exp. Med. – volume: 276 start-page: 1684 year: 1997 end-page: 1687 article-title: Differential effects of cytolytic T cell subsets on intracellular infection publication-title: Science – volume: 7 start-page: 845 year: 2009 end-page: 855 article-title: The spectrum of latent tuberculosis: rethinking the biology and intervention strategies publication-title: Nat. Rev. Microbiol. – volume: 95 start-page: 270 year: 1998 end-page: 275 article-title: Human cytolytic and interferon gamma‐secreting CD8+ T lymphocytes specific for publication-title: Proc. Natl. Acad. Sci. USA – volume: 452 start-page: 85 year: 1998 end-page: 101 article-title: Cytotoxic T lymphocytes in resistance to tuberculosis publication-title: Adv. Exp. Med. Biol. – volume: 89 start-page: 12013 year: 1992 end-page: 12017 article-title: Major histocompatibility complex class I‐restricted T cells are required for resistance to infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 396 start-page: 50 year: 2010 end-page: 57 article-title: Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection publication-title: Biochem. Biophys. Res. Commun. – volume: 119 start-page: 1167 year: 2009 end-page: 1177 article-title: Anti‐TNF immunotherapy reduces CD8+ T cell‐mediated antimicrobial activity against in humans publication-title: J. Clin. Invest. – volume: 196 start-page: 191 year: 2007 end-page: 198 article-title: Immunotherapeutics for tuberculosis in experimental animals: is there a common pathway activated by effective protocols? publication-title: J. Infect. Dis. – volume: 131 start-page: 1898 year: 2007 end-page: 1906 article-title: Diagnosing tuberculosis infection in the 21st century: new tools to tackle an old enemy publication-title: Chest – volume: 17 start-page: 372 year: 2011 end-page: 376 article-title: Dominant TNF‐alpha+ ‐specific CD4+ T cell responses discriminate between latent infection and active disease publication-title: Nat. Med. – volume: 180 start-page: 1962 year: 2008 end-page: 1970 article-title: Distinct, specific IL‐17‐ and IL‐22‐producing CD4+ T cell subsets contribute to the human anti‐mycobacterial immune response publication-title: J. Immunol. – volume: 27 start-page: 393 year: 2009 end-page: 422 article-title: Cell‐mediated immune responses in tuberculosis publication-title: Annu. Rev. Immunol. – volume: 2012 start-page: 485781 year: 2012 article-title: Positive and negative regulation of cellular immune responses in physiologic conditions and diseases publication-title: Clin. Dev. Immunol. – volume: 69 start-page: 4195 year: 2001 end-page: 4201 article-title: Tuberculosis: latency and reactivation publication-title: Infect. Immun. – volume: 2 start-page: 602 year: 2006 end-page: 610 article-title: Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor publication-title: Nat. Clin. Pract. Rheumatol. – volume: 83 start-page: 2862 year: 2009 end-page: 2871 article-title: Distinct profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage, and antigen exposure publication-title: J. Virol. – volume: 2011 start-page: 438463 year: 2011 article-title: Induction of granulysin and perforin cytolytic mediator expression in 10‐week‐old infants vaccinated with BCG at birth publication-title: Clin. Dev. Immunol. – volume: 189 start-page: 1973 year: 1999 end-page: 1980 article-title: Susceptibility of mice deficient in CD1D or TAP1 to infection with publication-title: J. Exp. Med. – volume: 88 start-page: 366 year: 2008 end-page: 370 article-title: Meeting Report: NIH Workshop on the Tuberculosis Immune Epitope Database publication-title: Tuberculosis (Edinb.) – volume: 469 start-page: 483 year: 2011 end-page: 490 article-title: The challenge of new drug discovery for tuberculosis publication-title: Nature – volume: 102 start-page: 7239 year: 2005 end-page: 7244 article-title: HIV‐1‐specific IFN‐gamma/IL‐2‐secreting CD8 T cells support CD4‐independent proliferation of HIV‐1‐specific CD8 T cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 177 start-page: 437 year: 2006 end-page: 442 article-title: Secreted proteins from gain access to the cytosolic MHC class‐I antigen‐processing pathway publication-title: J. Immunol. – volume: 4 start-page: e5528 year: 2009 article-title: Analysis of ‐specific CD8 T‐cells in patients with active tuberculosis and in individuals with latent infection publication-title: PLoS One – volume: 26 start-page: 317 year: 2006 end-page: 352 article-title: ‐specific CD8+ T cells and their role in immunity publication-title: Crit. Rev. Immunol. – volume: 117 start-page: 3799 year: 2011 end-page: 3808 article-title: Increased HIV‐specific CD8+ T‐cell cytotoxic potential in HIV elite controllers is associated with T‐bet expression publication-title: Blood – ident: e_1_2_7_43_1 doi: 10.4049/jimmunol.165.1.353 – ident: e_1_2_7_33_1 doi: 10.1084/jem.189.12.1973 – ident: e_1_2_7_4_1 doi: 10.1183/09031936.00000712 – ident: e_1_2_7_2_1 doi: 10.1038/nature09657 – ident: e_1_2_7_12_1 doi: 10.4049/jimmunol.180.3.1962 – ident: e_1_2_7_18_1 doi: 10.1371/journal.ppat.1000392 – ident: e_1_2_7_19_1 doi: 10.1007/978-1-4615-5355-7_11 – ident: e_1_2_7_40_1 doi: 10.1164/rccm.200306-837OC – ident: e_1_2_7_8_1 doi: 10.1038/nri2960 – ident: e_1_2_7_45_1 doi: 10.4049/jimmunol.177.8.5647 – ident: e_1_2_7_25_1 doi: 10.2353/ajpath.2009.080941 – ident: e_1_2_7_32_1 doi: 10.1016/j.tube.2005.09.001 – ident: e_1_2_7_46_1 doi: 10.1016/j.tim.2009.02.005 – ident: e_1_2_7_15_1 doi: 10.4049/jimmunol.1000801 – ident: e_1_2_7_27_1 doi: 10.1155/2012/485781 – ident: e_1_2_7_7_1 doi: 10.4049/jimmunol.162.9.5407 – ident: e_1_2_7_39_1 doi: 10.1371/journal.pone.0028754 – ident: e_1_2_7_10_1 doi: 10.1038/nm.2299 – ident: e_1_2_7_44_1 doi: 10.1086/518937 – ident: e_1_2_7_47_1 doi: 10.1038/nrmicro2236 – ident: e_1_2_7_20_1 doi: 10.1172/JCI38482 – ident: e_1_2_7_28_1 doi: 10.1371/journal.pone.0005528 – ident: e_1_2_7_24_1 doi: 10.1155/2011/438463 – ident: e_1_2_7_22_1 doi: 10.1126/science.276.5319.1684 – ident: e_1_2_7_49_1 doi: 10.1182/blood-2010-12-322727 – ident: e_1_2_7_50_1 doi: 10.1073/pnas.0707570104 – ident: e_1_2_7_38_1 doi: 10.1016/j.tube.2007.11.002 – ident: e_1_2_7_29_1 doi: 10.4049/jimmunol.1101122 – ident: e_1_2_7_13_1 doi: 10.4049/jimmunol.177.1.437 – ident: e_1_2_7_11_1 doi: 10.1084/jem.178.6.2249 – ident: e_1_2_7_16_1 doi: 10.1016/j.bbrc.2010.02.141 – ident: e_1_2_7_5_1 doi: 10.1086/651494 – ident: e_1_2_7_42_1 doi: 10.1111/j.0105-2896.2006.00395.x – ident: e_1_2_7_21_1 doi: 10.1146/annurev.immunol.021908.132703 – ident: e_1_2_7_36_1 doi: 10.1615/CritRevImmunol.v26.i4.30 – ident: e_1_2_7_37_1 doi: 10.1378/chest.06-2471 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.89.24.12013 – ident: e_1_2_7_51_1 doi: 10.1002/cyto.a.21015 – ident: e_1_2_7_3_1 doi: 10.1038/ncprheum0336 – ident: e_1_2_7_41_1 doi: 10.1164/rccm.201107-1355OC – ident: e_1_2_7_17_1 doi: 10.1073/pnas.95.1.270 – ident: e_1_2_7_48_1 doi: 10.1073/pnas.0502393102 – ident: e_1_2_7_14_1 doi: 10.1128/IAI.00307-08 – ident: e_1_2_7_23_1 doi: 10.1126/science.282.5386.121 – ident: e_1_2_7_6_1 doi: 10.1084/jem.192.3.347 – ident: e_1_2_7_35_1 doi: 10.1084/jem.20020609 – ident: e_1_2_7_26_1 doi: 10.1128/IAI.00624-07 – ident: e_1_2_7_9_1 doi: 10.1128/IAI.69.7.4195-4201.2001 – ident: e_1_2_7_30_1 doi: 10.1128/JVI.02528-08 – ident: e_1_2_7_31_1 |
SSID | ssj0009659 |
Score | 2.485583 |
Snippet | Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb‐specific CD8+ T cells is controversial. Here we performed... Protective immunity to Mycobacterium tuberculosis ( Mtb ) remains poorly understood and the role of Mtb ‐specific CD8 + T cells is controversial. Here we... Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we... Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8+ T cells is controversial. Here we performed... Protective immunity to Mycobacterium tuberculosis ( Mtb ) remains poorly understood and the role of Mtb -specific CD8 + T cells is controversial. Here we... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1568 |
SubjectTerms | Active TB disease Acute Disease Antigens, CD - metabolism CD8-Positive T-Lymphocytes - immunology Cell Proliferation Cells, Cultured Cytokines - metabolism Cytotoxicity Functional profile GPI-Linked Proteins - metabolism Humans Immunology Immunophenotyping Latent Mtb infection Latent Tuberculosis - immunology Lymphocytes Mtb‐specific CD8+ T cells Mycobacterium tuberculosis - immunology Programmed Cell Death 1 Receptor - metabolism Receptors, Immunologic - metabolism Signaling Lymphocytic Activation Molecule Family T cell receptors T-Lymphocyte Subsets - immunology Tuberculosis Tuberculosis, Pulmonary - immunology |
Title | Mycobacterium tuberculosis‐specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.201243262 https://www.ncbi.nlm.nih.gov/pubmed/23456989 https://www.proquest.com/docview/1370047363 https://www.proquest.com/docview/1370638625 https://pubmed.ncbi.nlm.nih.gov/PMC6535091 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hSkVcKC2vlBYZCXEpaRPHefiISqtSaTmgVuotOI6tLizZapMclhM_oAd-I7-EmThJWSqQEMckYyV25vHZHn8D8FJwK7hItK-siH3Bjfaz2CqctcYYbywPS0NLA5P3ycm5OL2IL_o6p3QWxvFDjAtuZBmdvyYDV0V9cEMaaj5NKTOLCwQg5IMpX4tA0Ycb-igiy3OeWPhcZkHPsYntD1Zar8akW0Dzdr7krzi2C0THG_Bx6ILLP_m83zbFvv76G7vjf_TxAdzvQSp747RqE-6YagvWXdnK5RbcnfQb8g_herLU6BE6xuf2C2vawix0O5vX0_rHt-90jJNSkdjh22yPnTHaJaiZWhhG4dStQs6WTFUlo1SzebO8Ip3BW0Pdlob1iWRshqAYL4fksaprpTpvzfpdpkdwfnx0dnji9wUefC3iTPqxLAJrwsKoLFAEHLlBhxMJY6VOCmIiTEqd2MjGPC3KVMjEmjQtQ2HRvVtuo8ewVs0r8xQY9jTIJM9MKI2Qhqs0CKwstCHAx63y4PXwi3Pds59TEY5Z7nibeY5jnY9j7cGrUfzK0X78SXBn0Je8t_46DyMqGpBGSeTBi_Ex2i0Ns6rMvHUy6Ptw-unBE6de45t4hLBWZtKDdEXxRgHiBF99Uk0vO27wJI4IAnqw1-nV3z8-Pzp9h9Nfuf1P0s_gHnc1QdCid2CtWbRmF5FZUzzvzO8nOno1BA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIqAXHgVKoICREJeSNus4Dx9RH9qWbg9oK_UWOY4tFpZstZsclhM_gAO_kV_CTJykXSqQEMckk2Ttnfn82Z58A_BacCu4iLWvrIh8wY3208gqnLVGON5YPigMLQ2MTuPhmTg-j86vfMXv9CH6BTeKjAavKcBpQXr3UjXUfJpQahYXyEAQhG9SVW9Sz9__cCkgRXJ5DouFz2UatCqb-IDdldtXR6VrVPN6xuRVJtsMRYf3QHWNcBkon3fqKt_RX3_Td_yfVt6Huy1PZe-cYz2AG6bcgFuucuVyA26P2j35h_B9tNQICo3oc_2FVXVu5rqezhaTxc9vP-hLTspGYnv76TYbM9ooWDA1N4xGVLcQOV0yVRaMss1m1fKC3AZPdaVbKtbmkrEp8mI87PLHyuYu1QA2azeaHsHZ4cF4b-i3NR58LaJU-pHMA2sGuVFpoIg7coOYEwpjpY5zEiOMCx3b0EY8yYtEyNiaJCkGwiLCW27Dx7BWzkrzBBi2NEglT81AGiENV0kQWJlrQ5yPW-XB2-4_znQrgE51OKaZk27mGfZ11ve1B2968wun_PEnw63OYbIWABbZIKS6AUkYhx686i9j6FI3q9LMameD8IczUA82nX_1b-IhMluZSg-SFc_rDUgWfPVKOfnYyIPHUUgs0IPtxrH-_uOzg-MjnAHLp_9k_RLuDMejk-zk6PT9M1jnrkQIBvgWrFXz2jxHolblL5pY_AVkCzkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiouPMorUMBIiEtJmzjOw0fU7aotbIVQK_UWHMcWC0t2tZsclhM_gAO_kV_CTJxNWSqQEMfE4yR2Zsaf7fE3AM8Ft4KLRPvKitgX3Gg_i63CWWuM443lYWloaWB0khyeiePz-LzLc0pnYRw_RL_gRpbR-msy8Flp9y5IQ83HMUVmcYEABH3wVZEEknI3DN5d8EcRW55zxcLnMgs6kk18wN5a9fVB6RLSvBww-SuQbUei4U14v2qDC0D5tNvUxa7-8hu943808hbc6FAqe-XU6jZcMdUWXHN5K5dbsDnqduTvwLfRUqNLaCmfm8-sbgoz181kuhgvfnz9Tuc4KRaJ7Q-yHXbKaJtgwdTcMBpP3TLkZMlUVTKKNZvWyxkpDd5aJW6pWRdJxiaIivFyFT1WtbVU665Zt810F86GB6f7h36X4cHXIs6kH8sisCYsjMoCRciRG_Q4kTBW6qQgKsKk1ImNbMzTokyFTKxJ0zIUFv275Ta6BxvVtDIPgGFLg0zyzITSCGm4SoPAykIbQnzcKg9ern5xrjv6c8rCMckdcTPPsa_zvq89eNGLzxzvx58Et1f6knfmv8jDiLIGpFESefCsL0bDpW5WlZk2TgadH84_Pbjv1Kt_E48Q18pMepCuKV4vQKTg6yXV-ENLDp7EEWFAD3Zavfr7x-cHx0c4_5UP_0n6KWy-HQzzN0cnrx_Bde7yg6B1b8NGPW_MY0RpdfGktcSfk_43zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycobacterium+tuberculosis-specific+CD8%2B+T+cells+are+functionally+and+phenotypically+different+between+latent+infection+and+active+disease&rft.jtitle=European+journal+of+immunology&rft.au=Rozot%2C+Virginie&rft.au=Vigano%2C+Selena&rft.au=Mazza-Stalder%2C+Jesica&rft.au=Idrizi%2C+Elita&rft.date=2013-06-01&rft.issn=1521-4141&rft.eissn=1521-4141&rft.volume=43&rft.issue=6&rft.spage=1568&rft_id=info:doi/10.1002%2Feji.201243262&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon |