A computational model‐based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting‐state fMRI

Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease‐related activity changes or specified dopamine‐dependent activation or learning rules. Inspired by recent model‐based ana...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 53; no. 7; pp. 2278 - 2295
Main Authors Maith, Oliver, Villagrasa Escudero, Francesc, Dinkelbach, Helge Ülo, Baladron, Javier, Horn, Andreas, Irmen, Friederike, Kühn, Andrea A., Hamker, Fred H.
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease‐related activity changes or specified dopamine‐dependent activation or learning rules. Inspired by recent model‐based analysis of resting‐state fMRI, we have taken a data‐driven approach. We fit the free parameters of a spiking neuro‐computational model to match correlations of blood oxygen level‐dependent signals between different basal ganglia nuclei and obtain subject‐specific neuro‐computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular “rate model” of the basal ganglia. Our study suggests that a model‐based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson‐related changes in the basal ganglia and corresponding treatments. We fit connectivity parameters of a spiking neuro‐computational basal ganglia (BG) model to replicate correlations of rs‐fMRI in Parkinson patients and control subjects and obtained data‐driven models of both groups. Our results (differences in connectivity, firing rates at rest and heterogeneity) show agreements with experimental findings and suggest that a model‐based analysis of imaging data from controls and patients is a promising approach to understand Parkinson induced changes in the BG.
AbstractList Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular "rate model" of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments.
Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease‐related activity changes or specified dopamine‐dependent activation or learning rules. Inspired by recent model‐based analysis of resting‐state fMRI, we have taken a data‐driven approach. We fit the free parameters of a spiking neuro‐computational model to match correlations of blood oxygen level‐dependent signals between different basal ganglia nuclei and obtain subject‐specific neuro‐computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular “rate model” of the basal ganglia. Our study suggests that a model‐based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson‐related changes in the basal ganglia and corresponding treatments. We fit connectivity parameters of a spiking neuro‐computational basal ganglia (BG) model to replicate correlations of rs‐fMRI in Parkinson patients and control subjects and obtained data‐driven models of both groups. Our results (differences in connectivity, firing rates at rest and heterogeneity) show agreements with experimental findings and suggest that a model‐based analysis of imaging data from controls and patients is a promising approach to understand Parkinson induced changes in the BG.
Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular "rate model" of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments.Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular "rate model" of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments.
Author Maith, Oliver
Horn, Andreas
Kühn, Andrea A.
Hamker, Fred H.
Villagrasa Escudero, Francesc
Baladron, Javier
Dinkelbach, Helge Ülo
Irmen, Friederike
Author_xml – sequence: 1
  givenname: Oliver
  orcidid: 0000-0002-6446-9110
  surname: Maith
  fullname: Maith, Oliver
  organization: Chemnitz University of Technology
– sequence: 2
  givenname: Francesc
  orcidid: 0000-0003-0149-6231
  surname: Villagrasa Escudero
  fullname: Villagrasa Escudero, Francesc
  organization: Chemnitz University of Technology
– sequence: 3
  givenname: Helge Ülo
  orcidid: 0000-0002-8871-8177
  surname: Dinkelbach
  fullname: Dinkelbach, Helge Ülo
  organization: Chemnitz University of Technology
– sequence: 4
  givenname: Javier
  surname: Baladron
  fullname: Baladron, Javier
  organization: Chemnitz University of Technology
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-0695-6025
  surname: Horn
  fullname: Horn, Andreas
  organization: Charité–University Medicine Berlin
– sequence: 6
  givenname: Friederike
  orcidid: 0000-0001-5574-3790
  surname: Irmen
  fullname: Irmen, Friederike
  organization: Charité–University Medicine Berlin
– sequence: 7
  givenname: Andrea A.
  orcidid: 0000-0002-4134-9060
  surname: Kühn
  fullname: Kühn, Andrea A.
  organization: Charité–University Medicine Berlin
– sequence: 8
  givenname: Fred H.
  orcidid: 0000-0001-9104-7143
  surname: Hamker
  fullname: Hamker, Fred H.
  email: fred.hamker@informatik.tu-chemnitz.de
  organization: Chemnitz University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32558966$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1OHDEQhS1EFAaSBReILLEJiwa7_dOeJUIkISIJioLEzvK47cFDtz2xu4Vmh8QFss31OEkqmWGDgjeWqr56VXpvF23HFB1C-5QcUXjHbhGPKFdSbaEJ5ZJUUyHVNpqQqWCVovJ6B-2WsiCEKMnFa7TDaiHUVMoJejjBNvXLcTBDSNF0uE-t6x7vf81McS02UFqVUHDyGCrQn5s474LBSzPc3JkVtjdQcAWHiC9Nvg2xpPh4_7vgNhQHGtDwLmfQ8jn1OLsyhDiHBQVWOuy_fD9_g1550xX3dvPvoasPZz9OP1UX3z6en55cVJYLpapZYyXlTUM8qT1rzEw5rqifWkO5bWunrG0lZd4wQgWnUhpKCfeKN57zlii2h96vdZc5_RzhEN2HYl3XmejSWHTNqagVI1wAevAMXaQxgxlACcoZa8BCoN5tqHHWu1Yvc-hNXuknewE4XgM2p1Ky89qGtdNDNqHTlOi_AWoIUP8LECYOn008if6P3ajfhc6tXgb12eev64k_tlCtXQ
CitedBy_id crossref_primary_10_3389_fninf_2022_790966
crossref_primary_10_1016_j_cnsns_2022_106614
crossref_primary_10_1016_j_brain_2022_100058
crossref_primary_10_1007_s11571_024_10119_8
crossref_primary_10_1111_ejn_15204
crossref_primary_10_1038_s41598_024_80630_9
crossref_primary_10_1007_s11571_024_10125_w
crossref_primary_10_1038_s41531_024_00835_7
crossref_primary_10_1093_nsr_nwae079
crossref_primary_10_1016_j_expneurol_2022_114111
crossref_primary_10_1371_journal_pcbi_1011024
crossref_primary_10_1088_1741_2552_ad5406
crossref_primary_10_1371_journal_pone_0310367
crossref_primary_10_1007_s11571_023_09951_1
Cites_doi 10.1006/nimg.2000.0630
10.1016/j.clinph.2008.03.017
10.1016/0006-8993(91)90585-J
10.3389/fnsys.2011.00042
10.1523/JNEUROSCI.3520-13.2014
10.1002/1531-8249(199907)46:1<22::AID-ANA6>3.0.CO;2-Z
10.1073/pnas.1107748108
10.3389/neuro.10.026.2009
10.1016/j.pneurobio.2011.09.005
10.3389/fnana.2011.00039
10.1523/JNEUROSCI.0893-14.2014
10.1111/j.1469-7793.2000.t01-1-00235.x
10.1371/journal.pone.0005226
10.1016/0306-4522(95)00535-8
10.1002/(SICI)1096-9861(19970609)382:3<323::AID-CNE3>3.0.CO;2-5
10.1162/0898929052880093
10.1016/0006-8993(91)91545-C
10.1016/0006-8993(85)90957-6
10.1523/JNEUROSCI.2220-05.2005
10.1111/ejn.13666
10.1016/0166-2236(90)90110-V
10.1038/nn.2723
10.1016/j.neuron.2017.05.004
10.1523/JNEUROSCI.4056-04.2005
10.1002/syn.890020612
10.1073/pnas.0807010105
10.1016/j.neuron.2019.03.004
10.1523/JNEUROSCI.17-17-06807.1997
10.1523/JNEUROSCI.22-07-02963.2002
10.1523/ENEURO.0156-16.2016
10.1016/0028-3908(85)90070-X
10.3389/fnsys.2014.00005
10.3389/fnana.2015.00005
10.1038/nn1632
10.1152/jn.2001.86.1.249
10.7554/eLife.28927
10.1152/jn.01013.2005
10.3389/fnsys.2011.00086
10.1523/JNEUROSCI.2523-11.2012
10.1016/S0306-4522(00)00337-7
10.1073/pnas.1112685108
10.1038/35084005
10.1111/ejn.12434
10.1016/S1353-8020(09)70822-3
10.1093/brain/awl337
10.3389/fnins.2015.00191
10.1523/JNEUROSCI.0817-10.2010
10.1109/TNN.2003.820440
10.1109/TNN.2004.832719
10.1089/brain.2011.0008
10.1016/j.neuroimage.2016.04.049
10.1016/0166-2236(89)90074-X
10.1016/S0006-8993(97)01563-1
10.1002/mds.26703
10.1136/jnnp.2007.131045
10.1063/1.4851117
10.1002/mds.26719
10.1016/0304-3940(86)90013-3
10.1523/JNEUROSCI.4439-05.2006
10.1136/jnnp-2017-315922
10.1523/JNEUROSCI.3486-06.2006
10.1093/cercor/bhq217
10.1016/j.celrep.2018.05.059
10.1007/978-1-4684-5347-8_29
10.1152/jn.00104.2016
10.1093/brain/awz239
10.1002/mrm.1910340409
10.1111/j.1469-7793.1998.555be.x
10.1016/0022-510X(73)90175-5
10.3389/fncom.2013.00088
10.1152/jn.00881.2004
10.1046/j.1460-9568.2003.02795.x
10.1046/j.1460-9568.2000.00901.x
10.1002/jnr.24519
10.1016/0306-4522(89)90120-6
10.1097/00001756-199407000-00031
10.1016/j.conb.2017.08.011
10.1007/s002210050696
10.1152/jn.00335.2007
10.1523/JNEUROSCI.0658-17.2017
10.1016/S1053-8119(03)00202-7
10.3389/fninf.2015.00019
10.1523/JNEUROSCI.1091-13.2013
10.7554/eLife.19103
10.1016/j.bbr.2008.12.036
10.1016/j.parkreldis.2004.02.007
10.3389/fnsys.2018.00068
10.1371/journal.pcbi.1006359
10.1016/j.neunet.2009.07.018
10.1523/JNEUROSCI.0836-04.2004
10.1523/JNEUROSCI.20-20-07766.2000
10.1523/JNEUROSCI.5050-05.2006
10.1016/S1471-1931(00)00028-8
10.1093/brain/awv312
10.1002/mds.10156
10.1523/JNEUROSCI.0587-15.2015
10.1016/j.baga.2014.11.001
10.1371/journal.pone.0086496
10.1111/j.1749-6632.1988.tb32998.x
10.1002/cne.903150203
10.1111/j.2517-6161.1995.tb02031.x
10.1016/S0006-8993(96)00988-2
10.1152/jn.1994.72.2.507
10.1046/j.1460-9568.1999.00627.x
ContentType Journal Article
Copyright 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
DOI 10.1111/ejn.14868
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Chemoreception Abstracts
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 2295
ExternalDocumentID 32558966
10_1111_ejn_14868
EJN14868
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: HA2630/11‐1 (SPP 2041)
– fundername: Deutsche Forschungsgemeinschaft
  grantid: HA2630/11-1 (SPP 2041)
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QP
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4588-b7c614770f02f37ab8e481f9ca14cd2e8ccd613fa30154166a1104f847f44d083
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Fri Jul 11 04:25:37 EDT 2025
Fri Jul 25 04:39:25 EDT 2025
Wed Feb 19 02:28:50 EST 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Jul 01 03:02:26 EDT 2025
Wed Jan 22 16:57:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords data fitting
firing rate
BOLD correlations
spiking neuron model
Language English
License Attribution
2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4588-b7c614770f02f37ab8e481f9ca14cd2e8ccd613fa30154166a1104f847f44d083
Notes Edited by Yoland Smith.
The peer review history for this article is available at
https://publons.com/publon/10.1111/ejn.14868
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6446-9110
0000-0002-8871-8177
0000-0002-4134-9060
0000-0002-0695-6025
0000-0001-9104-7143
0000-0003-0149-6231
0000-0001-5574-3790
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14868
PMID 32558966
PQID 2514337325
PQPubID 34057
PageCount 18
ParticipantIDs proquest_miscellaneous_2415283045
proquest_journals_2514337325
pubmed_primary_32558966
crossref_citationtrail_10_1111_ejn_14868
crossref_primary_10_1111_ejn_14868
wiley_primary_10_1111_ejn_14868_EJN14868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 17
2019; 97
1995; 34
2019; 12
2004; 24
1996; 72
1999; 46
2016; 31
2008; 105
2013; 7
1985; 24
2018; 7
1989; 32
2000; 12
1997; 382
2000; 523
2006; 26
1987
2008; 119
1994; 72
2010; 30
2001; 412
2009; 15
2011; 1
1995; 57
2018; 23
2007; 98
2011; 5
2012; 32
2019; 101
2016; 5
1973; 20
1991; 563
2016; 3
2011; 95
2019; 49
2005; 93
1998; 787
2000; 101
2014; 39
2017; 145
2005; 17
2014; 34
2018; 14
2015; 35
1990; 13
2013; 23
2017; 46
2003; 14
2008; 79
2003; 18
1999; 125
2003; 19
2011; 14
1998; 512
2018; 89
1996; 742
2001; 86
2005; 25
1994; 20
2017; 37
2017; 32
2007; 130
1992; 315
1999; 11
2009; 200
1997; 17
2011; 21
2016; 116
1991; 547
2014; 9
2014; 8
2009; 22
2015; 5
2006; 95
2000; 23
2006; 9
2000; 20
2007
2002
2015; 9
2019; 142
1988; 2
2004; 10
2017; 94
1989; 12
2011; 108
2013; 33
1986; 63
2004; 15
2002; 22
2017
2016; 139
1985; 358
2009; 4
2009; 3
1988; 515
1994; 5
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
Vitek J. (e_1_2_11_104_1) 1994; 20
e_1_2_11_17_1
Izhikevich E. M. (e_1_2_11_44_1) 2007
e_1_2_11_59_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
Wichmann T. (e_1_2_11_107_1) 2002
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
Acerbi L. (e_1_2_11_2_1) 2017
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_37_1
References_xml – volume: 11
  start-page: 2167
  year: 1999
  end-page: 2170
  article-title: Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms
  publication-title: European Journal of Neuroscience
– volume: 9
  start-page: 191
  year: 2015
  article-title: A spiking Basal Ganglia model of synchrony, exploration and decision making
  publication-title: Frontiers in Neuroscience
– volume: 4
  year: 2009
  article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans
  publication-title: PLoS One
– volume: 315
  start-page: 137
  year: 1992
  end-page: 159
  article-title: Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections
  publication-title: The Journal of Comparative Neurology
– volume: 20
  start-page: 561
  year: 1994
  article-title: Spontaneous neuronal activity in the motor thalamus: Alteration in pattern and rate in Parkinsonism
  publication-title: Society for Neuroscience Abstracts
– volume: 31
  start-page: 1591
  year: 2016
  end-page: 1601
  article-title: Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations
  publication-title: Movement Disorders
– volume: 97
  start-page: 1678
  year: 2019
  end-page: 1688
  article-title: Aberrant features of in vivo striatal dynamics in Parkinson’s disease
  publication-title: Journal of Neuroscience Research
– volume: 46
  start-page: 127
  year: 2017
  end-page: 135
  article-title: Computational models of basal ganglia dysfunction: The dynamics is in the details
  publication-title: Current Opinion in Neurobiology
– volume: 46
  start-page: 22
  year: 1999
  end-page: 35
  article-title: Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus
  publication-title: Annals of Neurology
– volume: 32
  start-page: 3366
  year: 2012
  end-page: 3375
  article-title: Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
  publication-title: Journal of Neuroscience
– start-page: 1836
  year: 2017
  end-page: 1846
– volume: 101
  start-page: 1042
  year: 2019
  end-page: 1056
  article-title: Circuit mechanisms of Parkinson’s disease
  publication-title: Neuron
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 15
  start-page: 1063
  year: 2004
  end-page: 1070
  article-title: Which model to use for cortical spiking neurons?
  publication-title: IEEE Transactions on Neural Networks
– volume: 105
  start-page: 16039
  year: 2008
  end-page: 16044
  article-title: Electrophysiological correlates of the brain’s intrinsic large‐scale functional architecture
  publication-title: Proceedings of the National Academy of Sciences
– volume: 26
  start-page: 3567
  year: 2006
  end-page: 3583
  article-title: Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia
  publication-title: Journal of Neuroscience
– volume: 86
  start-page: 249
  year: 2001
  end-page: 260
  article-title: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease
  publication-title: Journal of Neurophysiology
– volume: 18
  start-page: 856
  year: 2003
  end-page: 868
  article-title: The effect of 6‐hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia: A dual microdialysis probe analysis
  publication-title: European Journal of Neuroscience
– volume: 17
  start-page: 51
  year: 2005
  end-page: 72
  article-title: Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism
  publication-title: Journal of Cognitive Neuroscience
– volume: 3
  start-page: ENEURO.0156
  year: 2016
  end-page: 16.2016
  article-title: Untangling basal ganglia network dynamics and function: Role of dopamine depletion and inhibition investigated in a spiking network model
  publication-title: Eneuro
– volume: 14
  year: 2018
  article-title: A multi‐scale layer‐resolved spiking network model of resting‐state dynamics in macaque visual cortical areas
  publication-title: PLoS Computational Biology
– volume: 12
  start-page: 466
  year: 2000
  end-page: 477
  article-title: Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics
  publication-title: NeuroImage
– volume: 79
  start-page: 368
  year: 2008
  end-page: 376
  article-title: Parkinson’s disease: Clinical features and diagnosis
  publication-title: Journal of Neurology, Neurosurgery and Psychiatry
– volume: 37
  start-page: 9977
  year: 2017
  end-page: 9998
  article-title: A population of indirect pathway striatal projection neurons is selectively entrained to parkinsonian beta oscillations
  publication-title: Journal of Neuroscience
– volume: 33
  start-page: 11239
  year: 2013
  end-page: 11252
  article-title: Resting‐state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: Journal of Neuroscience
– volume: 72
  start-page: 105
  year: 1996
  end-page: 115
  article-title: Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus
  publication-title: Neuroscience
– volume: 32
  start-page: 213
  year: 1989
  end-page: 226
  article-title: Neural mechanisms underlying Parkinsonian symptoms based upon regional uptake of 2‐deoxyglucose in monkeys exposed to 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine
  publication-title: Neuroscience
– volume: 63
  start-page: 61
  year: 1986
  end-page: 65
  article-title: Neural mechanisms mediating 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced Parkinsonism in the monkey: Relative contributions of the striatopallidal and striatonigral pathways as suggested by 2‐deoxyglucose uptake
  publication-title: Neuroscience Letters
– volume: 24
  start-page: 6417
  year: 2004
  end-page: 6426
  article-title: Role of external pallidal segment in primate Parkinsonism: Comparison of the effects of 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced Parkinsonism and lesions of the external pallidal segment
  publication-title: Journal of Neuroscience
– volume: 34
  start-page: 6011
  year: 2014
  end-page: 6022
  article-title: Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control
  publication-title: Journal of Neuroscience
– year: 2007
– volume: 34
  start-page: 15836
  year: 2014
  end-page: 15850
  article-title: Reduced reach‐related modulation of motor thalamus neural activity in a rat model of Parkinson’s disease
  publication-title: Journal of Neuroscience
– volume: 515
  start-page: 287
  year: 1988
  end-page: 302
  article-title: Parkinsonian symptomatology. An anatomical and physiological analysis
  publication-title: Annals of the New York Academy of Sciences
– volume: 5
  year: 2016
  article-title: A comprehensive excitatory input map of the striatum reveals novel functional organization
  publication-title: Elife
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  article-title: Functional and effective connectivity: A review
  publication-title: Brain Connectivity
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  article-title: Dynamic causal modelling
  publication-title: NeuroImage
– volume: 25
  start-page: 1523
  year: 2005
  end-page: 1531
  article-title: Thalamic neuronal activity in dopamine‐depleted primates: Evidence for a loss of functional segregation within basal ganglia circuits
  publication-title: Journal of Neuroscience
– volume: 5
  start-page: 86
  year: 2011
  article-title: The role of inhibition in generating and controlling Parkinson’s disease oscillations in the basal ganglia
  publication-title: Frontiers in Systems Neuroscience
– volume: 26
  start-page: 3875
  year: 2006
  end-page: 3884
  article-title: Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats
  publication-title: Journal of Neuroscience
– volume: 130
  start-page: 265
  year: 2007
  end-page: 275
  article-title: Metabolic activity of cerebellar and basal ganglia‐thalamic neurons is reduced in Parkinsonism
  publication-title: Brain
– volume: 358
  start-page: 137
  year: 1985
  end-page: 143
  article-title: Changes in the local cerebral metabolic rate for glucose in the 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine (MPTP) primate model of Parkinson’s disease
  publication-title: Brain Research
– volume: 24
  start-page: 587
  year: 1985
  end-page: 591
  article-title: Regional brain uptake of 2‐deoxyglucose in N‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine (MPTP)—induced Parkinsonism in the macaque monkey
  publication-title: Neuropharmacology
– volume: 145
  start-page: 377
  year: 2017
  end-page: 388
  article-title: The virtual epileptic patient: Individualized whole‐brain models of epilepsy spread
  publication-title: NeuroImage
– volume: 512
  start-page: 555
  year: 1998
  end-page: 566
  article-title: Modification of activity‐dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex
  publication-title: Journal of Physiology
– volume: 108
  start-page: 11620
  year: 2011
  end-page: 11625
  article-title: Striatal origin of the pathologic beta oscillations in Parkinson’s disease
  publication-title: Proceedings of the National Academy of Sciences
– volume: 35
  start-page: 6918
  year: 2015
  end-page: 6930
  article-title: Subthalamic nucleus activity in the awake hemiparkinsonian rat: Relationships with motor and cognitive networks
  publication-title: Journal of Neuroscience
– volume: 95
  start-page: 629
  year: 2011
  end-page: 635
  article-title: The Parkinson progression marker initiative (PPMI)
  publication-title: Progress in Neurobiology
– volume: 5
  start-page: 1
  year: 2015
  end-page: 6
  article-title: Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes?
  publication-title: Basal Ganglia
– start-page: 415
  year: 1987
  end-page: 427
– volume: 23
  start-page: 3438
  year: 2018
  end-page: 3446
  article-title: Aberrant striatal activity in Parkinsonism and levodopa‐induced dyskinesia
  publication-title: Cell Reports
– volume: 39
  start-page: 688
  year: 2014
  end-page: 702
  article-title: Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease
  publication-title: European Journal of Neuroscience
– volume: 13
  start-page: 281
  year: 1990
  end-page: 285
  article-title: Primate models of movement disorders of basal ganglia origin
  publication-title: Trends in Neurosciences
– volume: 108
  start-page: 16783
  year: 2011
  end-page: 16788
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proceedings of the National Academy of Sciences
– volume: 20
  start-page: 7766
  year: 2000
  end-page: 7775
  article-title: High‐frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor
  publication-title: Journal of Neuroscience
– volume: 7
  start-page: 88
  year: 2013
  article-title: Using a hybrid neuron in physiologically inspired models of the basal ganglia
  publication-title: Frontiers in Computational Neuroscience
– volume: 5
  start-page: 39
  year: 2011
  article-title: Past, present, and future of the pathophysiological model of the Basal Ganglia
  publication-title: Frontiers in Neuroanatomy
– volume: 25
  start-page: 9080
  year: 2005
  end-page: 9095
  article-title: NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron
  publication-title: The Journal of Neuroscience
– volume: 742
  start-page: 25
  year: 1996
  end-page: 33
  article-title: Alterations in intralaminar and motor thalamic physiology following nigrostriatal dopamine depletion
  publication-title: Brain Research
– volume: 10
  start-page: 203
  year: 2004
  end-page: 211
  article-title: The pallidofugal motor fiber system in primates
  publication-title: Parkinsonism & Related Disorders
– volume: 23
  year: 2013
  article-title: Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks
  publication-title: Chaos: an Interdisciplinary Journal of Nonlinear Science
– volume: 9
  year: 2014
  article-title: Neural plasticity in human brain connectivity: The effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson’s disease
  publication-title: PLoS One
– volume: 89
  start-page: 1181
  year: 2018
  end-page: 1188
  article-title: Insights into Parkinson’s disease from computational models of the basal ganglia
  publication-title: Journal of Neurology, Neurosurgery and Psychiatry
– volume: 12
  start-page: 68
  year: 2019
  article-title: What can computational models contribute to neuroimaging data analytics?
  publication-title: Frontiers in Systems Neuroscience
– volume: 95
  start-page: 2120
  year: 2006
  end-page: 2133
  article-title: Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism
  publication-title: Journal of Neurophysiology
– volume: 382
  start-page: 323
  year: 1997
  end-page: 347
  article-title: Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection
  publication-title: The Journal of Comparative Neurology
– volume: 23
  start-page: S8
  year: 2000
  end-page: S19
  article-title: Pathophysiology of the basal ganglia in Parkinson’s disease
  publication-title: Trends in Neurosciences
– volume: 125
  start-page: 397
  year: 1999
  end-page: 409
  article-title: Comparison of MPTP‐induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates
  publication-title: Experimental Brain Research
– start-page: 1761
  year: 2002
  end-page: 1779
– volume: 116
  start-page: 2869
  year: 2016
  end-page: 2881
  article-title: Effects of high‐frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys
  publication-title: Journal of Neurophysiology
– volume: 8
  start-page: 5
  year: 2014
  article-title: The thalamostriatal system in normal and diseased states
  publication-title: Frontiers in Systems Neuroscience
– volume: 547
  start-page: 140
  year: 1991
  end-page: 144
  article-title: Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP‐induced Parkinsonism
  publication-title: Brain Research
– volume: 20
  start-page: 415
  year: 1973
  end-page: 455
  article-title: Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations
  publication-title: Journal of the Neurological Sciences
– volume: 563
  start-page: 278
  year: 1991
  end-page: 280
  article-title: Further investigations into the pathophysiology of MPTP‐induced Parkinsonism in the primate: An intracerebral microdialysis study of γ‐aminobutyric acid in the lateral segment of the globus pallidus
  publication-title: Brain Research
– volume: 523
  start-page: 235
  year: 2000
  end-page: 246
  article-title: Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis
  publication-title: Journal of Physiology
– volume: 12
  start-page: 366
  year: 1989
  end-page: 375
  article-title: The functional anatomy of basal ganglia disorders
  publication-title: Trends in Neurosciences
– volume: 72
  start-page: 507
  year: 1994
  end-page: 520
  article-title: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism
  publication-title: Journal of Neurophysiology
– volume: 412
  start-page: 150
  year: 2001
  end-page: 157
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 2
  start-page: 650
  year: 1988
  end-page: 656
  article-title: Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat
  publication-title: Synapse (New York, N. Y.)
– volume: 49
  start-page: 754
  year: 2019
  end-page: 767
  article-title: The subthalamic nucleus‐external globus pallidus loop biases exploratory decisions towards known alternatives: A neuro‐computational study
  publication-title: European Journal of Neuroscience
– volume: 787
  start-page: 157
  year: 1998
  end-page: 160
  article-title: Effects of L‐DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP‐treated monkey
  publication-title: Brain Research
– volume: 9
  start-page: 251
  year: 2006
  end-page: 259
  article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models
  publication-title: Nature Neuroscience
– volume: 94
  start-page: 855
  year: 2017
  end-page: 865
  article-title: Dopamine depletion impairs bilateral sensory processing in the striatum in a pathway‐dependent manner
  publication-title: Neuron
– volume: 200
  start-page: 48
  year: 2009
  end-page: 59
  article-title: A neurocomputational model of tonic and phasic dopamine in action selection: A comparison with cognitive deficits in Parkinson’s disease
  publication-title: Behavioral Brain Research
– volume: 22
  start-page: 2963
  year: 2002
  end-page: 2976
  article-title: Activity patterns in a model for the subthalamopallidal network of the basal ganglia
  publication-title: Journal of Neuroscience
– volume: 22
  start-page: 1174
  year: 2009
  end-page: 1188
  article-title: Dopamine‐modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit
  publication-title: Neural Networks
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society: Series B Methodology
– volume: 101
  start-page: 993
  year: 2000
  end-page: 999
  article-title: Unilateral lesion of the nigrostriatal pathway induces a transient decrease of firing rate with no change in the firing pattern of neurons of the parafascicular nucleus in the rat
  publication-title: Neuroscience
– volume: 26
  start-page: 12921
  year: 2006
  end-page: 12942
  article-title: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia
  publication-title: Journal of Neuroscience
– volume: 142
  start-page: 3129
  year: 2019
  end-page: 3143
  article-title: Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease
  publication-title: Brain
– volume: 12
  start-page: 337
  year: 2000
  end-page: 344
  article-title: Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements
  publication-title: European Journal of Neuroscience
– volume: 119
  start-page: 1459
  year: 2008
  end-page: 1474
  article-title: Pathophysiology of Parkinsonism
  publication-title: Clinical Neurophysiology
– volume: 5
  start-page: 1533
  year: 1994
  end-page: 1537
  article-title: Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients
  publication-title: NeuroReport
– volume: 7
  year: 2018
  article-title: Inferring multi‐scale neural mechanisms with brain network modelling
  publication-title: Elife
– volume: 17
  start-page: S145
  year: 2002
  end-page: S149
  article-title: Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease
  publication-title: Movement Disorders
– volume: 9
  start-page: 19
  year: 2015
  article-title: ANNarchy: A code generation approach to neural simulations on parallel hardware
  publication-title: Frontiers Neuroinformatics
– volume: 30
  start-page: 12340
  year: 2010
  end-page: 12352
  article-title: Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network
  publication-title: Journal of Neuroscience
– volume: 14
  start-page: 1569
  year: 2003
  end-page: 1572
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
– volume: 5
  start-page: 42
  year: 2011
  article-title: Role of striatum in the pause and burst generation in the globus pallidus of 6‐OHDA‐treated rats
  publication-title: Frontiers in Systems Neuroscience
– volume: 21
  start-page: 1362
  year: 2011
  end-page: 1378
  article-title: Primary motor cortex of the parkinsonian monkey: Differential effects on the spontaneous activity of pyramidal tract‐type neurons
  publication-title: Cerebral Cortex
– volume: 9
  start-page: 5
  year: 2015
  article-title: Alterations in neuronal activity in basal ganglia‐thalamocortical circuits in the parkinsonian state
  publication-title: Frontiers in Neuroanatomy
– volume: 14
  start-page: 154
  year: 2011
  article-title: From reinforcement learning models to psychiatric and neurological disorders
  publication-title: Nature Neuroscience
– volume: 32
  start-page: 11
  year: 2017
  end-page: 19
  article-title: Innovations in deep brain stimulation methodology
  publication-title: Movement Disorders
– volume: 139
  start-page: 127
  year: 2016
  end-page: 143
  article-title: Primary motor cortex of the parkinsonian monkey: Altered encoding of active movement
  publication-title: Brain
– volume: 98
  start-page: 3731
  year: 2007
  end-page: 3748
  article-title: Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron
  publication-title: Journal of Neurophysiology
– volume: 93
  start-page: 3094
  year: 2005
  end-page: 3101
  article-title: Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease, essential tremor, and pain
  publication-title: Journal of Neurophysiology
– volume: 15
  start-page: S237
  year: 2009
  end-page: S240
  article-title: Update on models of basal ganglia function and dysfunction
  publication-title: Parkinsonism & Related Disorders
– volume: 17
  start-page: 6807
  year: 1997
  end-page: 6819
  article-title: The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease
  publication-title: Journal of Neuroscience
– volume: 3
  start-page: 26
  year: 2009
  article-title: Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models
  publication-title: Frontiers in Computational Neuroscience
– ident: e_1_2_11_27_1
  doi: 10.1006/nimg.2000.0630
– ident: e_1_2_11_29_1
  doi: 10.1016/j.clinph.2008.03.017
– ident: e_1_2_11_23_1
  doi: 10.1016/0006-8993(91)90585-J
– ident: e_1_2_11_49_1
  doi: 10.3389/fnsys.2011.00042
– ident: e_1_2_11_101_1
  doi: 10.1523/JNEUROSCI.3520-13.2014
– ident: e_1_2_11_105_1
  doi: 10.1002/1531-8249(199907)46:1<22::AID-ANA6>3.0.CO;2-Z
– ident: e_1_2_11_65_1
  doi: 10.1073/pnas.1107748108
– ident: e_1_2_11_36_1
  doi: 10.3389/neuro.10.026.2009
– ident: e_1_2_11_62_1
  doi: 10.1016/j.pneurobio.2011.09.005
– ident: e_1_2_11_75_1
  doi: 10.3389/fnana.2011.00039
– ident: e_1_2_11_13_1
  doi: 10.1523/JNEUROSCI.0893-14.2014
– ident: e_1_2_11_64_1
  doi: 10.1111/j.1469-7793.2000.t01-1-00235.x
– ident: e_1_2_11_33_1
  doi: 10.1371/journal.pone.0005226
– ident: e_1_2_11_31_1
  doi: 10.1016/0306-4522(95)00535-8
– ident: e_1_2_11_95_1
  doi: 10.1002/(SICI)1096-9861(19970609)382:3<323::AID-CNE3>3.0.CO;2-5
– ident: e_1_2_11_24_1
  doi: 10.1162/0898929052880093
– ident: e_1_2_11_83_1
  doi: 10.1016/0006-8993(91)91545-C
– ident: e_1_2_11_93_1
  doi: 10.1016/0006-8993(85)90957-6
– ident: e_1_2_11_109_1
  doi: 10.1523/JNEUROSCI.2220-05.2005
– ident: e_1_2_11_4_1
  doi: 10.1111/ejn.13666
– ident: e_1_2_11_21_1
  doi: 10.1016/0166-2236(90)90110-V
– ident: e_1_2_11_59_1
  doi: 10.1038/nn.2723
– ident: e_1_2_11_48_1
  doi: 10.1016/j.neuron.2017.05.004
– ident: e_1_2_11_81_1
  doi: 10.1523/JNEUROSCI.4056-04.2005
– ident: e_1_2_11_77_1
  doi: 10.1002/syn.890020612
– ident: e_1_2_11_32_1
  doi: 10.1073/pnas.0807010105
– ident: e_1_2_11_66_1
  doi: 10.1016/j.neuron.2019.03.004
– ident: e_1_2_11_50_1
  doi: 10.1523/JNEUROSCI.17-17-06807.1997
– ident: e_1_2_11_98_1
  doi: 10.1523/JNEUROSCI.22-07-02963.2002
– ident: e_1_2_11_57_1
  doi: 10.1523/ENEURO.0156-16.2016
– ident: e_1_2_11_16_1
  doi: 10.1016/0028-3908(85)90070-X
– ident: e_1_2_11_96_1
  doi: 10.3389/fnsys.2014.00005
– ident: e_1_2_11_28_1
  doi: 10.3389/fnana.2015.00005
– ident: e_1_2_11_17_1
  doi: 10.1038/nn1632
– ident: e_1_2_11_55_1
  doi: 10.1152/jn.2001.86.1.249
– ident: e_1_2_11_88_1
  doi: 10.7554/eLife.28927
– ident: e_1_2_11_108_1
  doi: 10.1152/jn.01013.2005
– ident: e_1_2_11_52_1
  doi: 10.3389/fnsys.2011.00086
– ident: e_1_2_11_18_1
  doi: 10.1523/JNEUROSCI.2523-11.2012
– ident: e_1_2_11_74_1
  doi: 10.1016/S0306-4522(00)00337-7
– ident: e_1_2_11_14_1
  doi: 10.1073/pnas.1112685108
– ident: e_1_2_11_58_1
  doi: 10.1038/35084005
– ident: e_1_2_11_92_1
  doi: 10.1111/ejn.12434
– ident: e_1_2_11_22_1
  doi: 10.1016/S1353-8020(09)70822-3
– ident: e_1_2_11_84_1
  doi: 10.1093/brain/awl337
– start-page: 1761
  volume-title: Neuropsychopharmacology: The fifth generation of progress
  year: 2002
  ident: e_1_2_11_107_1
– ident: e_1_2_11_61_1
  doi: 10.3389/fnins.2015.00191
– ident: e_1_2_11_34_1
  doi: 10.1523/JNEUROSCI.0817-10.2010
– ident: e_1_2_11_42_1
  doi: 10.1109/TNN.2003.820440
– ident: e_1_2_11_43_1
  doi: 10.1109/TNN.2004.832719
– ident: e_1_2_11_25_1
  doi: 10.1089/brain.2011.0008
– ident: e_1_2_11_46_1
  doi: 10.1016/j.neuroimage.2016.04.049
– ident: e_1_2_11_3_1
  doi: 10.1016/0166-2236(89)90074-X
– ident: e_1_2_11_12_1
  doi: 10.1016/S0006-8993(97)01563-1
– ident: e_1_2_11_51_1
  doi: 10.1002/mds.26703
– ident: e_1_2_11_45_1
  doi: 10.1136/jnnp.2007.131045
– ident: e_1_2_11_15_1
  doi: 10.1063/1.4851117
– ident: e_1_2_11_91_1
  doi: 10.1002/mds.26719
– ident: e_1_2_11_70_1
  doi: 10.1016/0304-3940(86)90013-3
– ident: e_1_2_11_60_1
  doi: 10.1523/JNEUROSCI.4439-05.2006
– ident: e_1_2_11_37_1
  doi: 10.1136/jnnp-2017-315922
– ident: e_1_2_11_38_1
  doi: 10.1523/JNEUROSCI.3486-06.2006
– ident: e_1_2_11_80_1
  doi: 10.1093/cercor/bhq217
– ident: e_1_2_11_86_1
  doi: 10.1016/j.celrep.2018.05.059
– ident: e_1_2_11_67_1
  doi: 10.1007/978-1-4684-5347-8_29
– start-page: 1836
  volume-title: Advances in neural information processing systems, 30. Presented at the 2017 Conference on Neural Information Processing Systems
  year: 2017
  ident: e_1_2_11_2_1
– ident: e_1_2_11_47_1
  doi: 10.1152/jn.00104.2016
– ident: e_1_2_11_35_1
  doi: 10.1093/brain/awz239
– ident: e_1_2_11_11_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_11_63_1
  doi: 10.1111/j.1469-7793.1998.555be.x
– ident: e_1_2_11_8_1
  doi: 10.1016/0022-510X(73)90175-5
– ident: e_1_2_11_99_1
  doi: 10.3389/fncom.2013.00088
– ident: e_1_2_11_71_1
  doi: 10.1152/jn.00881.2004
– ident: e_1_2_11_10_1
  doi: 10.1046/j.1460-9568.2003.02795.x
– ident: e_1_2_11_102_1
  doi: 10.1046/j.1460-9568.2000.00901.x
– ident: e_1_2_11_54_1
  doi: 10.1002/jnr.24519
– ident: e_1_2_11_69_1
  doi: 10.1016/0306-4522(89)90120-6
– ident: e_1_2_11_41_1
  doi: 10.1097/00001756-199407000-00031
– ident: e_1_2_11_85_1
  doi: 10.1016/j.conb.2017.08.011
– ident: e_1_2_11_106_1
  doi: 10.1007/s002210050696
– ident: e_1_2_11_72_1
  doi: 10.1152/jn.00335.2007
– ident: e_1_2_11_94_1
  doi: 10.1523/JNEUROSCI.0658-17.2017
– ident: e_1_2_11_26_1
  doi: 10.1016/S1053-8119(03)00202-7
– ident: e_1_2_11_103_1
  doi: 10.3389/fninf.2015.00019
– ident: e_1_2_11_19_1
  doi: 10.1523/JNEUROSCI.1091-13.2013
– volume: 20
  start-page: 561
  year: 1994
  ident: e_1_2_11_104_1
  article-title: Spontaneous neuronal activity in the motor thalamus: Alteration in pattern and rate in Parkinsonism
  publication-title: Society for Neuroscience Abstracts
– ident: e_1_2_11_40_1
  doi: 10.7554/eLife.19103
– ident: e_1_2_11_30_1
  doi: 10.1016/j.bbr.2008.12.036
– ident: e_1_2_11_78_1
  doi: 10.1016/j.parkreldis.2004.02.007
– ident: e_1_2_11_82_1
  doi: 10.3389/fnsys.2018.00068
– ident: e_1_2_11_89_1
  doi: 10.1371/journal.pcbi.1006359
– ident: e_1_2_11_39_1
  doi: 10.1016/j.neunet.2009.07.018
– ident: e_1_2_11_97_1
  doi: 10.1523/JNEUROSCI.0836-04.2004
– ident: e_1_2_11_56_1
  doi: 10.1523/JNEUROSCI.20-20-07766.2000
– ident: e_1_2_11_53_1
  doi: 10.1523/JNEUROSCI.5050-05.2006
– ident: e_1_2_11_76_1
  doi: 10.1016/S1471-1931(00)00028-8
– ident: e_1_2_11_79_1
  doi: 10.1093/brain/awv312
– ident: e_1_2_11_5_1
  doi: 10.1002/mds.10156
– ident: e_1_2_11_20_1
  doi: 10.1523/JNEUROSCI.0587-15.2015
– ident: e_1_2_11_73_1
  doi: 10.1016/j.baga.2014.11.001
– ident: e_1_2_11_100_1
  doi: 10.1371/journal.pone.0086496
– ident: e_1_2_11_68_1
  doi: 10.1111/j.1749-6632.1988.tb32998.x
– ident: e_1_2_11_87_1
  doi: 10.1002/cne.903150203
– ident: e_1_2_11_6_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_11_90_1
  doi: 10.1016/S0006-8993(96)00988-2
– ident: e_1_2_11_7_1
  doi: 10.1152/jn.1994.72.2.507
– ident: e_1_2_11_9_1
  doi: 10.1046/j.1460-9568.1999.00627.x
– volume-title: Dynamical systems in neuroscience
  year: 2007
  ident: e_1_2_11_44_1
SSID ssj0008645
Score 2.428578
Snippet Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about...
Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2278
SubjectTerms Basal ganglia
BOLD correlations
Central nervous system diseases
Computational neuroscience
data fitting
Dopamine
Firing pattern
firing rate
Functional magnetic resonance imaging
Movement disorders
Neural networks
Neurodegenerative diseases
Parkinson's disease
spiking neuron model
Title A computational model‐based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting‐state fMRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14868
https://www.ncbi.nlm.nih.gov/pubmed/32558966
https://www.proquest.com/docview/2514337325
https://www.proquest.com/docview/2415283045
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4gHPSiAooruCmNMV6G7PT0zjThtCAbIIEYIskeTCbdPd3E16zZRwyeSPwDXvl7_BKreh4KamK8bXZqtufRtfV1V31fATy3FLYNBfrIFyqkGXuRieMksoKLCjMtRFBiOjpO90_l4ag_WoDthgtT6UO0G27sGeH_mh1cm-kvTu7el-TmKmWiL9dqMSA6-SkdpdLQoJjl1CIVp6NaVYireNozr8ei3wDmdbwaAs7wHrxtLrWqM_mwOZ-ZTfv1horjf97LfbhbA1EcVDNnGRZcuQKrg5IW4Z_O8QWG0tCw574Ct3ebtnCr8G2ANnSCqHcRMfTSubr4zvGwQF2LnODYI31Dx880M4U1cu_jL_ocK6rxFN-VyJTrwD67uricYp0rQq4Pm0zot5j6gtw7hMIrDRC4T-iPTg4ewOlw783uflR3cogsM2Ejk1mCAVnW8z3hk0wb5aSK_ZbVsbSFcMragnCF1wlDujhNNaES6SlyeikLQokPYbEcl-4RIAEaHduelmQsjUhpheBd33D2sEi8dR142bzT3NYy59xt42PeLHfoYefhYXfgWWv6udL2-JPRRjMx8tq9p7lgmJlkieh34Gl7mF4EZ1t06cZzsmFopDgR3YG1akK1o9CJfUULTbrYMC3-Pny-d3gcPjz-d9N1uCO48ibUF23A4mwyd08IOs1MF24J-boLS4OdVzvDbvCYH8NfGZI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLZKOZQLj5bHQgGDEOKSajPJJoPEZVW12pbuHqpW2guKJpMZ1AdZtA9V7akSf4Arf6-_BNt5QHlIiFuUOJk8xvHnsf0Z4JUls52ToQ98oSXM2A3yMIwCqzipMDVKCRPTcJQMDuPdcW-8BO-aWpiKH6JdcGPNkP81KzgvSP-k5e64JD3Xib4BN7mjtzhU-z_Io3QiLYqZUC3QYTKueYU4j6c99bo1-g1iXkesYnK278CH5marTJOTjcU837AXv_A4_u_T3IXbNRbFfjV57sGSK1dhrV-SH_7pHF-jZIfKsvsqrGw2neHW4EsfrTSDqBcSUdrpXF1-ZZNYoKl5TnDikfbQ8Y-Gi4UNcvvjM3OOVbXxDI9K5KprKUC7uvw2wzpchJwiNp3Stbj6Bbl9CFlYGkDKn9AP93fuw-H21sHmIKibOQSWi2GDPLWEBNK067vKR6nJtYt16N9aE8a2UE5bWxC08CZiVBcmiSFgEnsynj6OCwKKD2C5nJTuESBhGhParolJOM5VQk6Cd72cA4hF5K3rwJvmo2a2ZjrnhhunWePx0MvO5GV34GUr-rmi9_iT0HozM7Jaw2eZYqQZpZHqdeBFe5g-BAdcTOkmC5JhdKQ5Ft2Bh9WMakehE3uafE26WZkXfx8-29odycbjfxd9DiuDg-Fetrczev8EbilOxJF0o3VYnk8X7ikhqXn-TBTmO8F5G2Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9VAEJ4gJMqLCng5ijoaY3wpabd72iU8nQAngHJiiCTnwaTZbneNqD3kXGLwiYQ_4Kt_j1_CzPaCqCTGt6addnuZ6Xy7M_MNwEtDbjsnRx-4QvkwYxjkURQHRnBSYaqF8ExM-4Nk51DuDbvDOdhoamEqfoh2wY0tw_-v2cCPC_eLkdujksxcJeoGLMgkVKzSWweX3FEq8R2KmU8tUFEyrGmFOI2nPfWqM_oDYV4FrN7j9O_Ah-Zeq0STz2uzab5mvv9G4_ifD3MXbtdIFHuV6izBnC2XYaVX0iz86wm-Qp8b6hfdl-HWZtMXbgXOemh8K4h6GRF9M53z0x_sEAvUNcsJjhzSHjr-UXOpsEZufvxNn2BVazzBTyVyzbUvPzs__TnBOliEnCA2HtO1uPYFuXkI-VcawBc_ods_2L0Hh_3t95s7Qd3KITBcChvkqSEckKahC4WLU50rK1Xk1o2OpCmEVcYUBCycjhnTRUmiCZZIR67TSVkQTLwP8-WotA8BCdHoyIRakrDMRUJTBGe7OYcPi9gZ24HXzTfNTM1zzu02vmTNfIdeduZfdgdetKLHFbnH34RWG8XIavueZIJxZpzGotuB5-1h-hAcbtGlHc1IhrGR4kh0Bx5UCtWOQid2Fc006Wa9Wlw_fLa9N_Abj_5d9BncfLfVz97uDt48hkXBWTg-12gV5qfjmX1CMGqaP_XmcgGD7xoc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+model%E2%80%90based+analysis+of+basal+ganglia+pathway+changes+in+Parkinson%E2%80%99s+disease+inferred+from+resting%E2%80%90state+fMRI&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Maith%2C+Oliver&rft.au=Francesc+Villagrasa+Escudero&rft.au=Dinkelbach%2C+Helge+%C3%9Clo&rft.au=Baladron%2C+Javier&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=53&rft.issue=7&rft.spage=2278&rft.epage=2295&rft_id=info:doi/10.1111%2Fejn.14868&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon