A computational model‐based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting‐state fMRI
Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease‐related activity changes or specified dopamine‐dependent activation or learning rules. Inspired by recent model‐based ana...
Saved in:
Published in | The European journal of neuroscience Vol. 53; no. 7; pp. 2278 - 2295 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease‐related activity changes or specified dopamine‐dependent activation or learning rules. Inspired by recent model‐based analysis of resting‐state fMRI, we have taken a data‐driven approach. We fit the free parameters of a spiking neuro‐computational model to match correlations of blood oxygen level‐dependent signals between different basal ganglia nuclei and obtain subject‐specific neuro‐computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular “rate model” of the basal ganglia. Our study suggests that a model‐based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson‐related changes in the basal ganglia and corresponding treatments.
We fit connectivity parameters of a spiking neuro‐computational basal ganglia (BG) model to replicate correlations of rs‐fMRI in Parkinson patients and control subjects and obtained data‐driven models of both groups. Our results (differences in connectivity, firing rates at rest and heterogeneity) show agreements with experimental findings and suggest that a model‐based analysis of imaging data from controls and patients is a promising approach to understand Parkinson induced changes in the BG. |
---|---|
AbstractList | Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular "rate model" of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments. Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease‐related activity changes or specified dopamine‐dependent activation or learning rules. Inspired by recent model‐based analysis of resting‐state fMRI, we have taken a data‐driven approach. We fit the free parameters of a spiking neuro‐computational model to match correlations of blood oxygen level‐dependent signals between different basal ganglia nuclei and obtain subject‐specific neuro‐computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular “rate model” of the basal ganglia. Our study suggests that a model‐based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson‐related changes in the basal ganglia and corresponding treatments. We fit connectivity parameters of a spiking neuro‐computational basal ganglia (BG) model to replicate correlations of rs‐fMRI in Parkinson patients and control subjects and obtained data‐driven models of both groups. Our results (differences in connectivity, firing rates at rest and heterogeneity) show agreements with experimental findings and suggest that a model‐based analysis of imaging data from controls and patients is a promising approach to understand Parkinson induced changes in the BG. Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular "rate model" of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments.Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular "rate model" of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments. |
Author | Maith, Oliver Horn, Andreas Kühn, Andrea A. Hamker, Fred H. Villagrasa Escudero, Francesc Baladron, Javier Dinkelbach, Helge Ülo Irmen, Friederike |
Author_xml | – sequence: 1 givenname: Oliver orcidid: 0000-0002-6446-9110 surname: Maith fullname: Maith, Oliver organization: Chemnitz University of Technology – sequence: 2 givenname: Francesc orcidid: 0000-0003-0149-6231 surname: Villagrasa Escudero fullname: Villagrasa Escudero, Francesc organization: Chemnitz University of Technology – sequence: 3 givenname: Helge Ülo orcidid: 0000-0002-8871-8177 surname: Dinkelbach fullname: Dinkelbach, Helge Ülo organization: Chemnitz University of Technology – sequence: 4 givenname: Javier surname: Baladron fullname: Baladron, Javier organization: Chemnitz University of Technology – sequence: 5 givenname: Andreas orcidid: 0000-0002-0695-6025 surname: Horn fullname: Horn, Andreas organization: Charité–University Medicine Berlin – sequence: 6 givenname: Friederike orcidid: 0000-0001-5574-3790 surname: Irmen fullname: Irmen, Friederike organization: Charité–University Medicine Berlin – sequence: 7 givenname: Andrea A. orcidid: 0000-0002-4134-9060 surname: Kühn fullname: Kühn, Andrea A. organization: Charité–University Medicine Berlin – sequence: 8 givenname: Fred H. orcidid: 0000-0001-9104-7143 surname: Hamker fullname: Hamker, Fred H. email: fred.hamker@informatik.tu-chemnitz.de organization: Chemnitz University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32558966$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1OHDEQhS1EFAaSBReILLEJiwa7_dOeJUIkISIJioLEzvK47cFDtz2xu4Vmh8QFss31OEkqmWGDgjeWqr56VXpvF23HFB1C-5QcUXjHbhGPKFdSbaEJ5ZJUUyHVNpqQqWCVovJ6B-2WsiCEKMnFa7TDaiHUVMoJejjBNvXLcTBDSNF0uE-t6x7vf81McS02UFqVUHDyGCrQn5s474LBSzPc3JkVtjdQcAWHiC9Nvg2xpPh4_7vgNhQHGtDwLmfQ8jn1OLsyhDiHBQVWOuy_fD9_g1550xX3dvPvoasPZz9OP1UX3z6en55cVJYLpapZYyXlTUM8qT1rzEw5rqifWkO5bWunrG0lZd4wQgWnUhpKCfeKN57zlii2h96vdZc5_RzhEN2HYl3XmejSWHTNqagVI1wAevAMXaQxgxlACcoZa8BCoN5tqHHWu1Yvc-hNXuknewE4XgM2p1Ky89qGtdNDNqHTlOi_AWoIUP8LECYOn008if6P3ajfhc6tXgb12eev64k_tlCtXQ |
CitedBy_id | crossref_primary_10_3389_fninf_2022_790966 crossref_primary_10_1016_j_cnsns_2022_106614 crossref_primary_10_1016_j_brain_2022_100058 crossref_primary_10_1007_s11571_024_10119_8 crossref_primary_10_1111_ejn_15204 crossref_primary_10_1038_s41598_024_80630_9 crossref_primary_10_1007_s11571_024_10125_w crossref_primary_10_1038_s41531_024_00835_7 crossref_primary_10_1093_nsr_nwae079 crossref_primary_10_1016_j_expneurol_2022_114111 crossref_primary_10_1371_journal_pcbi_1011024 crossref_primary_10_1088_1741_2552_ad5406 crossref_primary_10_1371_journal_pone_0310367 crossref_primary_10_1007_s11571_023_09951_1 |
Cites_doi | 10.1006/nimg.2000.0630 10.1016/j.clinph.2008.03.017 10.1016/0006-8993(91)90585-J 10.3389/fnsys.2011.00042 10.1523/JNEUROSCI.3520-13.2014 10.1002/1531-8249(199907)46:1<22::AID-ANA6>3.0.CO;2-Z 10.1073/pnas.1107748108 10.3389/neuro.10.026.2009 10.1016/j.pneurobio.2011.09.005 10.3389/fnana.2011.00039 10.1523/JNEUROSCI.0893-14.2014 10.1111/j.1469-7793.2000.t01-1-00235.x 10.1371/journal.pone.0005226 10.1016/0306-4522(95)00535-8 10.1002/(SICI)1096-9861(19970609)382:3<323::AID-CNE3>3.0.CO;2-5 10.1162/0898929052880093 10.1016/0006-8993(91)91545-C 10.1016/0006-8993(85)90957-6 10.1523/JNEUROSCI.2220-05.2005 10.1111/ejn.13666 10.1016/0166-2236(90)90110-V 10.1038/nn.2723 10.1016/j.neuron.2017.05.004 10.1523/JNEUROSCI.4056-04.2005 10.1002/syn.890020612 10.1073/pnas.0807010105 10.1016/j.neuron.2019.03.004 10.1523/JNEUROSCI.17-17-06807.1997 10.1523/JNEUROSCI.22-07-02963.2002 10.1523/ENEURO.0156-16.2016 10.1016/0028-3908(85)90070-X 10.3389/fnsys.2014.00005 10.3389/fnana.2015.00005 10.1038/nn1632 10.1152/jn.2001.86.1.249 10.7554/eLife.28927 10.1152/jn.01013.2005 10.3389/fnsys.2011.00086 10.1523/JNEUROSCI.2523-11.2012 10.1016/S0306-4522(00)00337-7 10.1073/pnas.1112685108 10.1038/35084005 10.1111/ejn.12434 10.1016/S1353-8020(09)70822-3 10.1093/brain/awl337 10.3389/fnins.2015.00191 10.1523/JNEUROSCI.0817-10.2010 10.1109/TNN.2003.820440 10.1109/TNN.2004.832719 10.1089/brain.2011.0008 10.1016/j.neuroimage.2016.04.049 10.1016/0166-2236(89)90074-X 10.1016/S0006-8993(97)01563-1 10.1002/mds.26703 10.1136/jnnp.2007.131045 10.1063/1.4851117 10.1002/mds.26719 10.1016/0304-3940(86)90013-3 10.1523/JNEUROSCI.4439-05.2006 10.1136/jnnp-2017-315922 10.1523/JNEUROSCI.3486-06.2006 10.1093/cercor/bhq217 10.1016/j.celrep.2018.05.059 10.1007/978-1-4684-5347-8_29 10.1152/jn.00104.2016 10.1093/brain/awz239 10.1002/mrm.1910340409 10.1111/j.1469-7793.1998.555be.x 10.1016/0022-510X(73)90175-5 10.3389/fncom.2013.00088 10.1152/jn.00881.2004 10.1046/j.1460-9568.2003.02795.x 10.1046/j.1460-9568.2000.00901.x 10.1002/jnr.24519 10.1016/0306-4522(89)90120-6 10.1097/00001756-199407000-00031 10.1016/j.conb.2017.08.011 10.1007/s002210050696 10.1152/jn.00335.2007 10.1523/JNEUROSCI.0658-17.2017 10.1016/S1053-8119(03)00202-7 10.3389/fninf.2015.00019 10.1523/JNEUROSCI.1091-13.2013 10.7554/eLife.19103 10.1016/j.bbr.2008.12.036 10.1016/j.parkreldis.2004.02.007 10.3389/fnsys.2018.00068 10.1371/journal.pcbi.1006359 10.1016/j.neunet.2009.07.018 10.1523/JNEUROSCI.0836-04.2004 10.1523/JNEUROSCI.20-20-07766.2000 10.1523/JNEUROSCI.5050-05.2006 10.1016/S1471-1931(00)00028-8 10.1093/brain/awv312 10.1002/mds.10156 10.1523/JNEUROSCI.0587-15.2015 10.1016/j.baga.2014.11.001 10.1371/journal.pone.0086496 10.1111/j.1749-6632.1988.tb32998.x 10.1002/cne.903150203 10.1111/j.2517-6161.1995.tb02031.x 10.1016/S0006-8993(96)00988-2 10.1152/jn.1994.72.2.507 10.1046/j.1460-9568.1999.00627.x |
ContentType | Journal Article |
Copyright | 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 |
DOI | 10.1111/ejn.14868 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Chemoreception Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2295 |
ExternalDocumentID | 32558966 10_1111_ejn_14868 EJN14868 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: HA2630/11‐1 (SPP 2041) – fundername: Deutsche Forschungsgemeinschaft grantid: HA2630/11-1 (SPP 2041) |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QP 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4588-b7c614770f02f37ab8e481f9ca14cd2e8ccd613fa30154166a1104f847f44d083 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Fri Jul 11 04:25:37 EDT 2025 Fri Jul 25 04:39:25 EDT 2025 Wed Feb 19 02:28:50 EST 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Jul 01 03:02:26 EDT 2025 Wed Jan 22 16:57:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | data fitting firing rate BOLD correlations spiking neuron model |
Language | English |
License | Attribution 2020 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4588-b7c614770f02f37ab8e481f9ca14cd2e8ccd613fa30154166a1104f847f44d083 |
Notes | Edited by Yoland Smith. The peer review history for this article is available at https://publons.com/publon/10.1111/ejn.14868 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6446-9110 0000-0002-8871-8177 0000-0002-4134-9060 0000-0002-0695-6025 0000-0001-9104-7143 0000-0003-0149-6231 0000-0001-5574-3790 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14868 |
PMID | 32558966 |
PQID | 2514337325 |
PQPubID | 34057 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2415283045 proquest_journals_2514337325 pubmed_primary_32558966 crossref_citationtrail_10_1111_ejn_14868 crossref_primary_10_1111_ejn_14868 wiley_primary_10_1111_ejn_14868_EJN14868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 17 2019; 97 1995; 34 2019; 12 2004; 24 1996; 72 1999; 46 2016; 31 2008; 105 2013; 7 1985; 24 2018; 7 1989; 32 2000; 12 1997; 382 2000; 523 2006; 26 1987 2008; 119 1994; 72 2010; 30 2001; 412 2009; 15 2011; 1 1995; 57 2018; 23 2007; 98 2011; 5 2012; 32 2019; 101 2016; 5 1973; 20 1991; 563 2016; 3 2011; 95 2019; 49 2005; 93 1998; 787 2000; 101 2014; 39 2017; 145 2005; 17 2014; 34 2018; 14 2015; 35 1990; 13 2013; 23 2017; 46 2003; 14 2008; 79 2003; 18 1999; 125 2003; 19 2011; 14 1998; 512 2018; 89 1996; 742 2001; 86 2005; 25 1994; 20 2017; 37 2017; 32 2007; 130 1992; 315 1999; 11 2009; 200 1997; 17 2011; 21 2016; 116 1991; 547 2014; 9 2014; 8 2009; 22 2015; 5 2006; 95 2000; 23 2006; 9 2000; 20 2007 2002 2015; 9 2019; 142 1988; 2 2004; 10 2017; 94 1989; 12 2011; 108 2013; 33 1986; 63 2004; 15 2002; 22 2017 2016; 139 1985; 358 2009; 4 2009; 3 1988; 515 1994; 5 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 Vitek J. (e_1_2_11_104_1) 1994; 20 e_1_2_11_17_1 Izhikevich E. M. (e_1_2_11_44_1) 2007 e_1_2_11_59_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 Wichmann T. (e_1_2_11_107_1) 2002 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 Acerbi L. (e_1_2_11_2_1) 2017 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_16_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_37_1 |
References_xml | – volume: 11 start-page: 2167 year: 1999 end-page: 2170 article-title: Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms publication-title: European Journal of Neuroscience – volume: 9 start-page: 191 year: 2015 article-title: A spiking Basal Ganglia model of synchrony, exploration and decision making publication-title: Frontiers in Neuroscience – volume: 4 year: 2009 article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans publication-title: PLoS One – volume: 315 start-page: 137 year: 1992 end-page: 159 article-title: Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections publication-title: The Journal of Comparative Neurology – volume: 20 start-page: 561 year: 1994 article-title: Spontaneous neuronal activity in the motor thalamus: Alteration in pattern and rate in Parkinsonism publication-title: Society for Neuroscience Abstracts – volume: 31 start-page: 1591 year: 2016 end-page: 1601 article-title: Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations publication-title: Movement Disorders – volume: 97 start-page: 1678 year: 2019 end-page: 1688 article-title: Aberrant features of in vivo striatal dynamics in Parkinson’s disease publication-title: Journal of Neuroscience Research – volume: 46 start-page: 127 year: 2017 end-page: 135 article-title: Computational models of basal ganglia dysfunction: The dynamics is in the details publication-title: Current Opinion in Neurobiology – volume: 46 start-page: 22 year: 1999 end-page: 35 article-title: Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus publication-title: Annals of Neurology – volume: 32 start-page: 3366 year: 2012 end-page: 3375 article-title: Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors publication-title: Journal of Neuroscience – start-page: 1836 year: 2017 end-page: 1846 – volume: 101 start-page: 1042 year: 2019 end-page: 1056 article-title: Circuit mechanisms of Parkinson’s disease publication-title: Neuron – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magnetic Resonance in Medicine – volume: 15 start-page: 1063 year: 2004 end-page: 1070 article-title: Which model to use for cortical spiking neurons? publication-title: IEEE Transactions on Neural Networks – volume: 105 start-page: 16039 year: 2008 end-page: 16044 article-title: Electrophysiological correlates of the brain’s intrinsic large‐scale functional architecture publication-title: Proceedings of the National Academy of Sciences – volume: 26 start-page: 3567 year: 2006 end-page: 3583 article-title: Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia publication-title: Journal of Neuroscience – volume: 86 start-page: 249 year: 2001 end-page: 260 article-title: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease publication-title: Journal of Neurophysiology – volume: 18 start-page: 856 year: 2003 end-page: 868 article-title: The effect of 6‐hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia: A dual microdialysis probe analysis publication-title: European Journal of Neuroscience – volume: 17 start-page: 51 year: 2005 end-page: 72 article-title: Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism publication-title: Journal of Cognitive Neuroscience – volume: 3 start-page: ENEURO.0156 year: 2016 end-page: 16.2016 article-title: Untangling basal ganglia network dynamics and function: Role of dopamine depletion and inhibition investigated in a spiking network model publication-title: Eneuro – volume: 14 year: 2018 article-title: A multi‐scale layer‐resolved spiking network model of resting‐state dynamics in macaque visual cortical areas publication-title: PLoS Computational Biology – volume: 12 start-page: 466 year: 2000 end-page: 477 article-title: Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics publication-title: NeuroImage – volume: 79 start-page: 368 year: 2008 end-page: 376 article-title: Parkinson’s disease: Clinical features and diagnosis publication-title: Journal of Neurology, Neurosurgery and Psychiatry – volume: 37 start-page: 9977 year: 2017 end-page: 9998 article-title: A population of indirect pathway striatal projection neurons is selectively entrained to parkinsonian beta oscillations publication-title: Journal of Neuroscience – volume: 33 start-page: 11239 year: 2013 end-page: 11252 article-title: Resting‐state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: Journal of Neuroscience – volume: 72 start-page: 105 year: 1996 end-page: 115 article-title: Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus publication-title: Neuroscience – volume: 32 start-page: 213 year: 1989 end-page: 226 article-title: Neural mechanisms underlying Parkinsonian symptoms based upon regional uptake of 2‐deoxyglucose in monkeys exposed to 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine publication-title: Neuroscience – volume: 63 start-page: 61 year: 1986 end-page: 65 article-title: Neural mechanisms mediating 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced Parkinsonism in the monkey: Relative contributions of the striatopallidal and striatonigral pathways as suggested by 2‐deoxyglucose uptake publication-title: Neuroscience Letters – volume: 24 start-page: 6417 year: 2004 end-page: 6426 article-title: Role of external pallidal segment in primate Parkinsonism: Comparison of the effects of 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced Parkinsonism and lesions of the external pallidal segment publication-title: Journal of Neuroscience – volume: 34 start-page: 6011 year: 2014 end-page: 6022 article-title: Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control publication-title: Journal of Neuroscience – year: 2007 – volume: 34 start-page: 15836 year: 2014 end-page: 15850 article-title: Reduced reach‐related modulation of motor thalamus neural activity in a rat model of Parkinson’s disease publication-title: Journal of Neuroscience – volume: 515 start-page: 287 year: 1988 end-page: 302 article-title: Parkinsonian symptomatology. An anatomical and physiological analysis publication-title: Annals of the New York Academy of Sciences – volume: 5 year: 2016 article-title: A comprehensive excitatory input map of the striatum reveals novel functional organization publication-title: Elife – volume: 1 start-page: 13 year: 2011 end-page: 36 article-title: Functional and effective connectivity: A review publication-title: Brain Connectivity – volume: 19 start-page: 1273 year: 2003 end-page: 1302 article-title: Dynamic causal modelling publication-title: NeuroImage – volume: 25 start-page: 1523 year: 2005 end-page: 1531 article-title: Thalamic neuronal activity in dopamine‐depleted primates: Evidence for a loss of functional segregation within basal ganglia circuits publication-title: Journal of Neuroscience – volume: 5 start-page: 86 year: 2011 article-title: The role of inhibition in generating and controlling Parkinson’s disease oscillations in the basal ganglia publication-title: Frontiers in Systems Neuroscience – volume: 26 start-page: 3875 year: 2006 end-page: 3884 article-title: Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats publication-title: Journal of Neuroscience – volume: 130 start-page: 265 year: 2007 end-page: 275 article-title: Metabolic activity of cerebellar and basal ganglia‐thalamic neurons is reduced in Parkinsonism publication-title: Brain – volume: 358 start-page: 137 year: 1985 end-page: 143 article-title: Changes in the local cerebral metabolic rate for glucose in the 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine (MPTP) primate model of Parkinson’s disease publication-title: Brain Research – volume: 24 start-page: 587 year: 1985 end-page: 591 article-title: Regional brain uptake of 2‐deoxyglucose in N‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine (MPTP)—induced Parkinsonism in the macaque monkey publication-title: Neuropharmacology – volume: 145 start-page: 377 year: 2017 end-page: 388 article-title: The virtual epileptic patient: Individualized whole‐brain models of epilepsy spread publication-title: NeuroImage – volume: 512 start-page: 555 year: 1998 end-page: 566 article-title: Modification of activity‐dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex publication-title: Journal of Physiology – volume: 108 start-page: 11620 year: 2011 end-page: 11625 article-title: Striatal origin of the pathologic beta oscillations in Parkinson’s disease publication-title: Proceedings of the National Academy of Sciences – volume: 35 start-page: 6918 year: 2015 end-page: 6930 article-title: Subthalamic nucleus activity in the awake hemiparkinsonian rat: Relationships with motor and cognitive networks publication-title: Journal of Neuroscience – volume: 95 start-page: 629 year: 2011 end-page: 635 article-title: The Parkinson progression marker initiative (PPMI) publication-title: Progress in Neurobiology – volume: 5 start-page: 1 year: 2015 end-page: 6 article-title: Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes? publication-title: Basal Ganglia – start-page: 415 year: 1987 end-page: 427 – volume: 23 start-page: 3438 year: 2018 end-page: 3446 article-title: Aberrant striatal activity in Parkinsonism and levodopa‐induced dyskinesia publication-title: Cell Reports – volume: 39 start-page: 688 year: 2014 end-page: 702 article-title: Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease publication-title: European Journal of Neuroscience – volume: 13 start-page: 281 year: 1990 end-page: 285 article-title: Primate models of movement disorders of basal ganglia origin publication-title: Trends in Neurosciences – volume: 108 start-page: 16783 year: 2011 end-page: 16788 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proceedings of the National Academy of Sciences – volume: 20 start-page: 7766 year: 2000 end-page: 7775 article-title: High‐frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor publication-title: Journal of Neuroscience – volume: 7 start-page: 88 year: 2013 article-title: Using a hybrid neuron in physiologically inspired models of the basal ganglia publication-title: Frontiers in Computational Neuroscience – volume: 5 start-page: 39 year: 2011 article-title: Past, present, and future of the pathophysiological model of the Basal Ganglia publication-title: Frontiers in Neuroanatomy – volume: 25 start-page: 9080 year: 2005 end-page: 9095 article-title: NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron publication-title: The Journal of Neuroscience – volume: 742 start-page: 25 year: 1996 end-page: 33 article-title: Alterations in intralaminar and motor thalamic physiology following nigrostriatal dopamine depletion publication-title: Brain Research – volume: 10 start-page: 203 year: 2004 end-page: 211 article-title: The pallidofugal motor fiber system in primates publication-title: Parkinsonism & Related Disorders – volume: 23 year: 2013 article-title: Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks publication-title: Chaos: an Interdisciplinary Journal of Nonlinear Science – volume: 9 year: 2014 article-title: Neural plasticity in human brain connectivity: The effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson’s disease publication-title: PLoS One – volume: 89 start-page: 1181 year: 2018 end-page: 1188 article-title: Insights into Parkinson’s disease from computational models of the basal ganglia publication-title: Journal of Neurology, Neurosurgery and Psychiatry – volume: 12 start-page: 68 year: 2019 article-title: What can computational models contribute to neuroimaging data analytics? publication-title: Frontiers in Systems Neuroscience – volume: 95 start-page: 2120 year: 2006 end-page: 2133 article-title: Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism publication-title: Journal of Neurophysiology – volume: 382 start-page: 323 year: 1997 end-page: 347 article-title: Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection publication-title: The Journal of Comparative Neurology – volume: 23 start-page: S8 year: 2000 end-page: S19 article-title: Pathophysiology of the basal ganglia in Parkinson’s disease publication-title: Trends in Neurosciences – volume: 125 start-page: 397 year: 1999 end-page: 409 article-title: Comparison of MPTP‐induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates publication-title: Experimental Brain Research – start-page: 1761 year: 2002 end-page: 1779 – volume: 116 start-page: 2869 year: 2016 end-page: 2881 article-title: Effects of high‐frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys publication-title: Journal of Neurophysiology – volume: 8 start-page: 5 year: 2014 article-title: The thalamostriatal system in normal and diseased states publication-title: Frontiers in Systems Neuroscience – volume: 547 start-page: 140 year: 1991 end-page: 144 article-title: Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP‐induced Parkinsonism publication-title: Brain Research – volume: 20 start-page: 415 year: 1973 end-page: 455 article-title: Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations publication-title: Journal of the Neurological Sciences – volume: 563 start-page: 278 year: 1991 end-page: 280 article-title: Further investigations into the pathophysiology of MPTP‐induced Parkinsonism in the primate: An intracerebral microdialysis study of γ‐aminobutyric acid in the lateral segment of the globus pallidus publication-title: Brain Research – volume: 523 start-page: 235 year: 2000 end-page: 246 article-title: Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis publication-title: Journal of Physiology – volume: 12 start-page: 366 year: 1989 end-page: 375 article-title: The functional anatomy of basal ganglia disorders publication-title: Trends in Neurosciences – volume: 72 start-page: 507 year: 1994 end-page: 520 article-title: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism publication-title: Journal of Neurophysiology – volume: 412 start-page: 150 year: 2001 end-page: 157 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature – volume: 2 start-page: 650 year: 1988 end-page: 656 article-title: Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat publication-title: Synapse (New York, N. Y.) – volume: 49 start-page: 754 year: 2019 end-page: 767 article-title: The subthalamic nucleus‐external globus pallidus loop biases exploratory decisions towards known alternatives: A neuro‐computational study publication-title: European Journal of Neuroscience – volume: 787 start-page: 157 year: 1998 end-page: 160 article-title: Effects of L‐DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP‐treated monkey publication-title: Brain Research – volume: 9 start-page: 251 year: 2006 end-page: 259 article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models publication-title: Nature Neuroscience – volume: 94 start-page: 855 year: 2017 end-page: 865 article-title: Dopamine depletion impairs bilateral sensory processing in the striatum in a pathway‐dependent manner publication-title: Neuron – volume: 200 start-page: 48 year: 2009 end-page: 59 article-title: A neurocomputational model of tonic and phasic dopamine in action selection: A comparison with cognitive deficits in Parkinson’s disease publication-title: Behavioral Brain Research – volume: 22 start-page: 2963 year: 2002 end-page: 2976 article-title: Activity patterns in a model for the subthalamopallidal network of the basal ganglia publication-title: Journal of Neuroscience – volume: 22 start-page: 1174 year: 2009 end-page: 1188 article-title: Dopamine‐modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit publication-title: Neural Networks – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B Methodology – volume: 101 start-page: 993 year: 2000 end-page: 999 article-title: Unilateral lesion of the nigrostriatal pathway induces a transient decrease of firing rate with no change in the firing pattern of neurons of the parafascicular nucleus in the rat publication-title: Neuroscience – volume: 26 start-page: 12921 year: 2006 end-page: 12942 article-title: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia publication-title: Journal of Neuroscience – volume: 142 start-page: 3129 year: 2019 end-page: 3143 article-title: Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease publication-title: Brain – volume: 12 start-page: 337 year: 2000 end-page: 344 article-title: Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements publication-title: European Journal of Neuroscience – volume: 119 start-page: 1459 year: 2008 end-page: 1474 article-title: Pathophysiology of Parkinsonism publication-title: Clinical Neurophysiology – volume: 5 start-page: 1533 year: 1994 end-page: 1537 article-title: Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients publication-title: NeuroReport – volume: 7 year: 2018 article-title: Inferring multi‐scale neural mechanisms with brain network modelling publication-title: Elife – volume: 17 start-page: S145 year: 2002 end-page: S149 article-title: Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease publication-title: Movement Disorders – volume: 9 start-page: 19 year: 2015 article-title: ANNarchy: A code generation approach to neural simulations on parallel hardware publication-title: Frontiers Neuroinformatics – volume: 30 start-page: 12340 year: 2010 end-page: 12352 article-title: Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network publication-title: Journal of Neuroscience – volume: 14 start-page: 1569 year: 2003 end-page: 1572 article-title: Simple model of spiking neurons publication-title: IEEE Transactions on Neural Networks – volume: 5 start-page: 42 year: 2011 article-title: Role of striatum in the pause and burst generation in the globus pallidus of 6‐OHDA‐treated rats publication-title: Frontiers in Systems Neuroscience – volume: 21 start-page: 1362 year: 2011 end-page: 1378 article-title: Primary motor cortex of the parkinsonian monkey: Differential effects on the spontaneous activity of pyramidal tract‐type neurons publication-title: Cerebral Cortex – volume: 9 start-page: 5 year: 2015 article-title: Alterations in neuronal activity in basal ganglia‐thalamocortical circuits in the parkinsonian state publication-title: Frontiers in Neuroanatomy – volume: 14 start-page: 154 year: 2011 article-title: From reinforcement learning models to psychiatric and neurological disorders publication-title: Nature Neuroscience – volume: 32 start-page: 11 year: 2017 end-page: 19 article-title: Innovations in deep brain stimulation methodology publication-title: Movement Disorders – volume: 139 start-page: 127 year: 2016 end-page: 143 article-title: Primary motor cortex of the parkinsonian monkey: Altered encoding of active movement publication-title: Brain – volume: 98 start-page: 3731 year: 2007 end-page: 3748 article-title: Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron publication-title: Journal of Neurophysiology – volume: 93 start-page: 3094 year: 2005 end-page: 3101 article-title: Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease, essential tremor, and pain publication-title: Journal of Neurophysiology – volume: 15 start-page: S237 year: 2009 end-page: S240 article-title: Update on models of basal ganglia function and dysfunction publication-title: Parkinsonism & Related Disorders – volume: 17 start-page: 6807 year: 1997 end-page: 6819 article-title: The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease publication-title: Journal of Neuroscience – volume: 3 start-page: 26 year: 2009 article-title: Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models publication-title: Frontiers in Computational Neuroscience – ident: e_1_2_11_27_1 doi: 10.1006/nimg.2000.0630 – ident: e_1_2_11_29_1 doi: 10.1016/j.clinph.2008.03.017 – ident: e_1_2_11_23_1 doi: 10.1016/0006-8993(91)90585-J – ident: e_1_2_11_49_1 doi: 10.3389/fnsys.2011.00042 – ident: e_1_2_11_101_1 doi: 10.1523/JNEUROSCI.3520-13.2014 – ident: e_1_2_11_105_1 doi: 10.1002/1531-8249(199907)46:1<22::AID-ANA6>3.0.CO;2-Z – ident: e_1_2_11_65_1 doi: 10.1073/pnas.1107748108 – ident: e_1_2_11_36_1 doi: 10.3389/neuro.10.026.2009 – ident: e_1_2_11_62_1 doi: 10.1016/j.pneurobio.2011.09.005 – ident: e_1_2_11_75_1 doi: 10.3389/fnana.2011.00039 – ident: e_1_2_11_13_1 doi: 10.1523/JNEUROSCI.0893-14.2014 – ident: e_1_2_11_64_1 doi: 10.1111/j.1469-7793.2000.t01-1-00235.x – ident: e_1_2_11_33_1 doi: 10.1371/journal.pone.0005226 – ident: e_1_2_11_31_1 doi: 10.1016/0306-4522(95)00535-8 – ident: e_1_2_11_95_1 doi: 10.1002/(SICI)1096-9861(19970609)382:3<323::AID-CNE3>3.0.CO;2-5 – ident: e_1_2_11_24_1 doi: 10.1162/0898929052880093 – ident: e_1_2_11_83_1 doi: 10.1016/0006-8993(91)91545-C – ident: e_1_2_11_93_1 doi: 10.1016/0006-8993(85)90957-6 – ident: e_1_2_11_109_1 doi: 10.1523/JNEUROSCI.2220-05.2005 – ident: e_1_2_11_4_1 doi: 10.1111/ejn.13666 – ident: e_1_2_11_21_1 doi: 10.1016/0166-2236(90)90110-V – ident: e_1_2_11_59_1 doi: 10.1038/nn.2723 – ident: e_1_2_11_48_1 doi: 10.1016/j.neuron.2017.05.004 – ident: e_1_2_11_81_1 doi: 10.1523/JNEUROSCI.4056-04.2005 – ident: e_1_2_11_77_1 doi: 10.1002/syn.890020612 – ident: e_1_2_11_32_1 doi: 10.1073/pnas.0807010105 – ident: e_1_2_11_66_1 doi: 10.1016/j.neuron.2019.03.004 – ident: e_1_2_11_50_1 doi: 10.1523/JNEUROSCI.17-17-06807.1997 – ident: e_1_2_11_98_1 doi: 10.1523/JNEUROSCI.22-07-02963.2002 – ident: e_1_2_11_57_1 doi: 10.1523/ENEURO.0156-16.2016 – ident: e_1_2_11_16_1 doi: 10.1016/0028-3908(85)90070-X – ident: e_1_2_11_96_1 doi: 10.3389/fnsys.2014.00005 – ident: e_1_2_11_28_1 doi: 10.3389/fnana.2015.00005 – ident: e_1_2_11_17_1 doi: 10.1038/nn1632 – ident: e_1_2_11_55_1 doi: 10.1152/jn.2001.86.1.249 – ident: e_1_2_11_88_1 doi: 10.7554/eLife.28927 – ident: e_1_2_11_108_1 doi: 10.1152/jn.01013.2005 – ident: e_1_2_11_52_1 doi: 10.3389/fnsys.2011.00086 – ident: e_1_2_11_18_1 doi: 10.1523/JNEUROSCI.2523-11.2012 – ident: e_1_2_11_74_1 doi: 10.1016/S0306-4522(00)00337-7 – ident: e_1_2_11_14_1 doi: 10.1073/pnas.1112685108 – ident: e_1_2_11_58_1 doi: 10.1038/35084005 – ident: e_1_2_11_92_1 doi: 10.1111/ejn.12434 – ident: e_1_2_11_22_1 doi: 10.1016/S1353-8020(09)70822-3 – ident: e_1_2_11_84_1 doi: 10.1093/brain/awl337 – start-page: 1761 volume-title: Neuropsychopharmacology: The fifth generation of progress year: 2002 ident: e_1_2_11_107_1 – ident: e_1_2_11_61_1 doi: 10.3389/fnins.2015.00191 – ident: e_1_2_11_34_1 doi: 10.1523/JNEUROSCI.0817-10.2010 – ident: e_1_2_11_42_1 doi: 10.1109/TNN.2003.820440 – ident: e_1_2_11_43_1 doi: 10.1109/TNN.2004.832719 – ident: e_1_2_11_25_1 doi: 10.1089/brain.2011.0008 – ident: e_1_2_11_46_1 doi: 10.1016/j.neuroimage.2016.04.049 – ident: e_1_2_11_3_1 doi: 10.1016/0166-2236(89)90074-X – ident: e_1_2_11_12_1 doi: 10.1016/S0006-8993(97)01563-1 – ident: e_1_2_11_51_1 doi: 10.1002/mds.26703 – ident: e_1_2_11_45_1 doi: 10.1136/jnnp.2007.131045 – ident: e_1_2_11_15_1 doi: 10.1063/1.4851117 – ident: e_1_2_11_91_1 doi: 10.1002/mds.26719 – ident: e_1_2_11_70_1 doi: 10.1016/0304-3940(86)90013-3 – ident: e_1_2_11_60_1 doi: 10.1523/JNEUROSCI.4439-05.2006 – ident: e_1_2_11_37_1 doi: 10.1136/jnnp-2017-315922 – ident: e_1_2_11_38_1 doi: 10.1523/JNEUROSCI.3486-06.2006 – ident: e_1_2_11_80_1 doi: 10.1093/cercor/bhq217 – ident: e_1_2_11_86_1 doi: 10.1016/j.celrep.2018.05.059 – ident: e_1_2_11_67_1 doi: 10.1007/978-1-4684-5347-8_29 – start-page: 1836 volume-title: Advances in neural information processing systems, 30. Presented at the 2017 Conference on Neural Information Processing Systems year: 2017 ident: e_1_2_11_2_1 – ident: e_1_2_11_47_1 doi: 10.1152/jn.00104.2016 – ident: e_1_2_11_35_1 doi: 10.1093/brain/awz239 – ident: e_1_2_11_11_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_11_63_1 doi: 10.1111/j.1469-7793.1998.555be.x – ident: e_1_2_11_8_1 doi: 10.1016/0022-510X(73)90175-5 – ident: e_1_2_11_99_1 doi: 10.3389/fncom.2013.00088 – ident: e_1_2_11_71_1 doi: 10.1152/jn.00881.2004 – ident: e_1_2_11_10_1 doi: 10.1046/j.1460-9568.2003.02795.x – ident: e_1_2_11_102_1 doi: 10.1046/j.1460-9568.2000.00901.x – ident: e_1_2_11_54_1 doi: 10.1002/jnr.24519 – ident: e_1_2_11_69_1 doi: 10.1016/0306-4522(89)90120-6 – ident: e_1_2_11_41_1 doi: 10.1097/00001756-199407000-00031 – ident: e_1_2_11_85_1 doi: 10.1016/j.conb.2017.08.011 – ident: e_1_2_11_106_1 doi: 10.1007/s002210050696 – ident: e_1_2_11_72_1 doi: 10.1152/jn.00335.2007 – ident: e_1_2_11_94_1 doi: 10.1523/JNEUROSCI.0658-17.2017 – ident: e_1_2_11_26_1 doi: 10.1016/S1053-8119(03)00202-7 – ident: e_1_2_11_103_1 doi: 10.3389/fninf.2015.00019 – ident: e_1_2_11_19_1 doi: 10.1523/JNEUROSCI.1091-13.2013 – volume: 20 start-page: 561 year: 1994 ident: e_1_2_11_104_1 article-title: Spontaneous neuronal activity in the motor thalamus: Alteration in pattern and rate in Parkinsonism publication-title: Society for Neuroscience Abstracts – ident: e_1_2_11_40_1 doi: 10.7554/eLife.19103 – ident: e_1_2_11_30_1 doi: 10.1016/j.bbr.2008.12.036 – ident: e_1_2_11_78_1 doi: 10.1016/j.parkreldis.2004.02.007 – ident: e_1_2_11_82_1 doi: 10.3389/fnsys.2018.00068 – ident: e_1_2_11_89_1 doi: 10.1371/journal.pcbi.1006359 – ident: e_1_2_11_39_1 doi: 10.1016/j.neunet.2009.07.018 – ident: e_1_2_11_97_1 doi: 10.1523/JNEUROSCI.0836-04.2004 – ident: e_1_2_11_56_1 doi: 10.1523/JNEUROSCI.20-20-07766.2000 – ident: e_1_2_11_53_1 doi: 10.1523/JNEUROSCI.5050-05.2006 – ident: e_1_2_11_76_1 doi: 10.1016/S1471-1931(00)00028-8 – ident: e_1_2_11_79_1 doi: 10.1093/brain/awv312 – ident: e_1_2_11_5_1 doi: 10.1002/mds.10156 – ident: e_1_2_11_20_1 doi: 10.1523/JNEUROSCI.0587-15.2015 – ident: e_1_2_11_73_1 doi: 10.1016/j.baga.2014.11.001 – ident: e_1_2_11_100_1 doi: 10.1371/journal.pone.0086496 – ident: e_1_2_11_68_1 doi: 10.1111/j.1749-6632.1988.tb32998.x – ident: e_1_2_11_87_1 doi: 10.1002/cne.903150203 – ident: e_1_2_11_6_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_11_90_1 doi: 10.1016/S0006-8993(96)00988-2 – ident: e_1_2_11_7_1 doi: 10.1152/jn.1994.72.2.507 – ident: e_1_2_11_9_1 doi: 10.1046/j.1460-9568.1999.00627.x – volume-title: Dynamical systems in neuroscience year: 2007 ident: e_1_2_11_44_1 |
SSID | ssj0008645 |
Score | 2.428578 |
Snippet | Previous computational model‐based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about... Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2278 |
SubjectTerms | Basal ganglia BOLD correlations Central nervous system diseases Computational neuroscience data fitting Dopamine Firing pattern firing rate Functional magnetic resonance imaging Movement disorders Neural networks Neurodegenerative diseases Parkinson's disease spiking neuron model |
Title | A computational model‐based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting‐state fMRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14868 https://www.ncbi.nlm.nih.gov/pubmed/32558966 https://www.proquest.com/docview/2514337325 https://www.proquest.com/docview/2415283045 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4gHPSiAooruCmNMV6G7PT0zjThtCAbIIEYIskeTCbdPd3E16zZRwyeSPwDXvl7_BKreh4KamK8bXZqtufRtfV1V31fATy3FLYNBfrIFyqkGXuRieMksoKLCjMtRFBiOjpO90_l4ag_WoDthgtT6UO0G27sGeH_mh1cm-kvTu7el-TmKmWiL9dqMSA6-SkdpdLQoJjl1CIVp6NaVYireNozr8ei3wDmdbwaAs7wHrxtLrWqM_mwOZ-ZTfv1horjf97LfbhbA1EcVDNnGRZcuQKrg5IW4Z_O8QWG0tCw574Ct3ebtnCr8G2ANnSCqHcRMfTSubr4zvGwQF2LnODYI31Dx880M4U1cu_jL_ocK6rxFN-VyJTrwD67uricYp0rQq4Pm0zot5j6gtw7hMIrDRC4T-iPTg4ewOlw783uflR3cogsM2Ejk1mCAVnW8z3hk0wb5aSK_ZbVsbSFcMragnCF1wlDujhNNaES6SlyeikLQokPYbEcl-4RIAEaHduelmQsjUhpheBd33D2sEi8dR142bzT3NYy59xt42PeLHfoYefhYXfgWWv6udL2-JPRRjMx8tq9p7lgmJlkieh34Gl7mF4EZ1t06cZzsmFopDgR3YG1akK1o9CJfUULTbrYMC3-Pny-d3gcPjz-d9N1uCO48ibUF23A4mwyd08IOs1MF24J-boLS4OdVzvDbvCYH8NfGZI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLZKOZQLj5bHQgGDEOKSajPJJoPEZVW12pbuHqpW2guKJpMZ1AdZtA9V7akSf4Arf6-_BNt5QHlIiFuUOJk8xvHnsf0Z4JUls52ToQ98oSXM2A3yMIwCqzipMDVKCRPTcJQMDuPdcW-8BO-aWpiKH6JdcGPNkP81KzgvSP-k5e64JD3Xib4BN7mjtzhU-z_Io3QiLYqZUC3QYTKueYU4j6c99bo1-g1iXkesYnK278CH5marTJOTjcU837AXv_A4_u_T3IXbNRbFfjV57sGSK1dhrV-SH_7pHF-jZIfKsvsqrGw2neHW4EsfrTSDqBcSUdrpXF1-ZZNYoKl5TnDikfbQ8Y-Gi4UNcvvjM3OOVbXxDI9K5KprKUC7uvw2wzpchJwiNp3Stbj6Bbl9CFlYGkDKn9AP93fuw-H21sHmIKibOQSWi2GDPLWEBNK067vKR6nJtYt16N9aE8a2UE5bWxC08CZiVBcmiSFgEnsynj6OCwKKD2C5nJTuESBhGhParolJOM5VQk6Cd72cA4hF5K3rwJvmo2a2ZjrnhhunWePx0MvO5GV34GUr-rmi9_iT0HozM7Jaw2eZYqQZpZHqdeBFe5g-BAdcTOkmC5JhdKQ5Ft2Bh9WMakehE3uafE26WZkXfx8-29odycbjfxd9DiuDg-Fetrczev8EbilOxJF0o3VYnk8X7ikhqXn-TBTmO8F5G2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9VAEJ4gJMqLCng5ijoaY3wpabd72iU8nQAngHJiiCTnwaTZbneNqD3kXGLwiYQ_4Kt_j1_CzPaCqCTGt6addnuZ6Xy7M_MNwEtDbjsnRx-4QvkwYxjkURQHRnBSYaqF8ExM-4Nk51DuDbvDOdhoamEqfoh2wY0tw_-v2cCPC_eLkdujksxcJeoGLMgkVKzSWweX3FEq8R2KmU8tUFEyrGmFOI2nPfWqM_oDYV4FrN7j9O_Ah-Zeq0STz2uzab5mvv9G4_ifD3MXbtdIFHuV6izBnC2XYaVX0iz86wm-Qp8b6hfdl-HWZtMXbgXOemh8K4h6GRF9M53z0x_sEAvUNcsJjhzSHjr-UXOpsEZufvxNn2BVazzBTyVyzbUvPzs__TnBOliEnCA2HtO1uPYFuXkI-VcawBc_ods_2L0Hh_3t95s7Qd3KITBcChvkqSEckKahC4WLU50rK1Xk1o2OpCmEVcYUBCycjhnTRUmiCZZIR67TSVkQTLwP8-WotA8BCdHoyIRakrDMRUJTBGe7OYcPi9gZ24HXzTfNTM1zzu02vmTNfIdeduZfdgdetKLHFbnH34RWG8XIavueZIJxZpzGotuB5-1h-hAcbtGlHc1IhrGR4kh0Bx5UCtWOQid2Fc006Wa9Wlw_fLa9N_Abj_5d9BncfLfVz97uDt48hkXBWTg-12gV5qfjmX1CMGqaP_XmcgGD7xoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+model%E2%80%90based+analysis+of+basal+ganglia+pathway+changes+in+Parkinson%E2%80%99s+disease+inferred+from+resting%E2%80%90state+fMRI&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Maith%2C+Oliver&rft.au=Francesc+Villagrasa+Escudero&rft.au=Dinkelbach%2C+Helge+%C3%9Clo&rft.au=Baladron%2C+Javier&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=53&rft.issue=7&rft.spage=2278&rft.epage=2295&rft_id=info:doi/10.1111%2Fejn.14868&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |