Synthesizing Subject-matter Expertise for Variable Selection in Causal Effect Estimation: A Case Study

Causal graphs are an important tool for covariate selection but there is limited applied research on how best to create them. Here, we used data from the Coronary Drug Project trial to assess a range of approaches to directed acyclic graph (DAG) creation. We focused on the effect of adherence on mor...

Full description

Saved in:
Bibliographic Details
Published inEpidemiology (Cambridge, Mass.) Vol. 35; no. 5; p. 642
Main Authors Debertin, Julia, Jurado Vélez, Javier A, Corlin, Laura, Hidalgo, Bertha, Murray, Eleanor J
Format Journal Article
LanguageEnglish
Published United States 01.09.2024
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Causal graphs are an important tool for covariate selection but there is limited applied research on how best to create them. Here, we used data from the Coronary Drug Project trial to assess a range of approaches to directed acyclic graph (DAG) creation. We focused on the effect of adherence on mortality in the placebo arm, since the true causal effect is believed with a high degree of certainty. We created DAGs for the effect of placebo adherence on mortality using different approaches for identifying variables and links to include or exclude. For each DAG, we identified minimal adjustment sets of covariates for estimating our causal effect of interest and applied these to analyses of the Coronary Drug Project data. When we used only baseline covariate values to estimate the cumulative effect of placebo adherence on mortality, all adjustment sets performed similarly. The specific choice of covariates had minimal effect on these (biased) point estimates, but including nonconfounding prognostic factors resulted in smaller variance estimates. When we additionally adjusted for time-varying covariates of adherence using inverse probability weighting, covariates identified from the DAG created by focusing on prognostic factors performed best. Theoretical advice on covariate selection suggests that including prognostic factors that are not exposure predictors can reduce variance without increasing bias. In contrast, for exposure predictors that are not prognostic factors, inclusion may result in less bias control. Our results empirically confirm this advice. We recommend that hand-creating DAGs begin with the identification of all potential outcome prognostic factors.
AbstractList Causal graphs are an important tool for covariate selection but there is limited applied research on how best to create them. Here, we used data from the Coronary Drug Project trial to assess a range of approaches to directed acyclic graph (DAG) creation. We focused on the effect of adherence on mortality in the placebo arm, since the true causal effect is believed with a high degree of certainty. We created DAGs for the effect of placebo adherence on mortality using different approaches for identifying variables and links to include or exclude. For each DAG, we identified minimal adjustment sets of covariates for estimating our causal effect of interest and applied these to analyses of the Coronary Drug Project data. When we used only baseline covariate values to estimate the cumulative effect of placebo adherence on mortality, all adjustment sets performed similarly. The specific choice of covariates had minimal effect on these (biased) point estimates, but including nonconfounding prognostic factors resulted in smaller variance estimates. When we additionally adjusted for time-varying covariates of adherence using inverse probability weighting, covariates identified from the DAG created by focusing on prognostic factors performed best. Theoretical advice on covariate selection suggests that including prognostic factors that are not exposure predictors can reduce variance without increasing bias. In contrast, for exposure predictors that are not prognostic factors, inclusion may result in less bias control. Our results empirically confirm this advice. We recommend that hand-creating DAGs begin with the identification of all potential outcome prognostic factors.
Author Corlin, Laura
Debertin, Julia
Hidalgo, Bertha
Murray, Eleanor J
Jurado Vélez, Javier A
Author_xml – sequence: 1
  givenname: Julia
  surname: Debertin
  fullname: Debertin, Julia
  organization: Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
– sequence: 2
  givenname: Javier A
  surname: Jurado Vélez
  fullname: Jurado Vélez, Javier A
  organization: Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
– sequence: 3
  givenname: Laura
  surname: Corlin
  fullname: Corlin, Laura
  organization: Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA
– sequence: 4
  givenname: Bertha
  surname: Hidalgo
  fullname: Hidalgo, Bertha
  organization: Department of Epidemiology, University of Alabama at Birmingham Ryals School of Public Health, Birmingham, AL
– sequence: 5
  givenname: Eleanor J
  orcidid: 0000-0003-0043-4901
  surname: Murray
  fullname: Murray, Eleanor J
  organization: Department of Epidemiology, Boston University School of Public Health, Boston, MA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38860706$$D View this record in MEDLINE/PubMed
BookMark eNpNT1tLwzAUDqK4i_4DkfyBzpxkSVPfxqwXGPhQ9XWk6YlmdN1oUnD79UZU8Hv54LtxzoScdrsOCbkCNgNW5DflXTlj_wC51CdkDFJAJuc6H5FJCJtvXYA8JyOhtWI5U2PiqkMXPzD4o-_eaTXUG7Qx25oYsafl5x776ANSt-vpm-m9qVukFbYp5Hcd9R1dmiGYlpbOJY2WIfpUTt4tXSQvVas4NIcLcuZMG_Dyl6fk9b58WT5mq-eHp-Vildm51DpTkmsuHBY1sNpICeBUIRRy1JoXiQoLyopaCwvONlxZqRsBHIxWCYxPyfXP7n6ot9is9306pz-s_x7mX-HIWGE
CitedBy_id crossref_primary_10_1097_EDE_0000000000001759
crossref_primary_10_1093_aje_kwae338
ContentType Journal Article
Copyright Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
Copyright_xml – notice: Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/EDE.0000000000001758
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 38860706
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: K12 HD092535
GroupedDBID ---
.-D
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAFWJ
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABPLY
ABPXF
ABTLG
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACHQT
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADGGA
ADHPY
AE6
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
E.X
EBS
ECM
EEVPB
EIF
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
JLS
JSG
K8S
KD2
L-C
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OLG
OLH
OLU
OLY
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWV
OWW
OWY
OWZ
OXXIT
P2P
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XYM
YOC
ZFV
ID FETCH-LOGICAL-c4588-652823fe9b10ba5511f6936e2e8829e2e9c16c3b83c1fcd26c58d3121a8666602
IngestDate Mon Jul 21 05:58:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4588-652823fe9b10ba5511f6936e2e8829e2e9c16c3b83c1fcd26c58d3121a8666602
ORCID 0000-0003-0043-4901
OpenAccessLink https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&DO=10.1097/EDE.0000000000001758
PMID 38860706
ParticipantIDs pubmed_primary_38860706
PublicationCentury 2000
PublicationDate 2024-September
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-September
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2024
SSID ssj0017315
Score 2.4563925
Snippet Causal graphs are an important tool for covariate selection but there is limited applied research on how best to create them. Here, we used data from the...
SourceID pubmed
SourceType Index Database
StartPage 642
SubjectTerms Causality
Data Interpretation, Statistical
Female
Humans
Male
Middle Aged
Placebos
Randomized Controlled Trials as Topic
Title Synthesizing Subject-matter Expertise for Variable Selection in Causal Effect Estimation: A Case Study
URI https://www.ncbi.nlm.nih.gov/pubmed/38860706
Volume 35
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYKSBPShMY2YINNPuyGwnCcOAm30gVVldiFH-KGbMeBSm2KCD2Mv2l_5J79EjcwJhg9uFXcWpXfl2e_l_d9JuRbXEZZWnAZRDI10DAWqMjmrQpLgyyEzjJLcD7-KYZn0egivuj1fneqluZ3ak_fP8kreY1V4RrY1bJk_8OyflC4AJ_BvtCChaF9kY1PflWwf6vH905We65sTiWYOsVM1DC2Jy27QsJzCIkdSerEnXvTFDgO5Ly2usKoYJzD3T71xR596K2xzvDBk998caSsKxTwpC9k_tT1Xie5AN7MtDIFlont14DR_FYWs91zfE4_wTT2SDrui8fUYHbbHCdv2dv-t8NxISdXLsV7CKNfy27mIox8aRYsPK23ZYENmbruGNVLGtjFHd8qUIbrL5-PWsL5jxy1KJsXbIvS7tdh5m6mDgc8TQU4OvF87yMl7rZriSxBTGIPWbWZoeaJVcJZ3FIzs-T7U39nlbxph3gUxLjNzOk7stZEIbSPkFonPVO9J28xhUuRmfaBlF140Yfwoh5eFOBFW3hRDy86rijCiyK86AJeB7RPLbioA9dHcnaUnw6GQXMsR6AtrTkQMYTpvDSZYvtKwo6blSLjwoQGorUM3jLNhOYq5ZqVugiFjsEbsJDJFGJlsR9ukOVqVpktQmF50SXEKKFNaQvFU5OEOi4SFgI8E8U_kU2cpssb1F65bCfw8z97tsnqAmw7ZKWEm918gZ3jnfrqTPYHi71p4g
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesizing+Subject-matter+Expertise+for+Variable+Selection+in+Causal+Effect+Estimation%3A+A+Case+Study&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Debertin%2C+Julia&rft.au=Jurado+V%C3%A9lez%2C+Javier+A&rft.au=Corlin%2C+Laura&rft.au=Hidalgo%2C+Bertha&rft.date=2024-09-01&rft.eissn=1531-5487&rft.volume=35&rft.issue=5&rft.spage=642&rft_id=info:doi/10.1097%2FEDE.0000000000001758&rft_id=info%3Apmid%2F38860706&rft_id=info%3Apmid%2F38860706&rft.externalDocID=38860706