Photochemically Activated Notch Signaling Hydrogel Preferentially Differentiates Human Derived Hepatoblasts to Cholangiocytes
Cholangiocytes form an intricate network of bile ducts to enable proper liver function; yet, recapitulating human stem cell differentiation to cholangiocytes in vitro requires Notch signaling and soluble ligands do not activate the Notch pathway. To overcome these limitations, jagged1 is immobilized...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 5; pp. 2006116 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cholangiocytes form an intricate network of bile ducts to enable proper liver function; yet, recapitulating human stem cell differentiation to cholangiocytes in vitro requires Notch signaling and soluble ligands do not activate the Notch pathway. To overcome these limitations, jagged1 is immobilized on a chemically defined hyaluronan to specifically differentiate human embryonic stem cell‐derived hepatoblasts to cholangiocytes. Hepatoblasts cultured on the jagged1‐hydrogels upregulate Notch target genes and express key cholangiocyte markers including cystic fibrosis transmembrane conductance regulator. Moreover, cholangiocytes adopt morphological changes that resemble liver biliary structures. To emulate natural biliary system development, a new strategy is developed to achieve spatiotemporal control over the Jagged1–Notch2 interaction: jagged1 is first caged with a photocleavable streptavidin and then it is uncaged photochemically to restore the biological function of Jagged1, which is confirmed with Notch2 activation in a fluorescent reporter cell line. Moreover, the differentiation of human embryonic stem cell‐derived hepatoblasts to cholangiocytes is temporally controlled with photochemical uncaging of this streptavidin‐Jagged1‐immobilized hyaluronan hydrogel. This strategy defines a framework to control protein signaling in time and space and specifically for Notch signaling for ultimate use in regenerative medicine strategies of the liver.
Chemically defined Notch signaling hyaluronan hydrogels differentiate human embryonic stem cell‐derived hepatoblasts into cholangiocytes. By photocaging jagged with streptavidin, biological activity is selectively restored with spatiotemporal control by exposure to UV light. |
---|---|
AbstractList | Cholangiocytes form an intricate network of bile ducts to enable proper liver function; yet, recapitulating human stem cell differentiation to cholangiocytes in vitro requires Notch signaling and soluble ligands do not activate the Notch pathway. To overcome these limitations, jagged1 is immobilized on a chemically defined hyaluronan to specifically differentiate human embryonic stem cell‐derived hepatoblasts to cholangiocytes. Hepatoblasts cultured on the jagged1‐hydrogels upregulate Notch target genes and express key cholangiocyte markers including cystic fibrosis transmembrane conductance regulator. Moreover, cholangiocytes adopt morphological changes that resemble liver biliary structures. To emulate natural biliary system development, a new strategy is developed to achieve spatiotemporal control over the Jagged1–Notch2 interaction: jagged1 is first caged with a photocleavable streptavidin and then it is uncaged photochemically to restore the biological function of Jagged1, which is confirmed with Notch2 activation in a fluorescent reporter cell line. Moreover, the differentiation of human embryonic stem cell‐derived hepatoblasts to cholangiocytes is temporally controlled with photochemical uncaging of this streptavidin‐Jagged1‐immobilized hyaluronan hydrogel. This strategy defines a framework to control protein signaling in time and space and specifically for Notch signaling for ultimate use in regenerative medicine strategies of the liver. Cholangiocytes form an intricate network of bile ducts to enable proper liver function; yet, recapitulating human stem cell differentiation to cholangiocytes in vitro requires Notch signaling and soluble ligands do not activate the Notch pathway. To overcome these limitations, jagged1 is immobilized on a chemically defined hyaluronan to specifically differentiate human embryonic stem cell‐derived hepatoblasts to cholangiocytes. Hepatoblasts cultured on the jagged1‐hydrogels upregulate Notch target genes and express key cholangiocyte markers including cystic fibrosis transmembrane conductance regulator. Moreover, cholangiocytes adopt morphological changes that resemble liver biliary structures. To emulate natural biliary system development, a new strategy is developed to achieve spatiotemporal control over the Jagged1–Notch2 interaction: jagged1 is first caged with a photocleavable streptavidin and then it is uncaged photochemically to restore the biological function of Jagged1, which is confirmed with Notch2 activation in a fluorescent reporter cell line. Moreover, the differentiation of human embryonic stem cell‐derived hepatoblasts to cholangiocytes is temporally controlled with photochemical uncaging of this streptavidin‐Jagged1‐immobilized hyaluronan hydrogel. This strategy defines a framework to control protein signaling in time and space and specifically for Notch signaling for ultimate use in regenerative medicine strategies of the liver. Chemically defined Notch signaling hyaluronan hydrogels differentiate human embryonic stem cell‐derived hepatoblasts into cholangiocytes. By photocaging jagged with streptavidin, biological activity is selectively restored with spatiotemporal control by exposure to UV light. |
Author | Rizwan, Muhammad Fokina, Ana Ogawa, Mina Laselva, Onofrio Bear, Christine E. Keller, Gordon Kivijärvi, Tove Smith, Laura J. Shoichet, Molly S. Kufleitner, Markus Ogawa, Shinichiro |
Author_xml | – sequence: 1 givenname: Muhammad surname: Rizwan fullname: Rizwan, Muhammad organization: University of Toronto – sequence: 2 givenname: Ana surname: Fokina fullname: Fokina, Ana organization: University of Toronto – sequence: 3 givenname: Tove surname: Kivijärvi fullname: Kivijärvi, Tove organization: KTH Royal Institute of Technology – sequence: 4 givenname: Mina surname: Ogawa fullname: Ogawa, Mina organization: University Health Network – sequence: 5 givenname: Markus surname: Kufleitner fullname: Kufleitner, Markus organization: University of Konstanz – sequence: 6 givenname: Onofrio surname: Laselva fullname: Laselva, Onofrio organization: University of Toronto – sequence: 7 givenname: Laura J. surname: Smith fullname: Smith, Laura J. organization: University of Toronto – sequence: 8 givenname: Christine E. surname: Bear fullname: Bear, Christine E. organization: University of Toronto – sequence: 9 givenname: Shinichiro surname: Ogawa fullname: Ogawa, Shinichiro organization: University of Toronto – sequence: 10 givenname: Gordon surname: Keller fullname: Keller, Gordon organization: University of Toronto – sequence: 11 givenname: Molly S. orcidid: 0000-0003-1830-3475 surname: Shoichet fullname: Shoichet, Molly S. email: molly.shoichet@utoronto.ca organization: University of Toronto |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291162$$DView record from Swedish Publication Index |
BookMark | eNqFkUFP2zAYhi0EEi1w5WyJczrbaWznWLWwIrENaQNxsxznS2JI4852W-XAf1-6QnfcyZ-l53kP7ztGp53rAKFrSiaUEPZFl9VqwggjhFPKT9CIcsqTlDB5erzpyzkah_BKCBUinY7Q-2PjojMNrKzRbdvjmYl2qyOU-LuLpsE_bd3p1nY1XvaldzW0-NFDBR66aP8aC1t9fiMEvNysdIcX4O12CFnCWkdXtDrEgKPD88a1uqutM_0AX6KzSrcBrj7eC_R0d_trvkwefny9n88eEjPNJE90JjQpREZTaVhe5FlOJcvAQJGWhpQZCCmBF1Lk00wILitOmC45q4rUCEpEeoGSQ27YwXpTqLW3K-175bRVC_s8U87X6i02iuVDdWzgbw782rvfGwhRvbqNH3oIik0lJYzmYk9NDpTxLoShlGMuJWo_idpPoo6TDEJ-EHa2hf4_tJot7r79c_8AQDOT8w |
CitedBy_id | crossref_primary_10_1002_cbic_202200476 crossref_primary_10_1016_j_tibtech_2023_09_007 crossref_primary_10_1021_accountsmr_3c00062 crossref_primary_10_1093_stcltm_szad079 crossref_primary_10_1016_j_reth_2024_05_020 crossref_primary_10_1002_adhm_202100234 crossref_primary_10_3390_jpm11040301 crossref_primary_10_1002_adbi_202300450 crossref_primary_10_1021_acsbiomaterials_1c00941 crossref_primary_10_1002_adhm_202203148 crossref_primary_10_1016_j_mtbio_2022_100483 crossref_primary_10_1002_adhm_202200880 crossref_primary_10_1016_j_tibtech_2022_01_007 |
Cites_doi | 10.1038/nmat4219 10.1101/cshperspect.a013789 10.1369/0022155419884879 10.1038/nature11826 10.1002/jbm.a.34825 10.1038/nbt.3275 10.1016/0092-8674(90)90148-8 10.1089/ten.teb.2014.0547 10.1111/febs.12392 10.3389/fphar.2018.00719 10.1016/j.stemcr.2015.04.008 10.1083/jcb.200408064 10.15252/embr.201845964 10.1242/jcs.188185 10.1152/ajpgi.90229.2008 10.1002/hep.27165 10.1242/dev.052118 10.1124/mol.119.117143 10.1002/adma.201901166 10.1016/j.jhep.2013.11.028 10.1002/hep.29583 10.1021/acs.biomac.7b01715 10.1242/dev.121020 10.1038/nbt.3294 10.1152/ajpgi.00123.2015 10.1038/s41598-018-24646-y 10.1016/j.jhep.2019.08.036 10.1242/dev.029140 10.1002/adfm.201504024 10.3390/ma9120994 10.1016/j.scr.2019.101400 10.1002/adma.201806214 10.1038/s41551-017-0096 10.1002/hep.510300512 10.1074/jbc.M608425200 10.1016/j.devcel.2017.02.009 10.1039/c3cc38026b 10.1002/adfm.201903978 10.1242/jcs.01169 10.1039/C6CC04004G 10.1016/j.ccell.2018.05.003 10.1016/j.devcel.2012.04.005 10.1016/j.biomaterials.2020.120205 10.1126/scitranslmed.aat9284 10.1177/2041731417726464 10.1021/acsbiomaterials.9b00177 10.1002/adma.201003963 10.1038/ncomms5324 10.1038/nmat3101 10.1002/anie.200704857 10.1083/jcb.200612080 10.7554/eLife.37880 10.1016/j.jcf.2019.12.001 10.1016/j.devcel.2015.05.004 10.1002/hep.22381 10.1053/j.gastro.2004.09.004 10.1016/j.biocel.2010.06.020 10.1016/j.cell.2017.10.048 10.1021/jacs.9b02427 10.4049/jimmunol.175.11.7447 10.1002/hep.29483 10.1039/C5SC03404C 10.1002/hep.27268 10.1007/s12195-017-0506-7 10.7554/eLife.38536 10.1038/s41563-019-0367-7 10.3390/biom10020334 10.1002/hep.21448 10.1016/j.devcel.2010.01.011 10.1021/bm101446k 10.1021/acscentsci.8b00325 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AOWAS D8V |
DOI | 10.1002/adfm.202006116 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | oai_DiVA_org_kth_291162 10_1002_adfm_202006116 ADFM202006116 |
Genre | article |
GrantInformation_xml | – fundername: Swedish Foundation for Strategic Research funderid: RMA15‐0010 – fundername: Canada First Research Excellence Fund – fundername: University of Toronto |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AASGY AAYXX ACBWZ ACRPL ACYXJ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c4586-a57a0b75138c29b9591825eceb3dc0d5e788e6b879457768f602ad62fb3c71073 |
IEDL.DBID | DR2 |
ISSN | 1616-301X 1616-3028 |
IngestDate | Sat Aug 24 00:44:48 EDT 2024 Thu Oct 10 18:14:00 EDT 2024 Fri Dec 06 04:20:59 EST 2024 Sat Aug 24 01:02:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4586-a57a0b75138c29b9591825eceb3dc0d5e788e6b879457768f602ad62fb3c71073 |
ORCID | 0000-0003-1830-3475 |
PQID | 2481021972 |
PQPubID | 2045204 |
PageCount | 15 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_291162 proquest_journals_2481021972 crossref_primary_10_1002_adfm_202006116 wiley_primary_10_1002_adfm_202006116_ADFM202006116 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2017; 8 2017; 1 2004; 127 2013; 1 2005; 175 2019; 96 2010; 18 2019; 11 2015; 33 2015; 142 2015; 309 2011; 10 2019; 18 2011; 12 2020; 10 2013; 280 2013; 5 2014; 60 2020; 19 2018; 7 2018; 9 2018; 8 2014; 5 2018; 4 2019; 68 2007; 176 2020; 255 2011; 23 2006; 281 2018; 33 2012; 22 2019; 8 2015; 14 2015; 4 2013; 49 2019; 5 2019; 31 2019; 35 2017; 171 2016; 52 2017; 130 2018; 67 2019; 141 2009; 136 2018; 19 1990; 63 2016; 7 2020; 30 2015; 61 2020; 72 2005; 168 2017; 10 2010; 137 2015; 21 2008; 47 2008; 48 2011; 43 1999; 30 2013; 494 2016; 26 2007; 45 2004; 117 2008; 295 2016; 9 2014; 102 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Rao R. K. (e_1_2_8_54_1) 2013; 1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 175 start-page: 7447 year: 2005 publication-title: J. Immunol. – volume: 67 start-page: 750 year: 2018 publication-title: Hepatology – volume: 494 start-page: 247 year: 2013 publication-title: Nature – volume: 43 start-page: 257 year: 2011 publication-title: Int. J. Biochem. Cell Biol. – volume: 45 start-page: 139 year: 2007 publication-title: Hepatology – volume: 33 start-page: 1061 year: 2018 publication-title: Cancer Cell – volume: 8 start-page: 6392 year: 2018 publication-title: Sci. Rep. – volume: 168 start-page: 705 year: 2005 publication-title: J. Cell Biol. – volume: 33 start-page: 853 year: 2015 publication-title: Nat. Biotechnol. – volume: 96 start-page: 515 year: 2019 publication-title: Mol. Pharmacol. – volume: 8 year: 2017 publication-title: J. Tissue Eng. – volume: 7 start-page: 1891 year: 2016 publication-title: Chem. Sci. – volume: 18 start-page: 175 year: 2010 publication-title: Dev. Cell – volume: 67 start-page: 833 year: 2018 publication-title: Hepatology – volume: 40 start-page: 505 year: 2017 publication-title: Dev. Cell – volume: 60 start-page: 885 year: 2014 publication-title: J. Hepatol. – volume: 14 start-page: 523 year: 2015 publication-title: Nat. Mater. – volume: 176 start-page: 779 year: 2007 publication-title: J. Cell Biol. – volume: 5 start-page: 2111 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 48 start-page: 607 year: 2008 publication-title: Hepatology – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 63 start-page: 827 year: 1990 publication-title: Cell – volume: 11 year: 2019 publication-title: Sci. Transl. Med. – volume: 9 start-page: 719 year: 2018 publication-title: Front. Pharmacol. – volume: 171 start-page: 1383 year: 2017 publication-title: Cell – volume: 8 year: 2019 publication-title: eLife – volume: 19 start-page: 717 year: 2020 publication-title: J. Cystic Fibrosis – volume: 22 start-page: 1299 year: 2012 publication-title: Dev. Cell – volume: 127 start-page: 1775 year: 2004 publication-title: Gastroenterology – volume: 35 year: 2019 publication-title: Stem Cell Res. – volume: 21 start-page: 345 year: 2015 publication-title: Tissue Eng., Part – volume: 117 start-page: 3165 year: 2004 publication-title: J. Cell Sci. – volume: 5 year: 2013 publication-title: Cold Spring Harbor Perspect. Biol. – volume: 281 year: 2006 publication-title: J. Biol. Chem. – volume: 19 start-page: 926 year: 2018 publication-title: Biomacromolecules – volume: 26 start-page: 1975 year: 2016 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 8035 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 1 year: 2013 publication-title: Tissue Barriers – volume: 33 start-page: 729 year: 2015 publication-title: Dev. Cell – volume: 10 start-page: 334 year: 2020 publication-title: Biomolecules – volume: 136 start-page: 1727 year: 2009 publication-title: Development – volume: 18 start-page: 1005 year: 2019 publication-title: Nat. Mater. – volume: 47 start-page: 3192 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 61 start-page: 382 year: 2015 publication-title: Hepatology – volume: 72 start-page: 135 year: 2020 publication-title: J. Hepatol. – volume: 7 year: 2018 publication-title: eLife – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 255 year: 2020 publication-title: Biomaterials – volume: 142 start-page: 4253 year: 2015 publication-title: Development – volume: 23 start-page: H41 year: 2011 publication-title: Adv. Mater. – volume: 10 start-page: 501 year: 2017 publication-title: Cell Mol. Bioeng. – volume: 19 year: 2018 publication-title: EMBO Rep. – volume: 1 start-page: 0096 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 102 start-page: 1558 year: 2014 publication-title: J. Biomed. Mater. Res., Part A – volume: 49 start-page: 3013 year: 2013 publication-title: Chem. Commun. – volume: 295 start-page: G305 year: 2008 publication-title: Am. J. Physiol. – volume: 12 start-page: 824 year: 2011 publication-title: Biomacromolecules – volume: 5 start-page: 4324 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 1031 year: 2015 publication-title: Stem Cell Rep. – volume: 137 start-page: 4061 year: 2010 publication-title: Development – volume: 52 year: 2016 publication-title: Chem. Commun. – volume: 68 start-page: 75 year: 2019 publication-title: J. Histochem. Cytochem. – volume: 33 start-page: 845 year: 2015 publication-title: Nat. Biotechnol. – volume: 9 start-page: 994 year: 2016 publication-title: Material – volume: 10 start-page: 799 year: 2011 publication-title: Nat. Mater. – volume: 280 start-page: 4396 year: 2013 publication-title: FEBS J. – volume: 60 start-page: 700 year: 2014 publication-title: Hepatology – volume: 130 start-page: 243 year: 2017 publication-title: J. Cell Sci. – volume: 30 start-page: 1269 year: 1999 publication-title: Hepatology – volume: 309 start-page: G874 year: 2015 publication-title: Am. J. Physiol. – volume: 4 start-page: 909 year: 2018 publication-title: ACS Cent. Sci. – ident: e_1_2_8_61_1 doi: 10.1038/nmat4219 – ident: e_1_2_8_53_1 doi: 10.1101/cshperspect.a013789 – ident: e_1_2_8_14_1 doi: 10.1369/0022155419884879 – ident: e_1_2_8_12_1 doi: 10.1038/nature11826 – ident: e_1_2_8_46_1 doi: 10.1002/jbm.a.34825 – ident: e_1_2_8_3_1 doi: 10.1038/nbt.3275 – ident: e_1_2_8_45_1 doi: 10.1016/0092-8674(90)90148-8 – ident: e_1_2_8_5_1 doi: 10.1089/ten.teb.2014.0547 – ident: e_1_2_8_44_1 doi: 10.1111/febs.12392 – ident: e_1_2_8_71_1 doi: 10.3389/fphar.2018.00719 – ident: e_1_2_8_16_1 doi: 10.1016/j.stemcr.2015.04.008 – ident: e_1_2_8_50_1 doi: 10.1083/jcb.200408064 – ident: e_1_2_8_35_1 doi: 10.15252/embr.201845964 – ident: e_1_2_8_52_1 doi: 10.1242/jcs.188185 – ident: e_1_2_8_22_1 doi: 10.1152/ajpgi.90229.2008 – ident: e_1_2_8_2_1 doi: 10.1002/hep.27165 – ident: e_1_2_8_41_1 doi: 10.1242/dev.052118 – ident: e_1_2_8_73_1 doi: 10.1124/mol.119.117143 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201901166 – ident: e_1_2_8_68_1 doi: 10.1016/j.jhep.2013.11.028 – ident: e_1_2_8_39_1 doi: 10.1002/hep.29583 – ident: e_1_2_8_28_1 doi: 10.1021/acs.biomac.7b01715 – ident: e_1_2_8_69_1 doi: 10.1242/dev.121020 – ident: e_1_2_8_1_1 doi: 10.1038/nbt.3294 – ident: e_1_2_8_23_1 doi: 10.1152/ajpgi.00123.2015 – ident: e_1_2_8_38_1 doi: 10.1038/s41598-018-24646-y – ident: e_1_2_8_19_1 doi: 10.1016/j.jhep.2019.08.036 – ident: e_1_2_8_10_1 doi: 10.1242/dev.029140 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201504024 – ident: e_1_2_8_37_1 doi: 10.3390/ma9120994 – ident: e_1_2_8_4_1 doi: 10.1016/j.scr.2019.101400 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201806214 – ident: e_1_2_8_6_1 doi: 10.1038/s41551-017-0096 – ident: e_1_2_8_11_1 doi: 10.1002/hep.510300512 – ident: e_1_2_8_13_1 doi: 10.1074/jbc.M608425200 – ident: e_1_2_8_60_1 doi: 10.1016/j.devcel.2017.02.009 – ident: e_1_2_8_57_1 doi: 10.1039/c3cc38026b – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201903978 – ident: e_1_2_8_42_1 doi: 10.1242/jcs.01169 – ident: e_1_2_8_58_1 doi: 10.1039/C6CC04004G – ident: e_1_2_8_21_1 doi: 10.1016/j.ccell.2018.05.003 – ident: e_1_2_8_30_1 doi: 10.1016/j.devcel.2012.04.005 – ident: e_1_2_8_62_1 doi: 10.1016/j.biomaterials.2020.120205 – ident: e_1_2_8_47_1 doi: 10.1126/scitranslmed.aat9284 – ident: e_1_2_8_25_1 doi: 10.1177/2041731417726464 – ident: e_1_2_8_67_1 doi: 10.1021/acsbiomaterials.9b00177 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201003963 – ident: e_1_2_8_34_1 doi: 10.1038/ncomms5324 – ident: e_1_2_8_63_1 doi: 10.1038/nmat3101 – ident: e_1_2_8_59_1 doi: 10.1002/anie.200704857 – ident: e_1_2_8_51_1 doi: 10.1083/jcb.200612080 – ident: e_1_2_8_43_1 doi: 10.7554/eLife.37880 – ident: e_1_2_8_72_1 doi: 10.1016/j.jcf.2019.12.001 – ident: e_1_2_8_31_1 doi: 10.1016/j.devcel.2015.05.004 – ident: e_1_2_8_48_1 doi: 10.1002/hep.22381 – ident: e_1_2_8_49_1 doi: 10.1053/j.gastro.2004.09.004 – ident: e_1_2_8_9_1 doi: 10.1016/j.biocel.2010.06.020 – ident: e_1_2_8_32_1 doi: 10.1016/j.cell.2017.10.048 – volume: 1 year: 2013 ident: e_1_2_8_54_1 publication-title: Tissue Barriers contributor: fullname: Rao R. K. – ident: e_1_2_8_66_1 doi: 10.1021/jacs.9b02427 – ident: e_1_2_8_24_1 doi: 10.4049/jimmunol.175.11.7447 – ident: e_1_2_8_55_1 doi: 10.1002/hep.29483 – ident: e_1_2_8_40_1 doi: 10.1242/dev.029140 – ident: e_1_2_8_56_1 doi: 10.1039/C5SC03404C – ident: e_1_2_8_7_1 doi: 10.1002/hep.27268 – ident: e_1_2_8_33_1 doi: 10.1007/s12195-017-0506-7 – ident: e_1_2_8_36_1 doi: 10.7554/eLife.38536 – ident: e_1_2_8_65_1 doi: 10.1038/s41563-019-0367-7 – ident: e_1_2_8_70_1 doi: 10.3390/biom10020334 – ident: e_1_2_8_20_1 doi: 10.1002/hep.21448 – ident: e_1_2_8_8_1 doi: 10.1016/j.devcel.2010.01.011 – ident: e_1_2_8_15_1 doi: 10.1021/bm101446k – ident: e_1_2_8_64_1 doi: 10.1021/acscentsci.8b00325 |
SSID | ssj0017734 |
Score | 2.4832797 |
Snippet | Cholangiocytes form an intricate network of bile ducts to enable proper liver function; yet, recapitulating human stem cell differentiation to cholangiocytes... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2006116 |
SubjectTerms | Cystic fibrosis Differentiation (biology) Fluorescence hepatoblast differentiation hyaluronan Hyaluronic acid hydrogel Hydrogels Liver Materials science notch signaling photocaging Signaling Stem cells |
Title | Photochemically Activated Notch Signaling Hydrogel Preferentially Differentiates Human Derived Hepatoblasts to Cholangiocytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202006116 https://www.proquest.com/docview/2481021972 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291162 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iSQ9-i_OLHERP1SZNm_Y4rGMIivjFbiFJ0ymTVbYqTPB_96Xp6uZF0GNpkqZ5yXu_l7z8HkJHNDfSUJl4Kkhim8JMetKX3KMs15JTxdzWwNV11H1gl72wN3OL3_FDNBtudmVU-toucKnGZ9-koTLL7U1y6xITYjm3ScBtTF962_BHEc7dsXJEbIAX6U1ZG316Nl993irNQE1HHzqPXCvT01lFctppF3EyOH0r1an--MHn-J-_WkMrNS7FbTeR1tGCGW6g5Rm2wk30efNUlDbBVsUw8DLBbV3lRjMZvi5A-PjuuW9h_bCPu5NsVPTNC76p05iAHrE10jodCzwCxMXVCQJOof13aKQLlhHUC8D5cozLAp9btxs6UOgJFN5CD52L-_OuV2dv8DQL48iTIZe-4iEJYk0TlYQJuDKh0eC9Z9rPQgPOt4lUDAoh5OD05JFPZRbRXAUaYA8PttHisBiaHYRzDvMM3jMeSMYUkT4xEoCTVEqrgLAWOplKT7w6kg7h6JipsAMqmgFtof2pcEW9WMeCstgmOE84baFjJ_CmGcu-nT4_tkUx6otB-SQoWIcICtJKir98TrTTzlXztPuXSntoidowmmrXZx8tlqM3cwA4qFSH1Vz_Aqx7AhU |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHIBDy6fY0oIPCE5pY8eJk-Oq6SpAd1VBi3qzbMfZVq02aJsiLRL_vTNxErpckOAYxXYcj8d-Mx6_IeQdr5x2XGeBibIUU5jpQIdaBlxUVktuhHcNTGdJcSo-ncV9NCHehfH8EIPDDTWjXa9RwdEhvf-bNVSXFV4lR5uYseQ-eQA6zzCqK_8yMEgxKf3BcsIwxIud9byNId9fr7--L90Bm55AdB27tpvPZIuYvts-5uRy76Yxe_bnH4yO__VfT8hmB03p2M-lp-SeWzwjj-8QFj4nv47P6wZzbLUkA1crOrZtejRX0lkN8qdfL-aI7BdzWqzKZT13V_S4y2QCSwnWyLuMLPAIKJe2hwg0h_Z_QCMFbI6wwgCib65pU9MDtLyhA7VdQeEX5HRyeHJQBF0Ch8CKOE0CHUsdGhmzKLU8M1mcgTUTOwsGfGnDMnZgf7vEpLAmxBLsnioJuS4TXpnIAvKR0UuysagX7hWhlYSpBu-FjLQQhumQOQ3YSRtjTcTEiHzoxae-e54O5RmZucIBVcOAjshOL13V6eu14iLFHOeZ5CPy3kt8aAYJuPOLb2NVL-fqsjlXHDaIBAryVox_-Zwa55Pp8LT9L5XekofFyfRIHX2cfX5NHnGMqmmdQDtko1neuF2ARY150078W9coBjY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CISE48D1RGOADglO22HHs5FgtVOVjVQUM9WbZjtNNm5qpyyZ1Ev87z3EaWi5IcLRiO7af_d7v-eP3AN6yymnHdB6ZJM98CDMd6VjLiPHKaskMD1sDRxMxPuafZuls4xV_4IfoN9z8ymj1tV_gF2V18Js0VJeVf0nuXWJKxW24wwXLPXt-8bUnkKJShnNlQf0NLzpb0zbG7GC7_LZZ2sCagT90G7q2tmf0EPS61eHKydn-VWP27c0fhI7_061H8KADpmQYZtJjuOUWT-D-Bl3hU_g5PakbH2GrpRg4X5GhbYOjuZJMapQ--XY697h-MSfjVbms5-6cTLs4JqhIfImii8eCScS4pD1CIAXWf42VjNE0on5BPN9ckqYmh97vxgbUdoWZn8Hx6MP3w3HUhW-ILE8zEelU6tjIlCaZZbnJ0xx9mdRZdN9LG5epQ-_bCZOhRkglej2ViJkuBatMYhH3yGQXdhb1wj0HUkmcaPidy0RzbqiOqdOInLQx1iSUD-D9WnrqIrB0qMDHzJQfUNUP6AD21sJV3Wq9VIxnPsJ5LtkA3gWB99V4-u3i9MdQ1cu5OmtOFEPzIDAja6X4l9-pYTE66lMv_qXQG7g7LUbqy8fJ55dwj_krNe0O0B7sNMsr9woxUWNet9P-F8LVBOU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photochemically+Activated+Notch+Signaling+Hydrogel+Preferentially+Differentiates+Human+Derived+Hepatoblasts+to+Cholangiocytes&rft.jtitle=Advanced+functional+materials&rft.au=Rizwan%2C+Muhammad&rft.au=Fokina%2C+Ana&rft.au=Kivij%C3%A4rvi%2C+Tove&rft.au=Ogawa%2C+Mina&rft.date=2021-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202006116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202006116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |