Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging nyquist artifacts

The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for obliqu...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 66; no. 4; pp. 1057 - 1066
Main Authors Chen, Nan-Kuei, Avram, Alexandru V., Song, Allen W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.22896

Cover

Abstract The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList The inconsistency of k ‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications.The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications.
The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. copyright 2011 Wiley-Liss, Inc.
The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications.
Author Avram, Alexandru V.
Chen, Nan-Kuei
Song, Allen W.
Author_xml – sequence: 1
  givenname: Nan-Kuei
  surname: Chen
  fullname: Chen, Nan-Kuei
  email: nankuei.chen@duke.edu
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
– sequence: 2
  givenname: Alexandru V.
  surname: Avram
  fullname: Avram, Alexandru V.
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
– sequence: 3
  givenname: Allen W.
  surname: Song
  fullname: Song, Allen W.
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21446032$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9PFDEcxRuDkQU9-A-YSTwoh4H-mrZzNERZA2hCMHpruu132OJMu7Qzwf3v6bLAgUROTb7v816a9_bQTogBEHpP8CHBmB4NaTikVLXiFZqRhtKaNi3fQTMsOa4Zafku2sv5GmPctpK_QbuUcC4wozPUX97G2vkBQvYxmL5aLU2Gyq5tD65KYGPIY5rsWNSqi6nyYQkJwljZmIp8f49dBXYZ61VvginIYK58uKrC-mbyeaxMGn1n7Jjfoted6TO8e3j30a9vXy-P5_XZz5Pvx1_OassbJWqDGV84rDiWQsnOdUxYR4HzBUhsXAeMcCxY0bFqcMPdwlqDnWiBuUZJzvbRp23uKsWbCfKoB58t9OV7EKesVUtbLiXbkJ9fJIlikuESqgr68Rl6HadUKttQtCGNVGIT-OGBmhYDOL1KpY201o-NF-BgC9gUc07QPSEE682auqyp79cs7NEz1vrRbCofk_H9S45b38P6_9H6_OL80VFvHWUp-PfkMOmvFpLJRv_-caLJfM5OL8QffcruAEcGv_c
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_jmri_26966
crossref_primary_10_1016_j_mri_2016_04_017
crossref_primary_10_1089_neu_2018_5964
crossref_primary_10_1109_TMI_2018_2822053
crossref_primary_10_1002_mrm_24222
crossref_primary_10_1002_nbm_3866
crossref_primary_10_1002_mrm_26125
crossref_primary_10_1002_mrm_25730
crossref_primary_10_1002_mrm_25839
crossref_primary_10_1002_mrm_27719
crossref_primary_10_1016_j_neuroimage_2013_01_038
crossref_primary_10_3389_fphy_2022_1057572
crossref_primary_10_1002_mrm_25318
crossref_primary_10_1016_j_media_2015_03_004
crossref_primary_10_1371_journal_pone_0116378
crossref_primary_10_1002_mrm_26251
crossref_primary_10_1002_mrm_27120
crossref_primary_10_1002_mrm_27123
crossref_primary_10_1016_j_mri_2013_03_021
crossref_primary_10_1002_mrm_26633
crossref_primary_10_1002_mrm_28638
crossref_primary_10_1002_mrm_25624
crossref_primary_10_1002_mrm_29802
crossref_primary_10_1002_mrm_25586
crossref_primary_10_1002_mrm_27148
crossref_primary_10_1002_mrm_25527
Cites_doi 10.1002/mrm.10055
10.1002/mrm.20097
10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S
10.1118/1.595905
10.1002/1522-2594(200101)45:1<96::AID-MRM1014>3.0.CO;2-J
10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.1113
10.1002/mrm.22564
10.1006/jmre.1998.1502
10.1002/jmri.21214
10.1002/(SICI)1522-2594(199909)42:3<541::AID-MRM16>3.0.CO;2-F
10.1002/mrm.1910230211
10.1002/mrm.1910360126
10.1002/mrm.1910380114
10.1002/mrm.21187
10.1002/mrm.22577
10.1002/nbm.1044
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7QO
7X8
DOI 10.1002/mrm.22896
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Biochemistry Abstracts 1
MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1066
ExternalDocumentID 4201300961
21446032
10_1002_mrm_22896
MRM22896
ark_67375_WNG_1HH3KR6X_K
Genre article
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P01 NS041328
– fundername: NCRR NIH HHS
  grantid: S10 RR025561
– fundername: NIBIB NIH HHS
  grantid: R01 EB009483
– fundername: NIBIB NIH HHS
  grantid: R03 EB003902
– fundername: NINDS NIH HHS
  grantid: R21 NS065344
– fundername: NIBIB NIH HHS
  grantid: R21 EB005690
– fundername: NINDS NIH HHS
  grantid: R01 NS050329
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7QO
7X8
ID FETCH-LOGICAL-c4586-a034bd08407687fdf36cd2e44be70adfe314063840085054dbcca0d69e3d58743
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Sep 05 11:54:39 EDT 2025
Thu Sep 04 21:31:38 EDT 2025
Fri Jul 25 12:11:19 EDT 2025
Mon Jul 21 06:04:03 EDT 2025
Tue Jul 01 01:20:47 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Jan 22 16:17:15 EST 2025
Wed Oct 30 09:52:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4586-a034bd08407687fdf36cd2e44be70adfe314063840085054dbcca0d69e3d58743
Notes ark:/67375/WNG-1HH3KR6X-K
istex:11AAA4D81F4946D5BA6F93F97DE154D5689AFF08
ArticleID:MRM22896
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3311129
PMID 21446032
PQID 1825157864
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_892947734
proquest_miscellaneous_1837305878
proquest_journals_1825157864
pubmed_primary_21446032
crossref_primary_10_1002_mrm_22896
crossref_citationtrail_10_1002_mrm_22896
wiley_primary_10_1002_mrm_22896_MRM22896
istex_primary_ark_67375_WNG_1HH3KR6X_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Foxall DL, Harvey PR, Huang J. Rapid iterative reconstruction for echo planar imaging. Magn Reson Med 1999; 42: 541-547.
Chen NK, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004; 51: 1247-1253.
Cuppen JJ, Groen JP, Konijn J. Magnetic resonance fast Fourier imaging. Med Phys 1986; 13: 248-253.
Xiang QS, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007; 57: 731-741.
Buonocore MH, Gao L. Ghost artifact reduction for echo planar imaging using image phase correction. Magn Reson Med 1997; 38: 89-100.
Hoge WS, Huan Tan H, Kraft RA. Robust EPI Nyquist ghost elimination via spatial and temporal encoding. Magn Reson Med 2010; 64: 1781-1791.
Hu X, Le TH. Artifact reduction in EPI with phase-encoded reference scan. Magn Reson Med 1996; 36: 166-171.
Kim YC, Nielsen JF, Nayak KS. Automatic correction of echo-planar imaging (EPI) ghosting artifacts in real-time interactive cardiac MRI using sensitivity encoding. J Magn Reson Imaging 2008; 27: 239-245.
Bruder H, Fischer H, Reinfelder HE, Schmitt F. Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 1992; 23: 311-323.
Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
Hennel F. Image-based reduction of artifacts in multishot echo-planar imaging. J Magn Reson 1998; 134: 206-213.
Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828.
Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010; 64: 1800-1813.
Grieve SM, Blamire AM, Styles P. Elimination of Nyquist ghosting caused by read-out to phase-encode gradient cross-terms in EPI. Magn Reson Med 2002; 47: 337-343.
Buonocore MH, Zhu DC. Image-based ghost correction for interleaved EPI. Magn Reson Med 2001; 45: 96-108.
Kellman P, McVeigh ER. Phased array ghost elimination. NMR Biomed 2006; 19: 352-361.
2002; 47
2010; 64
2004; 51
2000
1986; 13
2008; 27
2008
1997; 38
2006; 19
1999; 42
1993
1999; 41
2003
1996; 36
2001; 45
1992; 23
1998; 134
2007; 57
e_1_2_5_14_2
e_1_2_5_13_2
Jesmanowicz A (e_1_2_5_4_2) 1993
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_22_2
e_1_2_5_6_2
e_1_2_5_23_2
e_1_2_5_5_2
e_1_2_5_20_2
e_1_2_5_11_2
e_1_2_5_21_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
Kuhara S (e_1_2_5_8_2) 2000
e_1_2_5_19_2
Clare S (e_1_2_5_12_2) 2003
References_xml – reference: Bruder H, Fischer H, Reinfelder HE, Schmitt F. Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 1992; 23: 311-323.
– reference: Kellman P, McVeigh ER. Phased array ghost elimination. NMR Biomed 2006; 19: 352-361.
– reference: Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94.
– reference: Xiang QS, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007; 57: 731-741.
– reference: Cuppen JJ, Groen JP, Konijn J. Magnetic resonance fast Fourier imaging. Med Phys 1986; 13: 248-253.
– reference: Foxall DL, Harvey PR, Huang J. Rapid iterative reconstruction for echo planar imaging. Magn Reson Med 1999; 42: 541-547.
– reference: Buonocore MH, Gao L. Ghost artifact reduction for echo planar imaging using image phase correction. Magn Reson Med 1997; 38: 89-100.
– reference: Hoge WS, Huan Tan H, Kraft RA. Robust EPI Nyquist ghost elimination via spatial and temporal encoding. Magn Reson Med 2010; 64: 1781-1791.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Buonocore MH, Zhu DC. Image-based ghost correction for interleaved EPI. Magn Reson Med 2001; 45: 96-108.
– reference: Hu X, Le TH. Artifact reduction in EPI with phase-encoded reference scan. Magn Reson Med 1996; 36: 166-171.
– reference: Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
– reference: Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010; 64: 1800-1813.
– reference: Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828.
– reference: Hennel F. Image-based reduction of artifacts in multishot echo-planar imaging. J Magn Reson 1998; 134: 206-213.
– reference: Grieve SM, Blamire AM, Styles P. Elimination of Nyquist ghosting caused by read-out to phase-encode gradient cross-terms in EPI. Magn Reson Med 2002; 47: 337-343.
– reference: Chen NK, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004; 51: 1247-1253.
– reference: Kim YC, Nielsen JF, Nayak KS. Automatic correction of echo-planar imaging (EPI) ghosting artifacts in real-time interactive cardiac MRI using sensitivity encoding. J Magn Reson Imaging 2008; 27: 239-245.
– volume: 42
  start-page: 541
  year: 1999
  end-page: 547
  article-title: Rapid iterative reconstruction for echo planar imaging
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 47
  start-page: 337
  year: 2002
  end-page: 343
  article-title: Elimination of Nyquist ghosting caused by read‐out to phase‐encode gradient cross‐terms in EPI
  publication-title: Magn Reson Med
– volume: 19
  start-page: 352
  year: 2006
  end-page: 361
  article-title: Phased array ghost elimination
  publication-title: NMR Biomed
– volume: 64
  start-page: 1781
  year: 2010
  end-page: 1791
  article-title: Robust EPI Nyquist ghost elimination via spatial and temporal encoding
  publication-title: Magn Reson Med
– volume: 41
  start-page: 87
  year: 1999
  end-page: 94
  article-title: Referenceless interleaved echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 36
  start-page: 166
  year: 1996
  end-page: 171
  article-title: Artifact reduction in EPI with phase‐encoded reference scan
  publication-title: Magn Reson Med
– volume: 134
  start-page: 206
  year: 1998
  end-page: 213
  article-title: Image‐based reduction of artifacts in multishot echo‐planar imaging
  publication-title: J Magn Reson
– year: 2008
– volume: 45
  start-page: 96
  year: 2001
  end-page: 108
  article-title: Image‐based ghost correction for interleaved EPI
  publication-title: Magn Reson Med
– start-page: 1239
  year: 1993
– volume: 64
  start-page: 1800
  year: 2010
  end-page: 1813
  article-title: Robust 2D phase correction for echo planar imaging under a tight field‐of‐view
  publication-title: Magn Reson Med
– volume: 27
  start-page: 239
  year: 2008
  end-page: 245
  article-title: Automatic correction of echo‐planar imaging (EPI) ghosting artifacts in real‐time interactive cardiac MRI using sensitivity encoding
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 311
  year: 1992
  end-page: 323
  article-title: Image reconstruction for echo planar imaging with nonequidistant k‐space sampling
  publication-title: Magn Reson Med
– start-page: 154
  year: 2000
– start-page: 1041
  year: 2003
– volume: 38
  start-page: 89
  year: 1997
  end-page: 100
  article-title: Ghost artifact reduction for echo planar imaging using image phase correction
  publication-title: Magn Reson Med
– volume: 57
  start-page: 731
  year: 2007
  end-page: 741
  article-title: Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE)
  publication-title: Magn Reson Med
– volume: 13
  start-page: 248
  year: 1986
  end-page: 253
  article-title: Magnetic resonance fast Fourier imaging
  publication-title: Med Phys
– volume: 45
  start-page: 846
  year: 2001
  end-page: 852
  article-title: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE)
  publication-title: Magn Reson Med
– volume: 51
  start-page: 1247
  year: 2004
  end-page: 1253
  article-title: Removal of EPI Nyquist ghost artifacts with two‐dimensional phase correction
  publication-title: Magn Reson Med
– volume: 42
  start-page: 813
  year: 1999
  end-page: 828
  article-title: Unaliasing by Fourier‐encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI
  publication-title: Magn Reson Med
– ident: e_1_2_5_14_2
  doi: 10.1002/mrm.10055
– ident: e_1_2_5_19_2
– start-page: 1041
  volume-title: Proceeding of the Annual Meeting
  year: 2003
  ident: e_1_2_5_12_2
– ident: e_1_2_5_15_2
  doi: 10.1002/mrm.20097
– ident: e_1_2_5_20_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S
– start-page: 1239
  volume-title: Proceeding of the Annual Meeting
  year: 1993
  ident: e_1_2_5_4_2
– ident: e_1_2_5_22_2
  doi: 10.1118/1.595905
– ident: e_1_2_5_7_2
  doi: 10.1002/1522-2594(200101)45:1<96::AID-MRM1014>3.0.CO;2-J
– ident: e_1_2_5_13_2
  doi: 10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X
– ident: e_1_2_5_21_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_5_23_2
  doi: 10.1002/mrm.1113
– ident: e_1_2_5_17_2
  doi: 10.1002/mrm.22564
– ident: e_1_2_5_6_2
  doi: 10.1006/jmre.1998.1502
– ident: e_1_2_5_9_2
  doi: 10.1002/jmri.21214
– ident: e_1_2_5_11_2
  doi: 10.1002/(SICI)1522-2594(199909)42:3<541::AID-MRM16>3.0.CO;2-F
– ident: e_1_2_5_2_2
  doi: 10.1002/mrm.1910230211
– ident: e_1_2_5_3_2
  doi: 10.1002/mrm.1910360126
– ident: e_1_2_5_5_2
  doi: 10.1002/mrm.1910380114
– ident: e_1_2_5_16_2
  doi: 10.1002/mrm.21187
– start-page: 154
  volume-title: Proceeding of the Annual Meeting
  year: 2000
  ident: e_1_2_5_8_2
– ident: e_1_2_5_18_2
  doi: 10.1002/mrm.22577
– ident: e_1_2_5_10_2
  doi: 10.1002/nbm.1044
SSID ssj0009974
Score 2.1739252
Snippet The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors...
The inconsistency of k ‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase...
The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1057
SubjectTerms 2D phase correction
Brain Mapping - methods
echo-planar imaging
Echo-Planar Imaging - methods
Humans
Image Processing, Computer-Assisted - methods
Nyquist artifacts
Phantoms, Imaging
phase-cycled reconstruction
Title Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging nyquist artifacts
URI https://api.istex.fr/ark:/67375/WNG-1HH3KR6X-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22896
https://www.ncbi.nlm.nih.gov/pubmed/21446032
https://www.proquest.com/docview/1825157864
https://www.proquest.com/docview/1837305878
https://www.proquest.com/docview/892947734
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuFAqUlIIMQohLtk7svMQJAWVFtT2sWrEHJMuvqKjd7NLdFZQTP4HfyC9hbCepiloJcYuSseXHPGPPNwAvTMVlSW0ds0zRmKemiss8MTHaBiMVpzVTLt95dJAPj_jHSTZZg9ddLkzAh-h_uDnJ8PraCbhUi90L0NDp2XSQYrjg4LYTljvc_HfjC-ioqgoIzAV3eqbiHaoQTXf7lpds0Q23rN-vcjQv-63e8OxtwOduyOG-yclgtVQD_eMvNMf_nNNduNM6pORN4KB7sGabTbg1ao_cN-GmvyOqF_dhfvht9vvnL-PqAQQsDzI_RiNI9Dm2NMTH1j0eLUFvmHxpjl064ZJoVwQkvJ_VxKLOxZ7mp7KRSDT1lZJIc_51hatDHDO7fIvFAzjae3_4dhi3BRtizbMyjyVlXBmKMSMGMUVtapZrk1rOlS2oNLVlGM6hwHMPlJdxo5B_qMkry0xWoi_zENabWWMfAdHoR9laSUkxBMWorEQDUZfIP6UuKsNlBK-6rRO6RTN3RTVORcBhTgWupfBrGcHznnQeIDyuInrp97-nkGcn7s5bkYlPBx9EMhyy_XE-EfsR7HQMIlpxX4jEJQCj7st5BM_6zyio7vRFNna2cjQMtSlOs4yAXENTorPKi4JhN1uB9_rxeGg7ylKcuOeg66ciRuORf9j-d9LHcDvtLjcmO7COvGKfoLe1VE-9WP0BPjUo9g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuPAq0gQIGIcQlW2_svCQuCCiBbfaw2oq9IMuxHRW1m126u4Jy4ifwG_kljJ1HVdRKiFuUTKLYmcc3jucbgOc65TKhpvRZWFCfBzr1k6ivfYwNWhaclqyw9c75MMoO-MdJOFmDV20tTM0P0S24Wctw_toauF2Q3j1jDZ2eTHsB5gvRFdjgCDRs6vV2dEYelaY1B3PMradJecsrRIPd7tZz0WjDTuz3i6DmeeTqQs_eLfjcvnS94-Sot1oWPfXjLz7H_x3VbbjZYFLyulaiO7Bmqk24ljd_3TfhqtsmqhZ3YT7-Nvv985e2LQFqOg8yP8Q4SNQp3qmJS687SlqCgJh8qQ5tReGSKNsHpD4_K4lBt4tPmh_LSqLQ1DVLItXp1xVOD7H6bEsuFvfgYO_d-E3mNz0bfMXDJPIlZbzQFNNGzGPiUpcsUjownBcmplKXhmFGhzbPHVdeyHWBKkR1lBqmwwThzH1Yr2aV2QaiEEqZspCSYhaKiVmCMaJMUIUSFaeaSw9ett9OqIbQ3PbVOBY1FXMgcC6Fm0sPnnWi85rF4yKhF04BOgl5cmS3vcWh-DR8L_pZxgajaCIGHuy0GiIai1-Ivq0BRvcXcQ-edpfRVu0PGFmZ2crKMHSoOMzEA3KJTIJ4lccxw8ds1crXvY9jt6MswIE7Fbp8KCIf5e7gwb-LPoHr2TjfF_sfhoOHcCNo9zr2d2Ad9cY8QvC1LB47G_sDsbotFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5j2wmXAFhhgEEK8pHNj5yaeJqAUSitUbaIPSJYT29q0NQ1rKxhP_AR-I79kx85lGtokxFuUnESxcy7fiX2-A_BCpVwmVBufhRn1eaBSP4m6ysfYoGTGqWGZrXcejqL-Af84CScr8Lqphan4IdofbtYynL-2Bl4qs3tBGjo9nXYCTBeiG7DGI0QSFhGNL7ij0rSiYI65dTQpb2iFaLDb3nopGK3Zef1xFdK8DFxd5Ondhq_NO1cbTo47y0XWyX_-Ref4n4O6A7dqREr2KhW6Cyu62IT1Yb3mvgk33SbRfH4Pyv3vsz-_fivbEKAi8yDlIUZBkp_hnYq45LolpCUIh8lRcWjrCRckt11AqvMzQzQ6XXxSeSILiUJT1yqJFGffljg7xGqzLbiY34eD3rv9N32_7tjg5zxMIl9SxjNFMWnELCY2yrAoV4HmPNMxlcpohvkcWjx3THkhVxkqEFVRqpkKEwQzD2C1mBV6G0iOQEqbTEqKOSimZQlGCJOgAiV5nCouPXjVfDqR13TmtqvGiaiImAOBcyncXHrwvBUtKw6Pq4Reuu_fSsjTY7vpLQ7Fl9F70e332WAcTcTAg51GQURt73PRtRXA6Pwi7sGz9jJaql1-kYWeLa0MQ3eKw0w8INfIJIhWeRwzfMxWpXvt-zhuO8oCHLjToOuHIobjoTt4-O-iT2H989ue-PRhNHgEG0Gz0bG7A6uoNvoxIq9F9sRZ2DkT_SvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+phase+cycled+reconstruction+for+inherent+correction+of+echo-planar+imaging+Nyquist+artifacts&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chen%2C+Nan-Kuei&rft.au=Avram%2C+Alexandru+V&rft.au=Song%2C+Allen+W&rft.date=2011-10-01&rft.eissn=1522-2594&rft.volume=66&rft.issue=4&rft.spage=1057&rft_id=info:doi/10.1002%2Fmrm.22896&rft_id=info%3Apmid%2F21446032&rft.externalDocID=21446032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon