Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging nyquist artifacts
The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for obliqu...
Saved in:
Published in | Magnetic resonance in medicine Vol. 66; no. 4; pp. 1057 - 1066 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.22896 |
Cover
Abstract | The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. |
---|---|
AbstractList | The inconsistency of
k
‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency‐encoding direction (one‐dimensional correction), which may leave significant residual artifacts, particularly for oblique‐plane EPI or in the presence of cross‐term eddy currents. As compared with one‐dimensional correction, two‐dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid‐weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single‐shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications.The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. Magn Reson Med, 2011. copyright 2011 Wiley-Liss, Inc. The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors along the frequency-encoding direction (one-dimensional correction), which may leave significant residual artifacts, particularly for oblique-plane EPI or in the presence of cross-term eddy currents. As compared with one-dimensional correction, two-dimensional (2D) phase correction can be much more effective in suppressing Nyquist artifacts. However, most existing 2D correction methods require reference scans and may not be generally applicable to different imaging protocols. Furthermore, EPI reconstruction with these 2D phase correction methods is susceptible to error amplification due to subject motion. To address these limitations, we report an inherent and general 2D phase correction technique for EPI Nyquist removal. First, a series of images are generated from the original dataset, by cycling through different possible values of phase errors using a 2D reconstruction framework. Second, the image with the lowest artifact level is identified from images generated in the first step using criteria based on background energy in sorted and sigmoid-weighted signals. In this report, we demonstrate the effectiveness of our new method in removing Nyquist ghosts in single-shot, segmented and parallel EPI without acquiring additional reference scans and the subsequent error amplifications. |
Author | Avram, Alexandru V. Chen, Nan-Kuei Song, Allen W. |
Author_xml | – sequence: 1 givenname: Nan-Kuei surname: Chen fullname: Chen, Nan-Kuei email: nankuei.chen@duke.edu organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA – sequence: 2 givenname: Alexandru V. surname: Avram fullname: Avram, Alexandru V. organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA – sequence: 3 givenname: Allen W. surname: Song fullname: Song, Allen W. organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21446032$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9PFDEcxRuDkQU9-A-YSTwoh4H-mrZzNERZA2hCMHpruu132OJMu7Qzwf3v6bLAgUROTb7v816a9_bQTogBEHpP8CHBmB4NaTikVLXiFZqRhtKaNi3fQTMsOa4Zafku2sv5GmPctpK_QbuUcC4wozPUX97G2vkBQvYxmL5aLU2Gyq5tD65KYGPIY5rsWNSqi6nyYQkJwljZmIp8f49dBXYZ61VvginIYK58uKrC-mbyeaxMGn1n7Jjfoted6TO8e3j30a9vXy-P5_XZz5Pvx1_OassbJWqDGV84rDiWQsnOdUxYR4HzBUhsXAeMcCxY0bFqcMPdwlqDnWiBuUZJzvbRp23uKsWbCfKoB58t9OV7EKesVUtbLiXbkJ9fJIlikuESqgr68Rl6HadUKttQtCGNVGIT-OGBmhYDOL1KpY201o-NF-BgC9gUc07QPSEE682auqyp79cs7NEz1vrRbCofk_H9S45b38P6_9H6_OL80VFvHWUp-PfkMOmvFpLJRv_-caLJfM5OL8QffcruAEcGv_c |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1002_jmri_26966 crossref_primary_10_1016_j_mri_2016_04_017 crossref_primary_10_1089_neu_2018_5964 crossref_primary_10_1109_TMI_2018_2822053 crossref_primary_10_1002_mrm_24222 crossref_primary_10_1002_nbm_3866 crossref_primary_10_1002_mrm_26125 crossref_primary_10_1002_mrm_25730 crossref_primary_10_1002_mrm_25839 crossref_primary_10_1002_mrm_27719 crossref_primary_10_1016_j_neuroimage_2013_01_038 crossref_primary_10_3389_fphy_2022_1057572 crossref_primary_10_1002_mrm_25318 crossref_primary_10_1016_j_media_2015_03_004 crossref_primary_10_1371_journal_pone_0116378 crossref_primary_10_1002_mrm_26251 crossref_primary_10_1002_mrm_27120 crossref_primary_10_1002_mrm_27123 crossref_primary_10_1016_j_mri_2013_03_021 crossref_primary_10_1002_mrm_26633 crossref_primary_10_1002_mrm_28638 crossref_primary_10_1002_mrm_25624 crossref_primary_10_1002_mrm_29802 crossref_primary_10_1002_mrm_25586 crossref_primary_10_1002_mrm_27148 crossref_primary_10_1002_mrm_25527 |
Cites_doi | 10.1002/mrm.10055 10.1002/mrm.20097 10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S 10.1118/1.595905 10.1002/1522-2594(200101)45:1<96::AID-MRM1014>3.0.CO;2-J 10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.1113 10.1002/mrm.22564 10.1006/jmre.1998.1502 10.1002/jmri.21214 10.1002/(SICI)1522-2594(199909)42:3<541::AID-MRM16>3.0.CO;2-F 10.1002/mrm.1910230211 10.1002/mrm.1910360126 10.1002/mrm.1910380114 10.1002/mrm.21187 10.1002/mrm.22577 10.1002/nbm.1044 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7QO 7X8 |
DOI | 10.1002/mrm.22896 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Biochemistry Abstracts 1 MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1066 |
ExternalDocumentID | 4201300961 21446032 10_1002_mrm_22896 MRM22896 ark_67375_WNG_1HH3KR6X_K |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P01 NS041328 – fundername: NCRR NIH HHS grantid: S10 RR025561 – fundername: NIBIB NIH HHS grantid: R01 EB009483 – fundername: NIBIB NIH HHS grantid: R03 EB003902 – fundername: NINDS NIH HHS grantid: R21 NS065344 – fundername: NIBIB NIH HHS grantid: R21 EB005690 – fundername: NINDS NIH HHS grantid: R01 NS050329 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7QO 7X8 |
ID | FETCH-LOGICAL-c4586-a034bd08407687fdf36cd2e44be70adfe314063840085054dbcca0d69e3d58743 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Sep 05 11:54:39 EDT 2025 Thu Sep 04 21:31:38 EDT 2025 Fri Jul 25 12:11:19 EDT 2025 Mon Jul 21 06:04:03 EDT 2025 Tue Jul 01 01:20:47 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Wed Jan 22 16:17:15 EST 2025 Wed Oct 30 09:52:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2011 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4586-a034bd08407687fdf36cd2e44be70adfe314063840085054dbcca0d69e3d58743 |
Notes | ark:/67375/WNG-1HH3KR6X-K istex:11AAA4D81F4946D5BA6F93F97DE154D5689AFF08 ArticleID:MRM22896 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3311129 |
PMID | 21446032 |
PQID | 1825157864 |
PQPubID | 1016391 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_892947734 proquest_miscellaneous_1837305878 proquest_journals_1825157864 pubmed_primary_21446032 crossref_primary_10_1002_mrm_22896 crossref_citationtrail_10_1002_mrm_22896 wiley_primary_10_1002_mrm_22896_MRM22896 istex_primary_ark_67375_WNG_1HH3KR6X_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2011 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: October 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Foxall DL, Harvey PR, Huang J. Rapid iterative reconstruction for echo planar imaging. Magn Reson Med 1999; 42: 541-547. Chen NK, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004; 51: 1247-1253. Cuppen JJ, Groen JP, Konijn J. Magnetic resonance fast Fourier imaging. Med Phys 1986; 13: 248-253. Xiang QS, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007; 57: 731-741. Buonocore MH, Gao L. Ghost artifact reduction for echo planar imaging using image phase correction. Magn Reson Med 1997; 38: 89-100. Hoge WS, Huan Tan H, Kraft RA. Robust EPI Nyquist ghost elimination via spatial and temporal encoding. Magn Reson Med 2010; 64: 1781-1791. Hu X, Le TH. Artifact reduction in EPI with phase-encoded reference scan. Magn Reson Med 1996; 36: 166-171. Kim YC, Nielsen JF, Nayak KS. Automatic correction of echo-planar imaging (EPI) ghosting artifacts in real-time interactive cardiac MRI using sensitivity encoding. J Magn Reson Imaging 2008; 27: 239-245. Bruder H, Fischer H, Reinfelder HE, Schmitt F. Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 1992; 23: 311-323. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962. Hennel F. Image-based reduction of artifacts in multishot echo-planar imaging. J Magn Reson 1998; 134: 206-213. Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828. Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010; 64: 1800-1813. Grieve SM, Blamire AM, Styles P. Elimination of Nyquist ghosting caused by read-out to phase-encode gradient cross-terms in EPI. Magn Reson Med 2002; 47: 337-343. Buonocore MH, Zhu DC. Image-based ghost correction for interleaved EPI. Magn Reson Med 2001; 45: 96-108. Kellman P, McVeigh ER. Phased array ghost elimination. NMR Biomed 2006; 19: 352-361. 2002; 47 2010; 64 2004; 51 2000 1986; 13 2008; 27 2008 1997; 38 2006; 19 1999; 42 1993 1999; 41 2003 1996; 36 2001; 45 1992; 23 1998; 134 2007; 57 e_1_2_5_14_2 e_1_2_5_13_2 Jesmanowicz A (e_1_2_5_4_2) 1993 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_15_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_22_2 e_1_2_5_6_2 e_1_2_5_23_2 e_1_2_5_5_2 e_1_2_5_20_2 e_1_2_5_11_2 e_1_2_5_21_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 Kuhara S (e_1_2_5_8_2) 2000 e_1_2_5_19_2 Clare S (e_1_2_5_12_2) 2003 |
References_xml | – reference: Bruder H, Fischer H, Reinfelder HE, Schmitt F. Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 1992; 23: 311-323. – reference: Kellman P, McVeigh ER. Phased array ghost elimination. NMR Biomed 2006; 19: 352-361. – reference: Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn Reson Med 1999; 41: 87-94. – reference: Xiang QS, Ye FQ. Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE). Magn Reson Med 2007; 57: 731-741. – reference: Cuppen JJ, Groen JP, Konijn J. Magnetic resonance fast Fourier imaging. Med Phys 1986; 13: 248-253. – reference: Foxall DL, Harvey PR, Huang J. Rapid iterative reconstruction for echo planar imaging. Magn Reson Med 1999; 42: 541-547. – reference: Buonocore MH, Gao L. Ghost artifact reduction for echo planar imaging using image phase correction. Magn Reson Med 1997; 38: 89-100. – reference: Hoge WS, Huan Tan H, Kraft RA. Robust EPI Nyquist ghost elimination via spatial and temporal encoding. Magn Reson Med 2010; 64: 1781-1791. – reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962. – reference: Buonocore MH, Zhu DC. Image-based ghost correction for interleaved EPI. Magn Reson Med 2001; 45: 96-108. – reference: Hu X, Le TH. Artifact reduction in EPI with phase-encoded reference scan. Magn Reson Med 1996; 36: 166-171. – reference: Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852. – reference: Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010; 64: 1800-1813. – reference: Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828. – reference: Hennel F. Image-based reduction of artifacts in multishot echo-planar imaging. J Magn Reson 1998; 134: 206-213. – reference: Grieve SM, Blamire AM, Styles P. Elimination of Nyquist ghosting caused by read-out to phase-encode gradient cross-terms in EPI. Magn Reson Med 2002; 47: 337-343. – reference: Chen NK, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004; 51: 1247-1253. – reference: Kim YC, Nielsen JF, Nayak KS. Automatic correction of echo-planar imaging (EPI) ghosting artifacts in real-time interactive cardiac MRI using sensitivity encoding. J Magn Reson Imaging 2008; 27: 239-245. – volume: 42 start-page: 541 year: 1999 end-page: 547 article-title: Rapid iterative reconstruction for echo planar imaging publication-title: Magn Reson Med – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 47 start-page: 337 year: 2002 end-page: 343 article-title: Elimination of Nyquist ghosting caused by read‐out to phase‐encode gradient cross‐terms in EPI publication-title: Magn Reson Med – volume: 19 start-page: 352 year: 2006 end-page: 361 article-title: Phased array ghost elimination publication-title: NMR Biomed – volume: 64 start-page: 1781 year: 2010 end-page: 1791 article-title: Robust EPI Nyquist ghost elimination via spatial and temporal encoding publication-title: Magn Reson Med – volume: 41 start-page: 87 year: 1999 end-page: 94 article-title: Referenceless interleaved echo‐planar imaging publication-title: Magn Reson Med – volume: 36 start-page: 166 year: 1996 end-page: 171 article-title: Artifact reduction in EPI with phase‐encoded reference scan publication-title: Magn Reson Med – volume: 134 start-page: 206 year: 1998 end-page: 213 article-title: Image‐based reduction of artifacts in multishot echo‐planar imaging publication-title: J Magn Reson – year: 2008 – volume: 45 start-page: 96 year: 2001 end-page: 108 article-title: Image‐based ghost correction for interleaved EPI publication-title: Magn Reson Med – start-page: 1239 year: 1993 – volume: 64 start-page: 1800 year: 2010 end-page: 1813 article-title: Robust 2D phase correction for echo planar imaging under a tight field‐of‐view publication-title: Magn Reson Med – volume: 27 start-page: 239 year: 2008 end-page: 245 article-title: Automatic correction of echo‐planar imaging (EPI) ghosting artifacts in real‐time interactive cardiac MRI using sensitivity encoding publication-title: J Magn Reson Imaging – volume: 23 start-page: 311 year: 1992 end-page: 323 article-title: Image reconstruction for echo planar imaging with nonequidistant k‐space sampling publication-title: Magn Reson Med – start-page: 154 year: 2000 – start-page: 1041 year: 2003 – volume: 38 start-page: 89 year: 1997 end-page: 100 article-title: Ghost artifact reduction for echo planar imaging using image phase correction publication-title: Magn Reson Med – volume: 57 start-page: 731 year: 2007 end-page: 741 article-title: Correction for geometric distortion and N/2 ghosting in EPI by phase labeling for additional coordinate encoding (PLACE) publication-title: Magn Reson Med – volume: 13 start-page: 248 year: 1986 end-page: 253 article-title: Magnetic resonance fast Fourier imaging publication-title: Med Phys – volume: 45 start-page: 846 year: 2001 end-page: 852 article-title: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE) publication-title: Magn Reson Med – volume: 51 start-page: 1247 year: 2004 end-page: 1253 article-title: Removal of EPI Nyquist ghost artifacts with two‐dimensional phase correction publication-title: Magn Reson Med – volume: 42 start-page: 813 year: 1999 end-page: 828 article-title: Unaliasing by Fourier‐encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI publication-title: Magn Reson Med – ident: e_1_2_5_14_2 doi: 10.1002/mrm.10055 – ident: e_1_2_5_19_2 – start-page: 1041 volume-title: Proceeding of the Annual Meeting year: 2003 ident: e_1_2_5_12_2 – ident: e_1_2_5_15_2 doi: 10.1002/mrm.20097 – ident: e_1_2_5_20_2 doi: 10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S – start-page: 1239 volume-title: Proceeding of the Annual Meeting year: 1993 ident: e_1_2_5_4_2 – ident: e_1_2_5_22_2 doi: 10.1118/1.595905 – ident: e_1_2_5_7_2 doi: 10.1002/1522-2594(200101)45:1<96::AID-MRM1014>3.0.CO;2-J – ident: e_1_2_5_13_2 doi: 10.1002/(SICI)1522-2594(199901)41:1<87::AID-MRM13>3.0.CO;2-X – ident: e_1_2_5_21_2 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_5_23_2 doi: 10.1002/mrm.1113 – ident: e_1_2_5_17_2 doi: 10.1002/mrm.22564 – ident: e_1_2_5_6_2 doi: 10.1006/jmre.1998.1502 – ident: e_1_2_5_9_2 doi: 10.1002/jmri.21214 – ident: e_1_2_5_11_2 doi: 10.1002/(SICI)1522-2594(199909)42:3<541::AID-MRM16>3.0.CO;2-F – ident: e_1_2_5_2_2 doi: 10.1002/mrm.1910230211 – ident: e_1_2_5_3_2 doi: 10.1002/mrm.1910360126 – ident: e_1_2_5_5_2 doi: 10.1002/mrm.1910380114 – ident: e_1_2_5_16_2 doi: 10.1002/mrm.21187 – start-page: 154 volume-title: Proceeding of the Annual Meeting year: 2000 ident: e_1_2_5_8_2 – ident: e_1_2_5_18_2 doi: 10.1002/mrm.22577 – ident: e_1_2_5_10_2 doi: 10.1002/nbm.1044 |
SSID | ssj0009974 |
Score | 2.1739252 |
Snippet | The inconsistency of k‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase errors... The inconsistency of k ‐space trajectories results in Nyquist artifacts in echo‐planar imaging (EPI). Traditional techniques often only correct for phase... The inconsistency of k-space trajectories results in Nyquist artifacts in echo-planar imaging (EPI). Traditional techniques often only correct for phase errors... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1057 |
SubjectTerms | 2D phase correction Brain Mapping - methods echo-planar imaging Echo-Planar Imaging - methods Humans Image Processing, Computer-Assisted - methods Nyquist artifacts Phantoms, Imaging phase-cycled reconstruction |
Title | Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging nyquist artifacts |
URI | https://api.istex.fr/ark:/67375/WNG-1HH3KR6X-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22896 https://www.ncbi.nlm.nih.gov/pubmed/21446032 https://www.proquest.com/docview/1825157864 https://www.proquest.com/docview/1837305878 https://www.proquest.com/docview/892947734 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuFAqUlIIMQohLtk7svMQJAWVFtT2sWrEHJMuvqKjd7NLdFZQTP4HfyC9hbCepiloJcYuSseXHPGPPNwAvTMVlSW0ds0zRmKemiss8MTHaBiMVpzVTLt95dJAPj_jHSTZZg9ddLkzAh-h_uDnJ8PraCbhUi90L0NDp2XSQYrjg4LYTljvc_HfjC-ioqgoIzAV3eqbiHaoQTXf7lpds0Q23rN-vcjQv-63e8OxtwOduyOG-yclgtVQD_eMvNMf_nNNduNM6pORN4KB7sGabTbg1ao_cN-GmvyOqF_dhfvht9vvnL-PqAQQsDzI_RiNI9Dm2NMTH1j0eLUFvmHxpjl064ZJoVwQkvJ_VxKLOxZ7mp7KRSDT1lZJIc_51hatDHDO7fIvFAzjae3_4dhi3BRtizbMyjyVlXBmKMSMGMUVtapZrk1rOlS2oNLVlGM6hwHMPlJdxo5B_qMkry0xWoi_zENabWWMfAdHoR9laSUkxBMWorEQDUZfIP6UuKsNlBK-6rRO6RTN3RTVORcBhTgWupfBrGcHznnQeIDyuInrp97-nkGcn7s5bkYlPBx9EMhyy_XE-EfsR7HQMIlpxX4jEJQCj7st5BM_6zyio7vRFNna2cjQMtSlOs4yAXENTorPKi4JhN1uB9_rxeGg7ylKcuOeg66ciRuORf9j-d9LHcDvtLjcmO7COvGKfoLe1VE-9WP0BPjUo9g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuPAq0gQIGIcQlW2_svCQuCCiBbfaw2oq9IMuxHRW1m126u4Jy4ifwG_kljJ1HVdRKiFuUTKLYmcc3jucbgOc65TKhpvRZWFCfBzr1k6ivfYwNWhaclqyw9c75MMoO-MdJOFmDV20tTM0P0S24Wctw_toauF2Q3j1jDZ2eTHsB5gvRFdjgCDRs6vV2dEYelaY1B3PMradJecsrRIPd7tZz0WjDTuz3i6DmeeTqQs_eLfjcvnS94-Sot1oWPfXjLz7H_x3VbbjZYFLyulaiO7Bmqk24ljd_3TfhqtsmqhZ3YT7-Nvv985e2LQFqOg8yP8Q4SNQp3qmJS687SlqCgJh8qQ5tReGSKNsHpD4_K4lBt4tPmh_LSqLQ1DVLItXp1xVOD7H6bEsuFvfgYO_d-E3mNz0bfMXDJPIlZbzQFNNGzGPiUpcsUjownBcmplKXhmFGhzbPHVdeyHWBKkR1lBqmwwThzH1Yr2aV2QaiEEqZspCSYhaKiVmCMaJMUIUSFaeaSw9ett9OqIbQ3PbVOBY1FXMgcC6Fm0sPnnWi85rF4yKhF04BOgl5cmS3vcWh-DR8L_pZxgajaCIGHuy0GiIai1-Ivq0BRvcXcQ-edpfRVu0PGFmZ2crKMHSoOMzEA3KJTIJ4lccxw8ds1crXvY9jt6MswIE7Fbp8KCIf5e7gwb-LPoHr2TjfF_sfhoOHcCNo9zr2d2Ad9cY8QvC1LB47G_sDsbotFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5j2wmXAFhhgEEK8pHNj5yaeJqAUSitUbaIPSJYT29q0NQ1rKxhP_AR-I79kx85lGtokxFuUnESxcy7fiX2-A_BCpVwmVBufhRn1eaBSP4m6ysfYoGTGqWGZrXcejqL-Af84CScr8Lqphan4IdofbtYynL-2Bl4qs3tBGjo9nXYCTBeiG7DGI0QSFhGNL7ij0rSiYI65dTQpb2iFaLDb3nopGK3Zef1xFdK8DFxd5Ondhq_NO1cbTo47y0XWyX_-Ref4n4O6A7dqREr2KhW6Cyu62IT1Yb3mvgk33SbRfH4Pyv3vsz-_fivbEKAi8yDlIUZBkp_hnYq45LolpCUIh8lRcWjrCRckt11AqvMzQzQ6XXxSeSILiUJT1yqJFGffljg7xGqzLbiY34eD3rv9N32_7tjg5zxMIl9SxjNFMWnELCY2yrAoV4HmPNMxlcpohvkcWjx3THkhVxkqEFVRqpkKEwQzD2C1mBV6G0iOQEqbTEqKOSimZQlGCJOgAiV5nCouPXjVfDqR13TmtqvGiaiImAOBcyncXHrwvBUtKw6Pq4Reuu_fSsjTY7vpLQ7Fl9F70e332WAcTcTAg51GQURt73PRtRXA6Pwi7sGz9jJaql1-kYWeLa0MQ3eKw0w8INfIJIhWeRwzfMxWpXvt-zhuO8oCHLjToOuHIobjoTt4-O-iT2H989ue-PRhNHgEG0Gz0bG7A6uoNvoxIq9F9sRZ2DkT_SvE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+phase+cycled+reconstruction+for+inherent+correction+of+echo-planar+imaging+Nyquist+artifacts&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chen%2C+Nan-Kuei&rft.au=Avram%2C+Alexandru+V&rft.au=Song%2C+Allen+W&rft.date=2011-10-01&rft.eissn=1522-2594&rft.volume=66&rft.issue=4&rft.spage=1057&rft_id=info:doi/10.1002%2Fmrm.22896&rft_id=info%3Apmid%2F21446032&rft.externalDocID=21446032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |