Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging
Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six...
Saved in:
Published in | Magnetic resonance in medicine Vol. 53; no. 6; pp. 1333 - 1340 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion‐weighted (DW) 3D fast spin‐echo (FSE) sequence followed by the acquisition of an exercise‐induced, T2‐enhanced data set. The data showed the expected fiber organization, from which the physiological cross‐sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4–9.1 mm2, 5.8–7.8 mm, and 21–24°, respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Magn Reson Med 53:1333–1340, 2005. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Abstract Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion‐weighted (DW) 3D fast spin‐echo (FSE) sequence followed by the acquisition of an exercise‐induced, T 2 ‐enhanced data set. The data showed the expected fiber organization, from which the physiological cross‐sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4–9.1 mm 2 , 5.8–7.8 mm, and 21–24°, respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Magn Reson Med 53:1333–1340, 2005. © 2005 Wiley‐Liss, Inc. Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T sub(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm super(2), 5.8-7.8 mm, and 21-24 degree , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion‐weighted (DW) 3D fast spin‐echo (FSE) sequence followed by the acquisition of an exercise‐induced, T2‐enhanced data set. The data showed the expected fiber organization, from which the physiological cross‐sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4–9.1 mm2, 5.8–7.8 mm, and 21–24°, respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Magn Reson Med 53:1333–1340, 2005. © 2005 Wiley‐Liss, Inc. |
Author | Strijkers, Gustav J. Vilanova, Anna Heemskerk, Anneriet M. Drost, Maarten R. Nicolay, Klaas |
Author_xml | – sequence: 1 givenname: Anneriet M. surname: Heemskerk fullname: Heemskerk, Anneriet M. email: a.m.heemskerk@tue.nl organization: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands – sequence: 2 givenname: Gustav J. surname: Strijkers fullname: Strijkers, Gustav J. organization: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands – sequence: 3 givenname: Anna surname: Vilanova fullname: Vilanova, Anna organization: Biomedical Image Analysis, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands – sequence: 4 givenname: Maarten R. surname: Drost fullname: Drost, Maarten R. organization: Department of Movement Sciences, Maastricht University, Maastricht, The Netherlands – sequence: 5 givenname: Klaas surname: Nicolay fullname: Nicolay, Klaas organization: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15906281$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtP3DAYRS0EggG66B-ovKrURQa_EsfLaigPaQCJh5C6sZzkM7jECdiOKP--hhnaVcXKln3uke7dRZvDOABCnymZU0LYgQ9-zoiQ1Qaa0ZKxgpVKbKIZkYIUnCqxg3Zj_EUIUUqKbbRDS0UqVtMZ6g4hQfBuMMmNAx4t9uMUAccH6CGZHvsptj1gE9p7l6BNUwA8RTfc4XQfAIrOeRhizma2c9ZOr3ec8tsYsPPmLqP7aMuaPsKn9bmHbo5-XC9OiuXF8eni-7JoRVlXRcWUVawphWVESlo2tSGssR1VrSSdYowy3rCGAjG8VFLa_CEa0XKoqQDF-R76uvI-hvFpgpi0d7GFvjcD5Fa6knVVVUp9CObJKJdvxm8rsA1jjAGsfgy5VHjRlOjX7XXeXr9tn9kva-nUeOj-keuxM3CwAp5dDy__N-mzy7N3ZbFKuJjg99-ECQ-5C5elvj0_1lf1z8NbLhda8T-NEJ_i |
CitedBy_id | crossref_primary_10_1007_s00330_019_06576_z crossref_primary_10_1002_mrm_21707 crossref_primary_10_1089_ten_tea_2016_0438 crossref_primary_10_1002_nbm_1463 crossref_primary_10_1016_j_mri_2014_01_001 crossref_primary_10_1016_j_ajpath_2017_05_010 crossref_primary_10_1002_jmri_21814 crossref_primary_10_1002_nbm_3122 crossref_primary_10_1007_s10334_011_0294_3 crossref_primary_10_1007_s00330_007_0713_z crossref_primary_10_1007_s00330_010_1799_2 crossref_primary_10_1371_journal_pone_0169864 crossref_primary_10_1002_nbm_2959 crossref_primary_10_1016_j_mri_2020_08_002 crossref_primary_10_1016_j_jtbi_2015_06_034 crossref_primary_10_1002_mrm_21819 crossref_primary_10_1152_ajpregu_00474_2010 crossref_primary_10_1016_j_expneurol_2008_04_033 crossref_primary_10_1016_j_mri_2005_10_036 crossref_primary_10_1007_s00062_019_00875_0 crossref_primary_10_1155_2014_840170 crossref_primary_10_2463_mrms_9_1 crossref_primary_10_1002_rco2_13 crossref_primary_10_1016_j_jbiomech_2010_08_027 crossref_primary_10_1063_1_4901134 crossref_primary_10_1097_RCT_0b013e3182772d66 crossref_primary_10_1115_1_4041541 crossref_primary_10_1007_s10237_013_0476_1 crossref_primary_10_1152_japplphysiol_00923_2010 crossref_primary_10_4236_jbise_2014_78060 crossref_primary_10_1002_mrm_22477 crossref_primary_10_1371_journal_pone_0173425 crossref_primary_10_3389_fphys_2020_00448 crossref_primary_10_1002_mus_23711 crossref_primary_10_1016_j_jmbbm_2018_04_006 crossref_primary_10_1186_s13395_023_00323_1 crossref_primary_10_2217_iim_11_60 crossref_primary_10_3348_kjr_2019_0053 crossref_primary_10_1371_journal_pone_0059308 crossref_primary_10_1080_21681163_2019_1627677 crossref_primary_10_1002_nbm_4276 crossref_primary_10_1242_jeb_128017 crossref_primary_10_1016_j_mri_2014_07_002 crossref_primary_10_1111_j_1469_7580_2009_01163_x crossref_primary_10_1016_j_acra_2008_12_007 crossref_primary_10_1002_mrm_22386 crossref_primary_10_1148_radiol_2432060491 crossref_primary_10_3390_ijms22052502 crossref_primary_10_1002_iub_2289 crossref_primary_10_1002_ar_a_20274 crossref_primary_10_1002_jmri_26679 crossref_primary_10_1111_j_1469_7580_2012_01559_x crossref_primary_10_1002_nbm_1791 crossref_primary_10_1007_s00330_008_1012_z crossref_primary_10_1038_s41598_018_33658_7 crossref_primary_10_1002_jmri_24095 crossref_primary_10_4236_ojrad_2015_54026 crossref_primary_10_2165_00007256_200636120_00002 crossref_primary_10_1080_10255842_2012_683426 crossref_primary_10_1016_j_mri_2012_02_003 crossref_primary_10_1259_bjr_76693739 crossref_primary_10_1002_nbm_3046 crossref_primary_10_1002_nbm_3563 crossref_primary_10_1016_j_jbiomech_2008_04_020 crossref_primary_10_1038_s41598_020_69936_6 crossref_primary_10_14814_phy2_13012 crossref_primary_10_1007_s10059_012_0196_x crossref_primary_10_1115_1_4024573 crossref_primary_10_1002_mrm_20780 crossref_primary_10_23736_S0022_4707_18_08759_5 crossref_primary_10_1371_journal_pone_0130985 crossref_primary_10_3389_fphys_2016_00187 crossref_primary_10_1002_jmri_20593 crossref_primary_10_1002_cyto_a_24465 crossref_primary_10_1016_j_jbiomech_2020_110054 crossref_primary_10_1002_nbm_3159 crossref_primary_10_1002_nbm_3311 crossref_primary_10_1097_WCO_0b013e3282efc322 crossref_primary_10_1002_jmri_21687 crossref_primary_10_1002_jmri_24957 crossref_primary_10_1002_nbm_1095 crossref_primary_10_1152_ajpgi_00338_2013 crossref_primary_10_1371_journal_pone_0142111 crossref_primary_10_1016_j_rcl_2015_01_005 crossref_primary_10_1002_jmri_24743 crossref_primary_10_1002_ar_23716 crossref_primary_10_1111_joa_12062 crossref_primary_10_1097_RCT_0000000000000324 crossref_primary_10_1371_journal_pone_0126953 crossref_primary_10_1002_jmri_24060 crossref_primary_10_1002_nbm_1409 crossref_primary_10_4103_0366_6999_201607 crossref_primary_10_1093_cvr_cvp325 crossref_primary_10_1002_jmri_23644 crossref_primary_10_1016_j_ymthe_2019_06_012 crossref_primary_10_1002_jmri_20651 crossref_primary_10_1097_RLI_0000000000000151 crossref_primary_10_1155_2011_970726 crossref_primary_10_1242_jeb_215020 crossref_primary_10_1007_s00247_014_3187_6 crossref_primary_10_1002_mrm_27188 crossref_primary_10_2214_AJR_13_11081 crossref_primary_10_2214_AJR_09_3368 crossref_primary_10_1098_rstb_2010_0316 crossref_primary_10_1002_jmri_20805 crossref_primary_10_1007_s12194_012_0174_1 crossref_primary_10_1007_s10237_017_0923_5 crossref_primary_10_1002_mrm_20953 crossref_primary_10_1007_s00234_016_1764_0 crossref_primary_10_1016_j_injury_2011_09_015 crossref_primary_10_1152_japplphysiol_00290_2007 crossref_primary_10_1148_radiol_2501080180 crossref_primary_10_1016_j_pnmrs_2015_03_001 |
Cites_doi | 10.1006/jmrb.1994.1037 10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M 10.1007/s00424-003-1181-1 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1002/mus.10125 10.1152/japplphysiol.01242.2001 10.1152/ajpheart.1998.274.5.H1627 10.1016/S0006-3495(04)74349-0 10.1002/jmri.10223 10.1007/BF00243510 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1126/science.147.3659.738 10.1152/ajpheart.00968.2001 10.1002/mrm.10198 10.1152/ajpregu.1995.269.3.R536 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H 10.1007/s004210050510 10.1076/ejom.34.1.5.13156 10.1152/ajpheart.1998.275.6.H2308 10.1002/nbm.781 10.1007/s004240050991 10.1560/ULN8-ELJ1-51K3-8UU3 10.1097/00004424-199005000-00003 10.1002/jmor.1051730206 10.1016/S0006-3495(76)85754-2 10.1016/S0006-3495(94)80775-1 10.1016/S0006-3495(01)76262-5 10.1002/jmor.1052210207 10.1159/000147970 10.1016/S1052-5149(03)00067-4 10.1152/jappl.1998.84.6.2171 10.1007/s00421-004-1186-2 10.1046/j.1469-7580.1999.19410079.x |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mrm.20476 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1340 |
ExternalDocumentID | 10_1002_mrm_20476 15906281 MRM20476 ark_67375_WNG_S8ZDW37C_9 |
Genre | article Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT G8K CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4586-629f92b54f207715b8a02bfd19c70d922123b2b1e0a35977f19c4b4c3e814e933 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Sat Aug 17 01:54:29 EDT 2024 Sat Aug 17 01:28:55 EDT 2024 Fri Aug 23 00:56:09 EDT 2024 Sat Sep 28 07:43:57 EDT 2024 Sat Aug 24 00:57:37 EDT 2024 Wed Oct 30 09:57:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4586-629f92b54f207715b8a02bfd19c70d922123b2b1e0a35977f19c4b4c3e814e933 |
Notes | ark:/67375/WNG-S8ZDW37C-9 ArticleID:MRM20476 istex:6DED8A89D0658B189674C788C35690327AE1B616 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15906281 |
PQID | 19413793 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_67866699 proquest_miscellaneous_19413793 crossref_primary_10_1002_mrm_20476 pubmed_primary_15906281 wiley_primary_10_1002_mrm_20476_MRM20476 istex_primary_ark_67375_WNG_S8ZDW37C_9 |
PublicationCentury | 2000 |
PublicationDate | June 2005 |
PublicationDateYYYYMMDD | 2005-06-01 |
PublicationDate_xml | – month: 06 year: 2005 text: June 2005 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2005 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Mori S, van Zijl PC. Fiber tracking: principles and strategies-a technical review. NMR Biomed 2002; 15: 468-480. Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 1994; 221: 177-190. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515-525. Strijkers GJ, Drost MR, Heemskerk A.M., Kruiskamp MR, Nicolay K. Diffusion MRI and MRS of skeletal muscle. Israel J Chem 2003; 43: 71-80. Mendez J. Density and composition of mammalian muscle. Metabolism 1960; 9: 184-188. Sacks RD, Roy RR. Architecture of the hind limb muscles of cats: functional significance. J Morphol 1982; 173: 185-195. van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD. Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 1996; 34: 5-10. Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 1990; 25: 480-485. Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol 2002; 283: H139-H145. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265-269. Warren GL, Ingalls CP, Armstrong RB. A stimulating nerve cuff for chronic in vivo measurements of torque produced about the ankle in the mouse. J Appl Physiol 1998; 84: 2171-2176. Drost MR, Heemskerk AM, Strijkers GJ, Dekkers EC, van Kranenburg G, Nicolay K. An MR-compatible device for the in situ assessment of isometric contractile performance of mouse hind-limb ankle flexors. Pflugers Arch 2003; 447: 371-375. Ploutz-Snyder LL, Convertino VA, Dudley GA. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume. Am J Physiol 1995; 269: R536-R543. van Donkelaar CC, Kretzers LJ, Bovendeerd PH, Lataster LM, Nicolay K, Janssen JD, Drost MR. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 1999; 194(Pt 1): 79-88. Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127. Scollan DF, Holmes A, Winslow R, Forder J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 1998; 275: H2308-H2318. Hesselink RP, Gorselink M, Schaart G, Wagenmakers AJ, Kamphoven J, Reuser AJ, van der Vusse GJ, Drost MR. Impaired performance of skeletal muscle in alpha-glucosidase knockout mice. Muscle Nerve 2002; 25: 873-883. Watchko JF, O'Day TL, Hoffman EP. Functional characteristics of dystrophic skeletal muscle: insights from animal models. J Appl Physiol 2002; 93: 407-417. Galban CJ, Maderwald S, Uffmann K, De Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 2004; 93: 253-262. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247-254. Ito R, Mori S, Melhem ER. Diffusion tensor brain imaging and tractography. Neuroimaging Clin N Am 2002; 12: 1-19. Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF. Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging 2003; 17: 31-42. Gorselink M, Drost MR, de Louw J, Willems PJ, Rosielle N, Janssen JD, van der Vusse GJ. Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice. Pflugers Arch 2000; 439: 665-670. Lieber RL. Muscle fiber length and moment arm coordination during dorsi- and plantarflexion in the mouse hindlimb. Acta Anat (Basel) 1997; 159: 84-89. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267. Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000; 23: 1647-1666. Shah SB, Davis J, Weisleder N, Kostavassili I, McCulloch AD, Ralston E, Capetanaki Y, Lieber RL. Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 2004; 86: 2993-3008. Rutherford OM, Jones DA. Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol Occup Physiol 1992; 65: 433-437. Napadow VJ, Chen Q, Mai V, So PT, Gilbert RJ. Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using nmr and optical imaging methods. Biophys J 2001; 80: 2968-2975. Maganaris CN, Baltzopoulos V. Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion. Eur J Appl Physiol Occup Physiol 1999; 79: 294-297. Cleveland GG, Chang DC, Hazlewood CF, Rorschach HE. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys J 1976; 16: 1043-153. Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol 1998; 274: H1627-H1634. Bratton CB, Hopkins AL, Weinberg JW. Nuclear magnetic resonance studies of living muscle. Science 1965; 147: 738-739. Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JC. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med 2002; 48: 97-104. 1997; 159 2002; 15 2004; 86 1965; 147 2000; 23 2002; 12 1999; 194 2000; 439 1994; 66 1999; 45 1999; 42 2003; 17 2004 1960; 9 1998; 84 1998; 275 1998; 274 1996; 34 2001; 80 2002; 25 1994; 221 2002; 48 2003; 447 1994; 103 1990; 25 2004; 93 2002; 283 1999; 79 1995; 269 2002; 93 1992; 65 1976; 16 1982; 173 2003; 43 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 Mendez J (e_1_2_7_26_2) 1960; 9 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 van Doorn A (e_1_2_7_13_2) 1996; 34 |
References_xml | – volume: 79 start-page: 294 year: 1999 end-page: 297 article-title: Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion publication-title: Eur J Appl Physiol Occup Physiol – volume: 439 start-page: 665 year: 2000 end-page: 670 article-title: Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice publication-title: Pflugers Arch – start-page: 173 year: 2004 end-page: 182 – volume: 42 start-page: 515 year: 1999 end-page: 525 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn Reson Med – volume: 15 start-page: 468 year: 2002 end-page: 480 article-title: Fiber tracking: principles and strategies—a technical review publication-title: NMR Biomed – volume: 16 start-page: 1043 year: 1976 end-page: 153 article-title: Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water publication-title: Biophys J – volume: 17 start-page: 31 year: 2003 end-page: 42 article-title: Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut‐face texture publication-title: J Magn Reson Imaging – volume: 275 start-page: H2308 year: 1998 end-page: H2318 article-title: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging publication-title: Am J Physiol – volume: 93 start-page: 407 year: 2002 end-page: 417 article-title: Functional characteristics of dystrophic skeletal muscle: insights from animal models publication-title: J Appl Physiol – volume: 12 start-page: 1 year: 2002 end-page: 19 article-title: Diffusion tensor brain imaging and tractography publication-title: Neuroimaging Clin N Am – volume: 84 start-page: 2171 year: 1998 end-page: 2176 article-title: A stimulating nerve cuff for chronic in vivo measurements of torque produced about the ankle in the mouse publication-title: J Appl Physiol – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J – volume: 9 start-page: 184 year: 1960 end-page: 188 article-title: Density and composition of mammalian muscle publication-title: Metabolism – volume: 42 start-page: 1123 year: 1999 end-page: 1127 article-title: In vivo three‐dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging publication-title: Magn Reson Med – volume: 43 start-page: 71 year: 2003 end-page: 80 article-title: Diffusion MRI and MRS of skeletal muscle publication-title: Israel J Chem – volume: 447 start-page: 371 year: 2003 end-page: 375 article-title: An MR‐compatible device for the in situ assessment of isometric contractile performance of mouse hind‐limb ankle flexors publication-title: Pflugers Arch – volume: 34 start-page: 5 year: 1996 end-page: 10 article-title: Determination of muscle fibre orientation using diffusion‐weighted MRI publication-title: Eur J Morphol – volume: 194 start-page: 79 issue: Pt 1 year: 1999 end-page: 88 article-title: Diffusion tensor imaging in biomechanical studies of skeletal muscle function publication-title: J Anat – volume: 159 start-page: 84 year: 1997 end-page: 89 article-title: Muscle fiber length and moment arm coordination during dorsi‐ and plantarflexion in the mouse hindlimb publication-title: Acta Anat (Basel) – volume: 25 start-page: 873 year: 2002 end-page: 883 article-title: Impaired performance of skeletal muscle in alpha‐glucosidase knockout mice publication-title: Muscle Nerve – volume: 23 start-page: 1647 year: 2000 end-page: 1666 article-title: Functional and clinical significance of skeletal muscle architecture publication-title: Muscle Nerve – volume: 103 start-page: 247 year: 1994 end-page: 254 article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo publication-title: J Magn Reson B – volume: 274 start-page: H1627 year: 1998 end-page: H1634 article-title: Magnetic resonance myocardial fiber‐orientation mapping with direct histological correlation publication-title: Am J Physiol – volume: 173 start-page: 185 year: 1982 end-page: 195 article-title: Architecture of the hind limb muscles of cats: functional significance publication-title: J Morphol – volume: 93 start-page: 253 year: 2004 end-page: 262 article-title: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf publication-title: Eur J Appl Physiol – volume: 221 start-page: 177 year: 1994 end-page: 190 article-title: Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb publication-title: J Morphol – volume: 283 start-page: H139 year: 2002 end-page: H145 article-title: Characterization of the normal cardiac myofiber field in goat measured with MR‐diffusion tensor imaging publication-title: Am J Physiol Heart Circ Physiol – volume: 80 start-page: 2968 year: 2001 end-page: 2975 article-title: Quantitative analysis of three‐dimensional‐resolved fiber architecture in heterogeneous skeletal muscle tissue using nmr and optical imaging methods publication-title: Biophys J – volume: 48 start-page: 97 year: 2002 end-page: 104 article-title: Validation of diffusion tensor MRI‐based muscle fiber tracking publication-title: Magn Reson Med – volume: 65 start-page: 433 year: 1992 end-page: 437 article-title: Measurement of fibre pennation using ultrasound in the human quadriceps in vivo publication-title: Eur J Appl Physiol Occup Physiol – volume: 147 start-page: 738 year: 1965 end-page: 739 article-title: Nuclear magnetic resonance studies of living muscle publication-title: Science – start-page: 775 year: 2004 – volume: 45 start-page: 265 year: 1999 end-page: 269 article-title: Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann Neurol – volume: 269 start-page: R536 year: 1995 end-page: R543 article-title: Resistance exercise‐induced fluid shifts: change in active muscle size and plasma volume publication-title: Am J Physiol – volume: 86 start-page: 2993 year: 2004 end-page: 3008 article-title: Structural and functional roles of desmin in mouse skeletal muscle during passive deformation publication-title: Biophys J – volume: 25 start-page: 480 year: 1990 end-page: 485 article-title: Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images publication-title: Invest Radiol – ident: e_1_2_7_31_2 doi: 10.1006/jmrb.1994.1037 – ident: e_1_2_7_4_2 doi: 10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M – ident: e_1_2_7_20_2 doi: 10.1007/s00424-003-1181-1 – volume: 9 start-page: 184 year: 1960 ident: e_1_2_7_26_2 article-title: Density and composition of mammalian muscle publication-title: Metabolism contributor: fullname: Mendez J – ident: e_1_2_7_25_2 doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – ident: e_1_2_7_18_2 doi: 10.1002/mus.10125 – ident: e_1_2_7_27_2 – ident: e_1_2_7_19_2 doi: 10.1152/japplphysiol.01242.2001 – ident: e_1_2_7_9_2 doi: 10.1152/ajpheart.1998.274.5.H1627 – ident: e_1_2_7_35_2 doi: 10.1016/S0006-3495(04)74349-0 – ident: e_1_2_7_30_2 doi: 10.1002/jmri.10223 – ident: e_1_2_7_6_2 doi: 10.1007/BF00243510 – ident: e_1_2_7_17_2 doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – ident: e_1_2_7_22_2 doi: 10.1126/science.147.3659.738 – ident: e_1_2_7_10_2 doi: 10.1152/ajpheart.00968.2001 – ident: e_1_2_7_37_2 – ident: e_1_2_7_14_2 doi: 10.1002/mrm.10198 – ident: e_1_2_7_34_2 doi: 10.1152/ajpregu.1995.269.3.R536 – ident: e_1_2_7_33_2 doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H – ident: e_1_2_7_36_2 doi: 10.1007/s004210050510 – volume: 34 start-page: 5 year: 1996 ident: e_1_2_7_13_2 article-title: Determination of muscle fibre orientation using diffusion‐weighted MRI publication-title: Eur J Morphol doi: 10.1076/ejom.34.1.5.13156 contributor: fullname: van Doorn A – ident: e_1_2_7_32_2 doi: 10.1152/ajpheart.1998.275.6.H2308 – ident: e_1_2_7_16_2 doi: 10.1002/nbm.781 – ident: e_1_2_7_21_2 doi: 10.1007/s004240050991 – ident: e_1_2_7_28_2 doi: 10.1560/ULN8-ELJ1-51K3-8UU3 – ident: e_1_2_7_23_2 doi: 10.1097/00004424-199005000-00003 – ident: e_1_2_7_5_2 doi: 10.1002/jmor.1051730206 – ident: e_1_2_7_15_2 doi: 10.1016/S0006-3495(76)85754-2 – ident: e_1_2_7_7_2 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_7_11_2 doi: 10.1016/S0006-3495(01)76262-5 – ident: e_1_2_7_2_2 doi: 10.1002/jmor.1052210207 – ident: e_1_2_7_3_2 doi: 10.1159/000147970 – ident: e_1_2_7_8_2 doi: 10.1016/S1052-5149(03)00067-4 – ident: e_1_2_7_24_2 doi: 10.1152/jappl.1998.84.6.2171 – ident: e_1_2_7_29_2 doi: 10.1007/s00421-004-1186-2 – ident: e_1_2_7_12_2 doi: 10.1046/j.1469-7580.1999.19410079.x |
SSID | ssj0009974 |
Score | 2.2524781 |
Snippet | Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging... Abstract Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1333 |
SubjectTerms | Animals Diffusion Magnetic Resonance Imaging - methods diffusion tensor imaging Electric Stimulation exercise-induced T2 enhancement Feasibility Studies fiber tracking Hindlimb Image Processing, Computer-Assisted Imaging, Three-Dimensional Mice Mice, Inbred C57BL muscle fiber architecture Muscle, Skeletal - physiology |
Title | Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging |
URI | https://api.istex.fr/ark:/67375/WNG-S8ZDW37C-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20476 https://www.ncbi.nlm.nih.gov/pubmed/15906281 https://search.proquest.com/docview/19413793 https://search.proquest.com/docview/67866699 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UFsUXL_W2XoOI-DLt5DKTCT5J11qE7UO1tIgQkkxGZNld2QsUn_wJ_sb-kp6T2dm1YkF8C0wSMueSc3Jy8h2Al9zhOaMuyqxSwWSoiTEzgQLwoaxl5FXDS3rvPDgsD47Vh9PidAPedG9hWnyIVcCNNCPt16Tgzs9216Choyk9JFea4La51JTO1T9aQ0cZ0yIwa0X7jFEdqlAudlcjL9miLSLr2d8czct-azI8-7fgS7fkNt9kuLOY-53w4w80x__8p9twc-mQsretBN2BjTjehuuD5ZX7NlxLOaJhdheafpc6Q8xkk4ZR2CCy2RBNF_rwbLSY4RTs97sJRnn1X9kcJSae__xVUy2BFgeEUWmWBbUZJdFPpuzbKFVMugfH--8-7R1kyzINWVBFVWalMI0RvlCNyLXmha9cLnxTcxN0XhtBxtELz2PuJKHdNfhBeRVkrLiKRsr7sDmejONDYLXyhXPCaBdzhWN8hfM4Z2SMqvYm9OBFxzD7vUXjsC3usrBIO5to14NXiZWrHm46pPQ1XdiTw_f2Y_W5fyL1njU9eN7x2qJS0U2JG0eknEV5QZEy8uoeaOPx4GdwjgetkKzXUxD0c8V78Dqx-uqF2sHRIDUe_XvXx3AjgcemONAT2JxPF_EpukVz_yzJ_wW7RQqZ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOVarloIIV7SxkcOS7ygLmWBZh9Kq1aVkGUnTlWtdhftISGe-An8Rn4JM85mlyIqId4ixXacOTzj8fgbgBfc4j6jStIoV6WOUBN9pEsKwJdpJT3Pa57Sfeein_aO1IeT5GQNXrd3YRp8iGXAjTQjrNek4BSQ3lmhhg4ndJNcZekV2MCPSCrc0D1YgUdp3WAwZ4pWGq1aXKFY7Cy7XrBGG0TYr39zNS96rsH07N2Cz-2km4yTwfZ85rbLb3_gOf7vX92GmwuflL1phOgOrPnRJlwrFqfum3A1pImW07tQd9vsGeInG9eMIgeeTQdovdCNZ8P5FIdgvx9PMEqtP2MzFBr_8_uPisoJNFAgjKqzzOmZUR79eMLOh6Fo0j042nt7uNuLFpUaolIleRqlQtdauETVIs4ynrjcxsLVFddlFldakH10wnEfW0mAdzW-UE6V0udceS3lfVgfjUf-IbBKucRaoTPrY4V9XI7jWKul96pyuuzA85Zj5ksDyGEa6GVhkHYm0K4DLwMvly3sZEAZbFlijvvvzKf8tHsss12jO7DVMtugXtFhiR15pJxBgeESF6_LW6CZx72fxjEeNFKymk9C6M8578CrwOvLJ2qKgyI8PPr3pltwvXdY7Jv99_2Pj-FGwJINYaEnsD6bzP1T9JJm7llQhl9Byw6x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi6UvVqvWa9UGEfFl2002-xF8kp5n_bhDqqWlCCHJZkWOuyv3AcUn_wT_Rv8SZ7K3d1YsiG-BTUJ2PjKTyeQ3AE-5wXNGmWZRIZ2KUBN9pBwF4F1WJp4XFc_ovXO3lx2dyLdn6dkKvGjewtT4EIuAG2lG2K9JwS_K6mAJGjoY00NymWc3YE1m6PmSR3S8xI5SqoZgziVtNEo2sEKxOFgMvWKM1oiul3_zNK86rsHydDbhc7PmOuGkvz-b2n337Q84x__8qdtwa-6Rspe1CN2BFT_cgvXu_M59C26GJFE3uQtVu8mdIW6yUcUobuDZpI-2C514NphNcAr2--UEo8T6L2yKIuN_fv9RUjGBGgiEUW2WGbUZZdGPxuzrIJRMugcnnVefDo-ieZ2GyMm0yKJMqEoJm8pKxHnOU1uYWNiq5MrlcakEWUcrLPexSQjursIP0kqX-IJLr5LkPqwOR0P_AFgpbWqMULnxscQxtsB5jFGJ97K0yrXgScMwfVHDcegaeFlopJ0OtGvBs8DKRQ8z7lP-Wp7q095r_bE4b58m-aFWLdhreK1Rq-iqxAw9Uk6jvPAEt67re6CRx5Ofwjm2ayFZricl7OeCt-B5YPX1C9Xd425o7Px71z1Y_9Du6Pdveu92YSMAyYaY0ENYnY5n_hG6SFP7OKjCLxbWDWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+mouse+skeletal+muscle+architecture+using+three-dimensional+diffusion+tensor+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Heemskerk%2C+Anneriet+M&rft.au=Strijkers%2C+Gustav+J&rft.au=Vilanova%2C+Anna&rft.au=Drost%2C+Maarten+R&rft.date=2005-06-01&rft.issn=0740-3194&rft.volume=53&rft.issue=6&rft.spage=1333&rft.epage=1340&rft_id=info:doi/10.1002%2Fmrm.20476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |