Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging

Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 53; no. 6; pp. 1333 - 1340
Main Authors Heemskerk, Anneriet M., Strijkers, Gustav J., Vilanova, Anna, Drost, Maarten R., Nicolay, Klaas
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion‐weighted (DW) 3D fast spin‐echo (FSE) sequence followed by the acquisition of an exercise‐induced, T2‐enhanced data set. The data showed the expected fiber organization, from which the physiological cross‐sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4–9.1 mm2, 5.8–7.8 mm, and 21–24°, respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Magn Reson Med 53:1333–1340, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.
Abstract Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion‐weighted (DW) 3D fast spin‐echo (FSE) sequence followed by the acquisition of an exercise‐induced, T 2 ‐enhanced data set. The data showed the expected fiber organization, from which the physiological cross‐sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4–9.1 mm 2 , 5.8–7.8 mm, and 21–24°, respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Magn Reson Med 53:1333–1340, 2005. © 2005 Wiley‐Liss, Inc.
Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T sub(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm super(2), 5.8-7.8 mm, and 21-24 degree , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.
Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three‐dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion‐weighted (DW) 3D fast spin‐echo (FSE) sequence followed by the acquisition of an exercise‐induced, T2‐enhanced data set. The data showed the expected fiber organization, from which the physiological cross‐sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4–9.1 mm2, 5.8–7.8 mm, and 21–24°, respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture. Magn Reson Med 53:1333–1340, 2005. © 2005 Wiley‐Liss, Inc.
Author Strijkers, Gustav J.
Vilanova, Anna
Heemskerk, Anneriet M.
Drost, Maarten R.
Nicolay, Klaas
Author_xml – sequence: 1
  givenname: Anneriet M.
  surname: Heemskerk
  fullname: Heemskerk, Anneriet M.
  email: a.m.heemskerk@tue.nl
  organization: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 2
  givenname: Gustav J.
  surname: Strijkers
  fullname: Strijkers, Gustav J.
  organization: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 3
  givenname: Anna
  surname: Vilanova
  fullname: Vilanova, Anna
  organization: Biomedical Image Analysis, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 4
  givenname: Maarten R.
  surname: Drost
  fullname: Drost, Maarten R.
  organization: Department of Movement Sciences, Maastricht University, Maastricht, The Netherlands
– sequence: 5
  givenname: Klaas
  surname: Nicolay
  fullname: Nicolay, Klaas
  organization: Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15906281$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtP3DAYRS0EggG66B-ovKrURQa_EsfLaigPaQCJh5C6sZzkM7jECdiOKP--hhnaVcXKln3uke7dRZvDOABCnymZU0LYgQ9-zoiQ1Qaa0ZKxgpVKbKIZkYIUnCqxg3Zj_EUIUUqKbbRDS0UqVtMZ6g4hQfBuMMmNAx4t9uMUAccH6CGZHvsptj1gE9p7l6BNUwA8RTfc4XQfAIrOeRhizma2c9ZOr3ec8tsYsPPmLqP7aMuaPsKn9bmHbo5-XC9OiuXF8eni-7JoRVlXRcWUVawphWVESlo2tSGssR1VrSSdYowy3rCGAjG8VFLa_CEa0XKoqQDF-R76uvI-hvFpgpi0d7GFvjcD5Fa6knVVVUp9CObJKJdvxm8rsA1jjAGsfgy5VHjRlOjX7XXeXr9tn9kva-nUeOj-keuxM3CwAp5dDy__N-mzy7N3ZbFKuJjg99-ECQ-5C5elvj0_1lf1z8NbLhda8T-NEJ_i
CitedBy_id crossref_primary_10_1007_s00330_019_06576_z
crossref_primary_10_1002_mrm_21707
crossref_primary_10_1089_ten_tea_2016_0438
crossref_primary_10_1002_nbm_1463
crossref_primary_10_1016_j_mri_2014_01_001
crossref_primary_10_1016_j_ajpath_2017_05_010
crossref_primary_10_1002_jmri_21814
crossref_primary_10_1002_nbm_3122
crossref_primary_10_1007_s10334_011_0294_3
crossref_primary_10_1007_s00330_007_0713_z
crossref_primary_10_1007_s00330_010_1799_2
crossref_primary_10_1371_journal_pone_0169864
crossref_primary_10_1002_nbm_2959
crossref_primary_10_1016_j_mri_2020_08_002
crossref_primary_10_1016_j_jtbi_2015_06_034
crossref_primary_10_1002_mrm_21819
crossref_primary_10_1152_ajpregu_00474_2010
crossref_primary_10_1016_j_expneurol_2008_04_033
crossref_primary_10_1016_j_mri_2005_10_036
crossref_primary_10_1007_s00062_019_00875_0
crossref_primary_10_1155_2014_840170
crossref_primary_10_2463_mrms_9_1
crossref_primary_10_1002_rco2_13
crossref_primary_10_1016_j_jbiomech_2010_08_027
crossref_primary_10_1063_1_4901134
crossref_primary_10_1097_RCT_0b013e3182772d66
crossref_primary_10_1115_1_4041541
crossref_primary_10_1007_s10237_013_0476_1
crossref_primary_10_1152_japplphysiol_00923_2010
crossref_primary_10_4236_jbise_2014_78060
crossref_primary_10_1002_mrm_22477
crossref_primary_10_1371_journal_pone_0173425
crossref_primary_10_3389_fphys_2020_00448
crossref_primary_10_1002_mus_23711
crossref_primary_10_1016_j_jmbbm_2018_04_006
crossref_primary_10_1186_s13395_023_00323_1
crossref_primary_10_2217_iim_11_60
crossref_primary_10_3348_kjr_2019_0053
crossref_primary_10_1371_journal_pone_0059308
crossref_primary_10_1080_21681163_2019_1627677
crossref_primary_10_1002_nbm_4276
crossref_primary_10_1242_jeb_128017
crossref_primary_10_1016_j_mri_2014_07_002
crossref_primary_10_1111_j_1469_7580_2009_01163_x
crossref_primary_10_1016_j_acra_2008_12_007
crossref_primary_10_1002_mrm_22386
crossref_primary_10_1148_radiol_2432060491
crossref_primary_10_3390_ijms22052502
crossref_primary_10_1002_iub_2289
crossref_primary_10_1002_ar_a_20274
crossref_primary_10_1002_jmri_26679
crossref_primary_10_1111_j_1469_7580_2012_01559_x
crossref_primary_10_1002_nbm_1791
crossref_primary_10_1007_s00330_008_1012_z
crossref_primary_10_1038_s41598_018_33658_7
crossref_primary_10_1002_jmri_24095
crossref_primary_10_4236_ojrad_2015_54026
crossref_primary_10_2165_00007256_200636120_00002
crossref_primary_10_1080_10255842_2012_683426
crossref_primary_10_1016_j_mri_2012_02_003
crossref_primary_10_1259_bjr_76693739
crossref_primary_10_1002_nbm_3046
crossref_primary_10_1002_nbm_3563
crossref_primary_10_1016_j_jbiomech_2008_04_020
crossref_primary_10_1038_s41598_020_69936_6
crossref_primary_10_14814_phy2_13012
crossref_primary_10_1007_s10059_012_0196_x
crossref_primary_10_1115_1_4024573
crossref_primary_10_1002_mrm_20780
crossref_primary_10_23736_S0022_4707_18_08759_5
crossref_primary_10_1371_journal_pone_0130985
crossref_primary_10_3389_fphys_2016_00187
crossref_primary_10_1002_jmri_20593
crossref_primary_10_1002_cyto_a_24465
crossref_primary_10_1016_j_jbiomech_2020_110054
crossref_primary_10_1002_nbm_3159
crossref_primary_10_1002_nbm_3311
crossref_primary_10_1097_WCO_0b013e3282efc322
crossref_primary_10_1002_jmri_21687
crossref_primary_10_1002_jmri_24957
crossref_primary_10_1002_nbm_1095
crossref_primary_10_1152_ajpgi_00338_2013
crossref_primary_10_1371_journal_pone_0142111
crossref_primary_10_1016_j_rcl_2015_01_005
crossref_primary_10_1002_jmri_24743
crossref_primary_10_1002_ar_23716
crossref_primary_10_1111_joa_12062
crossref_primary_10_1097_RCT_0000000000000324
crossref_primary_10_1371_journal_pone_0126953
crossref_primary_10_1002_jmri_24060
crossref_primary_10_1002_nbm_1409
crossref_primary_10_4103_0366_6999_201607
crossref_primary_10_1093_cvr_cvp325
crossref_primary_10_1002_jmri_23644
crossref_primary_10_1016_j_ymthe_2019_06_012
crossref_primary_10_1002_jmri_20651
crossref_primary_10_1097_RLI_0000000000000151
crossref_primary_10_1155_2011_970726
crossref_primary_10_1242_jeb_215020
crossref_primary_10_1007_s00247_014_3187_6
crossref_primary_10_1002_mrm_27188
crossref_primary_10_2214_AJR_13_11081
crossref_primary_10_2214_AJR_09_3368
crossref_primary_10_1098_rstb_2010_0316
crossref_primary_10_1002_jmri_20805
crossref_primary_10_1007_s12194_012_0174_1
crossref_primary_10_1007_s10237_017_0923_5
crossref_primary_10_1002_mrm_20953
crossref_primary_10_1007_s00234_016_1764_0
crossref_primary_10_1016_j_injury_2011_09_015
crossref_primary_10_1152_japplphysiol_00290_2007
crossref_primary_10_1148_radiol_2501080180
crossref_primary_10_1016_j_pnmrs_2015_03_001
Cites_doi 10.1006/jmrb.1994.1037
10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M
10.1007/s00424-003-1181-1
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1002/mus.10125
10.1152/japplphysiol.01242.2001
10.1152/ajpheart.1998.274.5.H1627
10.1016/S0006-3495(04)74349-0
10.1002/jmri.10223
10.1007/BF00243510
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1126/science.147.3659.738
10.1152/ajpheart.00968.2001
10.1002/mrm.10198
10.1152/ajpregu.1995.269.3.R536
10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
10.1007/s004210050510
10.1076/ejom.34.1.5.13156
10.1152/ajpheart.1998.275.6.H2308
10.1002/nbm.781
10.1007/s004240050991
10.1560/ULN8-ELJ1-51K3-8UU3
10.1097/00004424-199005000-00003
10.1002/jmor.1051730206
10.1016/S0006-3495(76)85754-2
10.1016/S0006-3495(94)80775-1
10.1016/S0006-3495(01)76262-5
10.1002/jmor.1052210207
10.1159/000147970
10.1016/S1052-5149(03)00067-4
10.1152/jappl.1998.84.6.2171
10.1007/s00421-004-1186-2
10.1046/j.1469-7580.1999.19410079.x
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mrm.20476
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1340
ExternalDocumentID 10_1002_mrm_20476
15906281
MRM20476
ark_67375_WNG_S8ZDW37C_9
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
G8K
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4586-629f92b54f207715b8a02bfd19c70d922123b2b1e0a35977f19c4b4c3e814e933
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Sat Aug 17 01:54:29 EDT 2024
Sat Aug 17 01:28:55 EDT 2024
Fri Aug 23 00:56:09 EDT 2024
Sat Sep 28 07:43:57 EDT 2024
Sat Aug 24 00:57:37 EDT 2024
Wed Oct 30 09:57:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4586-629f92b54f207715b8a02bfd19c70d922123b2b1e0a35977f19c4b4c3e814e933
Notes ark:/67375/WNG-S8ZDW37C-9
ArticleID:MRM20476
istex:6DED8A89D0658B189674C788C35690327AE1B616
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15906281
PQID 19413793
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67866699
proquest_miscellaneous_19413793
crossref_primary_10_1002_mrm_20476
pubmed_primary_15906281
wiley_primary_10_1002_mrm_20476_MRM20476
istex_primary_ark_67375_WNG_S8ZDW37C_9
PublicationCentury 2000
PublicationDate June 2005
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: June 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Mori S, van Zijl PC. Fiber tracking: principles and strategies-a technical review. NMR Biomed 2002; 15: 468-480.
Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 1994; 221: 177-190.
Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515-525.
Strijkers GJ, Drost MR, Heemskerk A.M., Kruiskamp MR, Nicolay K. Diffusion MRI and MRS of skeletal muscle. Israel J Chem 2003; 43: 71-80.
Mendez J. Density and composition of mammalian muscle. Metabolism 1960; 9: 184-188.
Sacks RD, Roy RR. Architecture of the hind limb muscles of cats: functional significance. J Morphol 1982; 173: 185-195.
van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD. Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 1996; 34: 5-10.
Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 1990; 25: 480-485.
Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol 2002; 283: H139-H145.
Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265-269.
Warren GL, Ingalls CP, Armstrong RB. A stimulating nerve cuff for chronic in vivo measurements of torque produced about the ankle in the mouse. J Appl Physiol 1998; 84: 2171-2176.
Drost MR, Heemskerk AM, Strijkers GJ, Dekkers EC, van Kranenburg G, Nicolay K. An MR-compatible device for the in situ assessment of isometric contractile performance of mouse hind-limb ankle flexors. Pflugers Arch 2003; 447: 371-375.
Ploutz-Snyder LL, Convertino VA, Dudley GA. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume. Am J Physiol 1995; 269: R536-R543.
van Donkelaar CC, Kretzers LJ, Bovendeerd PH, Lataster LM, Nicolay K, Janssen JD, Drost MR. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 1999; 194(Pt 1): 79-88.
Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 1999; 42: 1123-1127.
Scollan DF, Holmes A, Winslow R, Forder J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 1998; 275: H2308-H2318.
Hesselink RP, Gorselink M, Schaart G, Wagenmakers AJ, Kamphoven J, Reuser AJ, van der Vusse GJ, Drost MR. Impaired performance of skeletal muscle in alpha-glucosidase knockout mice. Muscle Nerve 2002; 25: 873-883.
Watchko JF, O'Day TL, Hoffman EP. Functional characteristics of dystrophic skeletal muscle: insights from animal models. J Appl Physiol 2002; 93: 407-417.
Galban CJ, Maderwald S, Uffmann K, De Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 2004; 93: 253-262.
Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247-254.
Ito R, Mori S, Melhem ER. Diffusion tensor brain imaging and tractography. Neuroimaging Clin N Am 2002; 12: 1-19.
Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF. Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging 2003; 17: 31-42.
Gorselink M, Drost MR, de Louw J, Willems PJ, Rosielle N, Janssen JD, van der Vusse GJ. Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice. Pflugers Arch 2000; 439: 665-670.
Lieber RL. Muscle fiber length and moment arm coordination during dorsi- and plantarflexion in the mouse hindlimb. Acta Anat (Basel) 1997; 159: 84-89.
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267.
Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000; 23: 1647-1666.
Shah SB, Davis J, Weisleder N, Kostavassili I, McCulloch AD, Ralston E, Capetanaki Y, Lieber RL. Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 2004; 86: 2993-3008.
Rutherford OM, Jones DA. Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol Occup Physiol 1992; 65: 433-437.
Napadow VJ, Chen Q, Mai V, So PT, Gilbert RJ. Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using nmr and optical imaging methods. Biophys J 2001; 80: 2968-2975.
Maganaris CN, Baltzopoulos V. Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion. Eur J Appl Physiol Occup Physiol 1999; 79: 294-297.
Cleveland GG, Chang DC, Hazlewood CF, Rorschach HE. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys J 1976; 16: 1043-153.
Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol 1998; 274: H1627-H1634.
Bratton CB, Hopkins AL, Weinberg JW. Nuclear magnetic resonance studies of living muscle. Science 1965; 147: 738-739.
Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JC. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med 2002; 48: 97-104.
1997; 159
2002; 15
2004; 86
1965; 147
2000; 23
2002; 12
1999; 194
2000; 439
1994; 66
1999; 45
1999; 42
2003; 17
2004
1960; 9
1998; 84
1998; 275
1998; 274
1996; 34
2001; 80
2002; 25
1994; 221
2002; 48
2003; 447
1994; 103
1990; 25
2004; 93
2002; 283
1999; 79
1995; 269
2002; 93
1992; 65
1976; 16
1982; 173
2003; 43
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
Mendez J (e_1_2_7_26_2) 1960; 9
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
van Doorn A (e_1_2_7_13_2) 1996; 34
References_xml – volume: 79
  start-page: 294
  year: 1999
  end-page: 297
  article-title: Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 439
  start-page: 665
  year: 2000
  end-page: 670
  article-title: Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice
  publication-title: Pflugers Arch
– start-page: 173
  year: 2004
  end-page: 182
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  article-title: Fiber tracking: principles and strategies—a technical review
  publication-title: NMR Biomed
– volume: 16
  start-page: 1043
  year: 1976
  end-page: 153
  article-title: Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water
  publication-title: Biophys J
– volume: 17
  start-page: 31
  year: 2003
  end-page: 42
  article-title: Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut‐face texture
  publication-title: J Magn Reson Imaging
– volume: 275
  start-page: H2308
  year: 1998
  end-page: H2318
  article-title: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging
  publication-title: Am J Physiol
– volume: 93
  start-page: 407
  year: 2002
  end-page: 417
  article-title: Functional characteristics of dystrophic skeletal muscle: insights from animal models
  publication-title: J Appl Physiol
– volume: 12
  start-page: 1
  year: 2002
  end-page: 19
  article-title: Diffusion tensor brain imaging and tractography
  publication-title: Neuroimaging Clin N Am
– volume: 84
  start-page: 2171
  year: 1998
  end-page: 2176
  article-title: A stimulating nerve cuff for chronic in vivo measurements of torque produced about the ankle in the mouse
  publication-title: J Appl Physiol
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys J
– volume: 9
  start-page: 184
  year: 1960
  end-page: 188
  article-title: Density and composition of mammalian muscle
  publication-title: Metabolism
– volume: 42
  start-page: 1123
  year: 1999
  end-page: 1127
  article-title: In vivo three‐dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 43
  start-page: 71
  year: 2003
  end-page: 80
  article-title: Diffusion MRI and MRS of skeletal muscle
  publication-title: Israel J Chem
– volume: 447
  start-page: 371
  year: 2003
  end-page: 375
  article-title: An MR‐compatible device for the in situ assessment of isometric contractile performance of mouse hind‐limb ankle flexors
  publication-title: Pflugers Arch
– volume: 34
  start-page: 5
  year: 1996
  end-page: 10
  article-title: Determination of muscle fibre orientation using diffusion‐weighted MRI
  publication-title: Eur J Morphol
– volume: 194
  start-page: 79
  issue: Pt 1
  year: 1999
  end-page: 88
  article-title: Diffusion tensor imaging in biomechanical studies of skeletal muscle function
  publication-title: J Anat
– volume: 159
  start-page: 84
  year: 1997
  end-page: 89
  article-title: Muscle fiber length and moment arm coordination during dorsi‐ and plantarflexion in the mouse hindlimb
  publication-title: Acta Anat (Basel)
– volume: 25
  start-page: 873
  year: 2002
  end-page: 883
  article-title: Impaired performance of skeletal muscle in alpha‐glucosidase knockout mice
  publication-title: Muscle Nerve
– volume: 23
  start-page: 1647
  year: 2000
  end-page: 1666
  article-title: Functional and clinical significance of skeletal muscle architecture
  publication-title: Muscle Nerve
– volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo
  publication-title: J Magn Reson B
– volume: 274
  start-page: H1627
  year: 1998
  end-page: H1634
  article-title: Magnetic resonance myocardial fiber‐orientation mapping with direct histological correlation
  publication-title: Am J Physiol
– volume: 173
  start-page: 185
  year: 1982
  end-page: 195
  article-title: Architecture of the hind limb muscles of cats: functional significance
  publication-title: J Morphol
– volume: 93
  start-page: 253
  year: 2004
  end-page: 262
  article-title: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf
  publication-title: Eur J Appl Physiol
– volume: 221
  start-page: 177
  year: 1994
  end-page: 190
  article-title: Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb
  publication-title: J Morphol
– volume: 283
  start-page: H139
  year: 2002
  end-page: H145
  article-title: Characterization of the normal cardiac myofiber field in goat measured with MR‐diffusion tensor imaging
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 80
  start-page: 2968
  year: 2001
  end-page: 2975
  article-title: Quantitative analysis of three‐dimensional‐resolved fiber architecture in heterogeneous skeletal muscle tissue using nmr and optical imaging methods
  publication-title: Biophys J
– volume: 48
  start-page: 97
  year: 2002
  end-page: 104
  article-title: Validation of diffusion tensor MRI‐based muscle fiber tracking
  publication-title: Magn Reson Med
– volume: 65
  start-page: 433
  year: 1992
  end-page: 437
  article-title: Measurement of fibre pennation using ultrasound in the human quadriceps in vivo
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 147
  start-page: 738
  year: 1965
  end-page: 739
  article-title: Nuclear magnetic resonance studies of living muscle
  publication-title: Science
– start-page: 775
  year: 2004
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  article-title: Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann Neurol
– volume: 269
  start-page: R536
  year: 1995
  end-page: R543
  article-title: Resistance exercise‐induced fluid shifts: change in active muscle size and plasma volume
  publication-title: Am J Physiol
– volume: 86
  start-page: 2993
  year: 2004
  end-page: 3008
  article-title: Structural and functional roles of desmin in mouse skeletal muscle during passive deformation
  publication-title: Biophys J
– volume: 25
  start-page: 480
  year: 1990
  end-page: 485
  article-title: Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images
  publication-title: Invest Radiol
– ident: e_1_2_7_31_2
  doi: 10.1006/jmrb.1994.1037
– ident: e_1_2_7_4_2
  doi: 10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M
– ident: e_1_2_7_20_2
  doi: 10.1007/s00424-003-1181-1
– volume: 9
  start-page: 184
  year: 1960
  ident: e_1_2_7_26_2
  article-title: Density and composition of mammalian muscle
  publication-title: Metabolism
  contributor:
    fullname: Mendez J
– ident: e_1_2_7_25_2
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– ident: e_1_2_7_18_2
  doi: 10.1002/mus.10125
– ident: e_1_2_7_27_2
– ident: e_1_2_7_19_2
  doi: 10.1152/japplphysiol.01242.2001
– ident: e_1_2_7_9_2
  doi: 10.1152/ajpheart.1998.274.5.H1627
– ident: e_1_2_7_35_2
  doi: 10.1016/S0006-3495(04)74349-0
– ident: e_1_2_7_30_2
  doi: 10.1002/jmri.10223
– ident: e_1_2_7_6_2
  doi: 10.1007/BF00243510
– ident: e_1_2_7_17_2
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– ident: e_1_2_7_22_2
  doi: 10.1126/science.147.3659.738
– ident: e_1_2_7_10_2
  doi: 10.1152/ajpheart.00968.2001
– ident: e_1_2_7_37_2
– ident: e_1_2_7_14_2
  doi: 10.1002/mrm.10198
– ident: e_1_2_7_34_2
  doi: 10.1152/ajpregu.1995.269.3.R536
– ident: e_1_2_7_33_2
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
– ident: e_1_2_7_36_2
  doi: 10.1007/s004210050510
– volume: 34
  start-page: 5
  year: 1996
  ident: e_1_2_7_13_2
  article-title: Determination of muscle fibre orientation using diffusion‐weighted MRI
  publication-title: Eur J Morphol
  doi: 10.1076/ejom.34.1.5.13156
  contributor:
    fullname: van Doorn A
– ident: e_1_2_7_32_2
  doi: 10.1152/ajpheart.1998.275.6.H2308
– ident: e_1_2_7_16_2
  doi: 10.1002/nbm.781
– ident: e_1_2_7_21_2
  doi: 10.1007/s004240050991
– ident: e_1_2_7_28_2
  doi: 10.1560/ULN8-ELJ1-51K3-8UU3
– ident: e_1_2_7_23_2
  doi: 10.1097/00004424-199005000-00003
– ident: e_1_2_7_5_2
  doi: 10.1002/jmor.1051730206
– ident: e_1_2_7_15_2
  doi: 10.1016/S0006-3495(76)85754-2
– ident: e_1_2_7_7_2
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_7_11_2
  doi: 10.1016/S0006-3495(01)76262-5
– ident: e_1_2_7_2_2
  doi: 10.1002/jmor.1052210207
– ident: e_1_2_7_3_2
  doi: 10.1159/000147970
– ident: e_1_2_7_8_2
  doi: 10.1016/S1052-5149(03)00067-4
– ident: e_1_2_7_24_2
  doi: 10.1152/jappl.1998.84.6.2171
– ident: e_1_2_7_29_2
  doi: 10.1007/s00421-004-1186-2
– ident: e_1_2_7_12_2
  doi: 10.1046/j.1469-7580.1999.19410079.x
SSID ssj0009974
Score 2.2524781
Snippet Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging...
Abstract Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1333
SubjectTerms Animals
Diffusion Magnetic Resonance Imaging - methods
diffusion tensor imaging
Electric Stimulation
exercise-induced T2 enhancement
Feasibility Studies
fiber tracking
Hindlimb
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Mice
Mice, Inbred C57BL
muscle fiber architecture
Muscle, Skeletal - physiology
Title Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging
URI https://api.istex.fr/ark:/67375/WNG-S8ZDW37C-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20476
https://www.ncbi.nlm.nih.gov/pubmed/15906281
https://search.proquest.com/docview/19413793
https://search.proquest.com/docview/67866699
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UFsUXL_W2XoOI-DLt5DKTCT5J11qE7UO1tIgQkkxGZNld2QsUn_wJ_sb-kp6T2dm1YkF8C0wSMueSc3Jy8h2Al9zhOaMuyqxSwWSoiTEzgQLwoaxl5FXDS3rvPDgsD47Vh9PidAPedG9hWnyIVcCNNCPt16Tgzs9216Choyk9JFea4La51JTO1T9aQ0cZ0yIwa0X7jFEdqlAudlcjL9miLSLr2d8czct-azI8-7fgS7fkNt9kuLOY-53w4w80x__8p9twc-mQsretBN2BjTjehuuD5ZX7NlxLOaJhdheafpc6Q8xkk4ZR2CCy2RBNF_rwbLSY4RTs97sJRnn1X9kcJSae__xVUy2BFgeEUWmWBbUZJdFPpuzbKFVMugfH--8-7R1kyzINWVBFVWalMI0RvlCNyLXmha9cLnxTcxN0XhtBxtELz2PuJKHdNfhBeRVkrLiKRsr7sDmejONDYLXyhXPCaBdzhWN8hfM4Z2SMqvYm9OBFxzD7vUXjsC3usrBIO5to14NXiZWrHm46pPQ1XdiTw_f2Y_W5fyL1njU9eN7x2qJS0U2JG0eknEV5QZEy8uoeaOPx4GdwjgetkKzXUxD0c8V78Dqx-uqF2sHRIDUe_XvXx3AjgcemONAT2JxPF_EpukVz_yzJ_wW7RQqZ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOVarloIIV7SxkcOS7ygLmWBZh9Kq1aVkGUnTlWtdhftISGe-An8Rn4JM85mlyIqId4ixXacOTzj8fgbgBfc4j6jStIoV6WOUBN9pEsKwJdpJT3Pa57Sfeein_aO1IeT5GQNXrd3YRp8iGXAjTQjrNek4BSQ3lmhhg4ndJNcZekV2MCPSCrc0D1YgUdp3WAwZ4pWGq1aXKFY7Cy7XrBGG0TYr39zNS96rsH07N2Cz-2km4yTwfZ85rbLb3_gOf7vX92GmwuflL1phOgOrPnRJlwrFqfum3A1pImW07tQd9vsGeInG9eMIgeeTQdovdCNZ8P5FIdgvx9PMEqtP2MzFBr_8_uPisoJNFAgjKqzzOmZUR79eMLOh6Fo0j042nt7uNuLFpUaolIleRqlQtdauETVIs4ynrjcxsLVFddlFldakH10wnEfW0mAdzW-UE6V0udceS3lfVgfjUf-IbBKucRaoTPrY4V9XI7jWKul96pyuuzA85Zj5ksDyGEa6GVhkHYm0K4DLwMvly3sZEAZbFlijvvvzKf8tHsss12jO7DVMtugXtFhiR15pJxBgeESF6_LW6CZx72fxjEeNFKymk9C6M8578CrwOvLJ2qKgyI8PPr3pltwvXdY7Jv99_2Pj-FGwJINYaEnsD6bzP1T9JJm7llQhl9Byw6x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi6UvVqvWa9UGEfFl2002-xF8kp5n_bhDqqWlCCHJZkWOuyv3AcUn_wT_Rv8SZ7K3d1YsiG-BTUJ2PjKTyeQ3AE-5wXNGmWZRIZ2KUBN9pBwF4F1WJp4XFc_ovXO3lx2dyLdn6dkKvGjewtT4EIuAG2lG2K9JwS_K6mAJGjoY00NymWc3YE1m6PmSR3S8xI5SqoZgziVtNEo2sEKxOFgMvWKM1oiul3_zNK86rsHydDbhc7PmOuGkvz-b2n337Q84x__8qdtwa-6Rspe1CN2BFT_cgvXu_M59C26GJFE3uQtVu8mdIW6yUcUobuDZpI-2C514NphNcAr2--UEo8T6L2yKIuN_fv9RUjGBGgiEUW2WGbUZZdGPxuzrIJRMugcnnVefDo-ieZ2GyMm0yKJMqEoJm8pKxHnOU1uYWNiq5MrlcakEWUcrLPexSQjursIP0kqX-IJLr5LkPqwOR0P_AFgpbWqMULnxscQxtsB5jFGJ97K0yrXgScMwfVHDcegaeFlopJ0OtGvBs8DKRQ8z7lP-Wp7q095r_bE4b58m-aFWLdhreK1Rq-iqxAw9Uk6jvPAEt67re6CRx5Ofwjm2ayFZricl7OeCt-B5YPX1C9Xd425o7Px71z1Y_9Du6Pdveu92YSMAyYaY0ENYnY5n_hG6SFP7OKjCLxbWDWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+mouse+skeletal+muscle+architecture+using+three-dimensional+diffusion+tensor+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Heemskerk%2C+Anneriet+M&rft.au=Strijkers%2C+Gustav+J&rft.au=Vilanova%2C+Anna&rft.au=Drost%2C+Maarten+R&rft.date=2005-06-01&rft.issn=0740-3194&rft.volume=53&rft.issue=6&rft.spage=1333&rft.epage=1340&rft_id=info:doi/10.1002%2Fmrm.20476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon