A maximum likelihood method for secondary analysis of nested case-control data

Many epidemiological studies use a nested case‐control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies hav...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 33; no. 11; pp. 1842 - 1852
Main Authors Salim, Agus, Xiangmei, Ma, Jialiang, Li, Reilly, Marie
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 20.05.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6084

Cover

Loading…
Abstract Many epidemiological studies use a nested case‐control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies have proposed several methods to obtain unbiased estimates of risk for a secondary outcome from NCC data. Two common features of all current methods requires that the times of onset of the secondary outcome are known for cohort members not selected into the NCC study and the hazards of the two outcomes are conditionally independent given the available covariates. This last assumption will not be plausible when the individual frailty of study subjects is not captured by the measured covariates. We provide a maximum‐likelihood method that explicitly models the individual frailties and also avoids the need to have access to the full cohort data. We derive the likelihood contribution by respecting the original sampling procedure with respect to the primary outcome. We use proportional hazard models for the individual hazards, and Clayton's copula is used to model additional dependence between primary and secondary outcomes beyond that explained by the measured risk factors. We show that the proposed method is more efficient than weighted likelihood and is unbiased in the presence of shared frailty for the primary and secondary outcome. We illustrate the method with an application to a study of risk factors for diabetes in a Swedish cohort. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList Many epidemiological studies use a nested case-control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies have proposed several methods to obtain unbiased estimates of risk for a secondary outcome from NCC data. Two common features of all current methods requires that the times of onset of the secondary outcome are known for cohort members not selected into the NCC study and the hazards of the two outcomes are conditionally independent given the available covariates. This last assumption will not be plausible when the individual frailty of study subjects is not captured by the measured covariates. We provide a maximum-likelihood method that explicitly models the individual frailties and also avoids the need to have access to the full cohort data. We derive the likelihood contribution by respecting the original sampling procedure with respect to the primary outcome. We use proportional hazard models for the individual hazards, and Clayton's copula is used to model additional dependence between primary and secondary outcomes beyond that explained by the measured risk factors. We show that the proposed method is more efficient than weighted likelihood and is unbiased in the presence of shared frailty for the primary and secondary outcome. We illustrate the method with an application to a study of risk factors for diabetes in a Swedish cohort.
Many epidemiological studies use a nested case-control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies have proposed several methods to obtain unbiased estimates of risk for a secondary outcome from NCC data. Two common features of all current methods requires that the times of onset of the secondary outcome are known for cohort members not selected into the NCC study and the hazards of the two outcomes are conditionally independent given the available covariates. This last assumption will not be plausible when the individual frailty of study subjects is not captured by the measured covariates. We provide a maximum-likelihood method that explicitly models the individual frailties and also avoids the need to have access to the full cohort data. We derive the likelihood contribution by respecting the original sampling procedure with respect to the primary outcome. We use proportional hazard models for the individual hazards, and Clayton's copula is used to model additional dependence between primary and secondary outcomes beyond that explained by the measured risk factors. We show that the proposed method is more efficient than weighted likelihood and is unbiased in the presence of shared frailty for the primary and secondary outcome. We illustrate the method with an application to a study of risk factors for diabetes in a Swedish cohort. [PUBLICATION ABSTRACT]
Many epidemiological studies use a nested case‐control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies have proposed several methods to obtain unbiased estimates of risk for a secondary outcome from NCC data. Two common features of all current methods requires that the times of onset of the secondary outcome are known for cohort members not selected into the NCC study and the hazards of the two outcomes are conditionally independent given the available covariates. This last assumption will not be plausible when the individual frailty of study subjects is not captured by the measured covariates. We provide a maximum‐likelihood method that explicitly models the individual frailties and also avoids the need to have access to the full cohort data. We derive the likelihood contribution by respecting the original sampling procedure with respect to the primary outcome. We use proportional hazard models for the individual hazards, and Clayton's copula is used to model additional dependence between primary and secondary outcomes beyond that explained by the measured risk factors. We show that the proposed method is more efficient than weighted likelihood and is unbiased in the presence of shared frailty for the primary and secondary outcome. We illustrate the method with an application to a study of risk factors for diabetes in a Swedish cohort. Copyright © 2014 John Wiley & Sons, Ltd.
Many epidemiological studies use a nested case-control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies have proposed several methods to obtain unbiased estimates of risk for a secondary outcome from NCC data. Two common features of all current methods requires that the times of onset of the secondary outcome are known for cohort members not selected into the NCC study and the hazards of the two outcomes are conditionally independent given the available covariates. This last assumption will not be plausible when the individual frailty of study subjects is not captured by the measured covariates. We provide a maximum-likelihood method that explicitly models the individual frailties and also avoids the need to have access to the full cohort data. We derive the likelihood contribution by respecting the original sampling procedure with respect to the primary outcome. We use proportional hazard models for the individual hazards, and Clayton's copula is used to model additional dependence between primary and secondary outcomes beyond that explained by the measured risk factors. We show that the proposed method is more efficient than weighted likelihood and is unbiased in the presence of shared frailty for the primary and secondary outcome. We illustrate the method with an application to a study of risk factors for diabetes in a Swedish cohort.Many epidemiological studies use a nested case-control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the primary outcome, routine application of logistic regression to analyze a secondary outcome will generally be biased. Recently, many studies have proposed several methods to obtain unbiased estimates of risk for a secondary outcome from NCC data. Two common features of all current methods requires that the times of onset of the secondary outcome are known for cohort members not selected into the NCC study and the hazards of the two outcomes are conditionally independent given the available covariates. This last assumption will not be plausible when the individual frailty of study subjects is not captured by the measured covariates. We provide a maximum-likelihood method that explicitly models the individual frailties and also avoids the need to have access to the full cohort data. We derive the likelihood contribution by respecting the original sampling procedure with respect to the primary outcome. We use proportional hazard models for the individual hazards, and Clayton's copula is used to model additional dependence between primary and secondary outcomes beyond that explained by the measured risk factors. We show that the proposed method is more efficient than weighted likelihood and is unbiased in the presence of shared frailty for the primary and secondary outcome. We illustrate the method with an application to a study of risk factors for diabetes in a Swedish cohort.
Author Salim, Agus
Jialiang, Li
Xiangmei, Ma
Reilly, Marie
Author_xml – sequence: 1
  givenname: Agus
  surname: Salim
  fullname: Salim, Agus
  email: Correspondence to: Agus Salim, Department of Mathematics and Statistics La Trobe University Bundoora VIC3086 Australia, a.salim@latrobe.edu.au
  organization: Department of Mathematics and Statistics, La Trobe University, Bundoora VIC3086, Australia
– sequence: 2
  givenname: Ma
  surname: Xiangmei
  fullname: Xiangmei, Ma
  organization: Saw Swee Hock School of Public Health, National University of Singapore, 21 Lower Kent Ridge Road, Singapore
– sequence: 3
  givenname: Li
  surname: Jialiang
  fullname: Jialiang, Li
  organization: Department of Applied Probability and Statistics, National University of Singapore, 21 Lower Kent Ridge Road, Singapore
– sequence: 4
  givenname: Marie
  surname: Reilly
  fullname: Reilly, Marie
  organization: Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24753004$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:129076149$$DView record from Swedish Publication Index
BookMark eNqNkV1rFDEUhoNU2u1a8BfIgDfezJqPycdclqJtoa0XVtq7kJmc0HQzk3UyQ7v_3qy7XVEUvDoheXJ4eZ9jdNDHHhB6S_CCYEw_Jt8tBFbVKzQjuJYlplwdoBmmUpZCEn6EjlN6xJgQTuUhOqKV5AzjaoZuTovOPPtu6orglxD8Q4y26GB8yMPFoUjQxt6aYV2Y3oR18qmIrughjWCL1iQo8_s4xFBYM5o36LUzIcHJbs7Rt8-fbs8uyqsv55dnp1dlW3FVleAsV9bUjtLWyhxGCuZILaxqqDAEBBW0lcxh3pDaSucqECBs2xAFDKBmc1Ru96YnWE2NXg2-yxl1NF7vrpb5BJpTihXL_Ictvxri9ymH151PLYRgeohT0oSzShGCOf4PlBJGOWFVRt__gT7Gacg1_aQqysWm5zl6t6OmpgO7z_oiIQOLLdAOMaUBnG79aEa_6dX4oAnWG8s6W9Yby78i7j-87PwLuivqyQdY_5PTXy-vf-d9Fvy8582w1EIyyfXdzblWF4zd3tNrrdgPF5bDsQ
CODEN SMEDDA
CitedBy_id crossref_primary_10_1002_sim_7143
crossref_primary_10_1097_EDE_0000000000001469
crossref_primary_10_1177_0962280216669744
crossref_primary_10_1111_biom_12838
crossref_primary_10_1002_sim_9887
Cites_doi 10.1002/sim.3934
10.2337/diacare.28.8.2013
10.1046/j.1365-2796.2002.01032.x
10.1016/j.jclinepi.2006.06.022
10.1093/biomet/84.2.379
10.1093/biomet/65.1.141
10.1093/aje/kwp055
10.1002/sim.4494
10.1093/oxfordjournals.aje.a115471
10.1002/sim.3416
10.1016/S0378-3758(00)00317-7
10.1093/biostatistics/5.2.193
10.1007/s10985-012-9214-8
10.1093/biostatistics/kxn016
10.1093/aje/kwr374
10.7326/0003-4819-136-8-200204160-00006
10.1111/1467-9868.00182
10.2337/diacare.22.11.1887
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. May 20, 2014
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. May 20, 2014
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
7U1
C1K
ADTPV
AOWAS
DOI 10.1002/sim.6084
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Risk Abstracts
Environmental Sciences and Pollution Management
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Risk Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Risk Abstracts
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1852
ExternalDocumentID oai_swepub_ki_se_522083
3302805851
24753004
10_1002_sim_6084
SIM6084
ark_67375_WNG_8H33TX2M_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
7U1
C1K
31~
ABEML
ACSCC
ADTPV
AFFNX
AGHNM
AOWAS
ASPBG
AVWKF
AZFZN
DUUFO
EX3
FEDTE
HF~
HVGLF
M67
RIWAO
RJQFR
SAMSI
WOW
YHZ
ZGI
ZXP
ID FETCH-LOGICAL-c4584-efd58da9f22cd7475763f196d8b26a1e6262c73f05b19d7ff4e6e6dcb18e3ee93
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Mon Sep 01 03:34:12 EDT 2025
Fri Jul 11 08:26:49 EDT 2025
Thu Jul 10 22:07:58 EDT 2025
Fri Jul 25 03:55:21 EDT 2025
Thu Apr 03 07:07:36 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Tue Jul 01 03:28:05 EDT 2025
Wed Jan 22 16:45:03 EST 2025
Wed Oct 30 10:00:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords registry
case-cohort
biobank
frailty models
historical controls
Language English
License Copyright © 2014 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4584-efd58da9f22cd7475763f196d8b26a1e6262c73f05b19d7ff4e6e6dcb18e3ee93
Notes istex:E3D8772BEEB3AB8C7173DD9444B78D979EA22959
ark:/67375/WNG-8H33TX2M-8
ArticleID:SIM6084
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 24753004
PQID 1524256475
PQPubID 48361
PageCount 11
ParticipantIDs swepub_primary_oai_swepub_ki_se_522083
proquest_miscellaneous_1534811050
proquest_miscellaneous_1521325134
proquest_journals_1524256475
pubmed_primary_24753004
crossref_citationtrail_10_1002_sim_6084
crossref_primary_10_1002_sim_6084
wiley_primary_10_1002_sim_6084_SIM6084
istex_primary_ark_67375_WNG_8H33TX2M_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 May 2014
PublicationDateYYYYMMDD 2014-05-20
PublicationDate_xml – month: 05
  year: 2014
  text: 20 May 2014
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Lichtenstein P, De Faire U, Floderus B, Svartengren M, Svedberg P, Pedersen NL. The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies. Journal of Internal Medicine 2002; 252: 184-205.
Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. Diabetes Care 1999; 22: 1887-1898.
Saarela O, Kulathinal S, Arjas E, Laara E. Nested case control data utilized for multiple outcomes: a likelihood approach and alternatives. Statistics in Medicine 2008; 27: 5991-6008.
Salim A, Hultman CM, Sparen P, Reilly M. Combining data from 2 nested case-control studies of overlapping cohorts to improve efficiency. Biostatistics 2009; 10: 70-79.
Nielsen N, Parner ET. Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions. Statistics in Medicine 2010; 29: 2126-2136.
Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, Folsom AR, Chambless LE; Atherosclerosis risk in communities investigators. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care 2005; 28: 2013-2018.
Støer NC, Samuelsen SO. Comparison of estimators in nested case-control studies with multiple outcomes. Lifetime Data Analysis 2012. DOI:10.1007/s10985-012-9214-8.
Langholz B, Thomas DC. Nested case-control and case-cohort methods of sampling from a cohort: a critical comparison. American Journal of Epidemiology 1990; 131: 169-176.
Scott AJ, Wild CJ. Maximum likelihood for generalized case-control studies. Journal of Statistical Planning and Inference 2001; 96: 3-27.
Scheike TH, Juul A. Maximum likelihood estimation for Cox's regression model under nested case-control sampling. Biostatistics 2004; 5: 193-206.
Clayton DG. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 1978; 65: 141-151.
Onland-Moret NC, van der A DL, van der Schouw YT, Buschers W, Elias SG, van Gils CH, Koerselman J, Roest M, Grobbee DE, Peeters PH. Analysis of case-cohort data: a comparison of different methods. Journal of Clinical Epidemiology 2007; 60: 350-355.
Henderson R, Oman P. Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society Series B 1999; 61: 367-379.
Samuelsen SO. A pseudolikelihood approach to analysis of nested case-control studies. Biometrika 1997; 84: 379-394.
Breslow NE, Lumley T, Ballantyne CM, et al. Using the whole cohort in the analysis of case-cohort data. American Journal of Epidemiology 2009; 169: 1398-1405.
Salim A, Yang Q, Reilly M. The value of reusing prior nested case-control data in new studies with different outcome. Statistics in Medicine 2012; 31: 1291-1302. DOI: 10.1002/sim.4494.
Ganna A, Reilly M, de Faire U, Pedersen N, Magnusson P, Ingelsson E. Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease. American Journal of Epidemiology 2012; 175: 715-724.
Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Annals of Internal Medicine 2002; 136: 575-81.
2012; 175
1997; 84
2009; 10
2002; 252
2012
2010; 29
1978; 65
2002; 136
2008; 27
1999; 22
2004; 5
2007; 60
1999; 61
2005; 28
2009; 169
1990; 131
2012; 31
2001; 96
Langholz (10.1002/sim.6084-BIB0001|sim6084-cit-0001) 1990; 131
Schmidt (10.1002/sim.6084-BIB0015|sim6084-cit-0015) 2005; 28
Breslow (10.1002/sim.6084-BIB0018|sim6084-cit-0018) 2009; 169
Clayton (10.1002/sim.6084-BIB0009|sim6084-cit-0009) 1978; 65
Scott (10.1002/sim.6084-BIB0010|sim6084-cit-0010) 2001; 96
Stern (10.1002/sim.6084-BIB0014|sim6084-cit-0014) 2002; 136
Salim (10.1002/sim.6084-BIB0004|sim6084-cit-0004) 2009; 10
Nielsen (10.1002/sim.6084-BIB0007|sim6084-cit-0007) 2010; 29
Salim (10.1002/sim.6084-BIB0005|sim6084-cit-0005) 2012; 31
Ganna (10.1002/sim.6084-BIB0012|sim6084-cit-0012) 2012; 175
Samuelsen (10.1002/sim.6084-BIB0006|sim6084-cit-0006) 1997; 84
Henderson (10.1002/sim.6084-BIB0011|sim6084-cit-0011) 1999; 61
Saarela (10.1002/sim.6084-BIB0003|sim6084-cit-0003) 2008; 27
Scheike (10.1002/sim.6084-BIB0008|sim6084-cit-0008) 2004; 5
Støer (10.1002/sim.6084-BIB0017|sim6084-cit-0017) 2012
Lichtenstein (10.1002/sim.6084-BIB0013|sim6084-cit-0013) 2002; 252
Onland-Moret (10.1002/sim.6084-BIB0002|sim6084-cit-0002) 2007; 60
Haire-Joshu (10.1002/sim.6084-BIB0016|sim6084-cit-0016) 1999; 22
References_xml – reference: Onland-Moret NC, van der A DL, van der Schouw YT, Buschers W, Elias SG, van Gils CH, Koerselman J, Roest M, Grobbee DE, Peeters PH. Analysis of case-cohort data: a comparison of different methods. Journal of Clinical Epidemiology 2007; 60: 350-355.
– reference: Clayton DG. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 1978; 65: 141-151.
– reference: Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. Diabetes Care 1999; 22: 1887-1898.
– reference: Scott AJ, Wild CJ. Maximum likelihood for generalized case-control studies. Journal of Statistical Planning and Inference 2001; 96: 3-27.
– reference: Støer NC, Samuelsen SO. Comparison of estimators in nested case-control studies with multiple outcomes. Lifetime Data Analysis 2012. DOI:10.1007/s10985-012-9214-8.
– reference: Lichtenstein P, De Faire U, Floderus B, Svartengren M, Svedberg P, Pedersen NL. The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies. Journal of Internal Medicine 2002; 252: 184-205.
– reference: Salim A, Hultman CM, Sparen P, Reilly M. Combining data from 2 nested case-control studies of overlapping cohorts to improve efficiency. Biostatistics 2009; 10: 70-79.
– reference: Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Annals of Internal Medicine 2002; 136: 575-81.
– reference: Ganna A, Reilly M, de Faire U, Pedersen N, Magnusson P, Ingelsson E. Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease. American Journal of Epidemiology 2012; 175: 715-724.
– reference: Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, Folsom AR, Chambless LE; Atherosclerosis risk in communities investigators. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care 2005; 28: 2013-2018.
– reference: Breslow NE, Lumley T, Ballantyne CM, et al. Using the whole cohort in the analysis of case-cohort data. American Journal of Epidemiology 2009; 169: 1398-1405.
– reference: Saarela O, Kulathinal S, Arjas E, Laara E. Nested case control data utilized for multiple outcomes: a likelihood approach and alternatives. Statistics in Medicine 2008; 27: 5991-6008.
– reference: Salim A, Yang Q, Reilly M. The value of reusing prior nested case-control data in new studies with different outcome. Statistics in Medicine 2012; 31: 1291-1302. DOI: 10.1002/sim.4494.
– reference: Scheike TH, Juul A. Maximum likelihood estimation for Cox's regression model under nested case-control sampling. Biostatistics 2004; 5: 193-206.
– reference: Henderson R, Oman P. Effect of frailty on marginal regression estimates in survival analysis. Journal of the Royal Statistical Society Series B 1999; 61: 367-379.
– reference: Langholz B, Thomas DC. Nested case-control and case-cohort methods of sampling from a cohort: a critical comparison. American Journal of Epidemiology 1990; 131: 169-176.
– reference: Samuelsen SO. A pseudolikelihood approach to analysis of nested case-control studies. Biometrika 1997; 84: 379-394.
– reference: Nielsen N, Parner ET. Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions. Statistics in Medicine 2010; 29: 2126-2136.
– volume: 22
  start-page: 1887
  year: 1999
  end-page: 1898
  article-title: Smoking and diabetes
  publication-title: Diabetes Care
– volume: 84
  start-page: 379
  year: 1997
  end-page: 394
  article-title: A pseudolikelihood approach to analysis of nested case‐control studies
  publication-title: Biometrika
– volume: 5
  start-page: 193
  year: 2004
  end-page: 206
  article-title: Maximum likelihood estimation for Cox's regression model under nested case‐control sampling
  publication-title: Biostatistics
– volume: 252
  start-page: 184
  year: 2002
  end-page: 205
  article-title: The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies
  publication-title: Journal of Internal Medicine
– volume: 175
  start-page: 715
  year: 2012
  end-page: 724
  article-title: Risk prediction measures for case‐cohort and nested case‐control designs: an application to cardiovascular disease
  publication-title: American Journal of Epidemiology
– volume: 28
  start-page: 2013
  year: 2005
  end-page: 2018
  article-title: Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study
  publication-title: Diabetes Care
– volume: 27
  start-page: 5991
  year: 2008
  end-page: 6008
  article-title: Nested case control data utilized for multiple outcomes: a likelihood approach and alternatives
  publication-title: Statistics in Medicine
– volume: 29
  start-page: 2126
  year: 2010
  end-page: 2136
  article-title: Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions
  publication-title: Statistics in Medicine
– volume: 136
  start-page: 575
  year: 2002
  end-page: 81
  article-title: Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test?
  publication-title: Annals of Internal Medicine
– volume: 31
  start-page: 1291
  year: 2012
  end-page: 1302
  article-title: The value of reusing prior nested case‐control data in new studies with different outcome
  publication-title: Statistics in Medicine
– volume: 169
  start-page: 1398
  year: 2009
  end-page: 1405
  article-title: Using the whole cohort in the analysis of case‐cohort data
  publication-title: American Journal of Epidemiology
– year: 2012
  article-title: Comparison of estimators in nested case‐control studies with multiple outcomes
  publication-title: Lifetime Data Analysis
– volume: 65
  start-page: 141
  year: 1978
  end-page: 151
  article-title: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence
  publication-title: Biometrika
– volume: 10
  start-page: 70
  year: 2009
  end-page: 79
  article-title: Combining data from 2 nested case‐control studies of overlapping cohorts to improve efficiency
  publication-title: Biostatistics
– volume: 60
  start-page: 350
  year: 2007
  end-page: 355
  article-title: Analysis of case‐cohort data: a comparison of different methods
  publication-title: Journal of Clinical Epidemiology
– volume: 131
  start-page: 169
  year: 1990
  end-page: 176
  article-title: Nested case‐control and case‐cohort methods of sampling from a cohort: a critical comparison
  publication-title: American Journal of Epidemiology
– volume: 96
  start-page: 3
  year: 2001
  end-page: 27
  article-title: Maximum likelihood for generalized case‐control studies
  publication-title: Journal of Statistical Planning and Inference
– volume: 61
  start-page: 367
  year: 1999
  end-page: 379
  article-title: Effect of frailty on marginal regression estimates in survival analysis
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 29
  start-page: 2126
  year: 2010
  ident: 10.1002/sim.6084-BIB0007|sim6084-cit-0007
  article-title: Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3934
– volume: 28
  start-page: 2013
  year: 2005
  ident: 10.1002/sim.6084-BIB0015|sim6084-cit-0015
  article-title: Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study
  publication-title: Diabetes Care
  doi: 10.2337/diacare.28.8.2013
– volume: 252
  start-page: 184
  year: 2002
  ident: 10.1002/sim.6084-BIB0013|sim6084-cit-0013
  article-title: The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies
  publication-title: Journal of Internal Medicine
  doi: 10.1046/j.1365-2796.2002.01032.x
– volume: 60
  start-page: 350
  year: 2007
  ident: 10.1002/sim.6084-BIB0002|sim6084-cit-0002
  article-title: Analysis of case-cohort data: a comparison of different methods
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2006.06.022
– volume: 84
  start-page: 379
  year: 1997
  ident: 10.1002/sim.6084-BIB0006|sim6084-cit-0006
  article-title: A pseudolikelihood approach to analysis of nested case-control studies
  publication-title: Biometrika
  doi: 10.1093/biomet/84.2.379
– volume: 65
  start-page: 141
  year: 1978
  ident: 10.1002/sim.6084-BIB0009|sim6084-cit-0009
  article-title: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence
  publication-title: Biometrika
  doi: 10.1093/biomet/65.1.141
– volume: 169
  start-page: 1398
  year: 2009
  ident: 10.1002/sim.6084-BIB0018|sim6084-cit-0018
  article-title: Using the whole cohort in the analysis of case-cohort data
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwp055
– volume: 31
  start-page: 1291
  year: 2012
  ident: 10.1002/sim.6084-BIB0005|sim6084-cit-0005
  article-title: The value of reusing prior nested case-control data in new studies with different outcome
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4494
– volume: 131
  start-page: 169
  year: 1990
  ident: 10.1002/sim.6084-BIB0001|sim6084-cit-0001
  article-title: Nested case-control and case-cohort methods of sampling from a cohort: a critical comparison
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a115471
– volume: 27
  start-page: 5991
  year: 2008
  ident: 10.1002/sim.6084-BIB0003|sim6084-cit-0003
  article-title: Nested case control data utilized for multiple outcomes: a likelihood approach and alternatives
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3416
– volume: 96
  start-page: 3
  year: 2001
  ident: 10.1002/sim.6084-BIB0010|sim6084-cit-0010
  article-title: Maximum likelihood for generalized case-control studies
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/S0378-3758(00)00317-7
– volume: 5
  start-page: 193
  year: 2004
  ident: 10.1002/sim.6084-BIB0008|sim6084-cit-0008
  article-title: Maximum likelihood estimation for Cox's regression model under nested case-control sampling
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/5.2.193
– year: 2012
  ident: 10.1002/sim.6084-BIB0017|sim6084-cit-0017
  article-title: Comparison of estimators in nested case-control studies with multiple outcomes
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-012-9214-8
– volume: 10
  start-page: 70
  year: 2009
  ident: 10.1002/sim.6084-BIB0004|sim6084-cit-0004
  article-title: Combining data from 2 nested case-control studies of overlapping cohorts to improve efficiency
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxn016
– volume: 175
  start-page: 715
  year: 2012
  ident: 10.1002/sim.6084-BIB0012|sim6084-cit-0012
  article-title: Risk prediction measures for case-cohort and nested case-control designs: an application to cardiovascular disease
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwr374
– volume: 136
  start-page: 575
  year: 2002
  ident: 10.1002/sim.6084-BIB0014|sim6084-cit-0014
  article-title: Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test?
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-136-8-200204160-00006
– volume: 61
  start-page: 367
  year: 1999
  ident: 10.1002/sim.6084-BIB0011|sim6084-cit-0011
  article-title: Effect of frailty on marginal regression estimates in survival analysis
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/1467-9868.00182
– volume: 22
  start-page: 1887
  year: 1999
  ident: 10.1002/sim.6084-BIB0016|sim6084-cit-0016
  article-title: Smoking and diabetes
  publication-title: Diabetes Care
  doi: 10.2337/diacare.22.11.1887
SSID ssj0011527
Score 2.1261024
Snippet Many epidemiological studies use a nested case‐control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the...
Many epidemiological studies use a nested case-control (NCC) design to reduce cost while maintaining study power. Because NCC sampling is conditional on the...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1842
SubjectTerms biobank
Cardiovascular Diseases - etiology
case-cohort
Case-Control Studies
Cohort Studies
Computer Simulation
Diabetes Mellitus, Type 2 - complications
Epidemiology
Estimation bias
Female
Frailty
frailty models
historical controls
Humans
Likelihood Functions
Male
Maximum likelihood method
Proportional Hazards Models
registry
Regression analysis
Risk Factors
Title A maximum likelihood method for secondary analysis of nested case-control data
URI https://api.istex.fr/ark:/67375/WNG-8H33TX2M-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6084
https://www.ncbi.nlm.nih.gov/pubmed/24753004
https://www.proquest.com/docview/1524256475
https://www.proquest.com/docview/1521325134
https://www.proquest.com/docview/1534811050
http://kipublications.ki.se/Default.aspx?queryparsed=id:129076149
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA6ygiyIl6prdZUIok_TnVxmJn1cxLUKXUR3seBDSDIJlG6nsm1h8cmf4G_0l3jOJDOysor41KFzZiaXc5LvJCffIeS5D4BBKmayAGAjk46bTAUessJL5nKhpG1zLE2Py8mpfDcrZimqEs_CRH6IfsENLaMdr9HAjV0f_CINXc-XozJXSAWKoVqIhz70zFGsy9aKO5RlxYqOdzbnB92Dl2ai69ioF1fBzJ5D9DJ8beefo9vkc1fyGHayGG03duS-_kbq-H9Vu0NuJVhKD6Me3SXXfDMgN6Zp431AbsblPRpPLQ3ILoLUyPF8j7w_pEtzMV9ul_RsvoBvI1UyjbmpKYBiukavu4byUJM4UOgq0KZdaqUO5tEf376nmHmKIav3yenR65NXkyxlasgc7rNmPtSFqs04cO5qcFDAiREBbLtWlpeGefCauKtEyAvo-roKQfrSl7WzTHnh_Vg8IDvNqvEPCRXBjnMnuVTGSm5h-DBGCCQiC4YFwYbkZddr2iUac8ymcaYjATPX0HoaW29InvWSXyJ1xxUyL9qO7wXM-QJD3apCfzp-o9VEiJMZn2o1JPudZuhk5WsNSgZDXgn1hW_1t8E-cdPFNH61bWXA4S-YkH-TwePQgHTzIdmLWtcXiMPbkRUNShrVsL-DxODprwVceQ1QGgA1CLa69cc6649vp_j76F8FH5NdgIkSYyZ4vk92Nudb_wSg2MY-bY3uJ2g4L8o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwSTJi7lssIAIyF4SpfYzqXiaUKMDtYKQSf6MMlyHFuquqZobaWJJ34Cv5FfwjlxEjQ0EOKpUXOS-HKO_R37-DsAz61DDJJGOnAINgJpuA4yx10QWxmZUGQyr3IsDUfJ4ES-m8STDXjVnIXx_BDtghtZRjVek4HTgvT-L9bQ5XTeS8JMXoMtSuhd-VMfW-6oqMnXSnuUSRrFDfNsyPebJy_NRVvUrBdXAc2WRfQygK1moMNbcNqU3QeezHrrVd4zX3-jdfzPyt2GmzUyZQdele7Ahi07cH1Y7713YMev8DF_cKkD24RTPc3zXfhwwOb6Yjpfz9nZdIYfJ7Zk5tNTM8TFbEmOd4EFYrqmQWELx8pqtZUZnEp_fPteh80zilq9ByeHb8avB0GdrCEwtNUaWFfEWaH7jnNToI-CfoxwaN5FlvNERxYdJ25S4cIYe79InZM2sUlh8iizwtq-uA-b5aK0u8CEy_uhkVxmOpc8xxFEayGIi8zpyImoCy-bblOmZjKnhBpnynMwc4Wtp6j1uvCslfzi2TuukHlR9XwroM9nFO2Wxurz6K3KBkKMJ3yosi7sNaqhakNfKtQyHPUSrC9-q72NJkr7Lrq0i3Ulgz4_aqj8mwydiEawG3bhgVe7tkAc307EaFhSr4ftHeIGr_-a4ZVViKYRU6NgpVx_rLP6dDSk34f_KvgUbgzGw2N1fDR6_wi2ETVKCqHg4R5srs7X9jEis1X-pLLAnz-pM-U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED7BJk2T0IDyssIAIyH4lC6xnZd-nBilA1pNsIlKfLAcx5aqrum0ttLEJ34Cv5Ffwl2cBA0NhPiUKrkmfrmzn7PPzwG8sA4xSBrpwCHYCKThOsgcd0FsZWRCkcm8yrE0GifDU_luEk_qqEo6C-P5IdoFN7KMarwmAz8v3P4v0tDldN5LwkzehE2JV9Low48tdVTUpGulLcokjeKGeDbk-80_r0xFm9Sql9fhzJZE9Cp-rSagwW340hTdx53MeutV3jNff2N1_L-63YGdGpeyA69Id-GGLTuwNap33jtwy6_vMX9sqQPbhFI9yfM9OD5gc305na_n7Gw6w28TVzLzyakZomK2JLe7wPIwXZOgsIVjZbXWygxOpD--fa-D5hnFrN6H08Gbk9fDoE7VEBjaaA2sK-Ks0H3HuSnQQ0EvRjg07iLLeaIji24TN6lwYYx9X6TOSZvYpDB5lFlhbV88gI1yUdpdYMLl_dBILjOdS57j-KG1EMRE5nTkRNSFV02vKVPzmFM6jTPlGZi5wtZT1HpdeN5KnnvujmtkXlYd3wroixnFuqWx-jx-q7KhECcTPlJZF_YazVC1mS8VKhmOeQnWF7_VPkYDpV0XXdrFupJBjz-OhPybDJ2HRqgbduGh17q2QBzfTrRoWFKvhu0TYgavb83wl1WIpRFRo2ClW3-ss_p0NKLro38VfAZbx4cD9eFo_P4xbCNklBQ_wcM92FhdrO0ThGWr_Gllfz8BoRsynQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+maximum+likelihood+method+for+secondary+analysis+of+nested+case-control+data&rft.jtitle=Statistics+in+medicine&rft.au=Salim%2C+A&rft.au=Ma%2C+X&rft.au=Li%2C+J&rft.au=Reilly%2C+M&rft.date=2014-05-20&rft.issn=0277-6715&rft.volume=33&rft.issue=11&rft.spage=1842&rft_id=info:doi/10.1002%2Fsim.6084&rft.externalDocID=oai_swepub_ki_se_522083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon