Spectrum of Mutations and Long-Term Clinical Outcomes in Genetic Chylomicronemia Syndromes
OBJECTIVE:Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic compariso...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 39; no. 12; pp. 2531 - 2541 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVE:Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS.
APPROACH AND RESULTS:Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis.
CONCLUSIONS:Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS. |
---|---|
AbstractList | OBJECTIVE:Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS.
APPROACH AND RESULTS:Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis.
CONCLUSIONS:Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS. Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS. Approach and Results: Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis.OBJECTIVEFamilial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS. Approach and Results: Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis.Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS.CONCLUSIONSOur data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS. Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS. Approach and Results: Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical , , , , and . Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis. Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in while variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS. |
Author | Polito, Luca Arca, Marcello Ceci, Fabrizio D’Erasmo, Laura Montali, Anna Di Costanzo, Alessia Minicocci, Ilenia Cassandra, Francesca |
Author_xml | – sequence: 1 givenname: Laura surname: D’Erasmo fullname: D’Erasmo, Laura – sequence: 2 givenname: Alessia surname: Di Costanzo fullname: Di Costanzo, Alessia – sequence: 3 givenname: Francesca surname: Cassandra fullname: Cassandra, Francesca – sequence: 4 givenname: Ilenia surname: Minicocci fullname: Minicocci, Ilenia – sequence: 5 givenname: Luca surname: Polito fullname: Polito, Luca – sequence: 6 givenname: Anna surname: Montali fullname: Montali, Anna – sequence: 7 givenname: Fabrizio surname: Ceci fullname: Ceci, Fabrizio – sequence: 8 givenname: Marcello surname: Arca fullname: Arca, Marcello |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31619059$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT9v2zAQxYkiRZM4_QIdCo5dlPC_pNE12qSAgwxxM3QhaOpUs6VIl5QQ-NuXhpwlQwASvAe8d7j78RKdhRgAoU-UXFOq6M1y8_R1ebcsor3mlAtC36ELKpmohOLqrNSkbiupBDtHlzn_IYQIxsgHdM5LvCWyvUC_HvdgxzQNOPb4fhrN6GLI2IQOr2P4XW0gDXjlXXDWePwwjTYOkLEL-BYCjM7i1e7g4-BsKsMNzuDHQ-jS0XSF3vfGZ_h4ehfo5_dvm9VdtX64_bFarisrZCMqaZVsRa362hDaW9azpmNtA4wYyqGrhbRbwpVoOpBkq4Sy0tYd1Fshe8k7wxfoy9x3n-K_CfKoB5cteG8CxClrxokSreDlLNDnk3XaDtDpfXKDSQf9wqMYmtlQ1sk5Qa-tm5mMyTivKdFH9PqEvohWz-hLlL2KvnR_MyTm0HP0I6T810_PkPQOjB93-vhhXBFZMUJbyoqsyqWC_wfvapXR |
CitedBy_id | crossref_primary_10_1016_j_arteri_2021_09_002 crossref_primary_10_1016_j_atherosclerosis_2024_117476 crossref_primary_10_1089_gtmb_2023_0107 crossref_primary_10_1016_j_jacl_2024_09_008 crossref_primary_10_1016_j_artere_2022_01_004 crossref_primary_10_1097_MED_0000000000000846 crossref_primary_10_1016_j_metabol_2020_154395 crossref_primary_10_1016_j_transci_2021_103346 crossref_primary_10_1016_j_jacl_2024_08_006 crossref_primary_10_1097_MOL_0000000000000939 crossref_primary_10_3389_fgene_2023_1248435 crossref_primary_10_5551_jat_RV17054 crossref_primary_10_1177_1753495X241283628 crossref_primary_10_52727_2078_256X_2023_19_1_6_18 crossref_primary_10_1016_j_arteri_2024_11_001 crossref_primary_10_3390_metabo13050621 crossref_primary_10_1038_s41569_022_00676_y crossref_primary_10_1016_j_atherosclerosis_2025_119114 crossref_primary_10_1007_s11883_021_00967_8 crossref_primary_10_1007_s11883_022_01076_w crossref_primary_10_1007_s11883_021_00962_z crossref_primary_10_1016_j_ymgmr_2024_101100 crossref_primary_10_1097_MOL_0000000000000849 crossref_primary_10_1007_s11883_020_00885_1 crossref_primary_10_1093_cvr_cvae136 crossref_primary_10_18705_2782_3806_20244_3_194_205 crossref_primary_10_1080_14656566_2020_1787380 crossref_primary_10_1161_JAHA_120_018932 crossref_primary_10_20945_2359_3997000000601 crossref_primary_10_1176_appi_ps_202000096 crossref_primary_10_36660_abc_20230203 crossref_primary_10_1016_j_artere_2025_100746 crossref_primary_10_1097_MOL_0000000000000690 crossref_primary_10_1016_j_jacl_2024_07_010 crossref_primary_10_3390_jcm10040669 crossref_primary_10_1097_MOL_0000000000000676 crossref_primary_10_2147_TACG_S243148 crossref_primary_10_3389_fcvm_2022_886266 crossref_primary_10_1016_j_pathol_2024_02_015 crossref_primary_10_15829_1560_4071_2025_6240 crossref_primary_10_2147_DDDT_S224771 crossref_primary_10_1161_ATVBAHA_124_320955 crossref_primary_10_1210_clinem_dgab360 crossref_primary_10_1097_HCO_0000000000000839 crossref_primary_10_1186_s12944_021_01436_6 crossref_primary_10_1172_JCI153285 crossref_primary_10_3389_fgene_2021_726116 crossref_primary_10_1161_ATVBAHA_120_314168 crossref_primary_10_1016_j_gene_2020_145310 crossref_primary_10_1016_j_ygeno_2023_110567 crossref_primary_10_1016_j_jacl_2023_05_096 |
Cites_doi | 10.1161/ATVBAHA.111.226365 10.3892/mmr.2015.3825 10.1016/S2213-8587(13)70191-8 10.1016/j.jacl.2018.10.006 10.1503/cmaj.060963 10.1161/CIRCGENETICS.111.960864 10.1126/science.1064852 10.1016/j.atherosclerosis.2011.09.030 10.1038/nprot.2015.105 10.1038/nrendo.2015.26 10.1016/j.jacl.2017.08.017 10.1016/j.jacl.2016.02.010 10.1016/j.jacl.2012.08.007 10.1016/j.jacl.2017.01.003 10.1016/j.atherosclerosis.2018.06.814 10.1007/s00246-018-1806-y 10.1016/j.atherosclerosis.2017.07.030 10.1093/hmg/ddt376 10.1093/eurheartj/ehs431 10.1093/hmg/11.24.3031 10.1038/s41598-018-21939-0 10.1016/j.jacl.2018.03.086 10.1194/jlr.R009720 10.1210/er.2014-1062 10.1016/j.atherosclerosis.2018.06.006 10.1097/MPG.0b013e3181b64407 10.1038/nm.2347 10.1016/j.jacl.2018.03.093 10.1371/journal.pone.0099721 10.1016/j.atherosclerosis.2015.04.815 10.1016/j.bbalip.2011.10.007 10.1186/1471-2164-10-561 10.1016/j.bbalip.2014.03.013 10.4172/2155-9880.1000138 10.3390/nu5030981 10.1016/j.atherosclerosis.2018.12.019 10.1016/j.atherosclerosis.2016.12.018 10.1038/ng.628 10.1038/gim.2015.30 10.1016/j.atherosclerosis.2017.10.025 10.1111/j.1365-2796.2012.02516.x |
ContentType | Journal Article |
Copyright | 2019 American Heart Association, Inc. |
Copyright_xml | – notice: 2019 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/ATVBAHA.119.313401 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 2541 |
ExternalDocumentID | 31619059 10_1161_ATVBAHA_119_313401 00043605-201912000-00014 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION ACIJW AWKKM CGR CUY CVF ECM EIF NPM OK1 OLW RHF 7X8 |
ID | FETCH-LOGICAL-c4584-5c659476f7a01fc2f28d298e20a13ed745cb03648de50b646c5c7de7b45f53da3 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Fri Jul 11 02:19:38 EDT 2025 Wed Feb 19 02:31:22 EST 2025 Tue Jul 01 00:38:32 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Fri May 16 03:41:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | genetics triglycerides familial hyperchylomicronemia humans lipoprotein lipase |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4584-5c659476f7a01fc2f28d298e20a13ed745cb03648de50b646c5c7de7b45f53da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.119.313401 |
PMID | 31619059 |
PQID | 2306494394 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2306494394 pubmed_primary_31619059 crossref_citationtrail_10_1161_ATVBAHA_119_313401 crossref_primary_10_1161_ATVBAHA_119_313401 wolterskluwer_health_00043605-201912000-00014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-December 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-December |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2019 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_5_28_2 e_1_3_5_27_2 e_1_3_5_26_2 e_1_3_5_25_2 e_1_3_5_24_2 e_1_3_5_23_2 e_1_3_5_22_2 e_1_3_5_21_2 e_1_3_5_29_2 e_1_3_5_2_2 e_1_3_5_40_2 e_1_3_5_41_2 e_1_3_5_42_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_4_2 e_1_3_5_3_2 e_1_3_5_6_2 e_1_3_5_5_2 e_1_3_5_17_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_36_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_18_2 e_1_3_5_31_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_16_2 doi: 10.1161/ATVBAHA.111.226365 – ident: e_1_3_5_33_2 doi: 10.3892/mmr.2015.3825 – ident: e_1_3_5_10_2 doi: 10.1016/S2213-8587(13)70191-8 – ident: e_1_3_5_3_2 doi: 10.1016/j.jacl.2018.10.006 – ident: e_1_3_5_13_2 doi: 10.1503/cmaj.060963 – ident: e_1_3_5_30_2 doi: 10.1161/CIRCGENETICS.111.960864 – ident: e_1_3_5_24_2 doi: 10.1126/science.1064852 – ident: e_1_3_5_28_2 doi: 10.1016/j.atherosclerosis.2011.09.030 – ident: e_1_3_5_20_2 doi: 10.1038/nprot.2015.105 – ident: e_1_3_5_7_2 doi: 10.1038/nrendo.2015.26 – ident: e_1_3_5_31_2 doi: 10.1016/j.jacl.2017.08.017 – ident: e_1_3_5_32_2 doi: 10.1016/j.jacl.2016.02.010 – ident: e_1_3_5_5_2 doi: 10.1016/j.jacl.2012.08.007 – ident: e_1_3_5_17_2 doi: 10.1016/j.jacl.2017.01.003 – ident: e_1_3_5_4_2 doi: 10.1016/j.atherosclerosis.2018.06.814 – ident: e_1_3_5_18_2 doi: 10.1007/s00246-018-1806-y – ident: e_1_3_5_38_2 doi: 10.1016/j.atherosclerosis.2017.07.030 – ident: e_1_3_5_21_2 doi: 10.1093/hmg/ddt376 – ident: e_1_3_5_23_2 doi: 10.1093/eurheartj/ehs431 – ident: e_1_3_5_25_2 doi: 10.1093/hmg/11.24.3031 – ident: e_1_3_5_19_2 doi: 10.1038/s41598-018-21939-0 – ident: e_1_3_5_6_2 doi: 10.1016/j.jacl.2018.03.086 – ident: e_1_3_5_2_2 doi: 10.1194/jlr.R009720 – ident: e_1_3_5_12_2 doi: 10.1210/er.2014-1062 – ident: e_1_3_5_42_2 doi: 10.1016/j.atherosclerosis.2018.06.006 – ident: e_1_3_5_27_2 doi: 10.1097/MPG.0b013e3181b64407 – ident: e_1_3_5_37_2 doi: 10.1038/nm.2347 – ident: e_1_3_5_40_2 doi: 10.1016/j.jacl.2018.03.093 – ident: e_1_3_5_29_2 doi: 10.1371/journal.pone.0099721 – ident: e_1_3_5_11_2 doi: 10.1016/j.atherosclerosis.2015.04.815 – ident: e_1_3_5_15_2 doi: 10.1016/j.bbalip.2011.10.007 – ident: e_1_3_5_26_2 doi: 10.1186/1471-2164-10-561 – ident: e_1_3_5_39_2 doi: 10.1016/j.bbalip.2014.03.013 – ident: e_1_3_5_36_2 doi: 10.4172/2155-9880.1000138 – ident: e_1_3_5_8_2 doi: 10.3390/nu5030981 – ident: e_1_3_5_41_2 doi: 10.1016/j.atherosclerosis.2018.12.019 – ident: e_1_3_5_14_2 doi: 10.1016/j.atherosclerosis.2016.12.018 – ident: e_1_3_5_34_2 doi: 10.1038/ng.628 – ident: e_1_3_5_22_2 doi: 10.1038/gim.2015.30 – ident: e_1_3_5_9_2 doi: 10.1016/j.atherosclerosis.2017.10.025 – ident: e_1_3_5_35_2 doi: 10.1111/j.1365-2796.2012.02516.x |
SSID | ssj0004220 |
Score | 2.5084581 |
Snippet | OBJECTIVE:Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions... Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2531 |
SubjectTerms | Adolescent Adult Aged Alleles Apolipoprotein A-V - genetics Apolipoprotein A-V - metabolism DNA - genetics DNA Mutational Analysis Female Follow-Up Studies Genotype Humans Hyperlipoproteinemia Type I - genetics Hyperlipoproteinemia Type I - metabolism Lipoprotein Lipase - genetics Lipoprotein Lipase - metabolism Male Middle Aged Mutation Prognosis Time Factors Young Adult |
Title | Spectrum of Mutations and Long-Term Clinical Outcomes in Genetic Chylomicronemia Syndromes |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00043605-201912000-00014 https://www.ncbi.nlm.nih.gov/pubmed/31619059 https://www.proquest.com/docview/2306494394 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKYhhLhTbjISPFXZYsd2ksdShsqlIESHJl4ix3FYtSWZllZI_A_-L8dOnKYUEPBSNWlqtzlfTs6Jv_MdhJ7GOU0lFblHtcg8JiT3IsEDL9dxzmKpMmnV9WfvxPSIvT7mx4PB9x5rabVM99W3X9aV_I9VYR_Y1VTJ_oNlu0FhB7wH-8IrWBhe_8rGpnn88mJVWB7Latmy2syj8LdV-cWbg9cdTVzp4_vVEn6D5V9ZsWmj1Do5gXy9MJy8UhcLOfrY6hfU_Zh1bFifi6qGyeGW2mgSmO4KReq2zIwdpbWVdeoi5Gc0PLyQdVG5MuzuRvBiAe7IRqeu1gYu0DVzCMJ6GNj2QWr6f-h6zSuamX9VKWXJCK_ODGWw_wCDxD0yiG6dLmWeES7re-VG4sihj_Z9LG_uG9vOXxjnP55_ej6ejmEz3g9IwPyNg8GA54WFQwCHx34rR74pue0-uoQuU8g-TGOMNx96IvSU-q7-SpCD7Qn30K4bYjPc2cphrqCrXytDi6hPbVVEL7aZX0fX2qQEjxuE3UADXd5Eu7OWdnELfXZAw1WOO6BhsA7ugIYd0LADGl6UuAUa_glouAPabXT08nA-mXptUw5PmSV1jyvBYxaKPJQ-yRXNaZTRONLUlyTQWci4Ss3adpRp7qeCCcVVmOkwZTznQSaDO2inhLnuIRwTnoooCxjVkFhkKhJaCEbSKCI6k5QMEXHnLlGtYr1pnHKW2MxVkKQ99bARJ82pH6JR953zRq_lj0c_cSZJwK2atTJZ6mpVJzYzj03Z-BDdbWzVjedsO0TehvGSpnQ5scvrwueeQTtx2g2E3f_tSA_Q3vrKeIh2wKL6EQS7y_Sxhd4PDDinNw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum+of+Mutations+and+Long-Term+Clinical+Outcomes+in+Genetic+Chylomicronemia+Syndromes&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=D%27Erasmo%2C+Laura&rft.au=Di+Costanzo%2C+Alessia&rft.au=Cassandra%2C+Francesca&rft.au=Minicocci%2C+Ilenia&rft.date=2019-12-01&rft.eissn=1524-4636&rft.volume=39&rft.issue=12&rft.spage=2531&rft_id=info:doi/10.1161%2FATVBAHA.119.313401&rft_id=info%3Apmid%2F31619059&rft.externalDocID=31619059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |