Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy

Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 56; no. 11; pp. 1660 - 1668
Main Authors Gleichgerrcht, Ezequiel, Kocher, Madison, Bonilha, Leonardo
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of “big data” are paramount to leverage the full potential of this new approach.
AbstractList Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach.
The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach.
The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of “big data” are paramount to leverage the full potential of this new approach.
The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach.The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach.
Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of “big data” are paramount to leverage the full potential of this new approach.
Author Bonilha, Leonardo
Gleichgerrcht, Ezequiel
Kocher, Madison
Author_xml – sequence: 1
  givenname: Ezequiel
  surname: Gleichgerrcht
  fullname: Gleichgerrcht, Ezequiel
  organization: Medical University of South Carolina
– sequence: 2
  givenname: Madison
  surname: Kocher
  fullname: Kocher, Madison
  organization: Medical University of South Carolina
– sequence: 3
  givenname: Leonardo
  surname: Bonilha
  fullname: Bonilha, Leonardo
  organization: Medical University of South Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26391203$$D View this record in MEDLINE/PubMed
BookMark eNp90UtPAyEQAGBiNNqqB_-A2cSLHtYCU_bhzTS-EqMe9Gg2lJ1adBdWoJr991KrHkyUyxD4ZgIzQ7JurEFC9hg9ZnGNsNPHDBjAGhkwwYuUsSxfJwNKGaSlKOgWGXr_TCnNsxw2yRbPoGScwoA8TqwxqIJttfKJNHXy5GQ3T8IcrevjgWx6j_4kubFv2CTaeP00Dz5ugk0MhnfrXhI5Nda1stFB4_IqiQ9qsPP9DtmYycbj7lfcJg_nZ_eTy_T69uJqcnqdqrEoIMV6Vhe8LDnLWaFKOYUxQM0khUIpjoJxzqGWMI5M8bwExWqqYkRRCiVmsE0OV3U7Z18X6EPVaq-waaRBu_AVy3mR5WOelZEe_KLPduHiN1eKUgFiqfa_1GLaYl11TrfS9dV34yI4WgHlrPcOZz-E0Wo5lCr2oPocSrSjX1bpIIO2Jjipm_8y3mMf-79LV2d3V6uMDxpOnL0
CODEN EPILAK
CitedBy_id crossref_primary_10_1016_j_ejps_2017_04_019
crossref_primary_10_1016_j_seizure_2020_01_010
crossref_primary_10_1016_j_neulet_2020_135076
crossref_primary_10_3389_fnhum_2021_637071
crossref_primary_10_1002_hbm_25037
crossref_primary_10_1111_ane_13198
crossref_primary_10_3390_brainsci10100700
crossref_primary_10_1016_j_nrleng_2020_06_016
crossref_primary_10_1016_j_seizure_2023_08_005
crossref_primary_10_1016_j_clineuro_2021_107037
crossref_primary_10_1111_ane_12899
crossref_primary_10_1080_13803395_2022_2164256
crossref_primary_10_1016_j_plrev_2018_12_004
crossref_primary_10_3389_fcell_2021_803800
crossref_primary_10_1097_WNP_0000000000001071
crossref_primary_10_1002_hbm_26638
crossref_primary_10_1111_epi_16540
crossref_primary_10_1111_epi_14528
crossref_primary_10_1111_epi_17751
crossref_primary_10_1038_s41598_020_71359_2
crossref_primary_10_1080_23808993_2017_1364133
crossref_primary_10_1371_journal_pone_0311666
crossref_primary_10_1016_j_clinph_2018_11_022
crossref_primary_10_3390_biology12030352
crossref_primary_10_1111_jon_13107
crossref_primary_10_1371_journal_pone_0219904
crossref_primary_10_3389_fnetp_2023_1297345
crossref_primary_10_1016_j_clinph_2020_05_022
crossref_primary_10_1016_j_nicl_2021_102765
crossref_primary_10_1016_j_yebeh_2016_07_016
crossref_primary_10_1186_s12883_021_02358_7
crossref_primary_10_1162_netn_a_00382
crossref_primary_10_3174_ajnr_A5039
crossref_primary_10_1007_s00062_021_01002_8
crossref_primary_10_1002_ana_25888
crossref_primary_10_1097_WCO_0000000000000568
crossref_primary_10_1093_braincomms_fcaa001
crossref_primary_10_3389_fneur_2022_837893
crossref_primary_10_1016_j_ejpn_2023_05_009
crossref_primary_10_1016_j_nicl_2017_08_018
crossref_primary_10_1162_netn_a_00379
crossref_primary_10_1111_epi_17298
crossref_primary_10_1007_s00259_024_07054_5
crossref_primary_10_1007_s12264_025_01348_w
crossref_primary_10_1016_j_eplepsyres_2021_106791
crossref_primary_10_3389_fmed_2020_605002
crossref_primary_10_1016_j_nrl_2020_06_010
crossref_primary_10_1002_hbm_25873
crossref_primary_10_1016_j_clinph_2019_10_017
crossref_primary_10_1016_j_yebeh_2016_07_030
crossref_primary_10_1161_JAHA_118_010054
crossref_primary_10_1016_j_neucli_2023_102888
crossref_primary_10_1016_j_seizure_2024_02_021
crossref_primary_10_1089_brain_2018_0587
crossref_primary_10_1016_j_nicl_2020_102349
crossref_primary_10_1111_epi_17565
crossref_primary_10_1038_s42003_020_0958_5
crossref_primary_10_3389_fnins_2021_782995
crossref_primary_10_3389_fnins_2023_1136110
crossref_primary_10_1016_j_seizure_2024_04_026
crossref_primary_10_1111_epi_17690
crossref_primary_10_3390_brainsci11081041
crossref_primary_10_1097_WCO_0000000000000545
crossref_primary_10_29413_ABS_2024_9_3_15
crossref_primary_10_1093_braincomms_fcaf081
crossref_primary_10_1177_09544119221092503
crossref_primary_10_1016_j_seizure_2016_06_002
crossref_primary_10_1016_j_yebeh_2023_109503
crossref_primary_10_1007_s00701_018_3519_7
crossref_primary_10_1212_WNL_0000000000008096
crossref_primary_10_1162_netn_a_00237
crossref_primary_10_1016_j_yebeh_2023_109101
crossref_primary_10_1111_epi_16864
crossref_primary_10_1111_epi_18128
crossref_primary_10_1016_j_yebeh_2022_108946
crossref_primary_10_17749_2077_8333_2019_11_1_79_87
crossref_primary_10_1016_j_nicl_2016_10_017
crossref_primary_10_1016_j_apenergy_2024_122854
crossref_primary_10_1093_braincomms_fcae316
crossref_primary_10_1016_j_nec_2020_03_004
crossref_primary_10_1089_brain_2021_0190
crossref_primary_10_1212_WNL_0000000000007447
crossref_primary_10_3988_jcn_2019_15_1_68
crossref_primary_10_3389_fncir_2018_00044
crossref_primary_10_1016_j_neuroimage_2020_116706
crossref_primary_10_1016_j_bandl_2017_04_001
crossref_primary_10_1007_s10072_024_07958_y
crossref_primary_10_1155_2022_2183562
crossref_primary_10_3389_fnhum_2021_746499
crossref_primary_10_1007_s40846_021_00676_2
crossref_primary_10_1111_ane_13407
crossref_primary_10_1167_iovs_62_4_5
crossref_primary_10_1016_j_eplepsyres_2024_107312
crossref_primary_10_3389_fneur_2023_1238421
crossref_primary_10_3389_fneur_2018_01054
crossref_primary_10_1016_j_eplepsyres_2017_12_017
crossref_primary_10_3389_fnhum_2024_1439541
crossref_primary_10_1097_MD_0000000000035676
crossref_primary_10_1016_j_nicl_2020_102431
crossref_primary_10_1002_brb3_1006
crossref_primary_10_1111_ane_12669
crossref_primary_10_1016_j_clinph_2020_10_020
crossref_primary_10_1038_s41598_023_33199_8
crossref_primary_10_1016_j_jocn_2021_07_035
crossref_primary_10_1111_ane_13079
crossref_primary_10_1016_j_jocn_2019_01_007
Cites_doi 10.1038/nn.3950
10.1212/WNL.0b013e318205d521
10.1016/j.neuroimage.2008.04.261
10.1016/j.neuroimage.2006.05.038
10.1016/j.neuroimage.2014.04.071
10.1111/j.1528-1167.2012.03464.x
10.1111/epi.12581
10.1007/s004010100426
10.1016/j.yebeh.2015.06.005
10.1007/s10548-014-0366-6
10.1016/j.nicl.2014.11.018
10.1111/j.1528-1167.2011.03278.x
10.1016/S0149-7634(03)00005-8
10.1371/journal.pone.0008525
10.1212/01.wnl.0000345969.57574.f5
10.1016/j.neuropsychologia.2014.04.020
10.1155/2014/864979
10.1101/cshperspect.a022426
10.1001/archneur.61.9.1379
10.1002/ana.20733
10.1212/01.wnl.0000435306.95271.5f
10.1002/ana.410410412
10.1148/radiol.13131638
10.1016/j.cortex.2014.12.016
10.1038/nrn3465
10.1111/epi.12299
10.1097/WCO.0b013e32835ee5b8
10.1212/WNL.0b013e3182563b44
10.1017/S1355617703930013
10.1111/j.1528-1167.2007.01485.x
10.1016/j.yebeh.2014.08.140
10.1212/WNL.0b013e31823efd0d
10.3389/fneur.2014.00093
10.15274/NRJ-2014-10031
10.1046/j.1528-1157.2002.26901.x
10.1002/hbm.22180
10.1016/j.yebeh.2012.07.016
10.1093/cercor/bhl109
10.1136/jnnp-2012-302476
10.1089/brain.2014.0251
10.1111/j.1528-1157.2000.tb00122.x
10.1148/radiol.13131044
10.1111/j.1528-1167.2008.01539.x
10.1016/j.yebeh.2012.04.115
10.1016/0006-8993(74)90118-8
10.1523/JNEUROSCI.6309-09.2010
10.1111/j.1528-1167.2010.02522.x
10.1111/j.1528-1167.2012.03417.x
10.1016/j.neuroimage.2009.02.020
10.1111/epi.12936
10.1093/brain/121.9.1661
10.1016/j.clinph.2006.12.002
10.1007/978-0-387-92826-5_7
10.3389/fnhum.2014.00704
10.1016/j.neuroimage.2004.06.015
10.1016/j.yebeh.2014.12.013
10.1111/j.0013-9580.2005.27004.x
10.1212/01.WNL.0000055086.35806.2D
10.1111/j.1528-1167.2006.00476.x
10.1212/WNL.0000000000001068
10.1089/brain.2014.0308
10.1016/j.eplepsyres.2014.06.010
10.1038/nn.2782
10.1186/1471-2202-11-66
10.1016/j.eplepsyres.2011.10.009
10.1016/j.neuropsychologia.2004.12.010
10.1063/1.2966112
10.1016/j.nicl.2014.08.002
10.3389/fnins.2014.00419
10.1371/journal.pcbi.1004209
10.1016/j.neuroimage.2009.12.027
10.1111/j.1528-1167.2010.02773.x
10.1016/j.eplepsyres.2014.09.023
10.1016/j.neulet.2009.04.040
10.1212/WNL.0b013e3181e0f80a
10.1111/j.1528-1167.2010.02770.x
10.1111/epi.12580
10.1371/journal.pone.0090068
10.1212/WNL.25.12.1149
ContentType Journal Article
Copyright Wiley Periodicals, Inc. © 2015 International League Against Epilepsy
Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Copyright © 2015 International League Against Epilepsy
Copyright_xml – notice: Wiley Periodicals, Inc. © 2015 International League Against Epilepsy
– notice: Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
– notice: Copyright © 2015 International League Against Epilepsy
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1111/epi.13133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-1167
EndPage 1668
ExternalDocumentID 3850193171
26391203
10_1111_epi_13133
EPI13133
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAGKA
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
ID FETCH-LOGICAL-c4583-edfd829921718c9ab3433d1a038cc2e512223da34fd8c2793c1d0c793e595c5f3
IEDL.DBID DR2
ISSN 0013-9580
1528-1167
IngestDate Fri Jul 11 04:22:07 EDT 2025
Fri Jul 25 12:17:08 EDT 2025
Thu Apr 03 07:05:58 EDT 2025
Tue Jul 01 03:56:30 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Jan 22 16:46:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Biomarkers
Graph theory
Connectome
Neural networks
Epilepsy
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4583-edfd829921718c9ab3433d1a038cc2e512223da34fd8c2793c1d0c793e595c5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/epi.13133
PMID 26391203
PQID 1728005359
PQPubID 1066359
PageCount 9
ParticipantIDs proquest_miscellaneous_1728674269
proquest_journals_1728005359
pubmed_primary_26391203
crossref_primary_10_1111_epi_13133
crossref_citationtrail_10_1111_epi_13133
wiley_primary_10_1111_epi_13133_EPI13133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Epilepsia (Copenhagen)
PublicationTitleAlternate Epilepsia
PublicationYear 2015
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2009; 46
2013; 26
2004; 61
2013; 28
2006; 32
1997; 41
2004; 23
2000; 41
2014; 27
2011; 52
2011; 14
2012; 98
2012; 53
2014; 5
2013; 14
2013; 54
2002; 103
2002; 43
2003; 9
2014; 59
2014; 9
2014; 8
1998; 121
2012; 24
2010; 5
2015; 65C
2010; 74
2010; 30
2014; 55
2007; 17
2012; 83
2015; 56
2015; 5
2014; 90
2015; 18
1974; 74
2015; 50
2008; 18
2015; 11
2006; 59
2011; 76
2005; 43
2014; 271
2014; 2014
2014; 270
2014; 41
2012; 78
2014; 83
2015; 7
2015; 44C
2005; 46
2009; 458
2014; 108
2015; 28
2007; 118
2009; 72
2008; 49
2006; 47
1975; 25
2014; 35
2003; 27
2013; 81
2015
2008; 42
2003; 60
2014; 100
2010; 51
2010; 50
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Haneef Z (e_1_2_10_38_1) 2014; 90
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 55
  start-page: 592
  year: 2014
  end-page: 600
  article-title: Altered thalamocortical functional connectivity in idiopathic generalized epilepsy
  publication-title: Epilepsia
– volume: 78
  start-page: 129
  year: 2012
  end-page: 136
  article-title: Mapping thalamocortical network pathology in temporal lobe epilepsy
  publication-title: Neurology
– volume: 11
  start-page: 66
  year: 2010
  article-title: Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI
  publication-title: BMC Neurosci
– volume: 103
  start-page: 74
  year: 2002
  end-page: 77
  article-title: Widespread microdysgenesis in therapy‐resistant epilepsy–a case report on post‐mortem findings
  publication-title: Acta Neuropathol (Berl)
– volume: 52
  start-page: 2257
  year: 2011
  end-page: 2266
  article-title: MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset
  publication-title: Epilepsia
– volume: 43
  start-page: 1482
  year: 2005
  end-page: 1492
  article-title: Semantic memory in partial epilepsy: verbal and non‐verbal deficits and neuroanatomical relationships
  publication-title: Neuropsychologia
– volume: 47
  start-page: 615
  year: 2006
  end-page: 625
  article-title: Effects of temporal lobe epilepsy on retrograde memory
  publication-title: Epilepsia
– volume: 54
  start-page: 61
  issue: Suppl 4
  year: 2013
  end-page: 69
  article-title: Epilepsy biomarkers
  publication-title: Epilepsia
– volume: 2014
  start-page: 864979
  year: 2014
  article-title: Altered intrinsic connectivity networks in frontal lobe epilepsy: a resting‐state fMRI study
  publication-title: Comput Math Methods Med
– volume: 35
  start-page: 340
  year: 2014
  end-page: 352
  article-title: Task and task‐free FMRI reproducibility comparison for motor network identification
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 515
  year: 2008
  end-page: 524
  article-title: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy
  publication-title: NeuroImage
– volume: 5
  start-page: 93
  year: 2014
  article-title: Network Connectivity in Epilepsy: resting State fMRI and EEG‐fMRI Contributions
  publication-title: Front Neurol
– volume: 5
  start-page: 35
  year: 2015
  end-page: 44
  article-title: Evolution of functional connectivity of brain networks and their dynamic interaction in temporal lobe epilepsy
  publication-title: Brain Connect
– volume: 44C
  start-page: 47
  year: 2015
  end-page: 54
  article-title: Temporal lobe epilepsy: decreased thalamic resting‐state functional connectivity and their relationships with alertness performance
  publication-title: Epilepsy Behav
– volume: 7
  start-page: 98
  year: 2015
  end-page: 104
  article-title: Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis
  publication-title: Neuroimage Clin
– volume: 7
  start-page: 273
  year: 2015
  end-page: 280
  article-title: Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy
  publication-title: Neuroimage Clin
– volume: 8
  start-page: 704
  year: 2014
  article-title: Delayed convergence between brain network structure and function in rolandic epilepsy
  publication-title: Front Hum Neurosci
– volume: 27
  start-page: 158
  year: 2014
  end-page: 162
  article-title: Functional connectivity MRI and post‐operative language performance in temporal lobe epilepsy: initial experience
  publication-title: Neuroradiol J
– volume: 46
  start-page: 353
  year: 2009
  end-page: 359
  article-title: Widespread neocortical abnormalities in temporal lobe epilepsy with and without mesial sclerosis
  publication-title: NeuroImage
– volume: 30
  start-page: 10076
  year: 2010
  end-page: 10085
  article-title: Coalescence and fragmentation of cortical networks during focal seizures
  publication-title: J Neurosci
– volume: 41
  start-page: 490
  year: 1997
  end-page: 496
  article-title: Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis
  publication-title: Ann Neurol
– volume: 14
  start-page: 635
  year: 2011
  end-page: 641
  article-title: Single‐neuron dynamics in human focal epilepsy
  publication-title: Nat Neurosci
– volume: 28
  start-page: S69
  issue: Suppl 1
  year: 2013
  end-page: S71
  article-title: Photoparoxysmal EEG response and genetic dissection of juvenile myoclonic epilepsy
  publication-title: Epilepsy Behav
– volume: 65C
  start-page: 83
  year: 2015
  end-page: 88
  article-title: Atypical language laterality is associated with large‐scale disruption of network integration in children with intractable focal epilepsy
  publication-title: Cortex
– volume: 98
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Frontal lobe function in temporal lobe epilepsy
  publication-title: Epilepsy Res
– volume: 18
  start-page: 033119
  year: 2008
  article-title: Evolving functional network properties and synchronizability during human epileptic seizures
  publication-title: Chaos
– volume: 32
  start-page: 1070
  year: 2006
  end-page: 1079
  article-title: Gray matter atrophy associated with duration of temporal lobe epilepsy
  publication-title: NeuroImage
– volume: 76
  start-page: 138
  year: 2011
  end-page: 144
  article-title: Increased temporolimbic cortical folding complexity in temporal lobe epilepsy
  publication-title: Neurology
– volume: 56
  start-page: 517
  year: 2015
  end-page: 526
  article-title: Presurgery resting‐state local graph‐theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 26
  start-page: 186
  year: 2013
  end-page: 194
  article-title: Connectomics and epilepsy
  publication-title: Curr Opin Neurol
– volume: 49
  start-page: 794
  year: 2008
  end-page: 803
  article-title: Regional neocortical thinning in mesial temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 27
  start-page: 3
  year: 2003
  end-page: 18
  article-title: Trajectories of brain development: point of vulnerability or window of opportunity?
  publication-title: Neurosci Biobehav Rev
– volume: 52
  start-page: 10
  year: 2011
  end-page: 21
  article-title: Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: a postmortem study
  publication-title: Epilepsia
– volume: 90
  start-page: e51442
  year: 2014
  article-title: Network analysis of the default mode network using functional connectivity MRI in Temporal Lobe Epilepsy
  publication-title: J Vis Exp
– volume: 53
  start-page: 1013
  year: 2012
  end-page: 1023
  article-title: Patterns of altered functional connectivity in mesial temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 53
  start-page: 807
  year: 2012
  end-page: 816
  article-title: Spatiotemporal neuronal correlates of seizure generation in focal epilepsy
  publication-title: Epilepsia
– volume: 11
  start-page: e1004209
  year: 2015
  article-title: Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity
  publication-title: PLoS Comput Biol
– volume: 83
  start-page: 2269
  year: 2014
  end-page: 2277
  article-title: Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity
  publication-title: Neurology
– volume: 108
  start-page: 1299
  year: 2014
  end-page: 1305
  article-title: Increased interhemispheric resting‐state in idiopathic generalized epilepsy with generalized tonic‐clonic seizures: a resting‐state fMRI study
  publication-title: Epilepsy Res
– volume: 9
  start-page: e90068
  year: 2014
  article-title: Functional and structural network impairment in childhood frontal lobe epilepsy
  publication-title: PLoS ONE
– volume: 55
  start-page: 674
  year: 2014
  end-page: 682
  article-title: Disrupted anatomic white matter network in left mesial temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 81
  start-page: 1704
  year: 2013
  end-page: 1710
  article-title: Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy
  publication-title: Neurology
– volume: 60
  start-page: 538
  year: 2003
  end-page: 547
  article-title: Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons
  publication-title: Neurology
– start-page: 155
  year: 2015
  end-page: 166
– volume: 51
  start-page: 676
  year: 2010
  end-page: 685
  article-title: Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005‐2009
  publication-title: Epilepsia
– volume: 100
  start-page: 135
  year: 2014
  end-page: 144
  article-title: Structural connectivity differences in left and right temporal lobe epilepsy
  publication-title: NeuroImage
– volume: 52
  start-page: 507
  year: 2011
  end-page: 514
  article-title: Connectivity of the supplementary motor area in juvenile myoclonic epilepsy and frontal lobe epilepsy
  publication-title: Epilepsia
– volume: 50
  start-page: 970
  year: 2010
  end-page: 983
  article-title: Whole‐brain anatomical networks: does the choice of nodes matter?
  publication-title: NeuroImage
– volume: 8
  start-page: 419
  year: 2014
  article-title: Detection of abnormal resting‐state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment
  publication-title: Front Neurosci
– volume: 5
  start-page: 276
  year: 2015
  end-page: 283
  article-title: Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis
  publication-title: Brain Connect
– volume: 43
  start-page: 219
  year: 2002
  end-page: 227
  article-title: Neural networks in human epilepsy: evidence of and implications for treatment
  publication-title: Epilepsia
– volume: 271
  start-page: 839
  year: 2014
  end-page: 847
  article-title: Generalized tonic‐clonic seizures: aberrant interhemispheric functional and anatomical connectivity
  publication-title: Radiology
– volume: 49
  start-page: 741
  year: 2008
  end-page: 757
  article-title: Voxel‐based morphometry of temporal lobe epilepsy: an introduction and review of the literature
  publication-title: Epilepsia
– volume: 23
  start-page: 717
  year: 2004
  end-page: 723
  article-title: Whole‐brain voxel‐based statistical analysis of gray matter and white matter in temporal lobe epilepsy
  publication-title: NeuroImage
– volume: 17
  start-page: 2007
  year: 2007
  end-page: 2018
  article-title: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis
  publication-title: Cereb Cortex
– volume: 5
  start-page: e8525
  year: 2010
  article-title: Altered functional connectivity and small‐world in mesial temporal lobe epilepsy
  publication-title: PLoS ONE
– volume: 24
  start-page: 194
  year: 2012
  end-page: 198
  article-title: Naming outcomes of anterior temporal lobectomy in epilepsy patients: a systematic review of the literature
  publication-title: Epilepsy Behav
– volume: 50
  start-page: 162
  year: 2015
  end-page: 170
  article-title: Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy
  publication-title: Epilepsy Behav
– volume: 46
  start-page: 420
  year: 2005
  end-page: 430
  article-title: Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates
  publication-title: Epilepsia
– volume: 25
  start-page: 1149
  year: 1975
  end-page: 1153
  article-title: Disconnection of the cerebral hemispheres. An alternative to hemispherectomy for the control of intractable seizures
  publication-title: Neurology
– volume: 72
  start-page: 1747
  year: 2009
  end-page: 1754
  article-title: Longitudinal and cross‐sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy
  publication-title: Neurology
– volume: 458
  start-page: 97
  year: 2009
  end-page: 101
  article-title: Impaired attention network in temporal lobe epilepsy: a resting FMRI study
  publication-title: Neurosci Lett
– volume: 41
  start-page: 33
  year: 2014
  end-page: 38
  article-title: A resting‐state functional connectivity study in patients at high risk for sudden unexpected death in epilepsy
  publication-title: Epilepsy Behav
– volume: 83
  start-page: 903
  year: 2012
  end-page: 909
  article-title: Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 118
  start-page: 918
  year: 2007
  end-page: 927
  article-title: Small‐world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures
  publication-title: Clin Neurophysiol
– volume: 28
  start-page: 113
  year: 2015
  end-page: 126
  article-title: Early and late age of seizure onset have a differential impact on brain resting‐state organization in temporal lobe epilepsy
  publication-title: Brain Topogr
– volume: 61
  start-page: 1379
  year: 2004
  end-page: 1384
  article-title: Voxel‐based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy
  publication-title: Arch Neurol
– volume: 59
  start-page: 157
  year: 2014
  end-page: 168
  article-title: The impact of age on prefrontal cortex integrity during spatial working memory retrieval
  publication-title: Neuropsychologia
– volume: 18
  start-page: 351
  year: 2015
  end-page: 359
  article-title: Microcircuits and their interactions in epilepsy: is the focus out of focus?
  publication-title: Nat Neurosci
– volume: 59
  start-page: 335
  year: 2006
  end-page: 343
  article-title: Functional connectivity networks are disrupted in left temporal lobe epilepsy
  publication-title: Ann Neurol
– volume: 270
  start-page: 842
  year: 2014
  end-page: 848
  article-title: Altered structural connectome in temporal lobe epilepsy
  publication-title: Radiology
– volume: 14
  start-page: 322
  year: 2013
  end-page: 336
  article-title: Imaging structural co‐variance between human brain regions
  publication-title: Nat Rev Neurosci
– volume: 121
  start-page: 1661
  issue: Pt 9
  year: 1998
  end-page: 1667
  article-title: Quantitative MRI in patients with idiopathic generalized epilepsy. Evidence of widespread cerebral structural changes
  publication-title: Brain
– volume: 5
  year: 2015
  article-title: Seizures and Epilepsy: an Overview for Neuroscientists
  publication-title: Cold Spring Harb Perspect Med
– volume: 41
  start-page: 1540
  year: 2000
  end-page: 1545
  article-title: Predictors of hippocampal, cerebral, and cerebellar volume reduction in childhood epilepsy
  publication-title: Epilepsia
– volume: 74
  start-page: 149
  year: 1974
  end-page: 155
  article-title: The cells of origin of the corpus callosum in rat, cat and rhesus monkey
  publication-title: Brain Res
– volume: 108
  start-page: 1770
  year: 2014
  end-page: 1781
  article-title: Differences in graph theory functional connectivity in left and right temporal lobe epilepsy
  publication-title: Epilepsy Res
– volume: 74
  start-page: 1776
  year: 2010
  end-page: 1784
  article-title: Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome
  publication-title: Neurology
– volume: 9
  start-page: 353
  year: 2003
  end-page: 362
  article-title: Extratemporal quantitative MR volumetrics and neuropsychological status in temporal lobe epilepsy
  publication-title: J Int Neuropsychol Soc
– volume: 78
  start-page: 1555
  year: 2012
  end-page: 1559
  article-title: Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link
  publication-title: Neurology
– ident: e_1_2_10_30_1
  doi: 10.1038/nn.3950
– ident: e_1_2_10_24_1
  doi: 10.1212/WNL.0b013e318205d521
– ident: e_1_2_10_14_1
  doi: 10.1016/j.neuroimage.2008.04.261
– ident: e_1_2_10_16_1
  doi: 10.1016/j.neuroimage.2006.05.038
– ident: e_1_2_10_28_1
  doi: 10.1016/j.neuroimage.2014.04.071
– ident: e_1_2_10_27_1
  doi: 10.1111/j.1528-1167.2012.03464.x
– ident: e_1_2_10_36_1
  doi: 10.1111/epi.12581
– ident: e_1_2_10_9_1
  doi: 10.1007/s004010100426
– ident: e_1_2_10_5_1
  doi: 10.1016/j.yebeh.2015.06.005
– ident: e_1_2_10_45_1
  doi: 10.1007/s10548-014-0366-6
– ident: e_1_2_10_60_1
  doi: 10.1016/j.nicl.2014.11.018
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1528-1167.2011.03278.x
– ident: e_1_2_10_54_1
  doi: 10.1016/S0149-7634(03)00005-8
– ident: e_1_2_10_37_1
  doi: 10.1371/journal.pone.0008525
– ident: e_1_2_10_15_1
  doi: 10.1212/01.wnl.0000345969.57574.f5
– ident: e_1_2_10_44_1
  doi: 10.1016/j.neuropsychologia.2014.04.020
– ident: e_1_2_10_49_1
  doi: 10.1155/2014/864979
– ident: e_1_2_10_2_1
  doi: 10.1101/cshperspect.a022426
– ident: e_1_2_10_17_1
  doi: 10.1001/archneur.61.9.1379
– volume: 90
  start-page: e51442
  year: 2014
  ident: e_1_2_10_38_1
  article-title: Network analysis of the default mode network using functional connectivity MRI in Temporal Lobe Epilepsy
  publication-title: J Vis Exp
– ident: e_1_2_10_62_1
  doi: 10.1002/ana.20733
– ident: e_1_2_10_78_1
  doi: 10.1212/01.wnl.0000435306.95271.5f
– ident: e_1_2_10_77_1
  doi: 10.1002/ana.410410412
– ident: e_1_2_10_43_1
  doi: 10.1148/radiol.13131638
– ident: e_1_2_10_61_1
  doi: 10.1016/j.cortex.2014.12.016
– ident: e_1_2_10_7_1
  doi: 10.1038/nrn3465
– ident: e_1_2_10_72_1
  doi: 10.1111/epi.12299
– ident: e_1_2_10_3_1
  doi: 10.1097/WCO.0b013e32835ee5b8
– ident: e_1_2_10_69_1
  doi: 10.1212/WNL.0b013e3182563b44
– ident: e_1_2_10_10_1
  doi: 10.1017/S1355617703930013
– ident: e_1_2_10_18_1
  doi: 10.1111/j.1528-1167.2007.01485.x
– ident: e_1_2_10_74_1
  doi: 10.1016/j.yebeh.2014.08.140
– ident: e_1_2_10_13_1
  doi: 10.1212/WNL.0b013e31823efd0d
– ident: e_1_2_10_39_1
  doi: 10.3389/fneur.2014.00093
– ident: e_1_2_10_79_1
  doi: 10.15274/NRJ-2014-10031
– ident: e_1_2_10_6_1
  doi: 10.1046/j.1528-1157.2002.26901.x
– ident: e_1_2_10_53_1
  doi: 10.1002/hbm.22180
– ident: e_1_2_10_71_1
  doi: 10.1016/j.yebeh.2012.07.016
– ident: e_1_2_10_21_1
  doi: 10.1093/cercor/bhl109
– ident: e_1_2_10_35_1
  doi: 10.1136/jnnp-2012-302476
– ident: e_1_2_10_46_1
  doi: 10.1089/brain.2014.0251
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1528-1157.2000.tb00122.x
– ident: e_1_2_10_26_1
  doi: 10.1148/radiol.13131044
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1528-1167.2008.01539.x
– ident: e_1_2_10_68_1
  doi: 10.1016/j.yebeh.2012.04.115
– ident: e_1_2_10_31_1
  doi: 10.1016/0006-8993(74)90118-8
– ident: e_1_2_10_50_1
  doi: 10.1523/JNEUROSCI.6309-09.2010
– ident: e_1_2_10_57_1
  doi: 10.1111/j.1528-1167.2010.02522.x
– ident: e_1_2_10_33_1
  doi: 10.1111/j.1528-1167.2012.03417.x
– ident: e_1_2_10_23_1
  doi: 10.1016/j.neuroimage.2009.02.020
– ident: e_1_2_10_81_1
  doi: 10.1111/epi.12936
– ident: e_1_2_10_59_1
  doi: 10.1093/brain/121.9.1661
– ident: e_1_2_10_52_1
  doi: 10.1016/j.clinph.2006.12.002
– ident: e_1_2_10_58_1
  doi: 10.1007/978-0-387-92826-5_7
– ident: e_1_2_10_55_1
  doi: 10.3389/fnhum.2014.00704
– ident: e_1_2_10_11_1
  doi: 10.1016/j.neuroimage.2004.06.015
– ident: e_1_2_10_75_1
  doi: 10.1016/j.yebeh.2014.12.013
– ident: e_1_2_10_25_1
  doi: 10.1111/j.0013-9580.2005.27004.x
– ident: e_1_2_10_76_1
  doi: 10.1212/01.WNL.0000055086.35806.2D
– ident: e_1_2_10_67_1
  doi: 10.1111/j.1528-1167.2006.00476.x
– ident: e_1_2_10_80_1
  doi: 10.1212/WNL.0000000000001068
– ident: e_1_2_10_47_1
  doi: 10.1089/brain.2014.0308
– ident: e_1_2_10_40_1
  doi: 10.1016/j.eplepsyres.2014.06.010
– ident: e_1_2_10_34_1
  doi: 10.1038/nn.2782
– ident: e_1_2_10_63_1
  doi: 10.1186/1471-2202-11-66
– ident: e_1_2_10_65_1
  doi: 10.1016/j.eplepsyres.2011.10.009
– ident: e_1_2_10_66_1
  doi: 10.1016/j.neuropsychologia.2004.12.010
– ident: e_1_2_10_51_1
  doi: 10.1063/1.2966112
– ident: e_1_2_10_73_1
  doi: 10.1016/j.nicl.2014.08.002
– ident: e_1_2_10_56_1
  doi: 10.3389/fnins.2014.00419
– ident: e_1_2_10_29_1
  doi: 10.1371/journal.pcbi.1004209
– ident: e_1_2_10_4_1
  doi: 10.1016/j.neuroimage.2009.12.027
– ident: e_1_2_10_8_1
  doi: 10.1111/j.1528-1167.2010.02773.x
– ident: e_1_2_10_48_1
  doi: 10.1016/j.eplepsyres.2014.09.023
– ident: e_1_2_10_64_1
  doi: 10.1016/j.neulet.2009.04.040
– ident: e_1_2_10_12_1
  doi: 10.1212/WNL.0b013e3181e0f80a
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1528-1167.2010.02770.x
– ident: e_1_2_10_41_1
  doi: 10.1111/epi.12580
– ident: e_1_2_10_42_1
  doi: 10.1371/journal.pone.0090068
– ident: e_1_2_10_32_1
  doi: 10.1212/WNL.25.12.1149
SSID ssj0007673
Score 2.4958801
SecondaryResourceType review_article
Snippet Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of...
The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy...
Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1660
SubjectTerms Animals
Biomarkers
Brain - pathology
Connectome
Connectome - methods
Connectome - trends
Epilepsy
Epilepsy - diagnosis
Epilepsy - genetics
Graph theory
Humans
Nerve Net - pathology
Neural networks
Title Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13133
https://www.ncbi.nlm.nih.gov/pubmed/26391203
https://www.proquest.com/docview/1728005359
https://www.proquest.com/docview/1728674269
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_kHsSXtlbbxqqs0od7yZFkd_NRn0Q8TsFDioIPlpDsTkA8cofJFexf39nNh55VKH1KyE6yk-zO7G-zM78F-BYpFJKco4si8lyhBXdzhYkbaRkijz1ynCY5-WIaTq7F-Y28WYOjLhem4Yfof7gZy7D-2hh4llfPjBwXdyOf0xSL_K-J1TKA6McTdVQUtqvLpEciY69lFTJRPP2dq2PRXwBzFa_aAWf8Hm47VZs4k_vRss5H6vcLFsf_fJcP8K4Fouy46TmbsIblR1i_aJfat-CnDYFRtclarlhWama5rZnNfHykC4bMBKvvbDr_hTN2V1Zmml_RST1nZRNczrK8NJh4ZmlbqYiRCjNcVI_bcD0-vTqZuO1eDK4yK6su6kLHNHTRDMaPVZLlXHCu_czjsVIBEmwgnKEzLkhMBWT0yteeoiPKRCpZ8E8wKOclfgGm0OdFrouQXIeQukgEj1HkMguCOCSn58Cwa5VUtUTlZr-MWdpNWEjX1H4uBw570UXDzvGa0G7XtGlroFVqt-Uy3DaJAwd9MZmWWS_JSpwvG5kwMrm-DnxuukRfS0DIzg88evjQNuzb1aenl2f2ZOffRb_CBgEz2eQ87sKgfljiHoGfOt-3vfwPMAf-ow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BViq9tOXZbWlrEAcuWSWxnUfVS0VBy2NXCIHEBUWJPZFWrLKrJluJ_vqOnUehUAn1FCuexE7sGX9jez4D7IUKhSTj6KAIXUdowZ1MYeyEWgbII5cMpwlOHo2D4ZU4uZbXS_C1jYWp-SG6CTejGdZeGwU3E9L3tBznk4HHycdahhfmRG_DnP_94g95VBg068tUk1hGbsMrZPbxdI8-HI0eQcyHiNUOOUdv4KatbL3T5HawqLKB-vUXj-P_fs1beN1gUfat7jyrsITFGrwcNavt63Bjd8GoygQulywtNLP01swGP97RDcNnguUXNp79xCmbFKXx9EtKVDNW1PvLWZoVBhZPLXMrZTGqwhTn5d0GXB0dXh4MneY4BkeZxVUHda4jGr3IifEiFacZF5xrL3V5pJSPhBwIauiUCxJTPum98rSr6IoylkrmfBN6xazAd8AUejzPdB6Q9RBS57HgEYpMpr4fBWT3-rDfNkuiGq5yc2TGNGl9FqprYn9XH3Y70XlN0PGU0Hbbtkmjo2ViT-Yy9DZxH3a6bNIus2SSFjhb1DJBaMJ9-7BV94muFJ_Anee79PJ927L_Lj45PD-2iffPF_0MK8PL0Vlydjw-_QCvCKfJOgRyG3rVjwV-JCxUZZ9sl_8NFl4Czg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlRAXoC9YuqVu1QOXrJLYzgNOqMsKCqxQVSQOraLEnkgrVtkVySLBr-_YeZRHK1U9JYonsRN7xt9kPJ8BPocKhSTj6KAIXUdowZ1MYeyEWgbII5cMp0lOPh8Hx5fi65W8WoKDNhem5ofofrgZzbD22ij4XOcPlBznk4HHycVahhcicGOzb8Pw22_uqDBowsvUkFhGbkMrZJbxdLc-noyeIczHgNXOOKMN-NG2tV5ocj1YVNlA3T-hcfzPl9mE9QaJssN66LyEJSxewep5E2t_DT_tGhhVmbTlkqWFZpbcmtnUxzu6YNhMsNxn49ktTtmkKI2fX9JJNWNFvbqcpVlhQPHU8rZSEaMmTHFe3r2By9HR9y_HTrMZg6NMaNVBneuI5i5yYbxIxWnGBefaS10eKeUj4QYCGjrlgsSUT1qvPO0qOqKMpZI5fwsrxazAbWAKPZ5nOg_Idgip81jwCEUmU9-PArJ6PdhreyVRDVO52TBjmrQeC7U1sZ-rB5860XlNz_EnoX7btUmjoWVi9-Uy5DZxDz52xaRbJmCSFjhb1DJBaJJ9e7BVD4muFp-gnee79PA927F_rz45ujixJzv_LvoBVi-Go-TsZHz6DtYIpMk6_7EPK9XNAt8TEKqyXTvgfwEO3QF9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectomics+and+graph+theory+analyses%3A+Novel+insights+into+network+abnormalities+in+epilepsy&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Gleichgerrcht%2C+Ezequiel&rft.au=Kocher%2C+Madison&rft.au=Bonilha%2C+Leonardo&rft.date=2015-11-01&rft.issn=1528-1167&rft.eissn=1528-1167&rft.volume=56&rft.issue=11&rft.spage=1660&rft_id=info:doi/10.1111%2Fepi.13133&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon