Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy
Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It...
Saved in:
Published in | Epilepsia (Copenhagen) Vol. 56; no. 11; pp. 1660 - 1668 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of “big data” are paramount to leverage the full potential of this new approach. |
---|---|
AbstractList | Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach. The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach. The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of “big data” are paramount to leverage the full potential of this new approach. The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach.The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach. Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of “big data” are paramount to leverage the full potential of this new approach. |
Author | Bonilha, Leonardo Gleichgerrcht, Ezequiel Kocher, Madison |
Author_xml | – sequence: 1 givenname: Ezequiel surname: Gleichgerrcht fullname: Gleichgerrcht, Ezequiel organization: Medical University of South Carolina – sequence: 2 givenname: Madison surname: Kocher fullname: Kocher, Madison organization: Medical University of South Carolina – sequence: 3 givenname: Leonardo surname: Bonilha fullname: Bonilha, Leonardo organization: Medical University of South Carolina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26391203$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtPAyEQAGBiNNqqB_-A2cSLHtYCU_bhzTS-EqMe9Gg2lJ1adBdWoJr991KrHkyUyxD4ZgIzQ7JurEFC9hg9ZnGNsNPHDBjAGhkwwYuUsSxfJwNKGaSlKOgWGXr_TCnNsxw2yRbPoGScwoA8TqwxqIJttfKJNHXy5GQ3T8IcrevjgWx6j_4kubFv2CTaeP00Dz5ugk0MhnfrXhI5Nda1stFB4_IqiQ9qsPP9DtmYycbj7lfcJg_nZ_eTy_T69uJqcnqdqrEoIMV6Vhe8LDnLWaFKOYUxQM0khUIpjoJxzqGWMI5M8bwExWqqYkRRCiVmsE0OV3U7Z18X6EPVaq-waaRBu_AVy3mR5WOelZEe_KLPduHiN1eKUgFiqfa_1GLaYl11TrfS9dV34yI4WgHlrPcOZz-E0Wo5lCr2oPocSrSjX1bpIIO2Jjipm_8y3mMf-79LV2d3V6uMDxpOnL0 |
CODEN | EPILAK |
CitedBy_id | crossref_primary_10_1016_j_ejps_2017_04_019 crossref_primary_10_1016_j_seizure_2020_01_010 crossref_primary_10_1016_j_neulet_2020_135076 crossref_primary_10_3389_fnhum_2021_637071 crossref_primary_10_1002_hbm_25037 crossref_primary_10_1111_ane_13198 crossref_primary_10_3390_brainsci10100700 crossref_primary_10_1016_j_nrleng_2020_06_016 crossref_primary_10_1016_j_seizure_2023_08_005 crossref_primary_10_1016_j_clineuro_2021_107037 crossref_primary_10_1111_ane_12899 crossref_primary_10_1080_13803395_2022_2164256 crossref_primary_10_1016_j_plrev_2018_12_004 crossref_primary_10_3389_fcell_2021_803800 crossref_primary_10_1097_WNP_0000000000001071 crossref_primary_10_1002_hbm_26638 crossref_primary_10_1111_epi_16540 crossref_primary_10_1111_epi_14528 crossref_primary_10_1111_epi_17751 crossref_primary_10_1038_s41598_020_71359_2 crossref_primary_10_1080_23808993_2017_1364133 crossref_primary_10_1371_journal_pone_0311666 crossref_primary_10_1016_j_clinph_2018_11_022 crossref_primary_10_3390_biology12030352 crossref_primary_10_1111_jon_13107 crossref_primary_10_1371_journal_pone_0219904 crossref_primary_10_3389_fnetp_2023_1297345 crossref_primary_10_1016_j_clinph_2020_05_022 crossref_primary_10_1016_j_nicl_2021_102765 crossref_primary_10_1016_j_yebeh_2016_07_016 crossref_primary_10_1186_s12883_021_02358_7 crossref_primary_10_1162_netn_a_00382 crossref_primary_10_3174_ajnr_A5039 crossref_primary_10_1007_s00062_021_01002_8 crossref_primary_10_1002_ana_25888 crossref_primary_10_1097_WCO_0000000000000568 crossref_primary_10_1093_braincomms_fcaa001 crossref_primary_10_3389_fneur_2022_837893 crossref_primary_10_1016_j_ejpn_2023_05_009 crossref_primary_10_1016_j_nicl_2017_08_018 crossref_primary_10_1162_netn_a_00379 crossref_primary_10_1111_epi_17298 crossref_primary_10_1007_s00259_024_07054_5 crossref_primary_10_1007_s12264_025_01348_w crossref_primary_10_1016_j_eplepsyres_2021_106791 crossref_primary_10_3389_fmed_2020_605002 crossref_primary_10_1016_j_nrl_2020_06_010 crossref_primary_10_1002_hbm_25873 crossref_primary_10_1016_j_clinph_2019_10_017 crossref_primary_10_1016_j_yebeh_2016_07_030 crossref_primary_10_1161_JAHA_118_010054 crossref_primary_10_1016_j_neucli_2023_102888 crossref_primary_10_1016_j_seizure_2024_02_021 crossref_primary_10_1089_brain_2018_0587 crossref_primary_10_1016_j_nicl_2020_102349 crossref_primary_10_1111_epi_17565 crossref_primary_10_1038_s42003_020_0958_5 crossref_primary_10_3389_fnins_2021_782995 crossref_primary_10_3389_fnins_2023_1136110 crossref_primary_10_1016_j_seizure_2024_04_026 crossref_primary_10_1111_epi_17690 crossref_primary_10_3390_brainsci11081041 crossref_primary_10_1097_WCO_0000000000000545 crossref_primary_10_29413_ABS_2024_9_3_15 crossref_primary_10_1093_braincomms_fcaf081 crossref_primary_10_1177_09544119221092503 crossref_primary_10_1016_j_seizure_2016_06_002 crossref_primary_10_1016_j_yebeh_2023_109503 crossref_primary_10_1007_s00701_018_3519_7 crossref_primary_10_1212_WNL_0000000000008096 crossref_primary_10_1162_netn_a_00237 crossref_primary_10_1016_j_yebeh_2023_109101 crossref_primary_10_1111_epi_16864 crossref_primary_10_1111_epi_18128 crossref_primary_10_1016_j_yebeh_2022_108946 crossref_primary_10_17749_2077_8333_2019_11_1_79_87 crossref_primary_10_1016_j_nicl_2016_10_017 crossref_primary_10_1016_j_apenergy_2024_122854 crossref_primary_10_1093_braincomms_fcae316 crossref_primary_10_1016_j_nec_2020_03_004 crossref_primary_10_1089_brain_2021_0190 crossref_primary_10_1212_WNL_0000000000007447 crossref_primary_10_3988_jcn_2019_15_1_68 crossref_primary_10_3389_fncir_2018_00044 crossref_primary_10_1016_j_neuroimage_2020_116706 crossref_primary_10_1016_j_bandl_2017_04_001 crossref_primary_10_1007_s10072_024_07958_y crossref_primary_10_1155_2022_2183562 crossref_primary_10_3389_fnhum_2021_746499 crossref_primary_10_1007_s40846_021_00676_2 crossref_primary_10_1111_ane_13407 crossref_primary_10_1167_iovs_62_4_5 crossref_primary_10_1016_j_eplepsyres_2024_107312 crossref_primary_10_3389_fneur_2023_1238421 crossref_primary_10_3389_fneur_2018_01054 crossref_primary_10_1016_j_eplepsyres_2017_12_017 crossref_primary_10_3389_fnhum_2024_1439541 crossref_primary_10_1097_MD_0000000000035676 crossref_primary_10_1016_j_nicl_2020_102431 crossref_primary_10_1002_brb3_1006 crossref_primary_10_1111_ane_12669 crossref_primary_10_1016_j_clinph_2020_10_020 crossref_primary_10_1038_s41598_023_33199_8 crossref_primary_10_1016_j_jocn_2021_07_035 crossref_primary_10_1111_ane_13079 crossref_primary_10_1016_j_jocn_2019_01_007 |
Cites_doi | 10.1038/nn.3950 10.1212/WNL.0b013e318205d521 10.1016/j.neuroimage.2008.04.261 10.1016/j.neuroimage.2006.05.038 10.1016/j.neuroimage.2014.04.071 10.1111/j.1528-1167.2012.03464.x 10.1111/epi.12581 10.1007/s004010100426 10.1016/j.yebeh.2015.06.005 10.1007/s10548-014-0366-6 10.1016/j.nicl.2014.11.018 10.1111/j.1528-1167.2011.03278.x 10.1016/S0149-7634(03)00005-8 10.1371/journal.pone.0008525 10.1212/01.wnl.0000345969.57574.f5 10.1016/j.neuropsychologia.2014.04.020 10.1155/2014/864979 10.1101/cshperspect.a022426 10.1001/archneur.61.9.1379 10.1002/ana.20733 10.1212/01.wnl.0000435306.95271.5f 10.1002/ana.410410412 10.1148/radiol.13131638 10.1016/j.cortex.2014.12.016 10.1038/nrn3465 10.1111/epi.12299 10.1097/WCO.0b013e32835ee5b8 10.1212/WNL.0b013e3182563b44 10.1017/S1355617703930013 10.1111/j.1528-1167.2007.01485.x 10.1016/j.yebeh.2014.08.140 10.1212/WNL.0b013e31823efd0d 10.3389/fneur.2014.00093 10.15274/NRJ-2014-10031 10.1046/j.1528-1157.2002.26901.x 10.1002/hbm.22180 10.1016/j.yebeh.2012.07.016 10.1093/cercor/bhl109 10.1136/jnnp-2012-302476 10.1089/brain.2014.0251 10.1111/j.1528-1157.2000.tb00122.x 10.1148/radiol.13131044 10.1111/j.1528-1167.2008.01539.x 10.1016/j.yebeh.2012.04.115 10.1016/0006-8993(74)90118-8 10.1523/JNEUROSCI.6309-09.2010 10.1111/j.1528-1167.2010.02522.x 10.1111/j.1528-1167.2012.03417.x 10.1016/j.neuroimage.2009.02.020 10.1111/epi.12936 10.1093/brain/121.9.1661 10.1016/j.clinph.2006.12.002 10.1007/978-0-387-92826-5_7 10.3389/fnhum.2014.00704 10.1016/j.neuroimage.2004.06.015 10.1016/j.yebeh.2014.12.013 10.1111/j.0013-9580.2005.27004.x 10.1212/01.WNL.0000055086.35806.2D 10.1111/j.1528-1167.2006.00476.x 10.1212/WNL.0000000000001068 10.1089/brain.2014.0308 10.1016/j.eplepsyres.2014.06.010 10.1038/nn.2782 10.1186/1471-2202-11-66 10.1016/j.eplepsyres.2011.10.009 10.1016/j.neuropsychologia.2004.12.010 10.1063/1.2966112 10.1016/j.nicl.2014.08.002 10.3389/fnins.2014.00419 10.1371/journal.pcbi.1004209 10.1016/j.neuroimage.2009.12.027 10.1111/j.1528-1167.2010.02773.x 10.1016/j.eplepsyres.2014.09.023 10.1016/j.neulet.2009.04.040 10.1212/WNL.0b013e3181e0f80a 10.1111/j.1528-1167.2010.02770.x 10.1111/epi.12580 10.1371/journal.pone.0090068 10.1212/WNL.25.12.1149 |
ContentType | Journal Article |
Copyright | Wiley Periodicals, Inc. © 2015 International League Against Epilepsy Wiley Periodicals, Inc. © 2015 International League Against Epilepsy. Copyright © 2015 International League Against Epilepsy |
Copyright_xml | – notice: Wiley Periodicals, Inc. © 2015 International League Against Epilepsy – notice: Wiley Periodicals, Inc. © 2015 International League Against Epilepsy. – notice: Copyright © 2015 International League Against Epilepsy |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1111/epi.13133 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1528-1167 |
EndPage | 1668 |
ExternalDocumentID | 3850193171 26391203 10_1111_epi_13133 EPI13133 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAGKA AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 |
ID | FETCH-LOGICAL-c4583-edfd829921718c9ab3433d1a038cc2e512223da34fd8c2793c1d0c793e595c5f3 |
IEDL.DBID | DR2 |
ISSN | 0013-9580 1528-1167 |
IngestDate | Fri Jul 11 04:22:07 EDT 2025 Fri Jul 25 12:17:08 EDT 2025 Thu Apr 03 07:05:58 EDT 2025 Tue Jul 01 03:56:30 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Wed Jan 22 16:46:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Biomarkers Graph theory Connectome Neural networks Epilepsy |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Wiley Periodicals, Inc. © 2015 International League Against Epilepsy. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4583-edfd829921718c9ab3433d1a038cc2e512223da34fd8c2793c1d0c793e595c5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/epi.13133 |
PMID | 26391203 |
PQID | 1728005359 |
PQPubID | 1066359 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1728674269 proquest_journals_1728005359 pubmed_primary_26391203 crossref_primary_10_1111_epi_13133 crossref_citationtrail_10_1111_epi_13133 wiley_primary_10_1111_epi_13133_EPI13133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Epilepsia (Copenhagen) |
PublicationTitleAlternate | Epilepsia |
PublicationYear | 2015 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2009; 46 2013; 26 2004; 61 2013; 28 2006; 32 1997; 41 2004; 23 2000; 41 2014; 27 2011; 52 2011; 14 2012; 98 2012; 53 2014; 5 2013; 14 2013; 54 2002; 103 2002; 43 2003; 9 2014; 59 2014; 9 2014; 8 1998; 121 2012; 24 2010; 5 2015; 65C 2010; 74 2010; 30 2014; 55 2007; 17 2012; 83 2015; 56 2015; 5 2014; 90 2015; 18 1974; 74 2015; 50 2008; 18 2015; 11 2006; 59 2011; 76 2005; 43 2014; 271 2014; 2014 2014; 270 2014; 41 2012; 78 2014; 83 2015; 7 2015; 44C 2005; 46 2009; 458 2014; 108 2015; 28 2007; 118 2009; 72 2008; 49 2006; 47 1975; 25 2014; 35 2003; 27 2013; 81 2015 2008; 42 2003; 60 2014; 100 2010; 51 2010; 50 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Haneef Z (e_1_2_10_38_1) 2014; 90 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 55 start-page: 592 year: 2014 end-page: 600 article-title: Altered thalamocortical functional connectivity in idiopathic generalized epilepsy publication-title: Epilepsia – volume: 78 start-page: 129 year: 2012 end-page: 136 article-title: Mapping thalamocortical network pathology in temporal lobe epilepsy publication-title: Neurology – volume: 11 start-page: 66 year: 2010 article-title: Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI publication-title: BMC Neurosci – volume: 103 start-page: 74 year: 2002 end-page: 77 article-title: Widespread microdysgenesis in therapy‐resistant epilepsy–a case report on post‐mortem findings publication-title: Acta Neuropathol (Berl) – volume: 52 start-page: 2257 year: 2011 end-page: 2266 article-title: MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset publication-title: Epilepsia – volume: 43 start-page: 1482 year: 2005 end-page: 1492 article-title: Semantic memory in partial epilepsy: verbal and non‐verbal deficits and neuroanatomical relationships publication-title: Neuropsychologia – volume: 47 start-page: 615 year: 2006 end-page: 625 article-title: Effects of temporal lobe epilepsy on retrograde memory publication-title: Epilepsia – volume: 54 start-page: 61 issue: Suppl 4 year: 2013 end-page: 69 article-title: Epilepsy biomarkers publication-title: Epilepsia – volume: 2014 start-page: 864979 year: 2014 article-title: Altered intrinsic connectivity networks in frontal lobe epilepsy: a resting‐state fMRI study publication-title: Comput Math Methods Med – volume: 35 start-page: 340 year: 2014 end-page: 352 article-title: Task and task‐free FMRI reproducibility comparison for motor network identification publication-title: Hum Brain Mapp – volume: 42 start-page: 515 year: 2008 end-page: 524 article-title: Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy publication-title: NeuroImage – volume: 5 start-page: 93 year: 2014 article-title: Network Connectivity in Epilepsy: resting State fMRI and EEG‐fMRI Contributions publication-title: Front Neurol – volume: 5 start-page: 35 year: 2015 end-page: 44 article-title: Evolution of functional connectivity of brain networks and their dynamic interaction in temporal lobe epilepsy publication-title: Brain Connect – volume: 44C start-page: 47 year: 2015 end-page: 54 article-title: Temporal lobe epilepsy: decreased thalamic resting‐state functional connectivity and their relationships with alertness performance publication-title: Epilepsy Behav – volume: 7 start-page: 98 year: 2015 end-page: 104 article-title: Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis publication-title: Neuroimage Clin – volume: 7 start-page: 273 year: 2015 end-page: 280 article-title: Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy publication-title: Neuroimage Clin – volume: 8 start-page: 704 year: 2014 article-title: Delayed convergence between brain network structure and function in rolandic epilepsy publication-title: Front Hum Neurosci – volume: 27 start-page: 158 year: 2014 end-page: 162 article-title: Functional connectivity MRI and post‐operative language performance in temporal lobe epilepsy: initial experience publication-title: Neuroradiol J – volume: 46 start-page: 353 year: 2009 end-page: 359 article-title: Widespread neocortical abnormalities in temporal lobe epilepsy with and without mesial sclerosis publication-title: NeuroImage – volume: 30 start-page: 10076 year: 2010 end-page: 10085 article-title: Coalescence and fragmentation of cortical networks during focal seizures publication-title: J Neurosci – volume: 41 start-page: 490 year: 1997 end-page: 496 article-title: Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis publication-title: Ann Neurol – volume: 14 start-page: 635 year: 2011 end-page: 641 article-title: Single‐neuron dynamics in human focal epilepsy publication-title: Nat Neurosci – volume: 28 start-page: S69 issue: Suppl 1 year: 2013 end-page: S71 article-title: Photoparoxysmal EEG response and genetic dissection of juvenile myoclonic epilepsy publication-title: Epilepsy Behav – volume: 65C start-page: 83 year: 2015 end-page: 88 article-title: Atypical language laterality is associated with large‐scale disruption of network integration in children with intractable focal epilepsy publication-title: Cortex – volume: 98 start-page: 1 year: 2012 end-page: 13 article-title: Frontal lobe function in temporal lobe epilepsy publication-title: Epilepsy Res – volume: 18 start-page: 033119 year: 2008 article-title: Evolving functional network properties and synchronizability during human epileptic seizures publication-title: Chaos – volume: 32 start-page: 1070 year: 2006 end-page: 1079 article-title: Gray matter atrophy associated with duration of temporal lobe epilepsy publication-title: NeuroImage – volume: 76 start-page: 138 year: 2011 end-page: 144 article-title: Increased temporolimbic cortical folding complexity in temporal lobe epilepsy publication-title: Neurology – volume: 56 start-page: 517 year: 2015 end-page: 526 article-title: Presurgery resting‐state local graph‐theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy publication-title: Epilepsia – volume: 26 start-page: 186 year: 2013 end-page: 194 article-title: Connectomics and epilepsy publication-title: Curr Opin Neurol – volume: 49 start-page: 794 year: 2008 end-page: 803 article-title: Regional neocortical thinning in mesial temporal lobe epilepsy publication-title: Epilepsia – volume: 27 start-page: 3 year: 2003 end-page: 18 article-title: Trajectories of brain development: point of vulnerability or window of opportunity? publication-title: Neurosci Biobehav Rev – volume: 52 start-page: 10 year: 2011 end-page: 21 article-title: Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: a postmortem study publication-title: Epilepsia – volume: 90 start-page: e51442 year: 2014 article-title: Network analysis of the default mode network using functional connectivity MRI in Temporal Lobe Epilepsy publication-title: J Vis Exp – volume: 53 start-page: 1013 year: 2012 end-page: 1023 article-title: Patterns of altered functional connectivity in mesial temporal lobe epilepsy publication-title: Epilepsia – volume: 53 start-page: 807 year: 2012 end-page: 816 article-title: Spatiotemporal neuronal correlates of seizure generation in focal epilepsy publication-title: Epilepsia – volume: 11 start-page: e1004209 year: 2015 article-title: Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity publication-title: PLoS Comput Biol – volume: 83 start-page: 2269 year: 2014 end-page: 2277 article-title: Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity publication-title: Neurology – volume: 108 start-page: 1299 year: 2014 end-page: 1305 article-title: Increased interhemispheric resting‐state in idiopathic generalized epilepsy with generalized tonic‐clonic seizures: a resting‐state fMRI study publication-title: Epilepsy Res – volume: 9 start-page: e90068 year: 2014 article-title: Functional and structural network impairment in childhood frontal lobe epilepsy publication-title: PLoS ONE – volume: 55 start-page: 674 year: 2014 end-page: 682 article-title: Disrupted anatomic white matter network in left mesial temporal lobe epilepsy publication-title: Epilepsia – volume: 81 start-page: 1704 year: 2013 end-page: 1710 article-title: Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy publication-title: Neurology – volume: 60 start-page: 538 year: 2003 end-page: 547 article-title: Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons publication-title: Neurology – start-page: 155 year: 2015 end-page: 166 – volume: 51 start-page: 676 year: 2010 end-page: 685 article-title: Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005‐2009 publication-title: Epilepsia – volume: 100 start-page: 135 year: 2014 end-page: 144 article-title: Structural connectivity differences in left and right temporal lobe epilepsy publication-title: NeuroImage – volume: 52 start-page: 507 year: 2011 end-page: 514 article-title: Connectivity of the supplementary motor area in juvenile myoclonic epilepsy and frontal lobe epilepsy publication-title: Epilepsia – volume: 50 start-page: 970 year: 2010 end-page: 983 article-title: Whole‐brain anatomical networks: does the choice of nodes matter? publication-title: NeuroImage – volume: 8 start-page: 419 year: 2014 article-title: Detection of abnormal resting‐state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment publication-title: Front Neurosci – volume: 5 start-page: 276 year: 2015 end-page: 283 article-title: Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis publication-title: Brain Connect – volume: 43 start-page: 219 year: 2002 end-page: 227 article-title: Neural networks in human epilepsy: evidence of and implications for treatment publication-title: Epilepsia – volume: 271 start-page: 839 year: 2014 end-page: 847 article-title: Generalized tonic‐clonic seizures: aberrant interhemispheric functional and anatomical connectivity publication-title: Radiology – volume: 49 start-page: 741 year: 2008 end-page: 757 article-title: Voxel‐based morphometry of temporal lobe epilepsy: an introduction and review of the literature publication-title: Epilepsia – volume: 23 start-page: 717 year: 2004 end-page: 723 article-title: Whole‐brain voxel‐based statistical analysis of gray matter and white matter in temporal lobe epilepsy publication-title: NeuroImage – volume: 17 start-page: 2007 year: 2007 end-page: 2018 article-title: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis publication-title: Cereb Cortex – volume: 5 start-page: e8525 year: 2010 article-title: Altered functional connectivity and small‐world in mesial temporal lobe epilepsy publication-title: PLoS ONE – volume: 24 start-page: 194 year: 2012 end-page: 198 article-title: Naming outcomes of anterior temporal lobectomy in epilepsy patients: a systematic review of the literature publication-title: Epilepsy Behav – volume: 50 start-page: 162 year: 2015 end-page: 170 article-title: Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy publication-title: Epilepsy Behav – volume: 46 start-page: 420 year: 2005 end-page: 430 article-title: Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates publication-title: Epilepsia – volume: 25 start-page: 1149 year: 1975 end-page: 1153 article-title: Disconnection of the cerebral hemispheres. An alternative to hemispherectomy for the control of intractable seizures publication-title: Neurology – volume: 72 start-page: 1747 year: 2009 end-page: 1754 article-title: Longitudinal and cross‐sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy publication-title: Neurology – volume: 458 start-page: 97 year: 2009 end-page: 101 article-title: Impaired attention network in temporal lobe epilepsy: a resting FMRI study publication-title: Neurosci Lett – volume: 41 start-page: 33 year: 2014 end-page: 38 article-title: A resting‐state functional connectivity study in patients at high risk for sudden unexpected death in epilepsy publication-title: Epilepsy Behav – volume: 83 start-page: 903 year: 2012 end-page: 909 article-title: Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures publication-title: J Neurol Neurosurg Psychiatry – volume: 118 start-page: 918 year: 2007 end-page: 927 article-title: Small‐world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures publication-title: Clin Neurophysiol – volume: 28 start-page: 113 year: 2015 end-page: 126 article-title: Early and late age of seizure onset have a differential impact on brain resting‐state organization in temporal lobe epilepsy publication-title: Brain Topogr – volume: 61 start-page: 1379 year: 2004 end-page: 1384 article-title: Voxel‐based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy publication-title: Arch Neurol – volume: 59 start-page: 157 year: 2014 end-page: 168 article-title: The impact of age on prefrontal cortex integrity during spatial working memory retrieval publication-title: Neuropsychologia – volume: 18 start-page: 351 year: 2015 end-page: 359 article-title: Microcircuits and their interactions in epilepsy: is the focus out of focus? publication-title: Nat Neurosci – volume: 59 start-page: 335 year: 2006 end-page: 343 article-title: Functional connectivity networks are disrupted in left temporal lobe epilepsy publication-title: Ann Neurol – volume: 270 start-page: 842 year: 2014 end-page: 848 article-title: Altered structural connectome in temporal lobe epilepsy publication-title: Radiology – volume: 14 start-page: 322 year: 2013 end-page: 336 article-title: Imaging structural co‐variance between human brain regions publication-title: Nat Rev Neurosci – volume: 121 start-page: 1661 issue: Pt 9 year: 1998 end-page: 1667 article-title: Quantitative MRI in patients with idiopathic generalized epilepsy. Evidence of widespread cerebral structural changes publication-title: Brain – volume: 5 year: 2015 article-title: Seizures and Epilepsy: an Overview for Neuroscientists publication-title: Cold Spring Harb Perspect Med – volume: 41 start-page: 1540 year: 2000 end-page: 1545 article-title: Predictors of hippocampal, cerebral, and cerebellar volume reduction in childhood epilepsy publication-title: Epilepsia – volume: 74 start-page: 149 year: 1974 end-page: 155 article-title: The cells of origin of the corpus callosum in rat, cat and rhesus monkey publication-title: Brain Res – volume: 108 start-page: 1770 year: 2014 end-page: 1781 article-title: Differences in graph theory functional connectivity in left and right temporal lobe epilepsy publication-title: Epilepsy Res – volume: 74 start-page: 1776 year: 2010 end-page: 1784 article-title: Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome publication-title: Neurology – volume: 9 start-page: 353 year: 2003 end-page: 362 article-title: Extratemporal quantitative MR volumetrics and neuropsychological status in temporal lobe epilepsy publication-title: J Int Neuropsychol Soc – volume: 78 start-page: 1555 year: 2012 end-page: 1559 article-title: Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link publication-title: Neurology – ident: e_1_2_10_30_1 doi: 10.1038/nn.3950 – ident: e_1_2_10_24_1 doi: 10.1212/WNL.0b013e318205d521 – ident: e_1_2_10_14_1 doi: 10.1016/j.neuroimage.2008.04.261 – ident: e_1_2_10_16_1 doi: 10.1016/j.neuroimage.2006.05.038 – ident: e_1_2_10_28_1 doi: 10.1016/j.neuroimage.2014.04.071 – ident: e_1_2_10_27_1 doi: 10.1111/j.1528-1167.2012.03464.x – ident: e_1_2_10_36_1 doi: 10.1111/epi.12581 – ident: e_1_2_10_9_1 doi: 10.1007/s004010100426 – ident: e_1_2_10_5_1 doi: 10.1016/j.yebeh.2015.06.005 – ident: e_1_2_10_45_1 doi: 10.1007/s10548-014-0366-6 – ident: e_1_2_10_60_1 doi: 10.1016/j.nicl.2014.11.018 – ident: e_1_2_10_19_1 doi: 10.1111/j.1528-1167.2011.03278.x – ident: e_1_2_10_54_1 doi: 10.1016/S0149-7634(03)00005-8 – ident: e_1_2_10_37_1 doi: 10.1371/journal.pone.0008525 – ident: e_1_2_10_15_1 doi: 10.1212/01.wnl.0000345969.57574.f5 – ident: e_1_2_10_44_1 doi: 10.1016/j.neuropsychologia.2014.04.020 – ident: e_1_2_10_49_1 doi: 10.1155/2014/864979 – ident: e_1_2_10_2_1 doi: 10.1101/cshperspect.a022426 – ident: e_1_2_10_17_1 doi: 10.1001/archneur.61.9.1379 – volume: 90 start-page: e51442 year: 2014 ident: e_1_2_10_38_1 article-title: Network analysis of the default mode network using functional connectivity MRI in Temporal Lobe Epilepsy publication-title: J Vis Exp – ident: e_1_2_10_62_1 doi: 10.1002/ana.20733 – ident: e_1_2_10_78_1 doi: 10.1212/01.wnl.0000435306.95271.5f – ident: e_1_2_10_77_1 doi: 10.1002/ana.410410412 – ident: e_1_2_10_43_1 doi: 10.1148/radiol.13131638 – ident: e_1_2_10_61_1 doi: 10.1016/j.cortex.2014.12.016 – ident: e_1_2_10_7_1 doi: 10.1038/nrn3465 – ident: e_1_2_10_72_1 doi: 10.1111/epi.12299 – ident: e_1_2_10_3_1 doi: 10.1097/WCO.0b013e32835ee5b8 – ident: e_1_2_10_69_1 doi: 10.1212/WNL.0b013e3182563b44 – ident: e_1_2_10_10_1 doi: 10.1017/S1355617703930013 – ident: e_1_2_10_18_1 doi: 10.1111/j.1528-1167.2007.01485.x – ident: e_1_2_10_74_1 doi: 10.1016/j.yebeh.2014.08.140 – ident: e_1_2_10_13_1 doi: 10.1212/WNL.0b013e31823efd0d – ident: e_1_2_10_39_1 doi: 10.3389/fneur.2014.00093 – ident: e_1_2_10_79_1 doi: 10.15274/NRJ-2014-10031 – ident: e_1_2_10_6_1 doi: 10.1046/j.1528-1157.2002.26901.x – ident: e_1_2_10_53_1 doi: 10.1002/hbm.22180 – ident: e_1_2_10_71_1 doi: 10.1016/j.yebeh.2012.07.016 – ident: e_1_2_10_21_1 doi: 10.1093/cercor/bhl109 – ident: e_1_2_10_35_1 doi: 10.1136/jnnp-2012-302476 – ident: e_1_2_10_46_1 doi: 10.1089/brain.2014.0251 – ident: e_1_2_10_20_1 doi: 10.1111/j.1528-1157.2000.tb00122.x – ident: e_1_2_10_26_1 doi: 10.1148/radiol.13131044 – ident: e_1_2_10_22_1 doi: 10.1111/j.1528-1167.2008.01539.x – ident: e_1_2_10_68_1 doi: 10.1016/j.yebeh.2012.04.115 – ident: e_1_2_10_31_1 doi: 10.1016/0006-8993(74)90118-8 – ident: e_1_2_10_50_1 doi: 10.1523/JNEUROSCI.6309-09.2010 – ident: e_1_2_10_57_1 doi: 10.1111/j.1528-1167.2010.02522.x – ident: e_1_2_10_33_1 doi: 10.1111/j.1528-1167.2012.03417.x – ident: e_1_2_10_23_1 doi: 10.1016/j.neuroimage.2009.02.020 – ident: e_1_2_10_81_1 doi: 10.1111/epi.12936 – ident: e_1_2_10_59_1 doi: 10.1093/brain/121.9.1661 – ident: e_1_2_10_52_1 doi: 10.1016/j.clinph.2006.12.002 – ident: e_1_2_10_58_1 doi: 10.1007/978-0-387-92826-5_7 – ident: e_1_2_10_55_1 doi: 10.3389/fnhum.2014.00704 – ident: e_1_2_10_11_1 doi: 10.1016/j.neuroimage.2004.06.015 – ident: e_1_2_10_75_1 doi: 10.1016/j.yebeh.2014.12.013 – ident: e_1_2_10_25_1 doi: 10.1111/j.0013-9580.2005.27004.x – ident: e_1_2_10_76_1 doi: 10.1212/01.WNL.0000055086.35806.2D – ident: e_1_2_10_67_1 doi: 10.1111/j.1528-1167.2006.00476.x – ident: e_1_2_10_80_1 doi: 10.1212/WNL.0000000000001068 – ident: e_1_2_10_47_1 doi: 10.1089/brain.2014.0308 – ident: e_1_2_10_40_1 doi: 10.1016/j.eplepsyres.2014.06.010 – ident: e_1_2_10_34_1 doi: 10.1038/nn.2782 – ident: e_1_2_10_63_1 doi: 10.1186/1471-2202-11-66 – ident: e_1_2_10_65_1 doi: 10.1016/j.eplepsyres.2011.10.009 – ident: e_1_2_10_66_1 doi: 10.1016/j.neuropsychologia.2004.12.010 – ident: e_1_2_10_51_1 doi: 10.1063/1.2966112 – ident: e_1_2_10_73_1 doi: 10.1016/j.nicl.2014.08.002 – ident: e_1_2_10_56_1 doi: 10.3389/fnins.2014.00419 – ident: e_1_2_10_29_1 doi: 10.1371/journal.pcbi.1004209 – ident: e_1_2_10_4_1 doi: 10.1016/j.neuroimage.2009.12.027 – ident: e_1_2_10_8_1 doi: 10.1111/j.1528-1167.2010.02773.x – ident: e_1_2_10_48_1 doi: 10.1016/j.eplepsyres.2014.09.023 – ident: e_1_2_10_64_1 doi: 10.1016/j.neulet.2009.04.040 – ident: e_1_2_10_12_1 doi: 10.1212/WNL.0b013e3181e0f80a – ident: e_1_2_10_70_1 doi: 10.1111/j.1528-1167.2010.02770.x – ident: e_1_2_10_41_1 doi: 10.1111/epi.12580 – ident: e_1_2_10_42_1 doi: 10.1371/journal.pone.0090068 – ident: e_1_2_10_32_1 doi: 10.1212/WNL.25.12.1149 |
SSID | ssj0007673 |
Score | 2.4958801 |
SecondaryResourceType | review_article |
Snippet | Summary
The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of... The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy... Summary The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1660 |
SubjectTerms | Animals Biomarkers Brain - pathology Connectome Connectome - methods Connectome - trends Epilepsy Epilepsy - diagnosis Epilepsy - genetics Graph theory Humans Nerve Net - pathology Neural networks |
Title | Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13133 https://www.ncbi.nlm.nih.gov/pubmed/26391203 https://www.proquest.com/docview/1728005359 https://www.proquest.com/docview/1728674269 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_kHsSXtlbbxqqs0od7yZFkd_NRn0Q8TsFDioIPlpDsTkA8cofJFexf39nNh55VKH1KyE6yk-zO7G-zM78F-BYpFJKco4si8lyhBXdzhYkbaRkijz1ynCY5-WIaTq7F-Y28WYOjLhem4Yfof7gZy7D-2hh4llfPjBwXdyOf0xSL_K-J1TKA6McTdVQUtqvLpEciY69lFTJRPP2dq2PRXwBzFa_aAWf8Hm47VZs4k_vRss5H6vcLFsf_fJcP8K4Fouy46TmbsIblR1i_aJfat-CnDYFRtclarlhWama5rZnNfHykC4bMBKvvbDr_hTN2V1Zmml_RST1nZRNczrK8NJh4ZmlbqYiRCjNcVI_bcD0-vTqZuO1eDK4yK6su6kLHNHTRDMaPVZLlXHCu_czjsVIBEmwgnKEzLkhMBWT0yteeoiPKRCpZ8E8wKOclfgGm0OdFrouQXIeQukgEj1HkMguCOCSn58Cwa5VUtUTlZr-MWdpNWEjX1H4uBw570UXDzvGa0G7XtGlroFVqt-Uy3DaJAwd9MZmWWS_JSpwvG5kwMrm-DnxuukRfS0DIzg88evjQNuzb1aenl2f2ZOffRb_CBgEz2eQ87sKgfljiHoGfOt-3vfwPMAf-ow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BViq9tOXZbWlrEAcuWSWxnUfVS0VBy2NXCIHEBUWJPZFWrLKrJluJ_vqOnUehUAn1FCuexE7sGX9jez4D7IUKhSTj6KAIXUdowZ1MYeyEWgbII5cMpwlOHo2D4ZU4uZbXS_C1jYWp-SG6CTejGdZeGwU3E9L3tBznk4HHycdahhfmRG_DnP_94g95VBg068tUk1hGbsMrZPbxdI8-HI0eQcyHiNUOOUdv4KatbL3T5HawqLKB-vUXj-P_fs1beN1gUfat7jyrsITFGrwcNavt63Bjd8GoygQulywtNLP01swGP97RDcNnguUXNp79xCmbFKXx9EtKVDNW1PvLWZoVBhZPLXMrZTGqwhTn5d0GXB0dXh4MneY4BkeZxVUHda4jGr3IifEiFacZF5xrL3V5pJSPhBwIauiUCxJTPum98rSr6IoylkrmfBN6xazAd8AUejzPdB6Q9RBS57HgEYpMpr4fBWT3-rDfNkuiGq5yc2TGNGl9FqprYn9XH3Y70XlN0PGU0Hbbtkmjo2ViT-Yy9DZxH3a6bNIus2SSFjhb1DJBaMJ9-7BV94muFJ_Anee79PJ927L_Lj45PD-2iffPF_0MK8PL0Vlydjw-_QCvCKfJOgRyG3rVjwV-JCxUZZ9sl_8NFl4Czg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlRAXoC9YuqVu1QOXrJLYzgNOqMsKCqxQVSQOraLEnkgrVtkVySLBr-_YeZRHK1U9JYonsRN7xt9kPJ8BPocKhSTj6KAIXUdowZ1MYeyEWgbII5cMp0lOPh8Hx5fi65W8WoKDNhem5ofofrgZzbD22ij4XOcPlBznk4HHycVahhcicGOzb8Pw22_uqDBowsvUkFhGbkMrZJbxdLc-noyeIczHgNXOOKMN-NG2tV5ocj1YVNlA3T-hcfzPl9mE9QaJssN66LyEJSxewep5E2t_DT_tGhhVmbTlkqWFZpbcmtnUxzu6YNhMsNxn49ktTtmkKI2fX9JJNWNFvbqcpVlhQPHU8rZSEaMmTHFe3r2By9HR9y_HTrMZg6NMaNVBneuI5i5yYbxIxWnGBefaS10eKeUj4QYCGjrlgsSUT1qvPO0qOqKMpZI5fwsrxazAbWAKPZ5nOg_Idgip81jwCEUmU9-PArJ6PdhreyVRDVO52TBjmrQeC7U1sZ-rB5860XlNz_EnoX7btUmjoWVi9-Uy5DZxDz52xaRbJmCSFjhb1DJBaJJ9e7BVD4muFp-gnee79PA927F_rz45ujixJzv_LvoBVi-Go-TsZHz6DtYIpMk6_7EPK9XNAt8TEKqyXTvgfwEO3QF9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectomics+and+graph+theory+analyses%3A+Novel+insights+into+network+abnormalities+in+epilepsy&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Gleichgerrcht%2C+Ezequiel&rft.au=Kocher%2C+Madison&rft.au=Bonilha%2C+Leonardo&rft.date=2015-11-01&rft.issn=1528-1167&rft.eissn=1528-1167&rft.volume=56&rft.issue=11&rft.spage=1660&rft_id=info:doi/10.1111%2Fepi.13133&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon |