Inferior olivary neurons innervate multiple zones of the flocculus in pigeons (Columba livia)

Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45° to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 486; no. 2; pp. 159 - 168
Main Authors Pakan, Janelle M.P., Todd, Kathryn G., Nguyen, Angela P., Winship, Ian R., Hurd, Peter L., Jantzie, Lauren L., Wylie, Douglas R.W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 30.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45° to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones. J. Comp. Neurol. 486:159–168, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45 degrees to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones.
Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45° to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones. J. Comp. Neurol. 486:159–168, 2005. © 2005 Wiley‐Liss, Inc.
Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45 degree to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones.
Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis ( rVA neurons) or a horizontal axis 45° to the midline ( rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones. J. Comp. Neurol. 486:159–168, 2005. © 2005 Wiley‐Liss, Inc.
Author Jantzie, Lauren L.
Wylie, Douglas R.W.
Pakan, Janelle M.P.
Winship, Ian R.
Hurd, Peter L.
Nguyen, Angela P.
Todd, Kathryn G.
Author_xml – sequence: 1
  givenname: Janelle M.P.
  surname: Pakan
  fullname: Pakan, Janelle M.P.
  organization: Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
– sequence: 2
  givenname: Kathryn G.
  surname: Todd
  fullname: Todd, Kathryn G.
  organization: Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
– sequence: 3
  givenname: Angela P.
  surname: Nguyen
  fullname: Nguyen, Angela P.
  organization: Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
– sequence: 4
  givenname: Ian R.
  surname: Winship
  fullname: Winship, Ian R.
  organization: Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
– sequence: 5
  givenname: Peter L.
  surname: Hurd
  fullname: Hurd, Peter L.
  organization: Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
– sequence: 6
  givenname: Lauren L.
  surname: Jantzie
  fullname: Jantzie, Lauren L.
  organization: Neurochemical Research Unit, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
– sequence: 7
  givenname: Douglas R.W.
  surname: Wylie
  fullname: Wylie, Douglas R.W.
  email: dwylie@ualberta.ca
  organization: Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15844212$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1vFCEch4mpsdvVg1_AcDL2MC1vM8DRTGpt01RjNHoxZF7-KMrAFmaq9dPLuquejCcOPL-H8ByhgxADIPSYkhNKCDsdApwwUjN-D60o0U2lVUMP0Krc0UrrRh6io5y_EEK05uoBOqS1EoJRtkIfL4KF5GLC0bvbLt3hAEuKIWMXAqTbbgY8LX52Gw_4R3k242jx_Bmw9XEYFr9sSbxxn2A7etZGv0x9h4vMdccP0X3b-QyP9ucavXtx9rZ9WV29Or9on19Vg6gVr7RkUnEy2FGNVnCmu6aRlIhRCG4F4yOVtbVEiN6CYnYApghVveqUGOoegK_R0513k-LNAnk2k8sDeN8FiEs2jZSy1lr9F6SSs0aWSmt0vAOHFHNOYM0muan0MZSYbXRToptf0Qv7ZC9d-gnGv-S-cgFOd8A35-Hu3ybTXp_9Vla7hcszfP-z6NLX8hcua_P--tzQyw9v2svXtaH8J2JinHs
CitedBy_id crossref_primary_10_1002_cne_22192
crossref_primary_10_1002_cne_23352
crossref_primary_10_1002_cne_25454
crossref_primary_10_1002_cne_24697
crossref_primary_10_1002_cne_22810
crossref_primary_10_1016_j_neuroscience_2011_04_014
crossref_primary_10_1002_cne_23626
crossref_primary_10_1002_cne_23769
crossref_primary_10_1002_ar_22515
crossref_primary_10_1017_S0952523807070599
crossref_primary_10_1002_cne_21108
crossref_primary_10_1002_cne_21623
crossref_primary_10_1017_S0952523810000532
crossref_primary_10_1016_j_neuroscience_2006_03_057
crossref_primary_10_1002_cne_21266
crossref_primary_10_1002_cne_24270
crossref_primary_10_1016_j_neuroscience_2008_08_062
Cites_doi 10.1046/j.1460-9568.2000.00897.x
10.1152/jn.1988.60.6.2073
10.1152/jn.1999.81.1.267
10.1016/S0304-3940(99)00390-0
10.1002/cne.903490308
10.1111/j.1460-9568.1993.tb00482.x
10.1016/S0079-6123(08)63371-3
10.1523/JNEUROSCI.21-19-07715.2001
10.1002/cne.903490309
10.1016/0168-0102(88)90027-2
10.1016/0165-0173(91)90019-5
10.1007/BF00231059
10.1038/32648
10.1002/cne.11022
10.1007/BF00248279
10.1002/cne.901830307
10.1152/jn.1988.60.6.2055
10.1002/cne.903160202
10.1016/S0306-4522(97)00620-9
10.1007/BF00247892
10.1002/cne.903560104
10.1016/0168-0102(93)90124-9
10.1002/cne.10507
10.1007/BF00237214
10.1152/jn.1988.60.6.2091
10.1111/j.1749-6632.1981.tb30856.x
10.1016/S0306-4522(00)00232-3
10.1016/0306-4522(84)90140-4
10.1152/jn.1993.70.6.2647
10.1152/jn.1994.72.1.31
10.1016/0306-4522(92)90376-D
10.1002/cne.10889
10.1002/(SICI)1096-9861(20000327)419:1<87::AID-CNE5>3.0.CO;2-W
10.1152/jn.1993.70.6.2632
10.1002/(SICI)1096-9861(19991115)414:2<131::AID-CNE1>3.0.CO;2-F
10.1016/0306-4522(88)90317-X
10.1007/s002210100845
10.1002/cne.903560103
10.1159/000064384
10.1016/0304-3940(78)90167-2
10.1002/cne.10952
10.1016/S0079-6123(08)62215-3
10.1007/BF00228152
10.1017/S0952523800009172
10.1016/0006-8993(75)90375-3
10.1111/j.1749-6632.1996.tb15728.x
10.1002/cne.10508
10.1016/0304-3940(77)90079-9
10.1111/j.1749-6632.1988.tb19562.x
10.1111/j.1460-9568.2003.03045.x
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Copyright 2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: Copyright 2005 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1002/cne.20523
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Neurosciences Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 168
ExternalDocumentID 10_1002_cne_20523
15844212
CNE20523
ark_67375_WNG_1JXRCJP5_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 170363
– fundername: Canadian Institute for Health Research
  funderid: 69013; 49622
– fundername: Canada Research Chairs Program
– fundername: Alberta Heritage Foundation for Medical Research
– fundername: Davey Endowment for Brain Injury Research
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XJT
XV2
YQT
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4583-9727830cfd8df4329a667104d443f423d175ff044bfe82fce28018b8a84c5bee3
IEDL.DBID DR2
ISSN 0021-9967
IngestDate Wed Dec 04 09:22:43 EST 2024
Wed Dec 04 02:32:01 EST 2024
Fri Dec 06 05:46:15 EST 2024
Sat Sep 28 07:45:35 EDT 2024
Sat Aug 24 00:46:32 EDT 2024
Wed Oct 30 09:56:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright 2005 Wiley-Liss, Inc.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4583-9727830cfd8df4329a667104d443f423d175ff044bfe82fce28018b8a84c5bee3
Notes Canadian Institute for Health Research - No. 69013; No. 49622
Canada Research Chairs Program
Davey Endowment for Brain Injury Research
Alberta Heritage Foundation for Medical Research
Natural Sciences and Engineering Research Council of Canada - No. 170363
ArticleID:CNE20523
istex:F06AA19459B53C0917D925A505F89881AC89B131
ark:/67375/WNG-1JXRCJP5-1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15844212
PQID 17326799
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67775998
proquest_miscellaneous_17326799
crossref_primary_10_1002_cne_20523
pubmed_primary_15844212
wiley_primary_10_1002_cne_20523_CNE20523
istex_primary_ark_67375_WNG_1JXRCJP5_1
PublicationCentury 2000
PublicationDate 30 May 2005
PublicationDateYYYYMMDD 2005-05-30
PublicationDate_xml – month: 05
  year: 2005
  text: 30 May 2005
  day: 30
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Ruigrok TJH, Osse RJ, Voogd J. 1992. Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. J Comp Neurol 316: 129-150.
Yamamoto M, Shimoyama I. 1977. Differential localization of rabbit's flocculus Purkinje cells projecting to the medial and superior vestibular nuclei, investigated by means of the horseradish peroxidase retrograde axonal transport. Neurosci Lett 5: 279-283.
Balaban CD, Schuerger RJ, Porter JD. 2000. Zonal organization of flocculo-vestibular connections in rats. Neuroscience 99: 669-682.
Zar JH. 1999. Biostatistical analysis, 4th ed. Englewood Cliffs, NJ: Prentice-Hall.
Bukowska D, Zguczynski L, Mierzejewska-Krzyzowska B. 2002. Axonal collateral branching of neurones in the inferior olive projecting to the cerebellar paramedian lobule in the rabbit. Cell Tissue Org 172: 37-47.
Leonard CS, Simpson JI, Graf W. 1988. Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. J Neurophysiol 60: 2073-2090.
Simpson JI, Leonard CS, Soodak RE. 1988b. The accessory optic system: II. Spatial organization of direction selectivity. J Neurophysiol 60: 2055-2072.
Simpson JI, van der Steen J, Tan J, Graf W, Leonard CS. 1989b. Representations of ocular rotations in the cerebellar flocculus of the rabbit. Prog Brain Res 80: 213-223.
Ezure K, Graf W. 1984. A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12: 85-93.
Garwicz M, Ekerot C-F, Jorntell H. 1998. Organizational principles of cerebellar neuronal circuitry. New Physiol Sci 13: 26-32.
Winship IR, Wylie DRW. 2001. Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields. Exp Brain Res 141: 63-78.
Winship IR, Wylie DRW. 2003. Zonal organization of the vestibulocerebellum in pigeons (Columba livia): I. Climbing fibre input to the flocculus. J Comp Neurol 456: 127-139.
Wylie DRW, Brown MR, Barkley RR, Winship IR, Todd KG. 2003. Zonal organization of the vestibulocerebellum in pigeons (Columba livia): II. Projections of the rotation zones of the flocculus. J Comp Neurol 456: 140-153.
Kano M, Kano MS, Kusunoki M, Maekawa K. 1990. Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit. II. The nodulus. Exp Brain Res 80: 238-251.
Barmack NH, Shojaku H. 1992. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit. Neuroscience 50: 1-5.
Wylie DR, De Zeeuw CI, DiGiorgi PL, Simpson JI. 1994. Projections of individual Purkinje cells of physiologically identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349: 448-463.
Buisseret-Delmas C, Yatim N, Buisseret P, Angaut P. 1993. The X zone and CX subzone of the cerebellum in the rat. Neurosci Res 16: 195-207.
Ito M. 1984. The cerebellum and neural control. New York: Raven.
Bolk L. 1906. Das Cerebellum der Saugetiere. Jena: Fischer.
Graf W, Simpson JI, Leonard CS. 1988. Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. J Neurophysiol 60: 2091-2121.
Tan J, Gerrits NM, Nanhoe JI, Simpson JI, Voogd J. 1995b. Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356: 23-50.
De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI. 1994. Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and the cerebellar nuclei in the rabbit. J Comp Neurol 349: 428-447.
Balaban CD. 1988. Distribution of inferior olivary projections to the vestibular nuclei of albino rabbits. Neuroscience 24: 119-134.
Ekerot C-F, Larson B. 1982. Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res 48: 185-198.
Voogd J, Gerrits NM, Ruigrok TJ. 1996. Organization of the vestibulocerebellum. Ann N Y Acad Sci 781: 553-579.
Wylie DR, Frost BJ. 1996. The pigeon optokinetic system: visual input in extraocular muscle coordinates. Vis Neurosci 13: 945-953.
Trott JR, Apps R. 1993. Zonal organization within the projection from the inferior olive to the rostral paramedian lobule of the cat cerebellum. Eur J Neurosci 5: 162-173.
Sugihara I, Wu H-S, Shinoda Y. 1999. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414: 131-148.
Wylie DR, Frost BJ. 1993. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. II. The 3-dimensional reference frame of rotation neurons in the flocculus. J Neurophysiol 70: 2647-2659.
Wylie DR, Frost BJ. 1999. Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields. J Neurophysiol 81: 267-276.
De Zeeuw CI, Koekkoek SK. 1997. Signal processing in the C2 module of the flocculus and its role in head movement control. Prog Brain Res 114: 299-320.
Groenewegen HJ, Voogd J, Freedman SL. 1979. The parasagittal zonation with the olivocerebellar projection. II. Climbing fibre distribution in the intermediate and hemispheric parts of the cerebellum. J Comp Neurol 183: 551-602.
Takeda T, Maekawa K. 1989a. Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. I. An electrophysiological study. Exp Brain Res 74: 47-62.
Simpson JI, Graf W. 1981. Eye-muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Ann N Y Acad Sci 374: 20-30.
Katayama S, Nisimaru N. 1988. Parasagittal zonal pattern of olivo-nodular projections in rabbit cerebellum. Neurosci Res 5: 424-438.
Sugihara I, Lohof AM, Letellier M, Mariani J, Sherrard RM. 2003. Postlesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones. Eur J Neurosci 18: 3027-3036.
Lau KL, Glover RG, Linkenhoker B, Wylie DR. 1998. Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons. Neuroscience 85: 605-614.
van der Steen J, Simpson JI, Tan J. 1994. Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. J Neurophysiol 72: 31-46.
Sugihara I, Wu H-S, Shinoda Y. 2001. The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21: 7715-7723.
Alley K, Baker R, Simpson JI. 1975. Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res 98: 582-589.
Wylie DRW, Winship IR, Glover RG. 1999. Projections from the medial column of the inferior olive to different classes of rotation-sensitive Purkinje cells in the flocculus of pigeons. Neurosci Lett 268: 97-100.
Ruigrok TJ. 2003. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466: 278-298.
Apps R, Garwicz M. 2000. Precise matching of oilvo-cortical divergence and cortico-nuclear convergence between somatopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J Neurosci 12: 205-214.
Sugihara I, Ebata S, Shinoda Y. 2004. Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol 470: 113-133.
Wylie DR, Frost BJ. 1991. Purkinje cells in the vestibulocerebellum of the pigeon respond best to either rotational or translational visual flow. Exp Brain Res 86: 229-232.
Arends JJA, Voogd J. 1989. Topographic aspects of the olivocerebellar system in the pigeon. Exp Brain Res 17(Suppl): 52-57.
Simpson JI, Leonard CS, Soodak RE. 1988a. The accessory optic system: analyzer of self-motion. Ann N Y Acad Sci 545: 170-179.
Sato Y, Kawasaki T. 1991. Identification of Purkinje cell/climbing fiber zone and its target neurons responsible for eye-movement control by the cerebellar flocculus. Brain Res Rev 16: 39-64.
Crowder NA, Winship IR, Wylie DR. 2000. Topographic organization of inferior olive cells projecting to translational zones in the vestibulocerebellum of pigeons. J Comp Neurol 419: 87-95.
Tan J, Simpson JI, Voogd J. 1995a. Anatomical compartments in the white matter of the rabbit flocculus. J Comp Neurol 356: 51-71.
Karten HJ, Hodos W. 1967. A stereotaxic atlas of the brain of the pigeon (Columba livia). Baltimore: Johns Hopkins Press.
Takeda T, Maekawa K. 1989b. Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. II. Retrograde double labeling study with fluorescent dyes. Exp Brain Res 76: 323-332.
Wylie DR, Kripalani T, Frost BJ. 1993. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow. J Neurophysiol 70: 2632-2646.
Wylie DR, Bischof WF, Frost BJ. 1998. Common reference frame for neural coding of translational and rotational optic flow. Nature 392: 278-282.
Voogd J, Wylie DR. 2004. Functional and anatomical organization of floccular zones: a preserved feature in vertebrates. J Comp Neurol 470: 107-112.
Yamamoto M. 1978. Localization of rabbit's flocculus Purkinje cells projecting to the cerebellar lateral nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde axonal transport. Neurosci Lett 7: 197-202.
2000; 419
1997; 114
1991; 16
2001; 141
1989b; 80
2003; 18
1996; 781
1975; 98
1998; 85
1999; 81
1992; 50
1998; 392
1993; 5
1978; 7
2000; 12
1993; 70
2000; 99
1991; 86
1984; 12
1992; 316
1985
1984
1981
1980
1999; 414
1906
1994; 349
1994; 72
1998; 13
2002; 172
1988a; 545
1989a; 17
1988b; 60
1999; 268
2003; 456
1996; 13
1990; 80
2001; 21
1995a; 356
1999
1989b; 76
1982; 48
1993; 16
1988; 5
2004; 470
1981; 374
1988; 24
1995b; 356
1989a; 74
1979; 183
2003; 466
1988; 60
1989; 17
1967
1977; 5
e_1_2_5_27_1
Takeda T (e_1_2_5_39_1) 1989; 74
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_44_1
Karten HJ (e_1_2_5_21_1) 1967
Kano M (e_1_2_5_20_1) 1990; 80
Simpson JI (e_1_2_5_29_1) 1985
e_1_2_5_42_1
e_1_2_5_40_1
Leonard CS (e_1_2_5_24_1) 1988; 60
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
Arends JJA (e_1_2_5_4_1) 1989; 17
Voogd J (e_1_2_5_45_1) 1980
e_1_2_5_53_1
e_1_2_5_51_1
Ito M (e_1_2_5_19_1) 1984
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
Garwicz M (e_1_2_5_16_1) 1998; 13
e_1_2_5_22_1
e_1_2_5_43_1
Bukowska D (e_1_2_5_10_1) 2002; 172
Zar JH (e_1_2_5_61_1) 1999
e_1_2_5_60_1
e_1_2_5_41_1
Simpson JI (e_1_2_5_33_1) 1989
e_1_2_5_14_1
Simpson JI (e_1_2_5_30_1) 1981
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_54_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
Bolk L (e_1_2_5_8_1) 1906
Winship IR (e_1_2_5_48_1) 2001; 141
References_xml – volume: 392
  start-page: 278
  year: 1998
  end-page: 282
  article-title: Common reference frame for neural coding of translational and rotational optic flow
  publication-title: Nature
– volume: 13
  start-page: 26
  year: 1998
  end-page: 32
  article-title: Organizational principles of cerebellar neuronal circuitry
  publication-title: New Physiol Sci
– volume: 80
  start-page: 238
  year: 1990
  end-page: 251
  article-title: Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit. II. The nodulus
  publication-title: Exp Brain Res
– volume: 16
  start-page: 195
  year: 1993
  end-page: 207
  article-title: The X zone and CX subzone of the cerebellum in the rat
  publication-title: Neurosci Res
– year: 1981
– volume: 98
  start-page: 582
  year: 1975
  end-page: 589
  article-title: Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the rabbit
  publication-title: Brain Res
– volume: 781
  start-page: 553
  year: 1996
  end-page: 579
  article-title: Organization of the vestibulocerebellum
  publication-title: Ann N Y Acad Sci
– volume: 48
  start-page: 185
  year: 1982
  end-page: 198
  article-title: Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat
  publication-title: Exp Brain Res
– volume: 60
  start-page: 2055
  year: 1988b
  end-page: 2072
  article-title: The accessory optic system: II. Spatial organization of direction selectivity
  publication-title: J Neurophysiol
– volume: 7
  start-page: 197
  year: 1978
  end-page: 202
  article-title: Localization of rabbit's flocculus Purkinje cells projecting to the cerebellar lateral nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde axonal transport
  publication-title: Neurosci Lett
– volume: 70
  start-page: 2632
  year: 1993
  end-page: 2646
  article-title: Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow
  publication-title: J Neurophysiol
– volume: 172
  start-page: 37
  year: 2002
  end-page: 47
  article-title: Axonal collateral branching of neurones in the inferior olive projecting to the cerebellar paramedian lobule in the rabbit
  publication-title: Cell Tissue Org
– volume: 85
  start-page: 605
  year: 1998
  end-page: 614
  article-title: Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons
  publication-title: Neuroscience
– volume: 419
  start-page: 87
  year: 2000
  end-page: 95
  article-title: Topographic organization of inferior olive cells projecting to translational zones in the vestibulocerebellum of pigeons
  publication-title: J Comp Neurol
– volume: 12
  start-page: 205
  year: 2000
  end-page: 214
  article-title: Precise matching of oilvo‐cortical divergence and cortico‐nuclear convergence between somatopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum
  publication-title: Eur J Neurosci
– volume: 17
  start-page: 52
  issue: Suppl
  year: 1989
  end-page: 57
  article-title: Topographic aspects of the olivocerebellar system in the pigeon
  publication-title: Exp Brain Res
– volume: 545
  start-page: 170
  year: 1988a
  end-page: 179
  article-title: The accessory optic system: analyzer of self‐motion
  publication-title: Ann N Y Acad Sci
– volume: 5
  start-page: 279
  year: 1977
  end-page: 283
  article-title: Differential localization of rabbit's flocculus Purkinje cells projecting to the medial and superior vestibular nuclei, investigated by means of the horseradish peroxidase retrograde axonal transport
  publication-title: Neurosci Lett
– volume: 80
  start-page: 213
  year: 1989b
  end-page: 223
  article-title: Representations of ocular rotations in the cerebellar flocculus of the rabbit
  publication-title: Prog Brain Res
– volume: 183
  start-page: 551
  year: 1979
  end-page: 602
  article-title: The parasagittal zonation with the olivocerebellar projection. II. Climbing fibre distribution in the intermediate and hemispheric parts of the cerebellum
  publication-title: J Comp Neurol
– volume: 13
  start-page: 945
  year: 1996
  end-page: 953
  article-title: The pigeon optokinetic system: visual input in extraocular muscle coordinates
  publication-title: Vis Neurosci
– volume: 316
  start-page: 129
  year: 1992
  end-page: 150
  article-title: Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum
  publication-title: J Comp Neurol
– volume: 470
  start-page: 113
  year: 2004
  end-page: 133
  article-title: Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology
  publication-title: J Comp Neurol
– volume: 60
  start-page: 2091
  year: 1988
  end-page: 2121
  article-title: Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells
  publication-title: J Neurophysiol
– volume: 17
  start-page: 323
  year: 1989a
  end-page: 327
– volume: 114
  start-page: 299
  year: 1997
  end-page: 320
  article-title: Signal processing in the C2 module of the flocculus and its role in head movement control
  publication-title: Prog Brain Res
– volume: 456
  start-page: 127
  year: 2003
  end-page: 139
  article-title: Zonal organization of the vestibulocerebellum in pigeons ( ): I. Climbing fibre input to the flocculus
  publication-title: J Comp Neurol
– volume: 76
  start-page: 323
  year: 1989b
  end-page: 332
  article-title: Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. II. Retrograde double labeling study with fluorescent dyes
  publication-title: Exp Brain Res
– volume: 74
  start-page: 47
  year: 1989a
  end-page: 62
  article-title: Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. I. An electrophysiological study
  publication-title: Exp Brain Res
– volume: 414
  start-page: 131
  year: 1999
  end-page: 148
  article-title: Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat
  publication-title: J Comp Neurol
– volume: 50
  start-page: 1
  year: 1992
  end-page: 5
  article-title: Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit
  publication-title: Neuroscience
– volume: 21
  start-page: 7715
  year: 2001
  end-page: 7723
  article-title: The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization
  publication-title: J Neurosci
– volume: 349
  start-page: 428
  year: 1994
  end-page: 447
  article-title: Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and the cerebellar nuclei in the rabbit
  publication-title: J Comp Neurol
– volume: 12
  start-page: 85
  year: 1984
  end-page: 93
  article-title: A quantitative analysis of the spatial organization of the vestibulo‐ocular reflexes in lateral and frontal‐eyed animals. I. Orientation of semicircular canals and extraocular muscles
  publication-title: Neuroscience
– volume: 5
  start-page: 424
  year: 1988
  end-page: 438
  article-title: Parasagittal zonal pattern of olivo‐nodular projections in rabbit cerebellum
  publication-title: Neurosci Res
– start-page: 3
  year: 1985
  end-page: 16
– volume: 72
  start-page: 31
  year: 1994
  end-page: 46
  article-title: Functional and anatomic organization of three‐dimensional eye movements in rabbit cerebellar flocculus
  publication-title: J Neurophysiol
– volume: 99
  start-page: 669
  year: 2000
  end-page: 682
  article-title: Zonal organization of flocculo‐vestibular connections in rats
  publication-title: Neuroscience
– volume: 5
  start-page: 162
  year: 1993
  end-page: 173
  article-title: Zonal organization within the projection from the inferior olive to the rostral paramedian lobule of the cat cerebellum
  publication-title: Eur J Neurosci
– volume: 349
  start-page: 448
  year: 1994
  end-page: 463
  article-title: Projections of individual Purkinje cells of physiologically identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit
  publication-title: J Comp Neurol
– volume: 16
  start-page: 39
  year: 1991
  end-page: 64
  article-title: Identification of Purkinje cell/climbing fiber zone and its target neurons responsible for eye‐movement control by the cerebellar flocculus
  publication-title: Brain Res Rev
– volume: 456
  start-page: 140
  year: 2003
  end-page: 153
  article-title: Zonal organization of the vestibulocerebellum in pigeons ( ): II. Projections of the rotation zones of the flocculus
  publication-title: J Comp Neurol
– volume: 60
  start-page: 2073
  year: 1988
  end-page: 2090
  article-title: Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy
  publication-title: J Neurophysiol
– volume: 141
  start-page: 63
  year: 2001
  end-page: 78
  article-title: Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields
  publication-title: Exp Brain Res
– volume: 356
  start-page: 23
  year: 1995b
  end-page: 50
  article-title: Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study
  publication-title: J Comp Neurol
– volume: 18
  start-page: 3027
  year: 2003
  end-page: 3036
  article-title: Postlesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones
  publication-title: Eur J Neurosci
– volume: 86
  start-page: 229
  year: 1991
  end-page: 232
  article-title: Purkinje cells in the vestibulocerebellum of the pigeon respond best to either rotational or translational visual flow
  publication-title: Exp Brain Res
– year: 1906
– volume: 466
  start-page: 278
  year: 2003
  end-page: 298
  article-title: Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum
  publication-title: J Comp Neurol
– volume: 24
  start-page: 119
  year: 1988
  end-page: 134
  article-title: Distribution of inferior olivary projections to the vestibular nuclei of albino rabbits
  publication-title: Neuroscience
– start-page: 207
  year: 1980
  end-page: 234
– year: 1984
– volume: 356
  start-page: 51
  year: 1995a
  end-page: 71
  article-title: Anatomical compartments in the white matter of the rabbit flocculus
  publication-title: J Comp Neurol
– volume: 470
  start-page: 107
  year: 2004
  end-page: 112
  article-title: Functional and anatomical organization of floccular zones: a preserved feature in vertebrates
  publication-title: J Comp Neurol
– volume: 374
  start-page: 20
  year: 1981
  end-page: 30
  article-title: Eye‐muscle geometry and compensatory eye movements in lateral‐eyed and frontal‐eyed animals
  publication-title: Ann N Y Acad Sci
– year: 1967
– volume: 81
  start-page: 267
  year: 1999
  end-page: 276
  article-title: Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields
  publication-title: J Neurophysiol
– volume: 70
  start-page: 2647
  year: 1993
  end-page: 2659
  article-title: Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. II. The 3‐dimensional reference frame of rotation neurons in the flocculus
  publication-title: J Neurophysiol
– volume: 268
  start-page: 97
  year: 1999
  end-page: 100
  article-title: Projections from the medial column of the inferior olive to different classes of rotation‐sensitive Purkinje cells in the flocculus of pigeons
  publication-title: Neurosci Lett
– year: 1999
– ident: e_1_2_5_3_1
  doi: 10.1046/j.1460-9568.2000.00897.x
– volume: 60
  start-page: 2073
  year: 1988
  ident: e_1_2_5_24_1
  article-title: Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1988.60.6.2073
  contributor:
    fullname: Leonard CS
– ident: e_1_2_5_53_1
  doi: 10.1152/jn.1999.81.1.267
– ident: e_1_2_5_57_1
  doi: 10.1016/S0304-3940(99)00390-0
– ident: e_1_2_5_13_1
  doi: 10.1002/cne.903490308
– ident: e_1_2_5_43_1
  doi: 10.1111/j.1460-9568.1993.tb00482.x
– volume-title: Progress in oculomotor research
  year: 1981
  ident: e_1_2_5_30_1
  contributor:
    fullname: Simpson JI
– start-page: 3
  volume-title: Adaptive mechanisms in gaze control: facts and theories
  year: 1985
  ident: e_1_2_5_29_1
  contributor:
    fullname: Simpson JI
– ident: e_1_2_5_12_1
  doi: 10.1016/S0079-6123(08)63371-3
– ident: e_1_2_5_36_1
  doi: 10.1523/JNEUROSCI.21-19-07715.2001
– ident: e_1_2_5_55_1
  doi: 10.1002/cne.903490309
– ident: e_1_2_5_22_1
  doi: 10.1016/0168-0102(88)90027-2
– ident: e_1_2_5_27_1
  doi: 10.1016/0165-0173(91)90019-5
– ident: e_1_2_5_50_1
  doi: 10.1007/BF00231059
– ident: e_1_2_5_56_1
  doi: 10.1038/32648
– ident: e_1_2_5_46_1
  doi: 10.1002/cne.11022
– volume: 74
  start-page: 47
  year: 1989
  ident: e_1_2_5_39_1
  article-title: Olivary branching projections to the flocculus, nodulus and uvula in the rabbit. I. An electrophysiological study
  publication-title: Exp Brain Res
  doi: 10.1007/BF00248279
  contributor:
    fullname: Takeda T
– ident: e_1_2_5_18_1
  doi: 10.1002/cne.901830307
– volume-title: The cerebellum and neural control
  year: 1984
  ident: e_1_2_5_19_1
  contributor:
    fullname: Ito M
– ident: e_1_2_5_32_1
  doi: 10.1152/jn.1988.60.6.2055
– volume: 13
  start-page: 26
  year: 1998
  ident: e_1_2_5_16_1
  article-title: Organizational principles of cerebellar neuronal circuitry
  publication-title: New Physiol Sci
  contributor:
    fullname: Garwicz M
– ident: e_1_2_5_26_1
  doi: 10.1002/cne.903160202
– ident: e_1_2_5_23_1
  doi: 10.1016/S0306-4522(97)00620-9
– ident: e_1_2_5_40_1
  doi: 10.1007/BF00247892
– volume-title: Das Cerebellum der Saugetiere
  year: 1906
  ident: e_1_2_5_8_1
  contributor:
    fullname: Bolk L
– ident: e_1_2_5_41_1
  doi: 10.1002/cne.903560104
– ident: e_1_2_5_9_1
  doi: 10.1016/0168-0102(93)90124-9
– ident: e_1_2_5_49_1
  doi: 10.1002/cne.10507
– ident: e_1_2_5_14_1
  doi: 10.1007/BF00237214
– ident: e_1_2_5_17_1
  doi: 10.1152/jn.1988.60.6.2091
– ident: e_1_2_5_28_1
  doi: 10.1111/j.1749-6632.1981.tb30856.x
– ident: e_1_2_5_6_1
  doi: 10.1016/S0306-4522(00)00232-3
– ident: e_1_2_5_15_1
  doi: 10.1016/0306-4522(84)90140-4
– ident: e_1_2_5_51_1
  doi: 10.1152/jn.1993.70.6.2647
– ident: e_1_2_5_44_1
  doi: 10.1152/jn.1994.72.1.31
– ident: e_1_2_5_7_1
  doi: 10.1016/0306-4522(92)90376-D
– ident: e_1_2_5_25_1
  doi: 10.1002/cne.10889
– ident: e_1_2_5_11_1
  doi: 10.1002/(SICI)1096-9861(20000327)419:1<87::AID-CNE5>3.0.CO;2-W
– ident: e_1_2_5_54_1
  doi: 10.1152/jn.1993.70.6.2632
– ident: e_1_2_5_35_1
  doi: 10.1002/(SICI)1096-9861(19991115)414:2<131::AID-CNE1>3.0.CO;2-F
– ident: e_1_2_5_5_1
  doi: 10.1016/0306-4522(88)90317-X
– volume: 141
  start-page: 63
  year: 2001
  ident: e_1_2_5_48_1
  article-title: Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100845
  contributor:
    fullname: Winship IR
– ident: e_1_2_5_42_1
  doi: 10.1002/cne.903560103
– start-page: 207
  volume-title: The inferior olivary nucleus
  year: 1980
  ident: e_1_2_5_45_1
  contributor:
    fullname: Voogd J
– volume-title: A stereotaxic atlas of the brain of the pigeon (Columba livia)
  year: 1967
  ident: e_1_2_5_21_1
  contributor:
    fullname: Karten HJ
– volume: 172
  start-page: 37
  year: 2002
  ident: e_1_2_5_10_1
  article-title: Axonal collateral branching of neurones in the inferior olive projecting to the cerebellar paramedian lobule in the rabbit
  publication-title: Cell Tissue Org
  doi: 10.1159/000064384
  contributor:
    fullname: Bukowska D
– ident: e_1_2_5_59_1
  doi: 10.1016/0304-3940(78)90167-2
– ident: e_1_2_5_38_1
  doi: 10.1002/cne.10952
– ident: e_1_2_5_34_1
  doi: 10.1016/S0079-6123(08)62215-3
– volume: 80
  start-page: 238
  year: 1990
  ident: e_1_2_5_20_1
  article-title: Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the pigmented rabbit. II. The nodulus
  publication-title: Exp Brain Res
  doi: 10.1007/BF00228152
  contributor:
    fullname: Kano M
– ident: e_1_2_5_52_1
  doi: 10.1017/S0952523800009172
– volume-title: Biostatistical analysis
  year: 1999
  ident: e_1_2_5_61_1
  contributor:
    fullname: Zar JH
– ident: e_1_2_5_2_1
  doi: 10.1016/0006-8993(75)90375-3
– start-page: 323
  year: 1989
  ident: e_1_2_5_33_1
  contributor:
    fullname: Simpson JI
– ident: e_1_2_5_47_1
  doi: 10.1111/j.1749-6632.1996.tb15728.x
– ident: e_1_2_5_58_1
  doi: 10.1002/cne.10508
– volume: 17
  start-page: 52
  year: 1989
  ident: e_1_2_5_4_1
  article-title: Topographic aspects of the olivocerebellar system in the pigeon
  publication-title: Exp Brain Res
  contributor:
    fullname: Arends JJA
– ident: e_1_2_5_60_1
  doi: 10.1016/0304-3940(77)90079-9
– ident: e_1_2_5_31_1
  doi: 10.1111/j.1749-6632.1988.tb19562.x
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1460-9568.2003.03045.x
SSID ssj0009938
Score 1.926453
Snippet Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45°...
Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45...
Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis ( rVA neurons) or a horizontal axis...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 159
SubjectTerms Animals
Axons - physiology
Axons - ultrastructure
Cerebellar Cortex - cytology
Cerebellar Cortex - physiology
cholera toxin subunit B
climbing fibers
Columbidae - anatomy & histology
Columbidae - physiology
Fixation, Ocular - physiology
Fluorescent Dyes
fluorescent tracers
Neural Pathways - cytology
Neural Pathways - physiology
Neurons - cytology
Neurons - physiology
Olivary Nucleus - cytology
Olivary Nucleus - physiology
optic flow
optokinetic
Psychomotor Performance - physiology
Reflex, Vestibulo-Ocular - physiology
vestibulocerebellum
Title Inferior olivary neurons innervate multiple zones of the flocculus in pigeons (Columba livia)
URI https://api.istex.fr/ark:/67375/WNG-1JXRCJP5-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.20523
https://www.ncbi.nlm.nih.gov/pubmed/15844212
https://search.proquest.com/docview/17326799
https://search.proquest.com/docview/67775998
Volume 486
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KRfDF74_1M4hIfdh2d5NNdvFJztZ64CHF4iFKSDaJHIXdch-i_eudyXbvqFgQ3_ZhEmYzycwvmckvAC-kNJXyKk9Ly10qQlmkRlYmdUFZXgfPG0eXkz9M5OGxGE_L6Ra8Hu7C9PwQ6wM3WhnRX9MCN3axtyENbVpiucR9FPrfnCsq53t7tKGOwrjbe2EqQailGliFsmJv3fJCLLpCw_rzb0DzIm6NgefgBnwdVO7rTU52V0u725z9web4n_90E66fA1L2pp9Bt2DLt7fh6pcuHrffgW_v6UbgrJuzjpJG818sMmC2CxYf7fqBUJUNRYnsjIj_WRcYokoWMEzS2SJJstPZd0-NdkbkDa1h2NnMvLoLxwf7n0aH6fmTDGlDCda0VvQyR9YEV7kgeFEbKRGjCCcED4jMHKKREDIhbPBVERpfYASsbGUq0ZTWe34PtlvU5QEw3PtYdLcYOh0XovQ24zxwXmeh8q7wMoHng3H0ac-8oXuO5ULjOOk4Tgm8jGZbS5j5CZWqqVJ_nrzT-Xh6NBp_LHWewLPBrhoXEGVFTOu71ULnChGsquvLJaRSqsRtaQL3-wmx0QfhG6XUE9iJZr1cUT2a7MePh_8u-giuRaJYqlXIHsP2cr7yTxACLe3TONd_A7QNANY
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB6sUupLf1fT2rqUUuxDNMlusgn4Uq7a86pHEaVHQZbdZFcOIZHzrrT-9Z3ZmDssFUrf8jAJk9mdmW9nZ78FeJdlOpdWxmFqeBUKlyahznIdVk4aXjjLy4oOJx8Ns_6pGIzS0RLsdmdhWn6IecGNPMPHa3JwKkjvLFhDy5poLnEhdQ9W0N1jauj6dLwgj8LM28ZhakIoMtnxCkXJzvzVW9lohQz7829Q8zZy9aln_xGcdUq3HScX27Op2S6v_-Bz_N-_egwPbzAp-9hOoiewZOuncP974yvuz-DsgA4FjpsJa2jfaPKLeRLM-or5e7t-IFplXV8iuybuf9Y4hsCSOcyUVF4kSXY5Prf00laPAqLRDD821h-ew-n-3kmvH97cyhCWtMcaFpIu54hKV-WVEzwpdIbGj0QlBHcIzioEJM5FQhhn88SVNsEkmJtc56JMjbX8BSzXqMs6MFz-GIy4mD0rLkRqTcS547yIXG6rxGYBvO1GR1225BuqpVlOFNpJeTsF8N6P21xCTy6oW02m6tvws4oHo-Pe4Guq4gA2u4FV6EO0MaJr28yuVCwRxMqiuFsik1KmuDINYK2dEQt9EMHRrnoAW35c71ZU9YZ7_uHlv4tuwoP-ydGhOjwYfnkFq543lloXog1Ynk5m9jUioql54yf-b8tLBPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi-KL3x_rV4OI1Idt9zbZZBef5NqzPfUoxeJRlLDZJHIUdo_rnWj_emey3TsqFsS3fZiE2Uwy80tm8gvAKynLXDnVizPDbSx8lsalzMvYemV44R2vLF1O_jSS-8diOM7Ga_C2uwvT8kMsD9xoZQR_TQt8av3OijS0qonlEvdR12BDyLQg4vzdoxV3FAbe1g1TDUIhVUcrlKQ7y6aXgtEGjevPvyHNy8A1RJ7Bbfja6dwWnJxuL-Zmuzr_g87xP3_qDty6QKTsXTuF7sKaq-_B9ZMmnLffh28HdCVw0sxYQ1mj2S8WKDDrMxZe7fqBWJV1VYnsnJj_WeMZwkrmMU7S4SJJsunku6NGW31yh6Zk2NmkfPMAjgd7n_v78cWbDHFFGda4UPQ0R1J5m1sveFqUUiJIEVYI7hGaWYQj3idCGO_y1FcuxRCYm7zMRZUZ5_hDWK9Rl8fAcPNj0N9i7LRciMyZhHPPeZH43NnUyQhedsbR05Z6Q7cky6nGcdJhnCJ4Hcy2lChnp1SrpjL9ZfRe94bjo_7wMNO9CDY7u2pcQZQWKWvXLM50TyGEVUVxtYRUSmW4L43gUTshVvogfqOcegRbwaxXK6r7o73w8eTfRTfhxuHuQH88GH14CjcDaSzVLSTPYH0-W7jnCIfm5kWY9r8Bu34Dpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferior+olivary+neurons+innervate+multiple+zones+of+the+flocculus+in+pigeons+%28Columba+livia%29&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Pakan%2C+Janelle+MP&rft.au=Todd%2C+Kathryn+G&rft.au=Nguyen%2C+Angela+P&rft.au=Winship%2C+Ian+R&rft.date=2005-05-30&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=486&rft.issue=2&rft.spage=159&rft.epage=168&rft_id=info:doi/10.1002%2Fcne.20523&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon