Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters

Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle fa...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 19; no. 4; pp. 1064 - 1079
Main Authors Haley, Brian A., Hales, Burke, Brunner, Elizabeth L., Kovalchik, Kevin, Waldbusser, George G.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post‐PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ∼20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under‐saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post‐treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct‐from‐seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient‐water saturation states; and (3) the high Ca‐selectivity of the early larval calcification despite rapid precipitation rates. Plain Language Summary Larval oysters are particularly susceptible to changes in ocean water chemistry thought to result from the increasing concentration of atmospheric carbon dioxide. Here, we use trace element concentrations measured in larval shells and the water in which the larvae were reared in order to investigate how and why the larvae are so sensitive to these small chemical changes in their environment. We suggest that the way in which larval oysters make their shells is inherently prone to these changes in water chemistry, but once past an initial phase of shell growth, the juvenile oysters may become more resilient. Key Points The Sr/Ca, Mg/Ca, C, and N composition of larval oyster shells and the water of growth is presented The mechanism of PDI shell formation is suggested to be biologically induced, inorganic precipitation of aragonite on an organic matrix This mechanism of shell formation provides a mecahnistic linkage between shell formation energetics and the saturation state of water
AbstractList Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post‐PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ∼20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under‐saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post‐treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct‐from‐seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient‐water saturation states; and (3) the high Ca‐selectivity of the early larval calcification despite rapid precipitation rates.
Abstract Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post‐PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ∼20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under‐saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post‐treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct‐from‐seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient‐water saturation states; and (3) the high Ca‐selectivity of the early larval calcification despite rapid precipitation rates. Plain Language Summary Larval oysters are particularly susceptible to changes in ocean water chemistry thought to result from the increasing concentration of atmospheric carbon dioxide. Here, we use trace element concentrations measured in larval shells and the water in which the larvae were reared in order to investigate how and why the larvae are so sensitive to these small chemical changes in their environment. We suggest that the way in which larval oysters make their shells is inherently prone to these changes in water chemistry, but once past an initial phase of shell growth, the juvenile oysters may become more resilient. Key Points The Sr/Ca, Mg/Ca, C, and N composition of larval oyster shells and the water of growth is presented The mechanism of PDI shell formation is suggested to be biologically induced, inorganic precipitation of aragonite on an organic matrix This mechanism of shell formation provides a mecahnistic linkage between shell formation energetics and the saturation state of water
Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post‐PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ∼20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under‐saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post‐treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct‐from‐seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient‐water saturation states; and (3) the high Ca‐selectivity of the early larval calcification despite rapid precipitation rates. Plain Language Summary Larval oysters are particularly susceptible to changes in ocean water chemistry thought to result from the increasing concentration of atmospheric carbon dioxide. Here, we use trace element concentrations measured in larval shells and the water in which the larvae were reared in order to investigate how and why the larvae are so sensitive to these small chemical changes in their environment. We suggest that the way in which larval oysters make their shells is inherently prone to these changes in water chemistry, but once past an initial phase of shell growth, the juvenile oysters may become more resilient. Key Points The Sr/Ca, Mg/Ca, C, and N composition of larval oyster shells and the water of growth is presented The mechanism of PDI shell formation is suggested to be biologically induced, inorganic precipitation of aragonite on an organic matrix This mechanism of shell formation provides a mecahnistic linkage between shell formation energetics and the saturation state of water
Author Waldbusser, George G.
Hales, Burke
Kovalchik, Kevin
Haley, Brian A.
Brunner, Elizabeth L.
Author_xml – sequence: 1
  givenname: Brian A.
  orcidid: 0000-0003-2879-8117
  surname: Haley
  fullname: Haley, Brian A.
  email: bhaley@coas.oregonstate.edu
  organization: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
– sequence: 2
  givenname: Burke
  surname: Hales
  fullname: Hales, Burke
  organization: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
– sequence: 3
  givenname: Elizabeth L.
  surname: Brunner
  fullname: Brunner, Elizabeth L.
  organization: Now at Round River Conservation Studies
– sequence: 4
  givenname: Kevin
  orcidid: 0000-0002-2541-7721
  surname: Kovalchik
  fullname: Kovalchik, Kevin
  organization: University of British Columbia
– sequence: 5
  givenname: George G.
  orcidid: 0000-0002-8334-580X
  surname: Waldbusser
  fullname: Waldbusser, George G.
  organization: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
BookMark eNp9kD1PwzAQhi1UJNrCxg-IxErAH3GcjFUUQqWiDsBsXMemqRI72CmQf49LGTox3Z2eR3endwYmxhoFwDWCdwhCfI8hYlUBIUOEnIEpopjGGGI2OekvwMz7HYQooTSbgrcnJbfCNL7z0WCj8rtvRWOiYauislWdMoNoo8J2vfXN0FgTWf0LlyaMAS2ceLehV9HzVrXtAa-E-wxkPfpBOX8JzrVovbr6q3Pw-lC-FI_xal0ti8UqlgnNcMwoTJWWUtebVOcYK8l0nte1IAgRSjBiMoFZLRhMNykmEmGZpzoRebJhWmYpmYOb497e2Y-98gPf2b0z4STHMGFJCCWlwbo9WtJZ753SvHdNJ9zIEeSHDPlphkEnR_2radX4r8urqioxCq-SH96Hc8k
CitedBy_id crossref_primary_10_1002_lom3_10574
crossref_primary_10_1016_j_scitotenv_2024_171061
crossref_primary_10_1016_j_colsurfb_2018_11_009
crossref_primary_10_2983_035_038_0328
crossref_primary_10_1016_j_jsb_2019_09_002
crossref_primary_10_1111_jfb_15766
crossref_primary_10_1186_s12864_020_07066_z
crossref_primary_10_3389_fmars_2021_611781
crossref_primary_10_1016_j_gecco_2024_e02843
crossref_primary_10_3354_aei00466
crossref_primary_10_3390_app122111204
crossref_primary_10_1038_s43247_024_01440_5
crossref_primary_10_1007_s42995_023_00204_y
Cites_doi 10.1016/j.gca.2005.09.015
10.1126/science.1173793
10.1016/j.gca.2008.09.003
10.1071/MF09254
10.1130/G30210A.1
10.5194/bg-7-2051-2010
10.4319/lom.2004.2.356
10.1002/grl.50460
10.1111/j.1461-0248.2010.01518.x
10.1016/0016-7037(80)90087-3
10.1016/j.gca.2013.04.001
10.1016/j.gca.2013.10.050
10.1016/j.palaeo.2005.12.010
10.1016/0300-9629(87)90270-2
10.2307/1541804
10.1002/cbic.201100317
10.1029/2011GC003630
10.1039/b208741n
10.5194/bg-12-4209-2015
10.1016/j.gca.2006.07.008
10.1093/icesjms/fsv174
10.1016/S1385-1101(98)00033-1
10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2
10.1016/j.jsb.2009.07.014
10.1111/j.1469-7998.2000.tb00602.x
10.1016/0016-7037(87)90324-3
10.5343/bms.2010.1107
10.1146/annurev-marine-121211-172238
10.1007/BF00689036
10.3354/meps146265
10.1007/BF00849049
10.1371/journal.pone.0128376
10.1111/j.1469-185X.1969.tb00610.x
10.2475/ajs.283.7.780
10.1029/2004GC000874
10.1073/pnas.0605748103
10.2113/0540001
10.4319/lo.2009.54.6.2072
10.1016/j.gca.2006.07.019
10.1111/j.1463-6409.1981.tb00485.x
10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2
10.1139/cjz-2012-0333
10.1126/science.271.5245.67
10.1016/0016-7037(72)90037-3
10.1002/chem.200500980
10.1016/j.marchem.2015.02.002
10.1021/cg300676b
10.1016/j.gca.2007.02.002
10.1016/0198-0149(87)90021-5
10.1126/science.290.5494.1134
10.1016/0016-7037(92)90289-U
10.1073/pnas.0913804107
10.1007/BF01319397
10.1130/G22048.1
10.1111/j.1744-7410.2006.00036.x
10.1093/icb/24.4.871
10.1016/0016-7037(65)90075-X
10.1002/cbic.200900677
10.1016/S0016-7037(99)00380-4
10.1002/grl.50449
10.1093/mollus/eyt044
10.1016/S0304-4203(00)00022-0
10.2343/geochemj.1.0045
10.1007/BF00394023
10.1016/j.jembe.2008.07.024
10.1371/journal.pone.0023010
10.1002/grl.50618
10.1002/ggge.20257
10.1146/annurev.marine.010908.163834
10.1016/S0043-1354(96)00244-8
10.1007/s00367-008-0116-4
10.1021/cr078270o
10.1016/j.marchem.2005.10.009
10.1016/0021-9614(90)90074-Z
10.2475/ajs.259.1.24
10.1098/rspb.2013.0031
10.1242/jeb.055939
10.5194/bg-7-3879-2010
10.1016/0016-7037(92)90314-9
10.1016/0016-7037(94)00354-O
10.1016/0198-0149(90)90034-S
10.1002/lno.10348
10.1126/science.1208277
10.1126/science.1090506
10.1016/j.jembe.2014.10.014
10.5670/oceanog.2015.38
10.2307/1540180
10.1002/jez.90004
10.4319/lo.2012.57.3.0698
10.1242/jeb.082909
10.1146/annurev.physiol.65.092101.142345
10.1016/0016-7037(81)90188-5
10.1021/acs.cgd.6b01599
10.1016/0044-8486(88)90195-0
10.3354/meps11828
10.3354/ab00009
10.1016/j.gca.2004.01.025
10.1039/a604512j
10.1038/ncomms4169
10.1126/science.1155676
10.1016/S0009-2541(99)00097-2
10.1007/BF00406014
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/2017GC007133
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Chemistry
EISSN 1525-2027
EndPage 1079
ExternalDocumentID 10_1002_2017GC007133
GGGE21532
Genre article
GrantInformation_xml – fundername: NSF OCE CRI‐OA
  funderid: 1041267
GroupedDBID 05W
0R~
1OC
24P
31~
3V.
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACGFS
ACGOD
ACPOU
ACXQS
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WYJ
ZZTAW
~02
~OA
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c4582-7506efccfdb6f922ec7f99dda311353217c408da706b623c12c96f4a94b7fc863
ISSN 1525-2027
IngestDate Thu Oct 10 20:58:30 EDT 2024
Fri Aug 23 03:26:29 EDT 2024
Sat Aug 24 00:52:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4582-7506efccfdb6f922ec7f99dda311353217c408da706b623c12c96f4a94b7fc863
ORCID 0000-0002-8334-580X
0000-0002-2541-7721
0000-0003-2879-8117
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/2017gc007133
PQID 2047407165
PQPubID 54722
PageCount 16
ParticipantIDs proquest_journals_2047407165
crossref_primary_10_1002_2017GC007133
wiley_primary_10_1002_2017GC007133_GGGE21532
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 11
1987; 34
2010; 13
2010; 107
2015; 73
1980; 44
2008; 108
1974
2000; 251
2007; 71
2004; 2
1969; 39
2012; 12
1992; 56
2003; 54
1997; 7
1997; 146
1992; 9
2013; 115
2008; 28
1969; 44
2016; 555
2007; 1
1965; 29
1977b; 116
2010; 7
2014; 126
1991; 109
1987; 51
1990; 37
1995; 59
2010; 169
1997; 25
2000; 64
1983; 75
2013; 91
2000; 70
1961; 259
2008; 366
2011; 6
2004; 304
2012; 31
2006; 232
2010; 44
1990; 22
2013; 216
2005; 6
2011; 87
1981; 10
2006; 100
2006; 103
2006; 70
1983; 238
2006; 78
2015; 463
1984; 24
2004; 68
2003; 13
2011; 12
2013; 280
2008; 72
1998; 40
2012; 57
1996; 31
2000; 290
1981; 45
2010; 61
2015; 171
2014; 5
1987; 86
1977a; 41
2013; 14
2009; 54
2000; 163
2014; 281
2012; 335
1972; 143
2014; 6
1980; 188
2005; 33
2006; 125
2009; 325
2011; 214
2015; 12
2002; 293
2006; 12
2013; 40
2015; 10
2008; 320
1987; 15
2015; 25
2014; 80
2017; 17
1988; 69
1996; 271
1986; 170
2016; 61
2015
1972; 36
2009; 1
2009; 37
2003; 65
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
Lee S. W. (e_1_2_7_61_1) 2006; 78
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Hettinger A. (e_1_2_7_43_1) 2012; 31
Bednarsek N. (e_1_2_7_8_1) 2014; 281
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Milliman J. D. (e_1_2_7_73_1) 1974
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
Kinsman D. J. J. (e_1_2_7_53_1) 1969; 39
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
Cyronak T. (e_1_2_7_19_1) 2015
e_1_2_7_6_1
e_1_2_7_107_1
Carriker M. (e_1_2_7_15_1) 1992; 9
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 188
  start-page: 201
  issue: 3
  year: 1980
  end-page: 204
  article-title: Larval Development of the Shell and the Shell Gland in Mytilus (Bivalvia)
  publication-title: Wilhelm Rouxs Archives of Developmental Biology
– volume: 7
  start-page: 2051
  issue: 7
  year: 2010
  end-page: 2060
  article-title: Effect of ocean acidification on the early life stages of the blue mussel
  publication-title: Biogeosciences
– volume: 12
  year: 2011
  article-title: Impact of sample pretreatments on the measured element concentrations in the bivalve
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 116
  start-page: 269
  year: 1977b
  end-page: 285
  article-title: The effect of fluctuating salinity on the tissue water content of eight species of bivalve molluscs
  publication-title: Journal of Comparative Physiology B
– volume: 24
  start-page: 871
  year: 1984
  end-page: 882
  article-title: Early shell formation during molluscan embryogenesis, with new studies on surf clam, spinsula solidissima
  publication-title: American Zoologist
– volume: 14
  start-page: 4109
  issue: 10
  year: 2013
  end-page: 4120
  article-title: The giant Pacific Oyster ( ) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 12
  start-page: 980
  issue: 4
  year: 2006
  end-page: 987
  article-title: Mollusk shell formation: A source of new concepts for understanding biominerlization processes
  publication-title: Chemistry: A European Journal
– volume: 7
  start-page: 3879
  year: 2010
  end-page: 3891
  article-title: Calcifying invertebrates succeed in a naturally CO ‐rich coastal habitat but are threatened by high levels of future acidification
  publication-title: Biogeosciences
– volume: 108
  start-page: 4433
  issue: 11
  year: 2008
  end-page: 4454
  article-title: Biomineralization: Elemental and organic influence in carbonate systems
  publication-title: Chemical Reviews
– volume: 70
  start-page: 395
  issue: 2
  year: 2006
  end-page: 407
  article-title: Barium uptake into the shells of the common mussel ( ) and the potential for estuarine paleo‐chemistry reconstruction
  publication-title: Geochimica et Cosmochimica Acta
– volume: 216
  start-page: 2607
  issue: 14
  year: 2013
  end-page: 2618
  article-title: Environmental salinity modulates the effects of elevated CO levels on juvenile hard‐shell clams,
  publication-title: Journal of Experimental Biology
– volume: 13
  start-page: 1419
  issue: 11
  year: 2010
  end-page: 1434
  article-title: Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms
  publication-title: Ecology Letters
– volume: 320
  start-page: 1490
  issue: 5882
  year: 2008
  end-page: 1492
  article-title: Evidence for upwelling corrosive “acidified” water onto the continental shelf
  publication-title: Science
– volume: 103
  start-page: 19237
  issue: 51
  year: 2006
  end-page: 19242
  article-title: Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 928
  issue: 4
  year: 2003
  end-page: 933
  article-title: Switching between kinetic and thermodynamic control: Calcium carbonate growth in the presence of a simple alcohol
  publication-title: Journal of Materials Chemistry
– volume: 9
  start-page: 193
  year: 1992
  end-page: 197
  article-title: Prismatic shell formation in continuously isolated ( ) and periodically exposed ( ) extrapallial spaces—Explicable by the same concept
  publication-title: American Malacological Bulletin
– volume: 37
  start-page: 157
  year: 1990
  end-page: 165
  article-title: Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA‐1500
  publication-title: Deep Sea Research, Part A
– volume: 71
  start-page: 2240
  issue: 9
  year: 2007
  end-page: 2249
  article-title: Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non‐Kossel crystal growth
  publication-title: Geochimica et Cosmochimica Acta
– volume: 1
  start-page: 91
  year: 2007
  end-page: 98
  article-title: Effects of increased seawater CO on early development of the oyster Crassostrea gigas
  publication-title: Aquatic Biology
– volume: 64
  start-page: 997
  year: 2000
  end-page: 1011
  article-title: High resolution distribution of trace elements in the calcite shell layer of modern : Environmental and biological controls
  publication-title: Geochimica et Cosmochimica Acta
– volume: 1
  start-page: 169
  year: 2009
  end-page: 192
  article-title: Ocean acidification: The other CO problem
  publication-title: Annual Review of Marine Science
– volume: 37
  start-page: 1131
  issue: 12
  year: 2009
  end-page: 1134
  article-title: Marine calcifiers exhibit mixed responses to CO ‐induced ocean acidification
  publication-title: Geology
– volume: 34
  start-page: 1733
  year: 1987
  end-page: 1743
  article-title: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media
  publication-title: Deep Sea Research, Part A
– volume: 251
  start-page: 179
  year: 2000
  end-page: 186
  article-title: Are calcitic layers an effective adaption against dissolution in the Bivalvia?
  publication-title: Journal of Zoology
– volume: 11
  start-page: 297
  issue: 3
  year: 2010
  end-page: 300
  article-title: Jewels in the pearl
  publication-title: ChemBioChem
– volume: 126
  start-page: 307
  year: 2014
  end-page: 320
  article-title: Assessment of the mechanism of elemental incorporation into bivalve shells ( ) based on elemental distribution at the microstructural scale
  publication-title: Geochimica et Cosmochimica Acta
– volume: 86
  start-page: 21
  year: 1987
  end-page: 28
  article-title: The rates of calcium deposition in shells of molluscan larvae
  publication-title: Comparative Biochemistry and Physiology Part A
– volume: 87
  start-page: 639
  issue: 3
  year: 2011
  end-page: 657
  article-title: Ocean acidification and control of reed coral calcification by boundary layer limitation of proton flux
  publication-title: Bulletin of Marine Science
– volume: 5
  year: 2014
  article-title: Dehydration and crystallization of amorphous calcium carbonate in solution and in air
  publication-title: Nature Communications
– volume: 86
  start-page: 21
  issue: 1
  year: 1987
  end-page: 28
  article-title: The rates of calcium deposition in shells of molluscan larvae
  publication-title: Comparative Biochemistry and Physiology
– volume: 6
  year: 2005
  article-title: Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 59
  start-page: 661
  year: 1995
  end-page: 677
  article-title: Thermodynamics of the carbon‐dioxide system in the oceans
  publication-title: Geochimica et Cosmochimica Acta
– volume: 214
  start-page: 2586
  issue: 15
  year: 2011
  end-page: 2594
  article-title: Functional impacts of ocean acidification in an ecologically critical foundation species
  publication-title: Journal of Experimental Biology
– volume: 115
  start-page: 100
  year: 2013
  end-page: 114
  article-title: General model for calcite growth kinetics in the presence of impurity ions
  publication-title: Geochimica et Cosmochimica Acta
– volume: 6
  start-page: 221
  year: 2014
  end-page: 247
  article-title: Ocean Acidification in the coastal zone from an organism's perspective: Multiple system parameters, frequency domains, and habitats
  publication-title: Annual Review of Marine Science
– volume: 29
  start-page: 29
  issue: 1
  year: 1965
  end-page: 41
  article-title: The influence of organic material on the polymorphic crystallization of calcium carbonate
  publication-title: Geochimica et Cosmochimica Acta
– volume: 31
  start-page: 351
  issue: 2
  year: 1996
  end-page: 355
  article-title: A simplification the bivalve embryogenesis and larval development bioassay methods for water quality assessment
  publication-title: Water Research
– volume: 80
  start-page: 8
  issue: 1
  year: 2014
  end-page: 16
  article-title: Embryonic and larval development of (Bivalvia; Veneridae): A study of the shell differentiation process
  publication-title: Journal of Molluscan Studies
– volume: 335
  start-page: 1058
  issue: 6072
  year: 2012
  end-page: 1063
  article-title: The geologic record of ocean acidification
  publication-title: Science
– volume: 56
  start-page: 3045
  year: 1992
  end-page: 3072
  article-title: Dissolution of aragonite‐strontianite solid solutions in stoichiometric Sr (HCO ) ‐Ca(HCO ) ‐CO ‐H ) solutions
  publication-title: Geochimica et Cosmochimica Acta
– volume: 238
  start-page: 780
  year: 1983
  end-page: 799
  article-title: The solubility of calcite and aragonite in seawater at various salinities, temperatures, and 1 atmosphere total pressure
  publication-title: American Journal of Science
– volume: 12
  start-page: 3806
  issue: 7
  year: 2012
  end-page: 3814
  article-title: Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC)
  publication-title: Crystal Growth and Design
– volume: 70
  start-page: 4617
  issue: 18
  year: 2006
  end-page: 1634
  article-title: Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies
  publication-title: Geochimica et Cosmochimica Acta
– volume: 54
  start-page: 1
  year: 2003
  end-page: 29
– volume: 555
  start-page: 109
  year: 2016
  end-page: 123
  article-title: A longitudinal study of Pacific oyster ( ) larval development: Isotope shifts during early shell formation reveal sub‐lethal energetic stress
  publication-title: Marine Ecology Progress Series
– volume: 109
  start-page: 287
  year: 1991
  end-page: 297
  article-title: Chemical elements in the aragonitic and calcitic microstructural groups of shell of the oyster : A proton probe study
  publication-title: Marine Biology
– volume: 40
  start-page: 3424
  year: 2013
  end-page: 3428
  article-title: The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf
  publication-title: Geophysical Research Letters
– volume: 57
  start-page: 698
  issue: 3
  year: 2012
  end-page: 710
  article-title: The Pacific oyster, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near‐term ocean acidification effects
  publication-title: Limnology and Oceanography Methods
– volume: 7
  start-page: 689
  year: 1997
  end-page: 702
  article-title: Design strategies in mineralized biological materials
  publication-title: Journal of Materials Chemistry
– volume: 6
  issue: 8
  year: 2011
  article-title: Effect of carbonate chemistry alteration on the early embryonic development of the Pacific Oyster ( )
  publication-title: PLoS ONE
– volume: 280
  start-page: 20130031
  issue: 1764
  year: 2013
  article-title: Coral reed calcification: Carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification
  publication-title: Proceedings of the Royal Society of London B
– year: 2015
  article-title: The Omega myth: What really drives lower calcification rates in an acidifying ocean
  publication-title: ICES Journal of Marine Science
– volume: 25
  start-page: 146
  issue: 2
  year: 2015
  end-page: 159
  article-title: Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response
  publication-title: Oceanography
– volume: 143
  start-page: 506
  issue: 3
  year: 1972
  end-page: 512
  article-title: Inorganic composition of molluscan extrapallial fluid
  publication-title: The Biological Bulletin
– volume: 91
  start-page: 349
  issue: 6
  year: 2013
  end-page: 366
  article-title: Mollusk shell structures and their formation mechanism
  publication-title: Canadian Journal of Zoology
– volume: 146
  start-page: 265
  year: 1997
  end-page: 282
  article-title: Juvenile mortality in benthic marine invertebrates
  publication-title: Marine Ecology Progress Series
– volume: 33
  start-page: 965
  issue: 12
  year: 2005
  end-page: 968
  article-title: Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve
  publication-title: Geology
– volume: 41
  start-page: 153
  issue: 2
  year: 1977a
  end-page: 177
  article-title: Effect of salinity fluctuation on the osmotic pressure and Na , Ca , Mg ion concentrations in the hemolymph of bivalve molluscs
  publication-title: Marine Biology
– volume: 271
  start-page: 67
  issue: 5245
  year: 1996
  end-page: 69
  article-title: Control of aragonite or calcite polymorphism by mollusk shell macromolecules
  publication-title: Science
– volume: 31
  start-page: 296
  year: 2012
  end-page: 296
  article-title: Extended larval carry‐over effects: Synergisms from a stressful benthic existence in juvenile Olympia oysters
  publication-title: Journal of Shellfish Research
– volume: 304
  start-page: 297
  issue: 5668
  year: 2004
  end-page: 300
  article-title: Hemocyte‐mediated shell mineralization in the eastern oyster
  publication-title: Science
– volume: 107
  start-page: 17246
  issue: 40
  year: 2010
  end-page: 17251
  article-title: Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 171
  start-page: 36
  year: 2015
  end-page: 43
  article-title: An inter‐laboratory comparison assessing the quality of seawater carbon dioxide measurements
  publication-title: Marine Chemistry
– volume: 125
  start-page: 21
  issue: 1
  year: 2006
  end-page: 33
  article-title: Embryonic development and shell differentiation in (Bivalvia; Veneridae): An ultrastructural analysis
  publication-title: Invertebrate Biology
– volume: 61
  start-page: 1969
  issue: 6
  year: 2016
  end-page: 1983
  article-title: Slow shell building, a possible trait for resistance to the effects of acute ocean acidification
  publication-title: Limnology and Oceanography Methods
– volume: 61
  start-page: 139
  year: 2010
  end-page: 142
  article-title: Carbonate constants for estuarine waters
  publication-title: Marine and Freshwater Research
– volume: 22
  start-page: 113
  year: 1990
  end-page: 127
  article-title: Standard potential of the reaction—Agcl(S)+1/2h‐2(G) = Ag(S)+HCl(Aq) and the standard acidity constant of the ion HSO4‐ in synthetic sea‐water from 273.15‐K to 318.15‐K
  publication-title: Journal of Chemical Thermodynamics
– volume: 169
  start-page: 1
  issue: 1
  year: 2010
  end-page: 5
  article-title: Microtexture of larval shell of oyster, : A FIB‐TEM study
  publication-title: Journal of Structural Biology
– volume: 10
  issue: 6
  year: 2015
  article-title: Ocean acidification has multiple modes of action on bivalve larvae
  publication-title: PLoS One
– volume: 40
  start-page: 2720
  year: 2013
  end-page: 2726
  article-title: Aragonite saturation state dynamics in a coastal upwelling zone
  publication-title: Geophysical Research Letters
– volume: 78
  start-page: 309
  year: 2006
  end-page: 317
  article-title: Characteristics of calcification processes in embryos and larvae of the Pacific oyster,
  publication-title: Bulletin of Marine Science
– volume: 100
  start-page: 24
  issue: 1–2
  year: 2006
  end-page: 38
  article-title: High‐frequency measurements of total CO : Method development and first oceanographic observations
  publication-title: Marine Chemistry
– volume: 281
  year: 2014
  article-title: shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem
  publication-title: Proceedings of the Royal Society of London B
– volume: 65
  start-page: 133
  year: 2003
  end-page: 159
  article-title: Permeation and selectivity in calcium channels
  publication-title: Annual Review of Physiology
– volume: 463
  start-page: 8
  year: 2015
  end-page: 16
  article-title: Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, (Gmelin, 1791)
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 73
  start-page: 563
  issue: 3
  year: 2015
  end-page: 568
  article-title: Calcium carbonate saturation state: On myths and this or that stories
  publication-title: ICES Journal of Marine Science
– volume: 170
  start-page: 211
  year: 1986
  end-page: 231
  article-title: Shell inorganic composition and onset of shell mineralization during bivalve and gastropod embryogenesis
  publication-title: Biological Bulletin
– volume: 70
  start-page: 4906
  issue: 19
  year: 2006
  end-page: 4920
  article-title: Calcifiaction rate influence on trace element concentrations in argonitic bivalve shells: Evidences and mechanisms
  publication-title: Geochimica et Cosmochimica Acta
– volume: 15
  start-page: 111
  issue: 2
  year: 1987
  end-page: 114
  article-title: Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control?
  publication-title: Geology
– volume: 45
  start-page: 553
  year: 1981
  end-page: 561
  article-title: Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate
  publication-title: Geochimica et Cosmochimica Acta
– volume: 290
  start-page: 1134
  issue: 5494
  year: 2000
  end-page: 1137
  article-title: The role of Mg as an impurity in calcite growth
  publication-title: Science
– volume: 69
  start-page: 185
  issue: 1–2
  year: 1988
  end-page: 194
  article-title: Shell growth and gross biochemical composition of oyster larvae ( ) in the field
  publication-title: Aquaculture
– volume: 44
  start-page: 23
  year: 2010
  end-page: 37
  article-title: Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells ( )—Comparison of ICP‐OES and LA‐ICP‐MS data
  publication-title: Geochemical Journal
– volume: 68
  start-page: 3509
  issue: 17
  year: 2004
  end-page: 3519
  article-title: d13C variation in scallop shells: Increasing metabolic carbon contribution with body size?
  publication-title: Geochimica et Cosmochimica Acta
– volume: 40
  start-page: 2171
  year: 2013
  end-page: 2176
  article-title: A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity
  publication-title: Geophysical Research Letters
– volume: 70
  start-page: 105
  issue: 1–3
  year: 2000
  end-page: 119
  article-title: Ocean pCO calculated from dissolved inorganic carbon, alkalinity, and equations for K‐1 and K‐2: Validation based on laboratory measurements of CO in gas and seawater at equilibrium
  publication-title: Marine Chemistry
– volume: 25
  start-page: 85
  issue: 1
  year: 1997
  end-page: 87
  article-title: Influences of temperature and Mg;Ca ratio on CaCO precipitates from seawater
  publication-title: Geology
– volume: 293
  start-page: 478
  year: 2002
  end-page: 491
  article-title: Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite
  publication-title: Journal of Experimental Zoology
– volume: 75
  start-page: 287
  issue: 2–3
  year: 1983
  end-page: 292
  article-title: Relative costs of producing skeletal organic matrix versus calcification: Evidence from marine gastropods
  publication-title: Marine Biology
– volume: 10
  start-page: 61
  year: 1981
  end-page: 79
  article-title: Ontongeny of the Molluscan shell field—A review
  publication-title: Zoologica Scripta
– volume: 12
  start-page: 4209
  year: 2015
  end-page: 4220
  article-title: Impact of seawater carbonate chemistry on the calcification of marine bivalves
  publication-title: Biogeosciences
– volume: 2
  start-page: 356
  issue: 11
  year: 2004
  end-page: 364
  article-title: High‐frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors
  publication-title: Limnology and Oceanography Methods
– volume: 44
  start-page: 1265
  year: 1980
  end-page: 1278
  article-title: The impact of solution chemistry on calcite and aragonite
  publication-title: Geochimica et Cosmochimica Acta
– volume: 39
  start-page: 486
  year: 1969
  end-page: 508
  article-title: Interpretation of Sr concentrations in carbonate minerals and rocks
  publication-title: Journal of Sedimentary Research
– volume: 51
  start-page: 1393
  year: 1987
  end-page: 1411
  article-title: Thermodynamics of aragonite‐stronitanite solid solutions: Results from stoichiometric solubility at 25 and 76°C
  publication-title: Geochimica et Cosmochimica Acta
– volume: 17
  start-page: 1214
  issue: 3
  year: 2017
  end-page: 1223
  article-title: Mechanism of enhanced strontium uptake into calcite via an amorphous calcium carbonate crystallization pathway
  publication-title: Crystal Growth and Design
– volume: 325
  start-page: 1388
  issue: 5946
  year: 2009
  end-page: 1390
  article-title: An acidic matrix preotein, Pif, is a key macromolevule for nacre formation
  publication-title: Science
– volume: 56
  start-page: 1837
  year: 1992
  end-page: 1849
  article-title: Sr/Mg of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rates
  publication-title: Geochimica et Cosmochimica Acta
– volume: 366
  start-page: 187
  issue: 1–2
  year: 2008
  end-page: 197
  article-title: Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us?
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 72
  start-page: 5431
  issue: 22
  year: 2008
  end-page: 5445
  article-title: Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells
  publication-title: Geochimica et Cosmochimica Acta
– volume: 40
  start-page: 233
  year: 1998
  end-page: 249
  article-title: Temporal and local variations in biochemical composition of Crassostrea gigas shells
  publication-title: Journal of Sea Research
– volume: 12
  start-page: 2478
  issue: 16
  year: 2011
  end-page: 2487
  article-title: Identification and characterization of a calcium carbonate‐binding protein, blue mussel shell protein (BMSP), from the nacreous layer
  publication-title: ChemBioChem
– volume: 28
  start-page: 287
  issue: 5–6
  year: 2008
  end-page: 299
  article-title: Carbon isotopes in mollusk shell carbonates
  publication-title: Geo‐Marine Letters
– volume: 54
  start-page: 2072
  issue: 6
  year: 2009
  end-page: 2080
  article-title: The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams ( ), bay scallops ( ), and Eastern oysters ( )
  publication-title: Limnology and Oceanography Methods
– year: 1974
– volume: 44
  start-page: 499
  issue: 4
  year: 1969
  end-page: 530
  article-title: Environmental and biological controls on bivalve shell mineralogy
  publication-title: Biological Reviews of the Cambridge Philosophical Society
– volume: 163
  start-page: 129
  year: 2000
  end-page: 138
  article-title: Influence of Mg on the kinetics of calcite precipitation and calcite crystal morphology
  publication-title: Chemical Geology
– volume: 61
  start-page: 1969
  year: 2016
  end-page: 1983
  article-title: Slow shell building, a trait for resiliency to acute ocean acidification impacts
  publication-title: Limnology and Oceanography Methods
– volume: 259
  start-page: 24
  year: 1961
  end-page: 45
  article-title: Control of carbonate solubility by carbonate complexes
  publication-title: American Journal of Science
– volume: 36
  start-page: 481
  issue: 4
  year: 1972
  end-page: 496
  article-title: Strontium behavior in the aragonite‐calcite transformation: An experimental study at 40–98°C
  publication-title: Geochimica et Cosmochimica Acta
– volume: 232
  start-page: 214
  issue: 2–4
  year: 2006
  end-page: 236
  article-title: Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Paleontological and experimental evidence
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– ident: e_1_2_7_36_1
  doi: 10.1016/j.gca.2005.09.015
– ident: e_1_2_7_92_1
  doi: 10.1126/science.1173793
– ident: e_1_2_7_93_1
  doi: 10.1016/j.gca.2008.09.003
– ident: e_1_2_7_72_1
  doi: 10.1071/MF09254
– ident: e_1_2_7_83_1
  doi: 10.1130/G30210A.1
– ident: e_1_2_7_34_1
  doi: 10.5194/bg-7-2051-2010
– ident: e_1_2_7_39_1
  doi: 10.4319/lom.2004.2.356
– ident: e_1_2_7_41_1
  doi: 10.1002/grl.50460
– ident: e_1_2_7_58_1
  doi: 10.1111/j.1461-0248.2010.01518.x
– ident: e_1_2_7_64_1
  doi: 10.1016/0016-7037(80)90087-3
– ident: e_1_2_7_79_1
  doi: 10.1016/j.gca.2013.04.001
– ident: e_1_2_7_86_1
  doi: 10.1016/j.gca.2013.10.050
– ident: e_1_2_7_89_1
  doi: 10.1016/j.palaeo.2005.12.010
– ident: e_1_2_7_69_1
  doi: 10.1016/0300-9629(87)90270-2
– ident: e_1_2_7_27_1
  doi: 10.2307/1541804
– ident: e_1_2_7_90_1
  doi: 10.1002/cbic.201100317
– ident: e_1_2_7_57_1
  doi: 10.1029/2011GC003630
– ident: e_1_2_7_22_1
  doi: 10.1039/b208741n
– ident: e_1_2_7_97_1
  doi: 10.5194/bg-12-4209-2015
– ident: e_1_2_7_31_1
  doi: 10.1016/j.gca.2006.07.008
– ident: e_1_2_7_105_1
  doi: 10.1093/icesjms/fsv174
– ident: e_1_2_7_3_1
  doi: 10.1016/S1385-1101(98)00033-1
– ident: e_1_2_7_12_1
  doi: 10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jsb.2009.07.014
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1469-7998.2000.tb00602.x
– volume: 9
  start-page: 193
  year: 1992
  ident: e_1_2_7_15_1
  article-title: Prismatic shell formation in continuously isolated (Mytillus edulis) and periodically exposed (Crassostrea virginica) extrapallial spaces—Explicable by the same concept
  publication-title: American Malacological Bulletin
  contributor:
    fullname: Carriker M.
– ident: e_1_2_7_81_1
  doi: 10.1016/0016-7037(87)90324-3
– ident: e_1_2_7_49_1
  doi: 10.5343/bms.2010.1107
– ident: e_1_2_7_102_1
  doi: 10.1146/annurev-marine-121211-172238
– ident: e_1_2_7_88_1
  doi: 10.1007/BF00689036
– ident: e_1_2_7_38_1
  doi: 10.3354/meps146265
– ident: e_1_2_7_55_1
  doi: 10.1007/BF00849049
– ident: e_1_2_7_106_1
  doi: 10.1371/journal.pone.0128376
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1469-185X.1969.tb00610.x
– ident: e_1_2_7_77_1
  doi: 10.2475/ajs.283.7.780
– ident: e_1_2_7_37_1
  doi: 10.1029/2004GC000874
– volume: 78
  start-page: 309
  year: 2006
  ident: e_1_2_7_61_1
  article-title: Characteristics of calcification processes in embryos and larvae of the Pacific oyster, Crassostrea gigas
  publication-title: Bulletin of Marine Science
  contributor:
    fullname: Lee S. W.
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.0605748103
– ident: e_1_2_7_108_1
  doi: 10.2113/0540001
– ident: e_1_2_7_94_1
  doi: 10.4319/lo.2009.54.6.2072
– volume-title: Marine carbonates
  year: 1974
  ident: e_1_2_7_73_1
  contributor:
    fullname: Milliman J. D.
– ident: e_1_2_7_14_1
  doi: 10.1016/j.gca.2006.07.019
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1463-6409.1981.tb00485.x
– year: 2015
  ident: e_1_2_7_19_1
  article-title: The Omega myth: What really drives lower calcification rates in an acidifying ocean
  publication-title: ICES Journal of Marine Science
  contributor:
    fullname: Cyronak T.
– ident: e_1_2_7_74_1
  doi: 10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2
– ident: e_1_2_7_91_1
  doi: 10.1139/cjz-2012-0333
– ident: e_1_2_7_29_1
  doi: 10.1126/science.271.5245.67
– ident: e_1_2_7_51_1
  doi: 10.1016/0016-7037(72)90037-3
– ident: e_1_2_7_2_1
  doi: 10.1002/chem.200500980
– ident: e_1_2_7_9_1
  doi: 10.1016/j.marchem.2015.02.002
– ident: e_1_2_7_10_1
  doi: 10.1021/cg300676b
– ident: e_1_2_7_78_1
  doi: 10.1016/j.gca.2007.02.002
– ident: e_1_2_7_24_1
  doi: 10.1016/0198-0149(87)90021-5
– ident: e_1_2_7_20_1
  doi: 10.1126/science.290.5494.1134
– ident: e_1_2_7_82_1
  doi: 10.1016/0016-7037(92)90289-U
– ident: e_1_2_7_95_1
  doi: 10.1073/pnas.0913804107
– ident: e_1_2_7_16_1
  doi: 10.1007/BF01319397
– ident: e_1_2_7_65_1
  doi: 10.1130/G22048.1
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1744-7410.2006.00036.x
– ident: e_1_2_7_28_1
  doi: 10.1093/icb/24.4.871
– ident: e_1_2_7_54_1
  doi: 10.1016/0016-7037(65)90075-X
– ident: e_1_2_7_109_1
  doi: 10.1002/cbic.200900677
– ident: e_1_2_7_99_1
  doi: 10.1016/S0016-7037(99)00380-4
– ident: e_1_2_7_103_1
  doi: 10.1002/grl.50449
– volume: 281
  year: 2014
  ident: e_1_2_7_8_1
  article-title: Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem
  publication-title: Proceedings of the Royal Society of London B
  contributor:
    fullname: Bednarsek N.
– ident: e_1_2_7_4_1
  doi: 10.1093/mollus/eyt044
– ident: e_1_2_7_67_1
  doi: 10.1016/S0304-4203(00)00022-0
– ident: e_1_2_7_85_1
  doi: 10.2343/geochemj.1.0045
– ident: e_1_2_7_87_1
  doi: 10.1007/BF00394023
– ident: e_1_2_7_111_1
  doi: 10.1016/j.jembe.2008.07.024
– ident: e_1_2_7_35_1
  doi: 10.1371/journal.pone.0023010
– ident: e_1_2_7_42_1
  doi: 10.1002/grl.50618
– ident: e_1_2_7_98_1
  doi: 10.1002/ggge.20257
– ident: e_1_2_7_25_1
  doi: 10.1146/annurev.marine.010908.163834
– ident: e_1_2_7_45_1
  doi: 10.1016/S0043-1354(96)00244-8
– ident: e_1_2_7_70_1
  doi: 10.1007/s00367-008-0116-4
– ident: e_1_2_7_18_1
  doi: 10.1021/cr078270o
– ident: e_1_2_7_5_1
  doi: 10.1016/j.marchem.2005.10.009
– ident: e_1_2_7_23_1
  doi: 10.1016/0021-9614(90)90074-Z
– ident: e_1_2_7_32_1
  doi: 10.2475/ajs.259.1.24
– ident: e_1_2_7_50_1
  doi: 10.1098/rspb.2013.0031
– volume: 39
  start-page: 486
  year: 1969
  ident: e_1_2_7_53_1
  article-title: Interpretation of Sr2+ concentrations in carbonate minerals and rocks
  publication-title: Journal of Sedimentary Research
  contributor:
    fullname: Kinsman D. J. J.
– ident: e_1_2_7_33_1
  doi: 10.1242/jeb.055939
– ident: e_1_2_7_96_1
  doi: 10.5194/bg-7-3879-2010
– ident: e_1_2_7_68_1
  doi: 10.1016/0300-9629(87)90270-2
– ident: e_1_2_7_13_1
  doi: 10.1016/0016-7037(92)90314-9
– ident: e_1_2_7_71_1
  doi: 10.1016/0016-7037(94)00354-O
– ident: e_1_2_7_100_1
  doi: 10.1016/0198-0149(90)90034-S
– ident: e_1_2_7_101_1
  doi: 10.1002/lno.10348
– ident: e_1_2_7_46_1
  doi: 10.1126/science.1208277
– ident: e_1_2_7_76_1
  doi: 10.1126/science.1090506
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jembe.2014.10.014
– ident: e_1_2_7_7_1
  doi: 10.5670/oceanog.2015.38
– ident: e_1_2_7_17_1
  doi: 10.2307/1540180
– ident: e_1_2_7_110_1
  doi: 10.1002/jez.90004
– ident: e_1_2_7_6_1
  doi: 10.4319/lo.2012.57.3.0698
– ident: e_1_2_7_104_1
  doi: 10.1002/lno.10348
– ident: e_1_2_7_21_1
  doi: 10.1242/jeb.082909
– ident: e_1_2_7_84_1
  doi: 10.1146/annurev.physiol.65.092101.142345
– volume: 31
  start-page: 296
  year: 2012
  ident: e_1_2_7_43_1
  article-title: Extended larval carry‐over effects: Synergisms from a stressful benthic existence in juvenile Olympia oysters
  publication-title: Journal of Shellfish Research
  contributor:
    fullname: Hettinger A.
– ident: e_1_2_7_63_1
  doi: 10.1016/0016-7037(81)90188-5
– ident: e_1_2_7_62_1
  doi: 10.1021/acs.cgd.6b01599
– ident: e_1_2_7_44_1
  doi: 10.1016/0044-8486(88)90195-0
– ident: e_1_2_7_11_1
  doi: 10.3354/meps11828
– ident: e_1_2_7_60_1
  doi: 10.3354/ab00009
– ident: e_1_2_7_66_1
  doi: 10.1016/j.gca.2004.01.025
– ident: e_1_2_7_107_1
  doi: 10.1039/a604512j
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms4169
– ident: e_1_2_7_30_1
  doi: 10.1126/science.1155676
– ident: e_1_2_7_112_1
  doi: 10.1016/S0009-2541(99)00097-2
– ident: e_1_2_7_80_1
  doi: 10.1007/BF00406014
SSID ssj0014558
Score 2.3564765
Snippet Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling...
Abstract Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1064
SubjectTerms Aragonite
Bleaching
Brackishwater environment
Calcification
Calcium
Calcium carbonate
Calcium carbonates
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbonates
Chemical composition
Chemistry
Chlorine
Cohorts
Estuaries
Estuarine water
Larvae
larval oysters
Marine molluscs
Metals
Mineralization
Mollusks
ocean acidification
Ocean circulation
Oceans
Oysters
Precipitation
Saturation
Seawater
Shellfish
Shells
Tissue
Trace elements
trace metals
Upwelling
Water chemistry
Title Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GC007133
https://www.proquest.com/docview/2047407165
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYqENJepjE2rQwmP4ynLqxNHKd-BNSFwbo9DCTessRxAMGaKW0njYf9qP3C3dmO40kVGrxEre1Yju-z7853viPkbSHGJecYZj-Ww4CBTB8IYFMBhl4DCV8CS0eL7vQzPz5nJxfxRa_3x_NaWi6KfXm38l7JY6gKZUBXvCX7AMq6TqEAfgN94QkUhud_0Xiq8N7u9fy7DtOA7nS5dVucWK_wW73grWNW6w_wER2GkDRNfolLWg2-ojuoMRc0MMDBF4zvbO08VnJNFebWMsnhkC6XqjanInP7z8SEnuszhjTqdjZ7KH7Y4FZysO9X6FcPl82NZ9pftrnAnMPZ4JN76bSG0cmr6xtzpeinDRtuTy1GY8_ZxW60YRzgwYvhQyvK2t1ZeChk3lYLuizz2DaosWIlSzAhZmEMSXpkdPKO9bXmftcuvq-l5vppmk5ATIqA7a-HiYhR4Z_-njjLFYt1Tlj3LfayBfT-3u_5XzGo0218DUmLOGfPyFOrm9ADA7RN0lOz52Qj1bmff22Rbx3c6KKmFm4UEEUd3KgHN1pXutLCjTq4UQ03rDZwoxZuL8j5h8nZ0XFgE3QEEs2tAUibXFVSVniXU4ShkkklRFnm0QjTqYC2K9lwXObJkBcgZstRKAWvWC5YkVRyzKOXZG1Wz9QrQhPFI1aOWBKFJegQLFeiQuWZVzkI3EL0yV47X9kPE4clMxG3w8yf1z7ZaSczsyt1Dg1YggcXPO6Td3qC7-0jczTefljz1-RJh_UdsrZolmoXZNZF8UaD5C9eRYxr
link.rule.ids 315,786,790,27957,27958
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+to+Explain+the+Elemental+Composition+of+the+Initial+Aragonite+Shell+of+Larval+Oysters&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Haley%2C+Brian+A.&rft.au=Hales%2C+Burke&rft.au=Brunner%2C+Elizabeth+L.&rft.au=Kovalchik%2C+Kevin&rft.date=2018-04-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=19&rft.issue=4&rft.spage=1064&rft.epage=1079&rft_id=info:doi/10.1002%2F2017GC007133&rft.externalDBID=10.1002%252F2017GC007133&rft.externalDocID=GGGE21532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon