Longitudinal data analysis using the conditional empirical likelihood method

This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of statistics Vol. 42; no. 3; pp. 404 - 422
Main Authors Han, Peisong, Song, Peter X.-K., Wang, Lu
Format Journal Article
LanguageEnglish
Published Ottawa Blackwell Publishing Ltd 01.09.2014
Statistical Society of Canada
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0319-5724
1708-945X
DOI10.1002/cjs.11221

Cover

Loading…
Abstract This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modélisation explicite de la variance-covariance des résultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basées sur la vraie structure de variance-covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d'évaluer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition.
AbstractList This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application.
This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modélisation explicite de la variance-covariance des résultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basées sur la vraie structure de variance-covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d'évaluer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition.
This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow‐up visits are dealt with via stratification according to distinctive follow‐up patterns. The CEL method does not require any explicit modelling of the variance–covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance–covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance–covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. The Canadian Journal of Statistics 42: 404–422; 2014 © 2014 Statistical Society of Canada Résumé Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modélisation explicite de la variance‐covariance des résultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basées sur la vraie structure de variance‐covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d’évaluer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition. La revue canadienne de statistique 42: 404–422; 2014 © 2014 Société statistique du Canada
This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow‐ ;up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. The Canadian Journal of Statistics 42: 404-422; 2014 © 2014 Statistical Society of Canada // ABSTRACT IN : Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modé ;lisation explicite de la variance-covariance des ré ;sultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation géné ;ralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basé ;es sur la vraie structure de variance-covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d'é ;valuer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition. La revue canadienne de statistique 42: 404-422; 2014 © 2014 Société statistique du Canada
Author Song, Peter X.-K.
Wang, Lu
Han, Peisong
Author_xml – sequence: 1
  givenname: Peisong
  surname: Han
  fullname: Han, Peisong
  email: peisonghan@uwaterloo.ca
  organization: Department of Statistics and Actuarial Science, University of Waterloo, Ontario, Waterloo, Canada
– sequence: 2
  givenname: Peter X.-K.
  surname: Song
  fullname: Song, Peter X.-K.
  organization: Department of Biostatistics, University of Michigan, MI, Ann Arbor, U.S.A
– sequence: 3
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: Department of Biostatistics, University of Michigan, MI, Ann Arbor, U.S.A
BookMark eNqFkc1rFEEQxRuJ4CZ68A8QBrzoYZL-mP6YoyyamAxGMJDcmrKnJtub2em1uwfd_z4zruYQ0Jzqwfu9gqp3SA6GMCAhrxk9ZpTyE7dOx4xxzp6RBdPUlHUlbw7IggpWl1Lz6gU5TGlNqZATtiBNE4Zbn8fWD9AXLWQoYFK75FMxJj_cFnmFhQtD67MPM4ObrY_eTar3d9j7VQhtscG8Cu1L8ryDPuGrP_OIXH36eLU8K5vL08_LD03pKmlYiS2rOOjvkjPHQSComgkGKAU6pagCZzowHQIYqCopQGMH3LVaaylaJY7Iu_3abQw_RkzZbnxy2PcwYBiTZYpTKiWv-dOoNIpRRTWb0LeP0HUY43TxTMmaamWknqj3e8rFkFLEzm6j30DcWUbt3ICdGrC_G5jYk0es8xnmN-YIvv9f4qfvcffv1XZ5_u1v4s0-sU45xIdEJZiRrJ79cu_7lPHXgw_xziottLTXX04tv_h60yypsdfiHoTiseQ
CitedBy_id crossref_primary_10_1016_j_csda_2018_10_010
Cites_doi 10.1214/aos/1176325370
10.1093/biomet/90.1.239
10.1198/106186008X321068
10.1214/09-EJS528
10.1093/oso/9780198524847.001.0001
10.1201/9781420036152
10.1111/j.1541-0420.2005.00321.x
10.1093/biomet/89.1.230
10.1093/oso/9780198522287.001.0001
10.1093/biomet/90.1.29
10.1002/cjs.5550340107
10.1198/016214501753382309
10.2307/2532642
10.1016/0304-4076(87)90015-7
10.1093/biomet/73.1.13
10.1111/1467-9469.t01-1-00315
10.1214/09-EJS518
10.1093/biomet/asp073
10.1214/009053607000000208
10.1093/biomet/asq080
10.2307/2986113
10.1093/biomet/87.4.823
10.1080/01621459.1995.10476615
10.1016/j.jeconom.2006.05.004
10.1002/9781119013563
10.1214/aos/1176347494
10.1111/j.1467-9868.2007.00578.x
10.1093/biomet/asm066
10.1093/biomet/61.3.439
10.1214/aoms/1177705693
10.1016/S0169-7161(05)80051-3
10.1093/biomet/75.2.237
10.1093/jn/133.11.3941S
10.1016/S0304-4076(03)00118-0
10.1007/b98823
10.1111/j.1468-0262.2004.00550.x
10.1080/03610919408813210
10.1093/biomet/93.4.927
ContentType Journal Article
Copyright 2014 Statistical Society of Canada/Société statistique du Canada
2014 Statistical Society of Canada
Copyright Wiley Subscription Services, Inc. Sep 2014
Copyright_xml – notice: 2014 Statistical Society of Canada/Société statistique du Canada
– notice: 2014 Statistical Society of Canada
– notice: Copyright Wiley Subscription Services, Inc. Sep 2014
DBID BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
H8D
JBE
JQ2
L7M
L~C
L~D
DOI 10.1002/cjs.11221
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
Aerospace Database
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database


Aerospace Database
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1708-945X
EndPage 422
ExternalDocumentID 3420745101
10_1002_cjs_11221
CJS11221
43185191
ark_67375_WNG_2KPXLC08_W
Genre article
Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
3-9
31~
33P
3SF
3WU
4.4
44B
50Y
50Z
52M
52O
52T
52U
52W
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAKYL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCUV
ABDBF
ABFAN
ABJNI
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACPOU
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADODI
ADULT
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AELPN
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVYC
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BHOJU
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DRFUL
DRSTM
DSRWC
EBS
ECEWR
EJD
ESX
F00
F01
F04
F21
F5P
FEDTE
FSPIC
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
PZZ
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SA0
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
~IA
~WT
AAHQN
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ACHJO
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGLNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIHAF
ALRMG
AMVHM
AAMNL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
H8D
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4581-ed142a7b521c2a3ea69131ae53ec6606ac8fa8feaa8a4453a7efa2cd77753d63
ISSN 0319-5724
IngestDate Fri Jul 11 03:44:15 EDT 2025
Fri Jul 11 04:34:15 EDT 2025
Fri Jul 25 10:40:53 EDT 2025
Tue Jul 01 00:41:23 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 17:06:53 EST 2025
Thu Jul 03 21:12:59 EDT 2025
Wed Oct 30 09:56:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4581-ed142a7b521c2a3ea69131ae53ec6606ac8fa8feaa8a4453a7efa2cd77753d63
Notes istex:768863D2524DC69479B3AF5163FB5AD62C1A5EC6
ark:/67375/WNG-2KPXLC08-W
ArticleID:CJS11221
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://deepblue.lib.umich.edu/bitstream/2027.42/108267/1/cjs11221-sm-0001-SupInfo-S1.pdf
PQID 1559076857
PQPubID 46823
PageCount 19
ParticipantIDs proquest_miscellaneous_1620055292
proquest_miscellaneous_1586106071
proquest_journals_1559076857
crossref_primary_10_1002_cjs_11221
crossref_citationtrail_10_1002_cjs_11221
wiley_primary_10_1002_cjs_11221_CJS11221
jstor_primary_43185191
istex_primary_ark_67375_WNG_2KPXLC08_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationTitle Canadian journal of statistics
PublicationTitleAlternate Can. J. Statistics
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Statistical Society of Canada
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Statistical Society of Canada
– name: Wiley Subscription Services, Inc
References Chen, J., Sitter, R. R. & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 89, 230-237.
Diggle, P. & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43, 49-73.
You, J., Chen, G., & Zhou, Y. (2006). Block empirical likelihood for longitudinal partially linear regression models. Canadian Journal of Statistics, 34, 79-96.
Smith, R. J. (2007). Efficient information theoretic inference for conditional moment restrictions. Journal of Econometrics, 138, 430-460.
Grendár, M. & Judge, G. Revised empirical likelihood. CUDARE Working Papers, page http://ageconsearch.umn.edu/bitstream/91799/2/CUDARE2010.
Kitamura, Y. (2007). Empirical likelihood methods in econometrics: Theory and practice. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. 3, Blundell, R., Newey, W. K., and Persson, T., editors. Cambridge University Press, Cambridge.
Pan, J. & MacKenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 90, 239-244.
Godambe, V. P. (1991). Estimating Functions, Oxford University Press, Oxford.
Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear models. Biometrika, 73, 13-22.
Wang, Y. G., & Lin, X. (2005). Effects of variance-function misspecification in analysis of longitudinal data. Biometrics, 61, 413-421.
Xue, L., & Zhu, L. (2007). Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika, 94, 921-937.
Grendár, M. & Judge, G. (2009). Empty set problem of maximum empirical likelihood methods. Electronic Journal of Statistics, 3, 1542-1555.
Neumann, C. G., Bwibo, N. O., Murphy, S. P., Sigman, M., Whaley, S., Allen, L. H., Guthrie, D., Weiss, R. E., & Demment, M. W. (2003). Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. The Journal of Nutrition, 133, 3941S-3949S.
Owen, A. (2001). Empirical Likelihood, Chapman & Hall/CRC Press, New York.
Heyde, C. C. (1997). Quasi-Likelihood and Its Application, Springer-Verlag, New York.
Wang, Y. G. & Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance. Biometrika, 90, 29-41.
Kitamura, Y., Tripathi, G., & Ahn, H. (2004). Empirical likelihood-based inference in conditional moment restriction models. Econometrica, 72, 1667-1714.
Hansen, B. E. (2014). Econometrics. Draft graduate textbook.
Chen, J., Variyath, A. M. & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17, 426-443.
Wang, S., Qian, L., & Carroll, R. J. (2010). Generalized empirical likelihood methods for analyzing longitudinal data. Biometrika, 97, 79-93.
Weiss R. E. (2005). Modelling Longitudinal Data, Springer, New York.
Qin, J. & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22, 300-325.
Qu, A., Lindsay, B. G., & Li, B. (2000). Improving generalised estimating equations using quadratic inference functions. Biometrika, 87, 823-836.
Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistics, 31, 1208-1212.
Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd ed., Oxford University Press, Oxford.
Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18, 90-120.
Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447.
Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed., Wiley, New York.
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.
Emerson, S. & Owen, A. (2009). Calibration of the empirical likelihood method for a vector mean. Electronic Journal of Statistics, 3, 1161-1192.
Kauermann, G. & Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387-1396.
Zhang, J. & Gijbels, I. (2003). Sieve empirical likelihood and extensions of the generalized least squares, Scandinavian Journal of Statistics, 30, 1-24.
Ye, H. & Pan, J. (2006). Modelling of covariance structures in generalized estimating equations for longitudinal data. Biometrika, 93, 927-941.
Song, P. X.-K. (2007). Correlated Data Analysis: Modelling, Analytics, and Applications. Springer, New York.
Pepe, M. S. & Anderson, G. (1994). A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics: Simulation and Computation, 23, 939-951.
Jiang, J., Luan, Y., & Wang, Y-G. (2007). Iterative estimating equations: Linear convergence and asymptotic properties. Annals of Statistics, 35, 2233-2260.
Lai, T. L. & Small, D. S. (2007). Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method-of-moments approach. Journal of the Royal Statistical Society: Series B, 69, 79-99.
Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics, 34, 305-334.
Newey, W. K. (1993). Efficient estimation of models with conditional moment restrictions. In Handbook of Statistics, Vol. 11. North-Holland, Amsterdam.
Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249.
Li, Y. (2011). Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika, 98, 355-370.
Prentice, R. L. & Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825-839.
Donald, S. G., Imbens, G. W. & Newey, W. K. (2003). Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics, 117, 55-93.
2006; 93
1987; 34
2010; 97
2003; 117
1960; 31
1986; 73
1995; 90
2006; 34
1990; 18
2000; 87
2008; 17
1994; 23
1997
1994; 22
2007
2011; 98
2005
1993
2007; 94
2002
1991
1988; 75
2005; 61
2003; 30
2007; 35
2003; 133
1994; 43
2004; 72
2003; 90
1991; 47
2007; 138
2001
1974; 61
2002; 89
2014
2009; 3
2001; 96
2007; 69
e_1_2_9_30_1
Song P. X.‐K. (e_1_2_9_35_1) 2007
Hansen B. E. (e_1_2_9_13_1) 2014
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
Grendár M. (e_1_2_9_12_1)
e_1_2_9_32_1
e_1_2_9_33_1
Kitamura Y. (e_1_2_9_17_1) 2007
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Godambe V. P. (e_1_2_9_10_1) 1991
Neumann C. G. (e_1_2_9_24_1) 2003; 133
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Diggle P. (e_1_2_9_5_1) 2002
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Weiss R. E. (e_1_2_9_40_1) 2005
e_1_2_9_29_1
References_xml – reference: Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249.
– reference: Wang, S., Qian, L., & Carroll, R. J. (2010). Generalized empirical likelihood methods for analyzing longitudinal data. Biometrika, 97, 79-93.
– reference: Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics, 34, 305-334.
– reference: Diggle, P. & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43, 49-73.
– reference: Hansen, B. E. (2014). Econometrics. Draft graduate textbook.
– reference: Neumann, C. G., Bwibo, N. O., Murphy, S. P., Sigman, M., Whaley, S., Allen, L. H., Guthrie, D., Weiss, R. E., & Demment, M. W. (2003). Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. The Journal of Nutrition, 133, 3941S-3949S.
– reference: Chen, J., Sitter, R. R. & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 89, 230-237.
– reference: Prentice, R. L. & Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825-839.
– reference: Wang, Y. G. & Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance. Biometrika, 90, 29-41.
– reference: Donald, S. G., Imbens, G. W. & Newey, W. K. (2003). Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics, 117, 55-93.
– reference: Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistics, 31, 1208-1212.
– reference: Li, Y. (2011). Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika, 98, 355-370.
– reference: Godambe, V. P. (1991). Estimating Functions, Oxford University Press, Oxford.
– reference: Heyde, C. C. (1997). Quasi-Likelihood and Its Application, Springer-Verlag, New York.
– reference: Owen, A. (2001). Empirical Likelihood, Chapman & Hall/CRC Press, New York.
– reference: Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447.
– reference: Emerson, S. & Owen, A. (2009). Calibration of the empirical likelihood method for a vector mean. Electronic Journal of Statistics, 3, 1161-1192.
– reference: Wang, Y. G., & Lin, X. (2005). Effects of variance-function misspecification in analysis of longitudinal data. Biometrics, 61, 413-421.
– reference: Pepe, M. S. & Anderson, G. (1994). A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics: Simulation and Computation, 23, 939-951.
– reference: Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear models. Biometrika, 73, 13-22.
– reference: Pan, J. & MacKenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 90, 239-244.
– reference: Zhang, J. & Gijbels, I. (2003). Sieve empirical likelihood and extensions of the generalized least squares, Scandinavian Journal of Statistics, 30, 1-24.
– reference: Grendár, M. & Judge, G. (2009). Empty set problem of maximum empirical likelihood methods. Electronic Journal of Statistics, 3, 1542-1555.
– reference: Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.
– reference: Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed., Wiley, New York.
– reference: Kitamura, Y., Tripathi, G., & Ahn, H. (2004). Empirical likelihood-based inference in conditional moment restriction models. Econometrica, 72, 1667-1714.
– reference: Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18, 90-120.
– reference: You, J., Chen, G., & Zhou, Y. (2006). Block empirical likelihood for longitudinal partially linear regression models. Canadian Journal of Statistics, 34, 79-96.
– reference: Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd ed., Oxford University Press, Oxford.
– reference: Kauermann, G. & Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387-1396.
– reference: Newey, W. K. (1993). Efficient estimation of models with conditional moment restrictions. In Handbook of Statistics, Vol. 11. North-Holland, Amsterdam.
– reference: Chen, J., Variyath, A. M. & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17, 426-443.
– reference: Weiss R. E. (2005). Modelling Longitudinal Data, Springer, New York.
– reference: Kitamura, Y. (2007). Empirical likelihood methods in econometrics: Theory and practice. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. 3, Blundell, R., Newey, W. K., and Persson, T., editors. Cambridge University Press, Cambridge.
– reference: Xue, L., & Zhu, L. (2007). Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika, 94, 921-937.
– reference: Ye, H. & Pan, J. (2006). Modelling of covariance structures in generalized estimating equations for longitudinal data. Biometrika, 93, 927-941.
– reference: Qin, J. & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22, 300-325.
– reference: Lai, T. L. & Small, D. S. (2007). Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method-of-moments approach. Journal of the Royal Statistical Society: Series B, 69, 79-99.
– reference: Grendár, M. & Judge, G. Revised empirical likelihood. CUDARE Working Papers, page http://ageconsearch.umn.edu/bitstream/91799/2/CUDARE2010.
– reference: Jiang, J., Luan, Y., & Wang, Y-G. (2007). Iterative estimating equations: Linear convergence and asymptotic properties. Annals of Statistics, 35, 2233-2260.
– reference: Song, P. X.-K. (2007). Correlated Data Analysis: Modelling, Analytics, and Applications. Springer, New York.
– reference: Qu, A., Lindsay, B. G., & Li, B. (2000). Improving generalised estimating equations using quadratic inference functions. Biometrika, 87, 823-836.
– reference: Smith, R. J. (2007). Efficient information theoretic inference for conditional moment restrictions. Journal of Econometrics, 138, 430-460.
– volume: 35
  start-page: 2233
  year: 2007
  end-page: 2260
  article-title: Iterative estimating equations: Linear convergence and asymptotic properties
  publication-title: Annals of Statistics
– year: 2005
  publication-title: Modelling Longitudinal Data
– volume: 133
  year: 2003
  article-title: Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings
  publication-title: The Journal of Nutrition
– year: 2007
  publication-title: Correlated Data Analysis: Modelling, Analytics, and Applications
– year: 1991
  publication-title: Estimating Functions
– volume: 90
  start-page: 29
  year: 2003
  end-page: 41
  article-title: Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance
  publication-title: Biometrika
– volume: 117
  start-page: 55
  year: 2003
  end-page: 93
  article-title: Empirical likelihood estimation and consistent tests with conditional moment restrictions
  publication-title: Journal of Econometrics
– volume: 23
  start-page: 939
  year: 1994
  end-page: 951
  article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
  publication-title: Communications in Statistics: Simulation and Computation
– volume: 47
  start-page: 825
  year: 1991
  end-page: 839
  article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses
  publication-title: Biometrics
– year: 2002
  publication-title: Statistical Analysis with Missing Data
– volume: 87
  start-page: 823
  year: 2000
  end-page: 836
  article-title: Improving generalised estimating equations using quadratic inference functions
  publication-title: Biometrika
– volume: 138
  start-page: 430
  year: 2007
  end-page: 460
  article-title: Efficient information theoretic inference for conditional moment restrictions
  publication-title: Journal of Econometrics
– article-title: Revised empirical likelihood
  publication-title: CUDARE Working Papers
– volume: 98
  start-page: 355
  year: 2011
  end-page: 370
  article-title: Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation
  publication-title: Biometrika
– volume: 69
  start-page: 79
  year: 2007
  end-page: 99
  article-title: Marginal regression analysis of longitudinal data with time‐dependent covariates: a generalized method‐of‐moments approach
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 97
  start-page: 79
  year: 2010
  end-page: 93
  article-title: Generalized empirical likelihood methods for analyzing longitudinal data
  publication-title: Biometrika
– volume: 43
  start-page: 49
  year: 1994
  end-page: 73
  article-title: Informative drop‐out in longitudinal data analysis
  publication-title: Applied Statistics
– volume: 90
  start-page: 1112
  year: 1995
  end-page: 1121
  article-title: Modeling the drop‐out mechanism in repeated‐measures studies
  publication-title: Journal of the American Statistical Association
– volume: 90
  start-page: 239
  year: 2003
  end-page: 244
  article-title: Model selection for joint mean‐covariance structures in longitudinal studies
  publication-title: Biometrika
– volume: 30
  start-page: 1
  year: 2003
  end-page: 24
  article-title: Sieve empirical likelihood and extensions of the generalized least squares
  publication-title: Scandinavian Journal of Statistics
– volume: 89
  start-page: 230
  year: 2002
  end-page: 237
  article-title: Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys
  publication-title: Biometrika
– volume: 3
  start-page: 1161
  year: 2009
  end-page: 1192
  article-title: Calibration of the empirical likelihood method for a vector mean
  publication-title: Electronic Journal of Statistics
– volume: 93
  start-page: 927
  year: 2006
  end-page: 941
  article-title: Modelling of covariance structures in generalized estimating equations for longitudinal data
  publication-title: Biometrika
– volume: 17
  start-page: 426
  year: 2008
  end-page: 443
  article-title: Adjusted empirical likelihood and its properties
  publication-title: Journal of Computational and Graphical Statistics
– volume: 72
  start-page: 1667
  year: 2004
  end-page: 1714
  article-title: Empirical likelihood‐based inference in conditional moment restriction models
  publication-title: Econometrica
– volume: 22
  start-page: 300
  year: 1994
  end-page: 325
  article-title: Empirical likelihood and general estimating equations
  publication-title: Annals of Statistics
– year: 1993
  article-title: Efficient estimation of models with conditional moment restrictions
  publication-title: Handbook of Statistics
– volume: 34
  start-page: 79
  year: 2006
  end-page: 96
  article-title: Block empirical likelihood for longitudinal partially linear regression models
  publication-title: Canadian Journal of Statistics
– volume: 75
  start-page: 237
  year: 1988
  end-page: 249
  article-title: Empirical likelihood ratio confidence intervals for a single functional
  publication-title: Biometrika
– year: 2002
  publication-title: Analysis of Longitudinal Data
– volume: 61
  start-page: 439
  year: 1974
  end-page: 447
  article-title: Quasi‐likelihood functions, generalized linear models, and the Gauss‐Newton method
  publication-title: Biometrika
– volume: 3
  start-page: 1542
  year: 2009
  end-page: 1555
  article-title: Empty set problem of maximum empirical likelihood methods
  publication-title: Electronic Journal of Statistics
– volume: 61
  start-page: 413
  year: 2005
  end-page: 421
  article-title: Effects of variance‐function misspecification in analysis of longitudinal data
  publication-title: Biometrics
– year: 2001
  publication-title: Empirical Likelihood
– volume: 94
  start-page: 921
  year: 2007
  end-page: 937
  article-title: Empirical likelihood semiparametric regression analysis for longitudinal data
  publication-title: Biometrika
– year: 2007
  article-title: Empirical likelihood methods in econometrics: Theory and practice
  publication-title: Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress
– year: 2014
  publication-title: Econometrics
– year: 1997
  publication-title: Quasi‐Likelihood and Its Application
– volume: 34
  start-page: 305
  year: 1987
  end-page: 334
  article-title: Asymptotic efficiency in estimation with conditional moment restrictions
  publication-title: Journal of Econometrics
– volume: 96
  start-page: 1387
  year: 2001
  end-page: 1396
  article-title: A note on the efficiency of sandwich covariance matrix estimation
  publication-title: Journal of the American Statistical Association
– volume: 31
  start-page: 1208
  year: 1960
  end-page: 1212
  article-title: An optimum property of regular maximum likelihood estimation
  publication-title: Annals of Mathematical Statistics
– volume: 18
  start-page: 90
  year: 1990
  end-page: 120
  article-title: Empirical likelihood ratio confidence regions
  publication-title: Annals of Statistics
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalised linear models
  publication-title: Biometrika
– ident: e_1_2_9_32_1
  doi: 10.1214/aos/1176325370
– ident: e_1_2_9_29_1
  doi: 10.1093/biomet/90.1.239
– ident: e_1_2_9_4_1
  doi: 10.1198/106186008X321068
– year: 2007
  ident: e_1_2_9_17_1
  article-title: Empirical likelihood methods in econometrics: Theory and practice
  publication-title: Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress
– ident: e_1_2_9_11_1
  doi: 10.1214/09-EJS528
– year: 2002
  ident: e_1_2_9_5_1
  publication-title: Analysis of Longitudinal Data
  doi: 10.1093/oso/9780198524847.001.0001
– ident: e_1_2_9_28_1
  doi: 10.1201/9781420036152
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1541-0420.2005.00321.x
– ident: e_1_2_9_3_1
  doi: 10.1093/biomet/89.1.230
– year: 1991
  ident: e_1_2_9_10_1
  publication-title: Estimating Functions
  doi: 10.1093/oso/9780198522287.001.0001
– ident: e_1_2_9_37_1
  doi: 10.1093/biomet/90.1.29
– ident: e_1_2_9_43_1
  doi: 10.1002/cjs.5550340107
– ident: e_1_2_9_16_1
  doi: 10.1198/016214501753382309
– ident: e_1_2_9_31_1
  doi: 10.2307/2532642
– ident: e_1_2_9_2_1
  doi: 10.1016/0304-4076(87)90015-7
– ident: e_1_2_9_21_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_9_44_1
  doi: 10.1111/1467-9469.t01-1-00315
– year: 2005
  ident: e_1_2_9_40_1
  publication-title: Modelling Longitudinal Data
– ident: e_1_2_9_8_1
  doi: 10.1214/09-EJS518
– ident: e_1_2_9_36_1
  doi: 10.1093/biomet/asp073
– ident: e_1_2_9_15_1
  doi: 10.1214/009053607000000208
– ident: e_1_2_9_20_1
  doi: 10.1093/biomet/asq080
– ident: e_1_2_9_6_1
  doi: 10.2307/2986113
– year: 2007
  ident: e_1_2_9_35_1
  publication-title: Correlated Data Analysis: Modelling, Analytics, and Applications
– ident: e_1_2_9_12_1
  article-title: Revised empirical likelihood
  publication-title: CUDARE Working Papers
– ident: e_1_2_9_33_1
  doi: 10.1093/biomet/87.4.823
– ident: e_1_2_9_22_1
  doi: 10.1080/01621459.1995.10476615
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jeconom.2006.05.004
– ident: e_1_2_9_23_1
  doi: 10.1002/9781119013563
– ident: e_1_2_9_27_1
  doi: 10.1214/aos/1176347494
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1467-9868.2007.00578.x
– ident: e_1_2_9_41_1
  doi: 10.1093/biomet/asm066
– ident: e_1_2_9_39_1
  doi: 10.1093/biomet/61.3.439
– ident: e_1_2_9_9_1
  doi: 10.1214/aoms/1177705693
– ident: e_1_2_9_25_1
  doi: 10.1016/S0169-7161(05)80051-3
– ident: e_1_2_9_26_1
  doi: 10.1093/biomet/75.2.237
– volume: 133
  year: 2003
  ident: e_1_2_9_24_1
  article-title: Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings
  publication-title: The Journal of Nutrition
  doi: 10.1093/jn/133.11.3941S
– ident: e_1_2_9_7_1
  doi: 10.1016/S0304-4076(03)00118-0
– ident: e_1_2_9_14_1
  doi: 10.1007/b98823
– year: 2014
  ident: e_1_2_9_13_1
  publication-title: Econometrics
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1468-0262.2004.00550.x
– ident: e_1_2_9_30_1
  doi: 10.1080/03610919408813210
– ident: e_1_2_9_42_1
  doi: 10.1093/biomet/93.4.927
SSID ssj0035112
Score 1.9995683
Snippet This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 404
SubjectTerms Analytical estimating
Asymptotic properties
Consistent estimators
Covariance
Data analysis
Data collection
Data models
Data processing
Empirical analysis
Estimating techniques
Estimation methods
Estimators
Generalized estimating equations (GEE)
Inference
Longitudinal data
Marginal analysis
Marginal model
Mathematical analysis
Maximum likelihood method
Modeling
MSC 2010: Primary 62F12
Nutrition
Probability theory
Scientific method
secondary 62J12
Simulation
Statistical variance
Statistics
Studies
unbalanced longitudinal data
Variance analysis
variance-covariance matrix
within-subject correlation
Title Longitudinal data analysis using the conditional empirical likelihood method
URI https://api.istex.fr/ark:/67375/WNG-2KPXLC08-W/fulltext.pdf
https://www.jstor.org/stable/43185191
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjs.11221
https://www.proquest.com/docview/1559076857
https://www.proquest.com/docview/1586106071
https://www.proquest.com/docview/1620055292
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbK-jIeEAwmCgMFhBDSlBI7duI8boUxbd2EtKLlLTiOM5WVdFobCfHrOceJ67KBBi9RlJ4Tuff5fGfffUbojcBFRGQkfcxEAAGKFH4icuwnJc95GXGSYF2cfHIaHX6hRylLe72vTtZSvcyH8uetdSX_o1V4BnrVVbL_oFn7UngA96BfuIKG4XonHY_n-rShumhOttK5nrui4xipF10dFAS8xbRd8VPfr6aGE2Q2vVSzacNpbA6Rdr1US1ng8EroyiND6rwyWpXJ8NUJSRd2qabN8W0Sf3fToc2mOB6uFu-NyLh21xwwtUlVttYKJz6LTfXzUBnTGQdgOilLXdtKiYOh0DGUNKDOnEtNbfINc27oYeW3ha50MpXU65TZv01lNsHQkDGTDJpmTdN7qE8gkADT3d_b_7B_0M3Weh-VdMVcukcd-1RA3tvvrvksfT38fnTpq2uBiRveNP7J5CF60AYW3p5BySPUU9UWun9iWXkXW2jzzOrwMRq74PE0eLwOPF4DHg9aeg54PAsebwUez4DnCZocfJyMDv32aA1fUsaxrwpMiYhzcN4kEaESUYJDLBQLlYwgphWSl4KXSgguKGWhiFUpiCziGMLbIgq30UY1r9RT5JXgkYdcEZrnCS3CREQKC02ZpMCeKyYH6F3332WypZ3Xp5_Mshs6GqDXVvTKcK3cJvS2UYCVENeXOjkxZtn56aeMHH9Ox6OAZ-cDtN1oyApSTRSAE3jDTqeyrB1G8G6IrPWmNIsH6JX9GUyt3j8TlZrXWoZDsKEJGf8iE-llWkYSAh1v4PDnrmSjo7Pm5tldOv4cba6G4g7aWF7X6gU4xMv8ZYvpXynEtJc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+data+analysis+using+the+conditional+empirical+likelihood+method&rft.jtitle=Canadian+journal+of+statistics&rft.au=Han%2C+Peisong&rft.au=Song%2C+Peter+X.%E2%80%90K.&rft.au=Wang%2C+Lu&rft.date=2014-09-01&rft.issn=0319-5724&rft.eissn=1708-945X&rft.volume=42&rft.issue=3&rft.spage=404&rft.epage=422&rft_id=info:doi/10.1002%2Fcjs.11221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cjs_11221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0319-5724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0319-5724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0319-5724&client=summon