Longitudinal data analysis using the conditional empirical likelihood method
This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does...
Saved in:
Published in | Canadian journal of statistics Vol. 42; no. 3; pp. 404 - 422 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
Blackwell Publishing Ltd
01.09.2014
Statistical Society of Canada Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0319-5724 1708-945X |
DOI | 10.1002/cjs.11221 |
Cover
Loading…
Abstract | This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modélisation explicite de la variance-covariance des résultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basées sur la vraie structure de variance-covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d'évaluer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition. |
---|---|
AbstractList | This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow-up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modélisation explicite de la variance-covariance des résultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basées sur la vraie structure de variance-covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d'évaluer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition. This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow‐up visits are dealt with via stratification according to distinctive follow‐up patterns. The CEL method does not require any explicit modelling of the variance–covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance–covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance–covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. The Canadian Journal of Statistics 42: 404–422; 2014 © 2014 Statistical Society of Canada Résumé Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modélisation explicite de la variance‐covariance des résultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation généralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basées sur la vraie structure de variance‐covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d’évaluer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition. La revue canadienne de statistique 42: 404–422; 2014 © 2014 Société statistique du Canada This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal models. The possible unbalanced follow‐ ;up visits are dealt with via stratification according to distinctive follow-up patterns. The CEL method does not require any explicit modelling of the variance-covariance of the longitudinal outcomes. Instead, it implicitly incorporates a consistently estimated variance-covariance matrix in a nonparametric fashion. The proposed CEL estimator is connected to the generalized estimating equations (GEE) estimator, and achieves the same efficiency as the GEE estimator employing the true variance-covariance. The asymptotic distribution of the CEL estimator is derived, and simulation studies are conducted to assess the finite sample performance. Data collected from a longitudinal nutrition study are analysed as an application. The Canadian Journal of Statistics 42: 404-422; 2014 © 2014 Statistical Society of Canada // ABSTRACT IN : Les auteurs proposent une nouvelle approche pour l'analyse de données longitudinales à l'aide de la méthode de la vraisemblance empirique conditionnelle (VEC) dans le cadre de modèles marginaux. Ils prennent en compte la possibilité d'un suivi irrégulier en stratifiant selon les séquences de suivis observées. La VEC ne nécessite pas la modé ;lisation explicite de la variance-covariance des ré ;sultats longitudinaux, mais en intègre plutôt implicitement un estimateur non paramétrique convergent. La VEC est associée aux équations d'estimation géné ;ralisées (EEG), et les estimateurs découlant de la VEC atteignent la même efficacité que ceux des EEG basé ;es sur la vraie structure de variance-covariance. Les auteurs présentent la distribution asymptotique de l'estimateur de la VEC, ainsi qu'une étude de simulation afin d'é ;valuer la performance de la méthode sur des échantillons finis. Ils effectuent finalement l'analyse des données d'une étude longitudinale portant sur la nutrition. La revue canadienne de statistique 42: 404-422; 2014 © 2014 Société statistique du Canada |
Author | Song, Peter X.-K. Wang, Lu Han, Peisong |
Author_xml | – sequence: 1 givenname: Peisong surname: Han fullname: Han, Peisong email: peisonghan@uwaterloo.ca organization: Department of Statistics and Actuarial Science, University of Waterloo, Ontario, Waterloo, Canada – sequence: 2 givenname: Peter X.-K. surname: Song fullname: Song, Peter X.-K. organization: Department of Biostatistics, University of Michigan, MI, Ann Arbor, U.S.A – sequence: 3 givenname: Lu surname: Wang fullname: Wang, Lu organization: Department of Biostatistics, University of Michigan, MI, Ann Arbor, U.S.A |
BookMark | eNqFkc1rFEEQxRuJ4CZ68A8QBrzoYZL-mP6YoyyamAxGMJDcmrKnJtub2em1uwfd_z4zruYQ0Jzqwfu9gqp3SA6GMCAhrxk9ZpTyE7dOx4xxzp6RBdPUlHUlbw7IggpWl1Lz6gU5TGlNqZATtiBNE4Zbn8fWD9AXLWQoYFK75FMxJj_cFnmFhQtD67MPM4ObrY_eTar3d9j7VQhtscG8Cu1L8ryDPuGrP_OIXH36eLU8K5vL08_LD03pKmlYiS2rOOjvkjPHQSComgkGKAU6pagCZzowHQIYqCopQGMH3LVaaylaJY7Iu_3abQw_RkzZbnxy2PcwYBiTZYpTKiWv-dOoNIpRRTWb0LeP0HUY43TxTMmaamWknqj3e8rFkFLEzm6j30DcWUbt3ICdGrC_G5jYk0es8xnmN-YIvv9f4qfvcffv1XZ5_u1v4s0-sU45xIdEJZiRrJ79cu_7lPHXgw_xziottLTXX04tv_h60yypsdfiHoTiseQ |
CitedBy_id | crossref_primary_10_1016_j_csda_2018_10_010 |
Cites_doi | 10.1214/aos/1176325370 10.1093/biomet/90.1.239 10.1198/106186008X321068 10.1214/09-EJS528 10.1093/oso/9780198524847.001.0001 10.1201/9781420036152 10.1111/j.1541-0420.2005.00321.x 10.1093/biomet/89.1.230 10.1093/oso/9780198522287.001.0001 10.1093/biomet/90.1.29 10.1002/cjs.5550340107 10.1198/016214501753382309 10.2307/2532642 10.1016/0304-4076(87)90015-7 10.1093/biomet/73.1.13 10.1111/1467-9469.t01-1-00315 10.1214/09-EJS518 10.1093/biomet/asp073 10.1214/009053607000000208 10.1093/biomet/asq080 10.2307/2986113 10.1093/biomet/87.4.823 10.1080/01621459.1995.10476615 10.1016/j.jeconom.2006.05.004 10.1002/9781119013563 10.1214/aos/1176347494 10.1111/j.1467-9868.2007.00578.x 10.1093/biomet/asm066 10.1093/biomet/61.3.439 10.1214/aoms/1177705693 10.1016/S0169-7161(05)80051-3 10.1093/biomet/75.2.237 10.1093/jn/133.11.3941S 10.1016/S0304-4076(03)00118-0 10.1007/b98823 10.1111/j.1468-0262.2004.00550.x 10.1080/03610919408813210 10.1093/biomet/93.4.927 |
ContentType | Journal Article |
Copyright | 2014 Statistical Society of Canada/Société statistique du Canada 2014 Statistical Society of Canada Copyright Wiley Subscription Services, Inc. Sep 2014 |
Copyright_xml | – notice: 2014 Statistical Society of Canada/Société statistique du Canada – notice: 2014 Statistical Society of Canada – notice: Copyright Wiley Subscription Services, Inc. Sep 2014 |
DBID | BSCLL AAYXX CITATION 7SC 8BJ 8FD FQK H8D JBE JQ2 L7M L~C L~D |
DOI | 10.1002/cjs.11221 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences Aerospace Database International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1708-945X |
EndPage | 422 |
ExternalDocumentID | 3420745101 10_1002_cjs_11221 CJS11221 43185191 ark_67375_WNG_2KPXLC08_W |
Genre | article Feature |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 29B 3-9 31~ 33P 3SF 3WU 4.4 44B 50Y 50Z 52M 52O 52T 52U 52W 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAKYL AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCUV ABDBF ABFAN ABJNI ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFO ACGFS ACIWK ACMTB ACPOU ACTMH ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADODI ADULT ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELLO AELPN AEQDE AEUPB AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFVYC AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BHOJU BMNLL BMXJE BNHUX BROTX BRXPI BSCLL CS3 D-E D-F DCZOG DPXWK DQDLB DRFUL DRSTM DSRWC EBS ECEWR EJD ESX F00 F01 F04 F21 F5P FEDTE FSPIC G-S G.N GIFXF GODZA H.T H.X HF~ HGD HGLYW HQ6 HVGLF HZ~ IPSME JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ PZZ Q.N QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 SA0 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WXSBR WYISQ XBAML XV2 ZZTAW ~IA ~WT AAHQN AAMMB AANHP AAWIL AAYCA ABAWQ ACHJO ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGLNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIHAF ALRMG AMVHM AAMNL AAYXX CITATION 7SC 8BJ 8FD FQK H8D JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4581-ed142a7b521c2a3ea69131ae53ec6606ac8fa8feaa8a4453a7efa2cd77753d63 |
ISSN | 0319-5724 |
IngestDate | Fri Jul 11 03:44:15 EDT 2025 Fri Jul 11 04:34:15 EDT 2025 Fri Jul 25 10:40:53 EDT 2025 Tue Jul 01 00:41:23 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Wed Jan 22 17:06:53 EST 2025 Thu Jul 03 21:12:59 EDT 2025 Wed Oct 30 09:56:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4581-ed142a7b521c2a3ea69131ae53ec6606ac8fa8feaa8a4453a7efa2cd77753d63 |
Notes | istex:768863D2524DC69479B3AF5163FB5AD62C1A5EC6 ark:/67375/WNG-2KPXLC08-W ArticleID:CJS11221 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://deepblue.lib.umich.edu/bitstream/2027.42/108267/1/cjs11221-sm-0001-SupInfo-S1.pdf |
PQID | 1559076857 |
PQPubID | 46823 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1620055292 proquest_miscellaneous_1586106071 proquest_journals_1559076857 crossref_primary_10_1002_cjs_11221 crossref_citationtrail_10_1002_cjs_11221 wiley_primary_10_1002_cjs_11221_CJS11221 jstor_primary_43185191 istex_primary_ark_67375_WNG_2KPXLC08_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2014 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: September 2014 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationTitle | Canadian journal of statistics |
PublicationTitleAlternate | Can. J. Statistics |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Statistical Society of Canada Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Statistical Society of Canada – name: Wiley Subscription Services, Inc |
References | Chen, J., Sitter, R. R. & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 89, 230-237. Diggle, P. & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43, 49-73. You, J., Chen, G., & Zhou, Y. (2006). Block empirical likelihood for longitudinal partially linear regression models. Canadian Journal of Statistics, 34, 79-96. Smith, R. J. (2007). Efficient information theoretic inference for conditional moment restrictions. Journal of Econometrics, 138, 430-460. Grendár, M. & Judge, G. Revised empirical likelihood. CUDARE Working Papers, page http://ageconsearch.umn.edu/bitstream/91799/2/CUDARE2010. Kitamura, Y. (2007). Empirical likelihood methods in econometrics: Theory and practice. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. 3, Blundell, R., Newey, W. K., and Persson, T., editors. Cambridge University Press, Cambridge. Pan, J. & MacKenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 90, 239-244. Godambe, V. P. (1991). Estimating Functions, Oxford University Press, Oxford. Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear models. Biometrika, 73, 13-22. Wang, Y. G., & Lin, X. (2005). Effects of variance-function misspecification in analysis of longitudinal data. Biometrics, 61, 413-421. Xue, L., & Zhu, L. (2007). Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika, 94, 921-937. Grendár, M. & Judge, G. (2009). Empty set problem of maximum empirical likelihood methods. Electronic Journal of Statistics, 3, 1542-1555. Neumann, C. G., Bwibo, N. O., Murphy, S. P., Sigman, M., Whaley, S., Allen, L. H., Guthrie, D., Weiss, R. E., & Demment, M. W. (2003). Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. The Journal of Nutrition, 133, 3941S-3949S. Owen, A. (2001). Empirical Likelihood, Chapman & Hall/CRC Press, New York. Heyde, C. C. (1997). Quasi-Likelihood and Its Application, Springer-Verlag, New York. Wang, Y. G. & Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance. Biometrika, 90, 29-41. Kitamura, Y., Tripathi, G., & Ahn, H. (2004). Empirical likelihood-based inference in conditional moment restriction models. Econometrica, 72, 1667-1714. Hansen, B. E. (2014). Econometrics. Draft graduate textbook. Chen, J., Variyath, A. M. & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17, 426-443. Wang, S., Qian, L., & Carroll, R. J. (2010). Generalized empirical likelihood methods for analyzing longitudinal data. Biometrika, 97, 79-93. Weiss R. E. (2005). Modelling Longitudinal Data, Springer, New York. Qin, J. & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22, 300-325. Qu, A., Lindsay, B. G., & Li, B. (2000). Improving generalised estimating equations using quadratic inference functions. Biometrika, 87, 823-836. Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistics, 31, 1208-1212. Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd ed., Oxford University Press, Oxford. Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18, 90-120. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447. Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed., Wiley, New York. Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121. Emerson, S. & Owen, A. (2009). Calibration of the empirical likelihood method for a vector mean. Electronic Journal of Statistics, 3, 1161-1192. Kauermann, G. & Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387-1396. Zhang, J. & Gijbels, I. (2003). Sieve empirical likelihood and extensions of the generalized least squares, Scandinavian Journal of Statistics, 30, 1-24. Ye, H. & Pan, J. (2006). Modelling of covariance structures in generalized estimating equations for longitudinal data. Biometrika, 93, 927-941. Song, P. X.-K. (2007). Correlated Data Analysis: Modelling, Analytics, and Applications. Springer, New York. Pepe, M. S. & Anderson, G. (1994). A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics: Simulation and Computation, 23, 939-951. Jiang, J., Luan, Y., & Wang, Y-G. (2007). Iterative estimating equations: Linear convergence and asymptotic properties. Annals of Statistics, 35, 2233-2260. Lai, T. L. & Small, D. S. (2007). Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method-of-moments approach. Journal of the Royal Statistical Society: Series B, 69, 79-99. Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics, 34, 305-334. Newey, W. K. (1993). Efficient estimation of models with conditional moment restrictions. In Handbook of Statistics, Vol. 11. North-Holland, Amsterdam. Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249. Li, Y. (2011). Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika, 98, 355-370. Prentice, R. L. & Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825-839. Donald, S. G., Imbens, G. W. & Newey, W. K. (2003). Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics, 117, 55-93. 2006; 93 1987; 34 2010; 97 2003; 117 1960; 31 1986; 73 1995; 90 2006; 34 1990; 18 2000; 87 2008; 17 1994; 23 1997 1994; 22 2007 2011; 98 2005 1993 2007; 94 2002 1991 1988; 75 2005; 61 2003; 30 2007; 35 2003; 133 1994; 43 2004; 72 2003; 90 1991; 47 2007; 138 2001 1974; 61 2002; 89 2014 2009; 3 2001; 96 2007; 69 e_1_2_9_30_1 Song P. X.‐K. (e_1_2_9_35_1) 2007 Hansen B. E. (e_1_2_9_13_1) 2014 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 Grendár M. (e_1_2_9_12_1) e_1_2_9_32_1 e_1_2_9_33_1 Kitamura Y. (e_1_2_9_17_1) 2007 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Godambe V. P. (e_1_2_9_10_1) 1991 Neumann C. G. (e_1_2_9_24_1) 2003; 133 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Diggle P. (e_1_2_9_5_1) 2002 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Weiss R. E. (e_1_2_9_40_1) 2005 e_1_2_9_29_1 |
References_xml | – reference: Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249. – reference: Wang, S., Qian, L., & Carroll, R. J. (2010). Generalized empirical likelihood methods for analyzing longitudinal data. Biometrika, 97, 79-93. – reference: Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics, 34, 305-334. – reference: Diggle, P. & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics, 43, 49-73. – reference: Hansen, B. E. (2014). Econometrics. Draft graduate textbook. – reference: Neumann, C. G., Bwibo, N. O., Murphy, S. P., Sigman, M., Whaley, S., Allen, L. H., Guthrie, D., Weiss, R. E., & Demment, M. W. (2003). Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings. The Journal of Nutrition, 133, 3941S-3949S. – reference: Chen, J., Sitter, R. R. & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 89, 230-237. – reference: Prentice, R. L. & Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825-839. – reference: Wang, Y. G. & Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance. Biometrika, 90, 29-41. – reference: Donald, S. G., Imbens, G. W. & Newey, W. K. (2003). Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics, 117, 55-93. – reference: Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistics, 31, 1208-1212. – reference: Li, Y. (2011). Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika, 98, 355-370. – reference: Godambe, V. P. (1991). Estimating Functions, Oxford University Press, Oxford. – reference: Heyde, C. C. (1997). Quasi-Likelihood and Its Application, Springer-Verlag, New York. – reference: Owen, A. (2001). Empirical Likelihood, Chapman & Hall/CRC Press, New York. – reference: Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447. – reference: Emerson, S. & Owen, A. (2009). Calibration of the empirical likelihood method for a vector mean. Electronic Journal of Statistics, 3, 1161-1192. – reference: Wang, Y. G., & Lin, X. (2005). Effects of variance-function misspecification in analysis of longitudinal data. Biometrics, 61, 413-421. – reference: Pepe, M. S. & Anderson, G. (1994). A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics: Simulation and Computation, 23, 939-951. – reference: Liang, K. Y. & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear models. Biometrika, 73, 13-22. – reference: Pan, J. & MacKenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 90, 239-244. – reference: Zhang, J. & Gijbels, I. (2003). Sieve empirical likelihood and extensions of the generalized least squares, Scandinavian Journal of Statistics, 30, 1-24. – reference: Grendár, M. & Judge, G. (2009). Empty set problem of maximum empirical likelihood methods. Electronic Journal of Statistics, 3, 1542-1555. – reference: Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121. – reference: Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed., Wiley, New York. – reference: Kitamura, Y., Tripathi, G., & Ahn, H. (2004). Empirical likelihood-based inference in conditional moment restriction models. Econometrica, 72, 1667-1714. – reference: Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18, 90-120. – reference: You, J., Chen, G., & Zhou, Y. (2006). Block empirical likelihood for longitudinal partially linear regression models. Canadian Journal of Statistics, 34, 79-96. – reference: Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd ed., Oxford University Press, Oxford. – reference: Kauermann, G. & Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387-1396. – reference: Newey, W. K. (1993). Efficient estimation of models with conditional moment restrictions. In Handbook of Statistics, Vol. 11. North-Holland, Amsterdam. – reference: Chen, J., Variyath, A. M. & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17, 426-443. – reference: Weiss R. E. (2005). Modelling Longitudinal Data, Springer, New York. – reference: Kitamura, Y. (2007). Empirical likelihood methods in econometrics: Theory and practice. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. 3, Blundell, R., Newey, W. K., and Persson, T., editors. Cambridge University Press, Cambridge. – reference: Xue, L., & Zhu, L. (2007). Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika, 94, 921-937. – reference: Ye, H. & Pan, J. (2006). Modelling of covariance structures in generalized estimating equations for longitudinal data. Biometrika, 93, 927-941. – reference: Qin, J. & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22, 300-325. – reference: Lai, T. L. & Small, D. S. (2007). Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method-of-moments approach. Journal of the Royal Statistical Society: Series B, 69, 79-99. – reference: Grendár, M. & Judge, G. Revised empirical likelihood. CUDARE Working Papers, page http://ageconsearch.umn.edu/bitstream/91799/2/CUDARE2010. – reference: Jiang, J., Luan, Y., & Wang, Y-G. (2007). Iterative estimating equations: Linear convergence and asymptotic properties. Annals of Statistics, 35, 2233-2260. – reference: Song, P. X.-K. (2007). Correlated Data Analysis: Modelling, Analytics, and Applications. Springer, New York. – reference: Qu, A., Lindsay, B. G., & Li, B. (2000). Improving generalised estimating equations using quadratic inference functions. Biometrika, 87, 823-836. – reference: Smith, R. J. (2007). Efficient information theoretic inference for conditional moment restrictions. Journal of Econometrics, 138, 430-460. – volume: 35 start-page: 2233 year: 2007 end-page: 2260 article-title: Iterative estimating equations: Linear convergence and asymptotic properties publication-title: Annals of Statistics – year: 2005 publication-title: Modelling Longitudinal Data – volume: 133 year: 2003 article-title: Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings publication-title: The Journal of Nutrition – year: 2007 publication-title: Correlated Data Analysis: Modelling, Analytics, and Applications – year: 1991 publication-title: Estimating Functions – volume: 90 start-page: 29 year: 2003 end-page: 41 article-title: Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance publication-title: Biometrika – volume: 117 start-page: 55 year: 2003 end-page: 93 article-title: Empirical likelihood estimation and consistent tests with conditional moment restrictions publication-title: Journal of Econometrics – volume: 23 start-page: 939 year: 1994 end-page: 951 article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data publication-title: Communications in Statistics: Simulation and Computation – volume: 47 start-page: 825 year: 1991 end-page: 839 article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses publication-title: Biometrics – year: 2002 publication-title: Statistical Analysis with Missing Data – volume: 87 start-page: 823 year: 2000 end-page: 836 article-title: Improving generalised estimating equations using quadratic inference functions publication-title: Biometrika – volume: 138 start-page: 430 year: 2007 end-page: 460 article-title: Efficient information theoretic inference for conditional moment restrictions publication-title: Journal of Econometrics – article-title: Revised empirical likelihood publication-title: CUDARE Working Papers – volume: 98 start-page: 355 year: 2011 end-page: 370 article-title: Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation publication-title: Biometrika – volume: 69 start-page: 79 year: 2007 end-page: 99 article-title: Marginal regression analysis of longitudinal data with time‐dependent covariates: a generalized method‐of‐moments approach publication-title: Journal of the Royal Statistical Society: Series B – volume: 97 start-page: 79 year: 2010 end-page: 93 article-title: Generalized empirical likelihood methods for analyzing longitudinal data publication-title: Biometrika – volume: 43 start-page: 49 year: 1994 end-page: 73 article-title: Informative drop‐out in longitudinal data analysis publication-title: Applied Statistics – volume: 90 start-page: 1112 year: 1995 end-page: 1121 article-title: Modeling the drop‐out mechanism in repeated‐measures studies publication-title: Journal of the American Statistical Association – volume: 90 start-page: 239 year: 2003 end-page: 244 article-title: Model selection for joint mean‐covariance structures in longitudinal studies publication-title: Biometrika – volume: 30 start-page: 1 year: 2003 end-page: 24 article-title: Sieve empirical likelihood and extensions of the generalized least squares publication-title: Scandinavian Journal of Statistics – volume: 89 start-page: 230 year: 2002 end-page: 237 article-title: Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys publication-title: Biometrika – volume: 3 start-page: 1161 year: 2009 end-page: 1192 article-title: Calibration of the empirical likelihood method for a vector mean publication-title: Electronic Journal of Statistics – volume: 93 start-page: 927 year: 2006 end-page: 941 article-title: Modelling of covariance structures in generalized estimating equations for longitudinal data publication-title: Biometrika – volume: 17 start-page: 426 year: 2008 end-page: 443 article-title: Adjusted empirical likelihood and its properties publication-title: Journal of Computational and Graphical Statistics – volume: 72 start-page: 1667 year: 2004 end-page: 1714 article-title: Empirical likelihood‐based inference in conditional moment restriction models publication-title: Econometrica – volume: 22 start-page: 300 year: 1994 end-page: 325 article-title: Empirical likelihood and general estimating equations publication-title: Annals of Statistics – year: 1993 article-title: Efficient estimation of models with conditional moment restrictions publication-title: Handbook of Statistics – volume: 34 start-page: 79 year: 2006 end-page: 96 article-title: Block empirical likelihood for longitudinal partially linear regression models publication-title: Canadian Journal of Statistics – volume: 75 start-page: 237 year: 1988 end-page: 249 article-title: Empirical likelihood ratio confidence intervals for a single functional publication-title: Biometrika – year: 2002 publication-title: Analysis of Longitudinal Data – volume: 61 start-page: 439 year: 1974 end-page: 447 article-title: Quasi‐likelihood functions, generalized linear models, and the Gauss‐Newton method publication-title: Biometrika – volume: 3 start-page: 1542 year: 2009 end-page: 1555 article-title: Empty set problem of maximum empirical likelihood methods publication-title: Electronic Journal of Statistics – volume: 61 start-page: 413 year: 2005 end-page: 421 article-title: Effects of variance‐function misspecification in analysis of longitudinal data publication-title: Biometrics – year: 2001 publication-title: Empirical Likelihood – volume: 94 start-page: 921 year: 2007 end-page: 937 article-title: Empirical likelihood semiparametric regression analysis for longitudinal data publication-title: Biometrika – year: 2007 article-title: Empirical likelihood methods in econometrics: Theory and practice publication-title: Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress – year: 2014 publication-title: Econometrics – year: 1997 publication-title: Quasi‐Likelihood and Its Application – volume: 34 start-page: 305 year: 1987 end-page: 334 article-title: Asymptotic efficiency in estimation with conditional moment restrictions publication-title: Journal of Econometrics – volume: 96 start-page: 1387 year: 2001 end-page: 1396 article-title: A note on the efficiency of sandwich covariance matrix estimation publication-title: Journal of the American Statistical Association – volume: 31 start-page: 1208 year: 1960 end-page: 1212 article-title: An optimum property of regular maximum likelihood estimation publication-title: Annals of Mathematical Statistics – volume: 18 start-page: 90 year: 1990 end-page: 120 article-title: Empirical likelihood ratio confidence regions publication-title: Annals of Statistics – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalised linear models publication-title: Biometrika – ident: e_1_2_9_32_1 doi: 10.1214/aos/1176325370 – ident: e_1_2_9_29_1 doi: 10.1093/biomet/90.1.239 – ident: e_1_2_9_4_1 doi: 10.1198/106186008X321068 – year: 2007 ident: e_1_2_9_17_1 article-title: Empirical likelihood methods in econometrics: Theory and practice publication-title: Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress – ident: e_1_2_9_11_1 doi: 10.1214/09-EJS528 – year: 2002 ident: e_1_2_9_5_1 publication-title: Analysis of Longitudinal Data doi: 10.1093/oso/9780198524847.001.0001 – ident: e_1_2_9_28_1 doi: 10.1201/9781420036152 – ident: e_1_2_9_38_1 doi: 10.1111/j.1541-0420.2005.00321.x – ident: e_1_2_9_3_1 doi: 10.1093/biomet/89.1.230 – year: 1991 ident: e_1_2_9_10_1 publication-title: Estimating Functions doi: 10.1093/oso/9780198522287.001.0001 – ident: e_1_2_9_37_1 doi: 10.1093/biomet/90.1.29 – ident: e_1_2_9_43_1 doi: 10.1002/cjs.5550340107 – ident: e_1_2_9_16_1 doi: 10.1198/016214501753382309 – ident: e_1_2_9_31_1 doi: 10.2307/2532642 – ident: e_1_2_9_2_1 doi: 10.1016/0304-4076(87)90015-7 – ident: e_1_2_9_21_1 doi: 10.1093/biomet/73.1.13 – ident: e_1_2_9_44_1 doi: 10.1111/1467-9469.t01-1-00315 – year: 2005 ident: e_1_2_9_40_1 publication-title: Modelling Longitudinal Data – ident: e_1_2_9_8_1 doi: 10.1214/09-EJS518 – ident: e_1_2_9_36_1 doi: 10.1093/biomet/asp073 – ident: e_1_2_9_15_1 doi: 10.1214/009053607000000208 – ident: e_1_2_9_20_1 doi: 10.1093/biomet/asq080 – ident: e_1_2_9_6_1 doi: 10.2307/2986113 – year: 2007 ident: e_1_2_9_35_1 publication-title: Correlated Data Analysis: Modelling, Analytics, and Applications – ident: e_1_2_9_12_1 article-title: Revised empirical likelihood publication-title: CUDARE Working Papers – ident: e_1_2_9_33_1 doi: 10.1093/biomet/87.4.823 – ident: e_1_2_9_22_1 doi: 10.1080/01621459.1995.10476615 – ident: e_1_2_9_34_1 doi: 10.1016/j.jeconom.2006.05.004 – ident: e_1_2_9_23_1 doi: 10.1002/9781119013563 – ident: e_1_2_9_27_1 doi: 10.1214/aos/1176347494 – ident: e_1_2_9_19_1 doi: 10.1111/j.1467-9868.2007.00578.x – ident: e_1_2_9_41_1 doi: 10.1093/biomet/asm066 – ident: e_1_2_9_39_1 doi: 10.1093/biomet/61.3.439 – ident: e_1_2_9_9_1 doi: 10.1214/aoms/1177705693 – ident: e_1_2_9_25_1 doi: 10.1016/S0169-7161(05)80051-3 – ident: e_1_2_9_26_1 doi: 10.1093/biomet/75.2.237 – volume: 133 year: 2003 ident: e_1_2_9_24_1 article-title: Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan School Children: Background, study design and baseline findings publication-title: The Journal of Nutrition doi: 10.1093/jn/133.11.3941S – ident: e_1_2_9_7_1 doi: 10.1016/S0304-4076(03)00118-0 – ident: e_1_2_9_14_1 doi: 10.1007/b98823 – year: 2014 ident: e_1_2_9_13_1 publication-title: Econometrics – ident: e_1_2_9_18_1 doi: 10.1111/j.1468-0262.2004.00550.x – ident: e_1_2_9_30_1 doi: 10.1080/03610919408813210 – ident: e_1_2_9_42_1 doi: 10.1093/biomet/93.4.927 |
SSID | ssj0035112 |
Score | 1.9995683 |
Snippet | This paper studies a new approach to longitudinal data analysis using the conditional empirical likelihood (CEL) method within the framework of marginal... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 404 |
SubjectTerms | Analytical estimating Asymptotic properties Consistent estimators Covariance Data analysis Data collection Data models Data processing Empirical analysis Estimating techniques Estimation methods Estimators Generalized estimating equations (GEE) Inference Longitudinal data Marginal analysis Marginal model Mathematical analysis Maximum likelihood method Modeling MSC 2010: Primary 62F12 Nutrition Probability theory Scientific method secondary 62J12 Simulation Statistical variance Statistics Studies unbalanced longitudinal data Variance analysis variance-covariance matrix within-subject correlation |
Title | Longitudinal data analysis using the conditional empirical likelihood method |
URI | https://api.istex.fr/ark:/67375/WNG-2KPXLC08-W/fulltext.pdf https://www.jstor.org/stable/43185191 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjs.11221 https://www.proquest.com/docview/1559076857 https://www.proquest.com/docview/1586106071 https://www.proquest.com/docview/1620055292 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbK-jIeEAwmCgMFhBDSlBI7duI8boUxbd2EtKLlLTiOM5WVdFobCfHrOceJ67KBBi9RlJ4Tuff5fGfffUbojcBFRGQkfcxEAAGKFH4icuwnJc95GXGSYF2cfHIaHX6hRylLe72vTtZSvcyH8uetdSX_o1V4BnrVVbL_oFn7UngA96BfuIKG4XonHY_n-rShumhOttK5nrui4xipF10dFAS8xbRd8VPfr6aGE2Q2vVSzacNpbA6Rdr1US1ng8EroyiND6rwyWpXJ8NUJSRd2qabN8W0Sf3fToc2mOB6uFu-NyLh21xwwtUlVttYKJz6LTfXzUBnTGQdgOilLXdtKiYOh0DGUNKDOnEtNbfINc27oYeW3ha50MpXU65TZv01lNsHQkDGTDJpmTdN7qE8gkADT3d_b_7B_0M3Weh-VdMVcukcd-1RA3tvvrvksfT38fnTpq2uBiRveNP7J5CF60AYW3p5BySPUU9UWun9iWXkXW2jzzOrwMRq74PE0eLwOPF4DHg9aeg54PAsebwUez4DnCZocfJyMDv32aA1fUsaxrwpMiYhzcN4kEaESUYJDLBQLlYwgphWSl4KXSgguKGWhiFUpiCziGMLbIgq30UY1r9RT5JXgkYdcEZrnCS3CREQKC02ZpMCeKyYH6F3332WypZ3Xp5_Mshs6GqDXVvTKcK3cJvS2UYCVENeXOjkxZtn56aeMHH9Ox6OAZ-cDtN1oyApSTRSAE3jDTqeyrB1G8G6IrPWmNIsH6JX9GUyt3j8TlZrXWoZDsKEJGf8iE-llWkYSAh1v4PDnrmSjo7Pm5tldOv4cba6G4g7aWF7X6gU4xMv8ZYvpXynEtJc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+data+analysis+using+the+conditional+empirical+likelihood+method&rft.jtitle=Canadian+journal+of+statistics&rft.au=Han%2C+Peisong&rft.au=Song%2C+Peter+X.%E2%80%90K.&rft.au=Wang%2C+Lu&rft.date=2014-09-01&rft.issn=0319-5724&rft.eissn=1708-945X&rft.volume=42&rft.issue=3&rft.spage=404&rft.epage=422&rft_id=info:doi/10.1002%2Fcjs.11221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cjs_11221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0319-5724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0319-5724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0319-5724&client=summon |