Automatic quantification of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators

The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics aff...

Full description

Saved in:
Bibliographic Details
Published inCytoskeleton (Hoboken, N.J.) Vol. 68; no. 5; pp. 266 - 278
Main Authors Sironi, Lucia, Solon, Jérôme, Conrad, Christian, Mayer, Thomas U., Brunner, Damian, Ellenberg, Jan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance and ultimately result in aberrant cell divisions. To identify new regulators of microtubule dynamics within the hundreds of mitotic hits, reported in RNAi screens performed in C. elegans, Drosophila and mammalian tissue culture cells [Sonnichsen et al., 2005; Goshima et al., 2007; Neumann et al., 2010], we established a fast and quantitative assay to measure microtubule dynamics in living cells. Here we present a fully automated workflow from RNAi transfection, via image acquisition and data processing, to the quantitative characterization of microtubule behaviour. Candidate genes are knocked down by solid‐phase reverse transfection with siRNA oligos in HeLa cells stably expressing EB3‐EGFP, a microtubule plus end marker. Mitotic cells are selected using an automatic classifier [Conrad et al., 2011] and imaged on a spinning disk confocal microscope at high temporal and spatial resolution. The time‐lapse movies are analysed using a multiple particle tracking software, developed in‐house, that automatically detects microtubule plus ends, tracks microtubule growth events over consecutive frames and calculates growth speeds, lengths and lifetimes of the tracked microtubules. The entire assay provides a powerful tool to analyse the effect of essential mitotic genes on microtubule dynamics in living cells and to dissect their contribution in spindle assembly and maintenance.
AbstractList The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance and ultimately result in aberrant cell divisions. To identify new regulators of microtubule dynamics within the hundreds of mitotic hits, reported in RNAi screens performed in C. elegans, Drosophila and mammalian tissue culture cells [Sonnichsen et al., 2005; Goshima et al., 2007; Neumann et al., 2010], we established a fast and quantitative assay to measure microtubule dynamics in living cells. Here we present a fully automated workflow from RNAi transfection, via image acquisition and data processing, to the quantitative characterization of microtubule behaviour. Candidate genes are knocked down by solid-phase reverse transfection with siRNA oligos in HeLa cells stably expressing EB3-EGFP, a microtubule plus end marker. Mitotic cells are selected using an automatic classifier [Conrad et al., 2011] and imaged on a spinning disk confocal microscope at high temporal and spatial resolution. The time-lapse movies are analysed using a multiple particle tracking software, developed in-house, that automatically detects microtubule plus ends, tracks microtubule growth events over consecutive frames and calculates growth speeds, lengths and lifetimes of the tracked microtubules. The entire assay provides a powerful tool to analyse the effect of essential mitotic genes on microtubule dynamics in living cells and to dissect their contribution in spindle assembly and maintenance.
The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance and ultimately result in aberrant cell divisions. To identify new regulators of microtubule dynamics within the hundreds of mitotic hits, reported in RNAi screens performed in C. elegans , Drosophila and mammalian tissue culture cells [Sonnichsen et al., 2005; Goshima et al., 2007; Neumann et al., 2010], we established a fast and quantitative assay to measure microtubule dynamics in living cells. Here we present a fully automated workflow from RNAi transfection, via image acquisition and data processing, to the quantitative characterization of microtubule behaviour. Candidate genes are knocked down by solid‐phase reverse transfection with siRNA oligos in HeLa cells stably expressing EB3‐EGFP, a microtubule plus end marker. Mitotic cells are selected using an automatic classifier [Conrad et al., 2011] and imaged on a spinning disk confocal microscope at high temporal and spatial resolution. The time‐lapse movies are analysed using a multiple particle tracking software, developed in‐house, that automatically detects microtubule plus ends, tracks microtubule growth events over consecutive frames and calculates growth speeds, lengths and lifetimes of the tracked microtubules. The entire assay provides a powerful tool to analyse the effect of essential mitotic genes on microtubule dynamics in living cells and to dissect their contribution in spindle assembly and maintenance.
Author Mayer, Thomas U.
Conrad, Christian
Ellenberg, Jan
Solon, Jérôme
Sironi, Lucia
Brunner, Damian
Author_xml – sequence: 1
  givenname: Lucia
  surname: Sironi
  fullname: Sironi, Lucia
  organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
– sequence: 2
  givenname: Jérôme
  surname: Solon
  fullname: Solon, Jérôme
  organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
– sequence: 3
  givenname: Christian
  surname: Conrad
  fullname: Conrad, Christian
  organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
– sequence: 4
  givenname: Thomas U.
  surname: Mayer
  fullname: Mayer, Thomas U.
  organization: University of Konstanz, Department of Biology, Universität Strasse 10, Konstanz, Germany
– sequence: 5
  givenname: Damian
  surname: Brunner
  fullname: Brunner, Damian
  organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
– sequence: 6
  givenname: Jan
  surname: Ellenberg
  fullname: Ellenberg, Jan
  email: jan.ellenberg@embl.de
  organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21491614$$D View this record in MEDLINE/PubMed
BookMark eNp1kMlOwzAQhi0EYpd4ApQbXAJeEts5lrJKLBJiu1mOM0GGxG7tRNC3J6WlN04zI33_J82_g9add4DQAcEnBGN6atoTinOC19A2KbIiZXlB11e7zLbQTowfGPOCYbaJtijJCsJJto3sqO98qztrkmmvXWdra4bLu8TXSWtN8F1f9g0k1czp4Y4JOF02EJPH-5FNowkAzrr3Oe7ga4h0fi6LE-uqIRbgvW9050PcQxu1biLsL-cuer68eBpfp7cPVzfj0W1qslziFGQtZS0wIWWFueRVJeqacSw5ZUSCACJKKDkrRaFpZXLJwXChCZZ5mWEq2C46WngnwU97iJ1qbTTQNNqB76OSXGSCFwUdyOMFOXwZY4BaTYJtdZgpgtW8V2Va9dvrgB4upX3ZQrUC_4ocgHQBfNkGZv-K1PjuT7jkbezge8Xr8Km4YCJXr_dXij6-nuVPby_qnP0AYUOS4w
CitedBy_id crossref_primary_10_1177_2472555216685518
crossref_primary_10_1038_ncomms9722
crossref_primary_10_1091_mbc_E18_02_0115
crossref_primary_10_1042_BCJ20170303
crossref_primary_10_1083_jcb_202104114
crossref_primary_10_3390_biom13060939
crossref_primary_10_1242_bio_201410413
crossref_primary_10_1242_jcs_214544
crossref_primary_10_1083_jcb_201509079
crossref_primary_10_1242_jcs_136457
crossref_primary_10_1016_j_ceb_2019_03_017
crossref_primary_10_1002_glia_23628
crossref_primary_10_1016_j_bbamcr_2012_12_021
crossref_primary_10_1016_j_celrep_2022_110686
crossref_primary_10_1016_j_jsb_2011_07_009
crossref_primary_10_1371_journal_pone_0051259
crossref_primary_10_1080_15384101_2015_1018053
crossref_primary_10_1186_s12859_017_1966_4
crossref_primary_10_1109_JSTSP_2015_2505402
crossref_primary_10_1016_j_copbio_2011_11_007
crossref_primary_10_1038_nmeth_2488
crossref_primary_10_1242_jcs_260144
crossref_primary_10_1021_acschembio_6b00203
crossref_primary_10_1063_1_4905330
crossref_primary_10_1371_journal_pone_0079594
crossref_primary_10_4236_ami_2019_94009
crossref_primary_10_1083_jcb_201206013
crossref_primary_10_1038_ncomms10298
crossref_primary_10_1038_s41598_018_24682_8
crossref_primary_10_1080_15384101_2014_1000693
crossref_primary_10_1109_TIP_2015_2450996
crossref_primary_10_1016_j_yjmcc_2016_02_012
crossref_primary_10_1038_ncb2994
Cites_doi 10.1038/nmeth.1493
10.1038/nature08869
10.1016/j.devcel.2005.07.003
10.1177/1087057108320133
10.1016/j.cub.2009.04.033
10.1038/nature06386
10.1083/jcb.118.5.1097
10.1038/nrm2369
10.1073/pnas.95.18.10596
10.1091/mbc.E02-09-0607
10.1083/jcb.200711053
10.1091/mbc.8.6.973
10.1016/j.devcel.2007.07.002
10.1073/pnas.0308205100
10.1083/jcb.104.3.395
10.1016/j.jsb.2009.10.004
10.1146/annurev.cellbio.13.1.83
10.1038/35050669
10.1038/nature03353
10.1016/S0076-6879(98)91007-2
10.1091/mbc.e05-12-1178
10.1038/nmeth.1558
10.1016/j.cell.2007.11.043
10.1078/0171-9335-00221
10.1091/mbc.10.4.947
10.1083/jcb.200707203
10.1038/312237a0
10.1016/S0962-8924(02)02295-X
10.1002/cm.20359
10.1038/nmeth876
10.1126/science.1141314
10.1016/j.cub.2007.02.036
10.1091/mbc.12.4.971
10.1091/mbc.e03-07-0544
10.1038/nprot.2006.483
10.1083/jcb.139.2.417
10.1128/MCB.00878-06
10.1242/jcs.95.1.23
10.4161/cc.7.12.6180
10.1016/j.molcel.2004.07.012
10.1242/jcs.115.17.3527
10.1083/jcb.120.4.935
10.1242/jcs.102.3.401
10.1016/j.jsb.2005.06.002
10.1016/S0074-7696(04)39004-2
10.1016/j.tcb.2003.09.006
10.1083/jcb.99.3.940
10.1016/S0960-9822(02)01033-3
10.1091/mbc.E09-01-0043
10.1242/jcs.110.19.2391
10.1101/gad.245603
10.1016/S0960-9822(00)00600-X
10.1073/pnas.90.20.9552
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/cm.20510
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1949-3592
EndPage 278
ExternalDocumentID 10_1002_cm_20510
21491614
CM20510
ark_67375_WNG_2RWB5TXV_D
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4580-e8f88f7011bd0686dd7ff360862318e7e17beb63b79a2dc586ec67a1085b40273
IEDL.DBID DR2
ISSN 1949-3584
IngestDate Fri Aug 16 03:03:51 EDT 2024
Fri Nov 22 00:37:58 EST 2024
Sat Sep 28 07:59:36 EDT 2024
Sat Aug 24 00:58:25 EDT 2024
Wed Oct 30 09:55:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4580-e8f88f7011bd0686dd7ff360862318e7e17beb63b79a2dc586ec67a1085b40273
Notes ArticleID:CM20510
istex:C24B2E26DF7841DF173091DC0FD0EB303EAF34E8
ark:/67375/WNG-2RWB5TXV-D
Monitoring Editor: George Bloom
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://kops.uni-konstanz.de/bitstream/123456789/14031/2/Sironi_140317.pdf
PMID 21491614
PQID 867476992
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_867476992
crossref_primary_10_1002_cm_20510
pubmed_primary_21491614
wiley_primary_10_1002_cm_20510_CM20510
istex_primary_ark_67375_WNG_2RWB5TXV_D
PublicationCentury 2000
PublicationDate May 2011
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: May 2011
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Cytoskeleton (Hoboken, N.J.)
PublicationTitleAlternate Cytoskeleton
PublicationYear 2011
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References Akhmanova A, Steinmetz MO. 2008. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9: 309-322.
Yvon AM, Wadsworth P, Jordan MA. 1999. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10: 947-959.
Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N. 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316: 417-421.
Conrad C, Wunsche A, Tan TH, Bulkescher J, Sieckmann F, Verissimo F, Edelstein A, Walter T, Liebel U, Pepperkok R, et al. 2011. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Methods 8: 246-249.
Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. 2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181: 421-429.
Popov AV, Severin F, Karsenti E. 2002. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr Biol 12: 1326-1330.
Turner PF, Margolis RL. 1984. Taxol-induced bundling of brain-derived microtubules. J Cell Biol 99: 940-946.
Piehl M, Tulu US, Wadsworth P, Cassimeris L. 2004. Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci USA 101: 1584-1588.
Gergely F, Draviam VM, Raff JW. 2003. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17: 336-341.
Jordan MA, Thrower D, Wilson L. 1992. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 102( Pt 3): 401-416.
Sbalzarini IF, Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195.
Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J. 2006. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3: 385-390.
Mitchison T, Kirschner M. 1984. Dynamic instability of microtubule growth. Nature 312: 237-242.
Logarinho E, Bousbaa H. 2008. Kinetochore-microtubule interactions "in check" by Bub1, Bub3 and BubR1: The dual task of attaching and signalling. Cell Cycle 7: 1763-1768.
Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, et al. 2010. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464: 721-727.
Ribbeck K, Groen AC, Santarella R, Bohnsack MT, Raemaekers T, Kocher T, Gentzel M, Gorlich D, Wilm M, Carmeliet G, et al. 2006. NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17: 2646-2660.
Shelden E, Wadsworth P. 1993. Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 120: 935-945.
Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE. 1998. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci USA 95: 10596-10601.
Sammak PJ, Gorbsky GJ, Borisy GG. 1987. Microtubule dynamics in vivo: a test of mechanisms of turnover. J Cell Biol 104: 395-405.
Kinoshita K, Habermann B, Hyman AA. 2002. XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol 12: 267-273.
Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G, Wittmann T. 2010. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7: 761-768.
Jordan MA, Toso RJ, Thrower D, Wilson L. 1993. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90: 9552-9556.
Kline-Smith SL, Walczak CE. 2004. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell 15: 317-327.
Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B, Tagliaferro A, Poser I, Hutchins JR, Hegemann B, et al. 2009. HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr Biol 19: 816-826.
Yvon AM, Wadsworth P. 1997. Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. J Cell Sci 110( Pt 19): 2391-2401.
Verde F, Dogterom M, Stelzer E, Karsenti E, Leibler S. 1992. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 118: 1097-1108.
Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T. 2007. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450: 1100-1105.
Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, et al. 2005. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462-469.
Popov AV, Karsenti E. 2003. Stu2p and XMAP215: turncoat microtubule-associated proteins? Trends Cell Biol 13: 547-550.
Cassimeris L, Becker B, Carney B. 2009. TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability. Cell Motil Cytoskeleton 66: 535-545.
Srayko M, Kaya A, Stamford J, Hyman AA. 2005. Identification and characterization of factors required for microtubule growth and nucleation in the early C. Elegans embryo. Dev Cell 9: 223-236.
Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, et al. 2007. NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 27: 352-367.
Groen AC, Maresca TJ, Gatlin JC, Salmon ED, Mitchison TJ. 2009. Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol Biol Cell 20: 2766-2773.
Wadsworth P, McGrail M. 1990. Interphase microtubule dynamics are cell type-specific. J Cell Sci 95( Pt 1): 23-32.
Walter T, Held M, Neumann B, Heriche JK, Conrad C, Pepperkok R, Ellenberg J. 2010. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging. J Struct Biol 170: 1-9.
Desai A, Mitchison TJ. 1997. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13: 83-117.
Mimori-Kiyosue Y, Shiina N, Tsukita S. 2000. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10: 865-868.
Erfle H, Neumann B, Rogers P, Bulkescher J, Ellenberg J, Pepperkok R. 2008. Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates. J Biomol Screen 13: 575-580.
Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD, Akhmanova A, Knoch TA, Grosveld F, Galjart N. 2008. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J Cell Biol 180: 729-737.
Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA. 2007. Plk4-induced centriole biogenesis in human cells. Dev Cell 13: 190-202.
Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R. 2007. Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2: 392-399.
Mitchison TJ, Sawin KE, Theriot JA, Gee K, Mallavarapu A. 1998. Caged fluorescent probes. Methods Enzymol 291: 63-78.
Waterman-Storer CM, Salmon ED. 1997. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417-434.
Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L. 1997. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 8: 973-985.
Gard DL, Becker BE, Josh Romney S. 2004. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol 239: 179-272.
Jordan MA, Thrower D, Wilson L. 1991. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51: 2212-2222.
Cassimeris L, Morabito J. 2004. TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol Biol Cell 15: 1580-1590.
Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, Mayer TU. 2007. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17: 488-498.
Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA. 2008. XMAP215 is a processive microtubule polymerase. Cell 132: 79-88.
Piehl M, Cassimeris L. 2003. Organization and dynamics of growing microtubule plus ends during early mitosis. Mol Biol Cell 14: 916-925.
Wittmann T, Hyman A, Desai A. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3: E28-E34.
Komarova YA, Vorobjev IA, Borisy GG. 2002. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 115( Pt 17): 3527-3539.
Morrison EE, Askham JM. 2001. EB 1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK-52E cells. Eur J Cell Biol 80: 749-753.
Rusan NM, Fagerstrom CJ, Yvon AM, Wadsworth P. 2001. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 12: 971-980.
1990; 95
1987; 104
2002; 12
1997; 110
2010; 464
1991; 51
2008; 9
2003; 13
2003; 14
2002; 115
2008; 7
2003; 17
1993; 120
1997; 8
1998; 291
1984; 312
2000; 10
1984; 99
1997; 13
2007; 450
1992; 118
1999; 10
2007; 2
7
1998; 95
2009; 19
2001; 12
2007; 27
2007; 17
2004; 101
2009; 66
1997; 139
2005; 151
2009; 20
1992; 102
2006; 17
2005; 434
2008; 13
2006; 3
1993; 90
2011; 8
2007; 13
2008; 181
2001; 80
2008; 180
2007; 316
2005; 9
2004; 15
2001; 3
2010; 170
2008; 132
2004; 239
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Wadsworth P (e_1_2_6_50_1) 1990; 95
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
Yvon AM (e_1_2_6_54_1) 1997; 110
e_1_2_6_15_1
e_1_2_6_38_1
Matov A (e_1_2_6_27_1); 7
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
Jordan MA (e_1_2_6_19_1) 1992; 102
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
Komarova YA (e_1_2_6_24_1) 2002; 115
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
Jordan MA (e_1_2_6_18_1) 1991; 51
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – volume: 102
  start-page: 401
  issue: Pt 3
  year: 1992
  end-page: 416
  article-title: Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis
  publication-title: J Cell Sci
– volume: 120
  start-page: 935
  year: 1993
  end-page: 945
  article-title: Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell‐type specific
  publication-title: J Cell Biol
– volume: 8
  start-page: 246
  year: 2011
  end-page: 249
  article-title: Micropilot: automation of fluorescence microscopy‐based imaging for systems biology
  publication-title: Nat Methods
– volume: 291
  start-page: 63
  year: 1998
  end-page: 78
  article-title: Caged fluorescent probes
  publication-title: Methods Enzymol
– volume: 19
  start-page: 816
  year: 2009
  end-page: 826
  article-title: HAUS, the 8‐subunit human Augmin complex, regulates centrosome and spindle integrity
  publication-title: Curr Biol
– volume: 17
  start-page: 2646
  year: 2006
  end-page: 2660
  article-title: NuSAP, a mitotic RanGTP target that stabilizes and cross‐links microtubules
  publication-title: Mol Biol Cell
– volume: 12
  start-page: 267
  year: 2002
  end-page: 273
  article-title: XMAP215: a key component of the dynamic microtubule cytoskeleton
  publication-title: Trends Cell Biol
– volume: 101
  start-page: 1584
  year: 2004
  end-page: 1588
  article-title: Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP‐tagged EB1
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 488
  year: 2007
  end-page: 498
  article-title: The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression
  publication-title: Curr Biol
– volume: 99
  start-page: 940
  year: 1984
  end-page: 946
  article-title: Taxol‐induced bundling of brain‐derived microtubules
  publication-title: J Cell Biol
– volume: 139
  start-page: 417
  year: 1997
  end-page: 434
  article-title: Actomyosin‐based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling
  publication-title: J Cell Biol
– volume: 132
  start-page: 79
  year: 2008
  end-page: 88
  article-title: XMAP215 is a processive microtubule polymerase
  publication-title: Cell
– volume: 464
  start-page: 721
  year: 2010
  end-page: 727
  article-title: Phenotypic profiling of the human genome by time‐lapse microscopy reveals cell division genes
  publication-title: Nature
– volume: 13
  start-page: 575
  year: 2008
  end-page: 580
  article-title: Work flow for multiplexing siRNA assays by solid‐phase reverse transfection in multiwell plates
  publication-title: J Biomol Screen
– volume: 66
  start-page: 535
  year: 2009
  end-page: 545
  article-title: TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability
  publication-title: Cell Motil Cytoskeleton
– volume: 2
  start-page: 392
  year: 2007
  end-page: 399
  article-title: Reverse transfection on cell arrays for high content screening microscopy
  publication-title: Nat Protoc
– volume: 12
  start-page: 1326
  year: 2002
  end-page: 1330
  article-title: XMAP215 is required for the microtubule‐nucleating activity of centrosomes
  publication-title: Curr Biol
– volume: 8
  start-page: 973
  year: 1997
  end-page: 985
  article-title: Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro
  publication-title: Mol Biol Cell
– volume: 104
  start-page: 395
  year: 1987
  end-page: 405
  article-title: Microtubule dynamics in vivo: a test of mechanisms of turnover
  publication-title: J Cell Biol
– volume: 170
  start-page: 1
  year: 2010
  end-page: 9
  article-title: Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time‐lapse imaging
  publication-title: J Struct Biol
– volume: 95
  start-page: 23
  issue: Pt 1
  year: 1990
  end-page: 32
  article-title: Interphase microtubule dynamics are cell type‐specific
  publication-title: J Cell Sci
– volume: 115
  start-page: 3527
  issue: Pt 17
  year: 2002
  end-page: 3539
  article-title: Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary
  publication-title: J Cell Sci
– volume: 10
  start-page: 865
  year: 2000
  end-page: 868
  article-title: The dynamic behavior of the APC‐binding protein EB1 on the distal ends of microtubules
  publication-title: Curr Biol
– volume: 15
  start-page: 317
  year: 2004
  end-page: 327
  article-title: Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics
  publication-title: Mol Cell
– volume: 7
  start-page: 761
  end-page: 768
  article-title: 2010. Analysis of microtubule dynamic instability using a plus‐end growth marker
  publication-title: Nat Methods
– volume: 118
  start-page: 1097
  year: 1992
  end-page: 1108
  article-title: Control of microtubule dynamics and length by cyclin A‐ and cyclin B‐dependent kinases in Xenopus egg extracts
  publication-title: J Cell Biol
– volume: 51
  start-page: 2212
  year: 1991
  end-page: 2222
  article-title: Mechanism of inhibition of cell proliferation by Vinca alkaloids
  publication-title: Cancer Res
– volume: 12
  start-page: 971
  year: 2001
  end-page: 980
  article-title: Cell cycle‐dependent changes in microtubule dynamics in living cells expressing green fluorescent protein‐alpha tubulin
  publication-title: Mol Biol Cell
– volume: 13
  start-page: 190
  year: 2007
  end-page: 202
  article-title: Plk4‐induced centriole biogenesis in human cells
  publication-title: Dev Cell
– volume: 151
  start-page: 182
  year: 2005
  end-page: 195
  article-title: Feature point tracking and trajectory analysis for video imaging in cell biology
  publication-title: J Struct Biol
– volume: 180
  start-page: 729
  year: 2008
  end-page: 737
  article-title: Dynamic behavior of GFP‐CLIP‐170 reveals fast protein turnover on microtubule plus ends
  publication-title: J Cell Biol
– volume: 316
  start-page: 417
  year: 2007
  end-page: 421
  article-title: Genes required for mitotic spindle assembly in Drosophila S2 cells
  publication-title: Science
– volume: 80
  start-page: 749
  year: 2001
  end-page: 753
  article-title: EB 1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK‐52E cells
  publication-title: Eur J Cell Biol
– volume: 14
  start-page: 916
  year: 2003
  end-page: 925
  article-title: Organization and dynamics of growing microtubule plus ends during early mitosis
  publication-title: Mol Biol Cell
– volume: 95
  start-page: 10596
  year: 1998
  end-page: 10601
  article-title: The adenomatous polyposis coli‐binding protein EB1 is associated with cytoplasmic and spindle microtubules
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 947
  year: 1999
  end-page: 959
  article-title: Taxol suppresses dynamics of individual microtubules in living human tumor cells
  publication-title: Mol Biol Cell
– volume: 20
  start-page: 2766
  year: 2009
  end-page: 2773
  article-title: Functional overlap of microtubule assembly factors in chromatin‐promoted spindle assembly
  publication-title: Mol Biol Cell
– volume: 3
  start-page: 385
  year: 2006
  end-page: 390
  article-title: High‐throughput RNAi screening by time‐lapse imaging of live human cells
  publication-title: Nat Methods
– volume: 434
  start-page: 462
  year: 2005
  end-page: 469
  article-title: Full‐genome RNAi profiling of early embryogenesis in Caenorhabditis elegans
  publication-title: Nature
– volume: 110
  start-page: 2391
  issue: Pt 19
  year: 1997
  end-page: 2401
  article-title: Non‐centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells
  publication-title: J Cell Sci
– volume: 90
  start-page: 9552
  year: 1993
  end-page: 9556
  article-title: Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 1763
  year: 2008
  end-page: 1768
  article-title: Kinetochore‐microtubule interactions “in check” by Bub1, Bub3 and BubR1: The dual task of attaching and signalling
  publication-title: Cell Cycle
– volume: 9
  start-page: 223
  year: 2005
  end-page: 236
  article-title: Identification and characterization of factors required for microtubule growth and nucleation in the early C. Elegans embryo
  publication-title: Dev Cell
– volume: 27
  start-page: 352
  year: 2007
  end-page: 367
  article-title: NDEL1 phosphorylation by Aurora‐A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment
  publication-title: Mol Cell Biol
– volume: 312
  start-page: 237
  year: 1984
  end-page: 242
  article-title: Dynamic instability of microtubule growth
  publication-title: Nature
– volume: 450
  start-page: 1100
  year: 2007
  end-page: 1105
  article-title: Reconstitution of a microtubule plus‐end tracking system in vitro
  publication-title: Nature
– volume: 13
  start-page: 547
  year: 2003
  end-page: 550
  article-title: Stu2p and XMAP215: turncoat microtubule‐associated proteins?
  publication-title: Trends Cell Biol
– volume: 13
  start-page: 83
  year: 1997
  end-page: 117
  article-title: Microtubule polymerization dynamics
  publication-title: Annu Rev Cell Dev Biol
– volume: 17
  start-page: 336
  year: 2003
  end-page: 341
  article-title: The ch‐TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells
  publication-title: Genes Dev
– volume: 9
  start-page: 309
  year: 2008
  end-page: 322
  article-title: Tracking the ends: a dynamic protein network controls the fate of microtubule tips
  publication-title: Nat Rev Mol Cell Biol
– volume: 3
  start-page: E28
  year: 2001
  end-page: E34
  article-title: The spindle: a dynamic assembly of microtubules and motors
  publication-title: Nat Cell Biol
– volume: 239
  start-page: 179
  year: 2004
  end-page: 272
  article-title: MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule‐associated proteins
  publication-title: Int Rev Cytol
– volume: 15
  start-page: 1580
  year: 2004
  end-page: 1590
  article-title: TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly
  publication-title: Mol Biol Cell
– volume: 181
  start-page: 421
  year: 2008
  end-page: 429
  article-title: Augmin: a protein complex required for centrosome‐independent microtubule generation within the spindle
  publication-title: J Cell Biol
– volume: 7
  start-page: 761
  ident: e_1_2_6_27_1
  article-title: 2010. Analysis of microtubule dynamic instability using a plus‐end growth marker
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1493
  contributor:
    fullname: Matov A
– ident: e_1_2_6_35_1
  doi: 10.1038/nature08869
– ident: e_1_2_6_46_1
  doi: 10.1016/j.devcel.2005.07.003
– ident: e_1_2_6_12_1
  doi: 10.1177/1087057108320133
– ident: e_1_2_6_25_1
  doi: 10.1016/j.cub.2009.04.033
– ident: e_1_2_6_4_1
  doi: 10.1038/nature06386
– ident: e_1_2_6_49_1
  doi: 10.1083/jcb.118.5.1097
– ident: e_1_2_6_2_1
  doi: 10.1038/nrm2369
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.95.18.10596
– ident: e_1_2_6_36_1
  doi: 10.1091/mbc.E02-09-0607
– ident: e_1_2_6_16_1
  doi: 10.1083/jcb.200711053
– ident: e_1_2_6_48_1
  doi: 10.1091/mbc.8.6.973
– ident: e_1_2_6_22_1
  doi: 10.1016/j.devcel.2007.07.002
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.0308205100
– ident: e_1_2_6_42_1
  doi: 10.1083/jcb.104.3.395
– ident: e_1_2_6_51_1
  doi: 10.1016/j.jsb.2009.10.004
– ident: e_1_2_6_9_1
  doi: 10.1146/annurev.cellbio.13.1.83
– ident: e_1_2_6_53_1
  doi: 10.1038/35050669
– ident: e_1_2_6_45_1
  doi: 10.1038/nature03353
– ident: e_1_2_6_31_1
  doi: 10.1016/S0076-6879(98)91007-2
– ident: e_1_2_6_40_1
  doi: 10.1091/mbc.e05-12-1178
– ident: e_1_2_6_8_1
  doi: 10.1038/nmeth.1558
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cell.2007.11.043
– ident: e_1_2_6_33_1
  doi: 10.1078/0171-9335-00221
– ident: e_1_2_6_55_1
  doi: 10.1091/mbc.10.4.947
– ident: e_1_2_6_10_1
  doi: 10.1083/jcb.200707203
– ident: e_1_2_6_30_1
  doi: 10.1038/312237a0
– ident: e_1_2_6_21_1
  doi: 10.1016/S0962-8924(02)02295-X
– ident: e_1_2_6_6_1
  doi: 10.1002/cm.20359
– ident: e_1_2_6_34_1
  doi: 10.1038/nmeth876
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1141314
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cub.2007.02.036
– ident: e_1_2_6_41_1
  doi: 10.1091/mbc.12.4.971
– ident: e_1_2_6_7_1
  doi: 10.1091/mbc.e03-07-0544
– ident: e_1_2_6_11_1
  doi: 10.1038/nprot.2006.483
– ident: e_1_2_6_52_1
  doi: 10.1083/jcb.139.2.417
– volume: 51
  start-page: 2212
  year: 1991
  ident: e_1_2_6_18_1
  article-title: Mechanism of inhibition of cell proliferation by Vinca alkaloids
  publication-title: Cancer Res
  contributor:
    fullname: Jordan MA
– ident: e_1_2_6_32_1
  doi: 10.1128/MCB.00878-06
– volume: 95
  start-page: 23
  issue: 1
  year: 1990
  ident: e_1_2_6_50_1
  article-title: Interphase microtubule dynamics are cell type‐specific
  publication-title: J Cell Sci
  doi: 10.1242/jcs.95.1.23
  contributor:
    fullname: Wadsworth P
– ident: e_1_2_6_26_1
  doi: 10.4161/cc.7.12.6180
– ident: e_1_2_6_23_1
  doi: 10.1016/j.molcel.2004.07.012
– volume: 115
  start-page: 3527
  issue: 17
  year: 2002
  ident: e_1_2_6_24_1
  article-title: Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.17.3527
  contributor:
    fullname: Komarova YA
– ident: e_1_2_6_44_1
  doi: 10.1083/jcb.120.4.935
– volume: 102
  start-page: 401
  issue: 3
  year: 1992
  ident: e_1_2_6_19_1
  article-title: Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis
  publication-title: J Cell Sci
  doi: 10.1242/jcs.102.3.401
  contributor:
    fullname: Jordan MA
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jsb.2005.06.002
– ident: e_1_2_6_13_1
  doi: 10.1016/S0074-7696(04)39004-2
– ident: e_1_2_6_38_1
  doi: 10.1016/j.tcb.2003.09.006
– ident: e_1_2_6_47_1
  doi: 10.1083/jcb.99.3.940
– ident: e_1_2_6_39_1
  doi: 10.1016/S0960-9822(02)01033-3
– ident: e_1_2_6_17_1
  doi: 10.1091/mbc.E09-01-0043
– volume: 110
  start-page: 2391
  issue: 19
  year: 1997
  ident: e_1_2_6_54_1
  article-title: Non‐centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.110.19.2391
  contributor:
    fullname: Yvon AM
– ident: e_1_2_6_14_1
  doi: 10.1101/gad.245603
– ident: e_1_2_6_29_1
  doi: 10.1016/S0960-9822(00)00600-X
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.90.20.9552
SSID ssj0069303
Score 2.1719182
Snippet The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 266
SubjectTerms EB3
HeLa Cells
Humans
microtubule dynamics
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Microtubules - metabolism
mitosis
Mitosis - genetics
Mitosis - physiology
multiple particle tracking
quantitative microscopy
RNA Interference - physiology
RNAi screening
Spindle Apparatus - metabolism
Title Automatic quantification of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators
URI https://api.istex.fr/ark:/67375/WNG-2RWB5TXV-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcm.20510
https://www.ncbi.nlm.nih.gov/pubmed/21491614
https://search.proquest.com/docview/867476992
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQCKkXCrTAFqiMVPUWIH-2c1ygFCGxhxWUlThY8U8QWtjQTSIVTjxCn7FPwoy9WUQFEuKUi-04HnvmG2fmG0K-RZrnYWxMAKY7CpIwMYGItQlCJrRhNrShwvuOkx47OkuOB-lgElWJuTCeH2J64YYnw-lrPOC5qnaeSEM15pGnLrsKWfMQD_WnzFFY4M_F1mdJFsRgZFve2d1op-34zBLN4aL-eQlmPketzuwcfiQX7YR9tMlwu6nVtr7_j8vxfV-0SBYmaJR2_fZZIjN2tEzmfX3Ku09k2G3q0nG60t9N7sOKnCRpWdAbDOWrG9VcW2p8XfuKWpeKVdF-r3v17-Ev6CTwk8E6YgcA8NCpLnG46vYK2R3o2F5i_bByXH0mZ4c_TvePgkl1hkAnqdgNrCiEKDjoB2Uwz8QYXhQxQxcJ9ITlNuTKKhYrnuWR0algVjPYGIDxVIIsOitkdlSO7BqhGY_TAsCEymIAdBzGDXmRKmHRWQpZ0SFbraTkrSfhkJ5uOZL6RrpF65DvToTTBvl4iEFrPJXnvZ8y6p_vpaeDX_KgQ2grYwlHCf-P5CNbNpUUDHwrlmVRh6x62U8Hi8CRBGycwFucBF-dhtw_cc8vb224Tj74a2qModwgs_W4sZuAc2r11e3oR8DW-Dc
link.rule.ids 315,782,786,1377,27931,27932,46301,46725
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVhVcCuVRlqeRELe0jZPYjjhtW8oC3T2stnQPSFb8CKq23ZRNIgEnfgK_sb-EGbtZVAQS4pSL7Tge2_PNZOYbQl4wI4o4sTYC1c2iNE5tJBNjo5hLY7mLXazR3zEc8cFx-m6aTVfIqy4XJvBDLB1ueDL8fY0HHB3SO79YQw0mkmeYXrUGp51hPN_BeMkdhSX-fHR9nuZRAmq2Y57dZTtdz2u6aA2X9cufgOZ13OoVz-Et8rGbcog3mW23jd42335jc_zPb7pNNq4AKe2HHbRJVtz8DlkPJSq_3iWzfttUntaVfm6LEFnkhUmrkp5jNF_T6vbMURtK29fU-Wysmo5H_dPL7z_gWgJTGRQkdgAMD52aCoerL06R4IEu3CcsIVYt6nvk-PD1ZH8QXRVoiEyayd3IyVLKUsAVoS2mmlgryjLhaCXBVeGEi4V2mida5AWzJpPcGQ57A2CeTpFI5z5ZnVdz94DQXCRZCXhC5wlgOgHjxqLMtHRoL8W87JHnnajUReDhUIFxmSlzrvyi9chLL8Nlg2Ixw7g1kamT0RvFxid72WT6QR30CO2ErOA04S-SYu6qtlaSg3nF85z1yFYQ_nIwBrYkwOMU3uJF-NdpqP2hfz7814bPyI3BZHikjt6O3j8iN4PXGkMqH5PVZtG6JwB7Gv3Ub--fQzH8VA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkVcgPIoC6UYCXFL27xs57ht2ZZHV2jV0pU4WPELVUs3yyaRgBM_gd_IL2HG3mxVBBLilIvtOJ6x5xtn5htCnieal3FqTASmO4myODORSLWJYia0YTa2scL7jpMhOz7LXo_z8SKqEnNhAj_E8sINd4Y_r3GDz4zbvSIN1ZhHnmN21VrGQE0REI2W1FFY4c8H1xdZEaVgZTvi2b1kt-t5zRSt4ap--RPOvA5bvd0Z3CYfuhmHcJPJTtuoHf3tNzLH__ukO-TWAo7SftCfDbJip3fJeihQ-fUemfTbpvKkrvRzW4a4Ii9KWjl6ibF8TavaT5aaUNi-ptbnYtV0NOxf_Pz-Aw4lcJTBPGIHQPDQqalwuHp2gfQOdG4_YgGxal7fJ2eDl6cHx9GiPEOks1zsRVY4IRyHA0IZTDQxhjuXMvSR4KCw3MZcWcVSxYsyMToXzGoGmgEgT2VIo_OArE6rqX1IaMHT3AGaUEUKiI7DuDF3uRIWvaWYuR551klKzgILhwx8y4nUl9IvWo-88CJcNijnE4xa47k8Hx7JZHS-n5-O38vDHqGdjCXsJfxBUk5t1dZSMHCuWFEkPbIZZL8cLAFPEsBxBm_xEvzrNOTBiX8--teGT8mNd4cD-fbV8M1jcjNcWWM85RZZbeatfQKYp1HbXrl_ATzu-vo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+quantification+of+microtubule+dynamics+enables+RNAi-screening+of+new+mitotic+spindle+regulators&rft.jtitle=Cytoskeleton+%28Hoboken%2C+N.J.%29&rft.au=Sironi%2C+Lucia&rft.au=Solon%2C+J%C3%A9r%C3%B4me&rft.au=Conrad%2C+Christian&rft.au=Mayer%2C+Thomas+U&rft.date=2011-05-01&rft.eissn=1949-3592&rft.volume=68&rft.issue=5&rft.spage=266&rft_id=info:doi/10.1002%2Fcm.20510&rft_id=info%3Apmid%2F21491614&rft.externalDocID=21491614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3584&client=summon