Automatic quantification of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators
The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics aff...
Saved in:
Published in | Cytoskeleton (Hoboken, N.J.) Vol. 68; no. 5; pp. 266 - 278 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance and ultimately result in aberrant cell divisions. To identify new regulators of microtubule dynamics within the hundreds of mitotic hits, reported in RNAi screens performed in C. elegans, Drosophila and mammalian tissue culture cells [Sonnichsen et al., 2005; Goshima et al., 2007; Neumann et al., 2010], we established a fast and quantitative assay to measure microtubule dynamics in living cells. Here we present a fully automated workflow from RNAi transfection, via image acquisition and data processing, to the quantitative characterization of microtubule behaviour. Candidate genes are knocked down by solid‐phase reverse transfection with siRNA oligos in HeLa cells stably expressing EB3‐EGFP, a microtubule plus end marker. Mitotic cells are selected using an automatic classifier [Conrad et al., 2011] and imaged on a spinning disk confocal microscope at high temporal and spatial resolution. The time‐lapse movies are analysed using a multiple particle tracking software, developed in‐house, that automatically detects microtubule plus ends, tracks microtubule growth events over consecutive frames and calculates growth speeds, lengths and lifetimes of the tracked microtubules. The entire assay provides a powerful tool to analyse the effect of essential mitotic genes on microtubule dynamics in living cells and to dissect their contribution in spindle assembly and maintenance. |
---|---|
AbstractList | The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance and ultimately result in aberrant cell divisions. To identify new regulators of microtubule dynamics within the hundreds of mitotic hits, reported in RNAi screens performed in C. elegans, Drosophila and mammalian tissue culture cells [Sonnichsen et al., 2005; Goshima et al., 2007; Neumann et al., 2010], we established a fast and quantitative assay to measure microtubule dynamics in living cells. Here we present a fully automated workflow from RNAi transfection, via image acquisition and data processing, to the quantitative characterization of microtubule behaviour. Candidate genes are knocked down by solid-phase reverse transfection with siRNA oligos in HeLa cells stably expressing EB3-EGFP, a microtubule plus end marker. Mitotic cells are selected using an automatic classifier [Conrad et al., 2011] and imaged on a spinning disk confocal microscope at high temporal and spatial resolution. The time-lapse movies are analysed using a multiple particle tracking software, developed in-house, that automatically detects microtubule plus ends, tracks microtubule growth events over consecutive frames and calculates growth speeds, lengths and lifetimes of the tracked microtubules. The entire assay provides a powerful tool to analyse the effect of essential mitotic genes on microtubule dynamics in living cells and to dissect their contribution in spindle assembly and maintenance. The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome segregation requires the assembly of the mitotic spindle, a bipolar array of dynamic microtubules. Perturbations in microtubule dynamics affect spindle assembly and maintenance and ultimately result in aberrant cell divisions. To identify new regulators of microtubule dynamics within the hundreds of mitotic hits, reported in RNAi screens performed in C. elegans , Drosophila and mammalian tissue culture cells [Sonnichsen et al., 2005; Goshima et al., 2007; Neumann et al., 2010], we established a fast and quantitative assay to measure microtubule dynamics in living cells. Here we present a fully automated workflow from RNAi transfection, via image acquisition and data processing, to the quantitative characterization of microtubule behaviour. Candidate genes are knocked down by solid‐phase reverse transfection with siRNA oligos in HeLa cells stably expressing EB3‐EGFP, a microtubule plus end marker. Mitotic cells are selected using an automatic classifier [Conrad et al., 2011] and imaged on a spinning disk confocal microscope at high temporal and spatial resolution. The time‐lapse movies are analysed using a multiple particle tracking software, developed in‐house, that automatically detects microtubule plus ends, tracks microtubule growth events over consecutive frames and calculates growth speeds, lengths and lifetimes of the tracked microtubules. The entire assay provides a powerful tool to analyse the effect of essential mitotic genes on microtubule dynamics in living cells and to dissect their contribution in spindle assembly and maintenance. |
Author | Mayer, Thomas U. Conrad, Christian Ellenberg, Jan Solon, Jérôme Sironi, Lucia Brunner, Damian |
Author_xml | – sequence: 1 givenname: Lucia surname: Sironi fullname: Sironi, Lucia organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany – sequence: 2 givenname: Jérôme surname: Solon fullname: Solon, Jérôme organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany – sequence: 3 givenname: Christian surname: Conrad fullname: Conrad, Christian organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany – sequence: 4 givenname: Thomas U. surname: Mayer fullname: Mayer, Thomas U. organization: University of Konstanz, Department of Biology, Universität Strasse 10, Konstanz, Germany – sequence: 5 givenname: Damian surname: Brunner fullname: Brunner, Damian organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany – sequence: 6 givenname: Jan surname: Ellenberg fullname: Ellenberg, Jan email: jan.ellenberg@embl.de organization: European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21491614$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMlOwzAQhi0EYpd4ApQbXAJeEts5lrJKLBJiu1mOM0GGxG7tRNC3J6WlN04zI33_J82_g9add4DQAcEnBGN6atoTinOC19A2KbIiZXlB11e7zLbQTowfGPOCYbaJtijJCsJJto3sqO98qztrkmmvXWdra4bLu8TXSWtN8F1f9g0k1czp4Y4JOF02EJPH-5FNowkAzrr3Oe7ga4h0fi6LE-uqIRbgvW9050PcQxu1biLsL-cuer68eBpfp7cPVzfj0W1qslziFGQtZS0wIWWFueRVJeqacSw5ZUSCACJKKDkrRaFpZXLJwXChCZZ5mWEq2C46WngnwU97iJ1qbTTQNNqB76OSXGSCFwUdyOMFOXwZY4BaTYJtdZgpgtW8V2Va9dvrgB4upX3ZQrUC_4ocgHQBfNkGZv-K1PjuT7jkbezge8Xr8Km4YCJXr_dXij6-nuVPby_qnP0AYUOS4w |
CitedBy_id | crossref_primary_10_1177_2472555216685518 crossref_primary_10_1038_ncomms9722 crossref_primary_10_1091_mbc_E18_02_0115 crossref_primary_10_1042_BCJ20170303 crossref_primary_10_1083_jcb_202104114 crossref_primary_10_3390_biom13060939 crossref_primary_10_1242_bio_201410413 crossref_primary_10_1242_jcs_214544 crossref_primary_10_1083_jcb_201509079 crossref_primary_10_1242_jcs_136457 crossref_primary_10_1016_j_ceb_2019_03_017 crossref_primary_10_1002_glia_23628 crossref_primary_10_1016_j_bbamcr_2012_12_021 crossref_primary_10_1016_j_celrep_2022_110686 crossref_primary_10_1016_j_jsb_2011_07_009 crossref_primary_10_1371_journal_pone_0051259 crossref_primary_10_1080_15384101_2015_1018053 crossref_primary_10_1186_s12859_017_1966_4 crossref_primary_10_1109_JSTSP_2015_2505402 crossref_primary_10_1016_j_copbio_2011_11_007 crossref_primary_10_1038_nmeth_2488 crossref_primary_10_1242_jcs_260144 crossref_primary_10_1021_acschembio_6b00203 crossref_primary_10_1063_1_4905330 crossref_primary_10_1371_journal_pone_0079594 crossref_primary_10_4236_ami_2019_94009 crossref_primary_10_1083_jcb_201206013 crossref_primary_10_1038_ncomms10298 crossref_primary_10_1038_s41598_018_24682_8 crossref_primary_10_1080_15384101_2014_1000693 crossref_primary_10_1109_TIP_2015_2450996 crossref_primary_10_1016_j_yjmcc_2016_02_012 crossref_primary_10_1038_ncb2994 |
Cites_doi | 10.1038/nmeth.1493 10.1038/nature08869 10.1016/j.devcel.2005.07.003 10.1177/1087057108320133 10.1016/j.cub.2009.04.033 10.1038/nature06386 10.1083/jcb.118.5.1097 10.1038/nrm2369 10.1073/pnas.95.18.10596 10.1091/mbc.E02-09-0607 10.1083/jcb.200711053 10.1091/mbc.8.6.973 10.1016/j.devcel.2007.07.002 10.1073/pnas.0308205100 10.1083/jcb.104.3.395 10.1016/j.jsb.2009.10.004 10.1146/annurev.cellbio.13.1.83 10.1038/35050669 10.1038/nature03353 10.1016/S0076-6879(98)91007-2 10.1091/mbc.e05-12-1178 10.1038/nmeth.1558 10.1016/j.cell.2007.11.043 10.1078/0171-9335-00221 10.1091/mbc.10.4.947 10.1083/jcb.200707203 10.1038/312237a0 10.1016/S0962-8924(02)02295-X 10.1002/cm.20359 10.1038/nmeth876 10.1126/science.1141314 10.1016/j.cub.2007.02.036 10.1091/mbc.12.4.971 10.1091/mbc.e03-07-0544 10.1038/nprot.2006.483 10.1083/jcb.139.2.417 10.1128/MCB.00878-06 10.1242/jcs.95.1.23 10.4161/cc.7.12.6180 10.1016/j.molcel.2004.07.012 10.1242/jcs.115.17.3527 10.1083/jcb.120.4.935 10.1242/jcs.102.3.401 10.1016/j.jsb.2005.06.002 10.1016/S0074-7696(04)39004-2 10.1016/j.tcb.2003.09.006 10.1083/jcb.99.3.940 10.1016/S0960-9822(02)01033-3 10.1091/mbc.E09-01-0043 10.1242/jcs.110.19.2391 10.1101/gad.245603 10.1016/S0960-9822(00)00600-X 10.1073/pnas.90.20.9552 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/cm.20510 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1949-3592 |
EndPage | 278 |
ExternalDocumentID | 10_1002_cm_20510 21491614 CM20510 ark_67375_WNG_2RWB5TXV_D |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ J0M JPC LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WNSPC WOHZO WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4580-e8f88f7011bd0686dd7ff360862318e7e17beb63b79a2dc586ec67a1085b40273 |
IEDL.DBID | DR2 |
ISSN | 1949-3584 |
IngestDate | Fri Aug 16 03:03:51 EDT 2024 Fri Nov 22 00:37:58 EST 2024 Sat Sep 28 07:59:36 EDT 2024 Sat Aug 24 00:58:25 EDT 2024 Wed Oct 30 09:55:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4580-e8f88f7011bd0686dd7ff360862318e7e17beb63b79a2dc586ec67a1085b40273 |
Notes | ArticleID:CM20510 istex:C24B2E26DF7841DF173091DC0FD0EB303EAF34E8 ark:/67375/WNG-2RWB5TXV-D Monitoring Editor: George Bloom These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://kops.uni-konstanz.de/bitstream/123456789/14031/2/Sironi_140317.pdf |
PMID | 21491614 |
PQID | 867476992 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_867476992 crossref_primary_10_1002_cm_20510 pubmed_primary_21491614 wiley_primary_10_1002_cm_20510_CM20510 istex_primary_ark_67375_WNG_2RWB5TXV_D |
PublicationCentury | 2000 |
PublicationDate | May 2011 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: May 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Cytoskeleton (Hoboken, N.J.) |
PublicationTitleAlternate | Cytoskeleton |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | Akhmanova A, Steinmetz MO. 2008. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9: 309-322. Yvon AM, Wadsworth P, Jordan MA. 1999. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10: 947-959. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N. 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316: 417-421. Conrad C, Wunsche A, Tan TH, Bulkescher J, Sieckmann F, Verissimo F, Edelstein A, Walter T, Liebel U, Pepperkok R, et al. 2011. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Methods 8: 246-249. Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. 2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181: 421-429. Popov AV, Severin F, Karsenti E. 2002. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr Biol 12: 1326-1330. Turner PF, Margolis RL. 1984. Taxol-induced bundling of brain-derived microtubules. J Cell Biol 99: 940-946. Piehl M, Tulu US, Wadsworth P, Cassimeris L. 2004. Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci USA 101: 1584-1588. Gergely F, Draviam VM, Raff JW. 2003. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17: 336-341. Jordan MA, Thrower D, Wilson L. 1992. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 102( Pt 3): 401-416. Sbalzarini IF, Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195. Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J. 2006. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3: 385-390. Mitchison T, Kirschner M. 1984. Dynamic instability of microtubule growth. Nature 312: 237-242. Logarinho E, Bousbaa H. 2008. Kinetochore-microtubule interactions "in check" by Bub1, Bub3 and BubR1: The dual task of attaching and signalling. Cell Cycle 7: 1763-1768. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, et al. 2010. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464: 721-727. Ribbeck K, Groen AC, Santarella R, Bohnsack MT, Raemaekers T, Kocher T, Gentzel M, Gorlich D, Wilm M, Carmeliet G, et al. 2006. NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17: 2646-2660. Shelden E, Wadsworth P. 1993. Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 120: 935-945. Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE. 1998. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci USA 95: 10596-10601. Sammak PJ, Gorbsky GJ, Borisy GG. 1987. Microtubule dynamics in vivo: a test of mechanisms of turnover. J Cell Biol 104: 395-405. Kinoshita K, Habermann B, Hyman AA. 2002. XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol 12: 267-273. Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G, Wittmann T. 2010. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7: 761-768. Jordan MA, Toso RJ, Thrower D, Wilson L. 1993. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90: 9552-9556. Kline-Smith SL, Walczak CE. 2004. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell 15: 317-327. Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B, Tagliaferro A, Poser I, Hutchins JR, Hegemann B, et al. 2009. HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr Biol 19: 816-826. Yvon AM, Wadsworth P. 1997. Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. J Cell Sci 110( Pt 19): 2391-2401. Verde F, Dogterom M, Stelzer E, Karsenti E, Leibler S. 1992. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol 118: 1097-1108. Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T. 2007. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450: 1100-1105. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, et al. 2005. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462-469. Popov AV, Karsenti E. 2003. Stu2p and XMAP215: turncoat microtubule-associated proteins? Trends Cell Biol 13: 547-550. Cassimeris L, Becker B, Carney B. 2009. TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability. Cell Motil Cytoskeleton 66: 535-545. Srayko M, Kaya A, Stamford J, Hyman AA. 2005. Identification and characterization of factors required for microtubule growth and nucleation in the early C. Elegans embryo. Dev Cell 9: 223-236. Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, et al. 2007. NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 27: 352-367. Groen AC, Maresca TJ, Gatlin JC, Salmon ED, Mitchison TJ. 2009. Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol Biol Cell 20: 2766-2773. Wadsworth P, McGrail M. 1990. Interphase microtubule dynamics are cell type-specific. J Cell Sci 95( Pt 1): 23-32. Walter T, Held M, Neumann B, Heriche JK, Conrad C, Pepperkok R, Ellenberg J. 2010. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging. J Struct Biol 170: 1-9. Desai A, Mitchison TJ. 1997. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13: 83-117. Mimori-Kiyosue Y, Shiina N, Tsukita S. 2000. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10: 865-868. Erfle H, Neumann B, Rogers P, Bulkescher J, Ellenberg J, Pepperkok R. 2008. Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates. J Biomol Screen 13: 575-580. Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD, Akhmanova A, Knoch TA, Grosveld F, Galjart N. 2008. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J Cell Biol 180: 729-737. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA. 2007. Plk4-induced centriole biogenesis in human cells. Dev Cell 13: 190-202. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R. 2007. Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2: 392-399. Mitchison TJ, Sawin KE, Theriot JA, Gee K, Mallavarapu A. 1998. Caged fluorescent probes. Methods Enzymol 291: 63-78. Waterman-Storer CM, Salmon ED. 1997. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417-434. Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L. 1997. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 8: 973-985. Gard DL, Becker BE, Josh Romney S. 2004. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol 239: 179-272. Jordan MA, Thrower D, Wilson L. 1991. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51: 2212-2222. Cassimeris L, Morabito J. 2004. TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol Biol Cell 15: 1580-1590. Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, Mayer TU. 2007. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17: 488-498. Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA. 2008. XMAP215 is a processive microtubule polymerase. Cell 132: 79-88. Piehl M, Cassimeris L. 2003. Organization and dynamics of growing microtubule plus ends during early mitosis. Mol Biol Cell 14: 916-925. Wittmann T, Hyman A, Desai A. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3: E28-E34. Komarova YA, Vorobjev IA, Borisy GG. 2002. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 115( Pt 17): 3527-3539. Morrison EE, Askham JM. 2001. EB 1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK-52E cells. Eur J Cell Biol 80: 749-753. Rusan NM, Fagerstrom CJ, Yvon AM, Wadsworth P. 2001. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol Biol Cell 12: 971-980. 1990; 95 1987; 104 2002; 12 1997; 110 2010; 464 1991; 51 2008; 9 2003; 13 2003; 14 2002; 115 2008; 7 2003; 17 1993; 120 1997; 8 1998; 291 1984; 312 2000; 10 1984; 99 1997; 13 2007; 450 1992; 118 1999; 10 2007; 2 7 1998; 95 2009; 19 2001; 12 2007; 27 2007; 17 2004; 101 2009; 66 1997; 139 2005; 151 2009; 20 1992; 102 2006; 17 2005; 434 2008; 13 2006; 3 1993; 90 2011; 8 2007; 13 2008; 181 2001; 80 2008; 180 2007; 316 2005; 9 2004; 15 2001; 3 2010; 170 2008; 132 2004; 239 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Wadsworth P (e_1_2_6_50_1) 1990; 95 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 Yvon AM (e_1_2_6_54_1) 1997; 110 e_1_2_6_15_1 e_1_2_6_38_1 Matov A (e_1_2_6_27_1); 7 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 Jordan MA (e_1_2_6_19_1) 1992; 102 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 Komarova YA (e_1_2_6_24_1) 2002; 115 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 Jordan MA (e_1_2_6_18_1) 1991; 51 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – volume: 102 start-page: 401 issue: Pt 3 year: 1992 end-page: 416 article-title: Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis publication-title: J Cell Sci – volume: 120 start-page: 935 year: 1993 end-page: 945 article-title: Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell‐type specific publication-title: J Cell Biol – volume: 8 start-page: 246 year: 2011 end-page: 249 article-title: Micropilot: automation of fluorescence microscopy‐based imaging for systems biology publication-title: Nat Methods – volume: 291 start-page: 63 year: 1998 end-page: 78 article-title: Caged fluorescent probes publication-title: Methods Enzymol – volume: 19 start-page: 816 year: 2009 end-page: 826 article-title: HAUS, the 8‐subunit human Augmin complex, regulates centrosome and spindle integrity publication-title: Curr Biol – volume: 17 start-page: 2646 year: 2006 end-page: 2660 article-title: NuSAP, a mitotic RanGTP target that stabilizes and cross‐links microtubules publication-title: Mol Biol Cell – volume: 12 start-page: 267 year: 2002 end-page: 273 article-title: XMAP215: a key component of the dynamic microtubule cytoskeleton publication-title: Trends Cell Biol – volume: 101 start-page: 1584 year: 2004 end-page: 1588 article-title: Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP‐tagged EB1 publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 488 year: 2007 end-page: 498 article-title: The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression publication-title: Curr Biol – volume: 99 start-page: 940 year: 1984 end-page: 946 article-title: Taxol‐induced bundling of brain‐derived microtubules publication-title: J Cell Biol – volume: 139 start-page: 417 year: 1997 end-page: 434 article-title: Actomyosin‐based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling publication-title: J Cell Biol – volume: 132 start-page: 79 year: 2008 end-page: 88 article-title: XMAP215 is a processive microtubule polymerase publication-title: Cell – volume: 464 start-page: 721 year: 2010 end-page: 727 article-title: Phenotypic profiling of the human genome by time‐lapse microscopy reveals cell division genes publication-title: Nature – volume: 13 start-page: 575 year: 2008 end-page: 580 article-title: Work flow for multiplexing siRNA assays by solid‐phase reverse transfection in multiwell plates publication-title: J Biomol Screen – volume: 66 start-page: 535 year: 2009 end-page: 545 article-title: TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability publication-title: Cell Motil Cytoskeleton – volume: 2 start-page: 392 year: 2007 end-page: 399 article-title: Reverse transfection on cell arrays for high content screening microscopy publication-title: Nat Protoc – volume: 12 start-page: 1326 year: 2002 end-page: 1330 article-title: XMAP215 is required for the microtubule‐nucleating activity of centrosomes publication-title: Curr Biol – volume: 8 start-page: 973 year: 1997 end-page: 985 article-title: Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro publication-title: Mol Biol Cell – volume: 104 start-page: 395 year: 1987 end-page: 405 article-title: Microtubule dynamics in vivo: a test of mechanisms of turnover publication-title: J Cell Biol – volume: 170 start-page: 1 year: 2010 end-page: 9 article-title: Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time‐lapse imaging publication-title: J Struct Biol – volume: 95 start-page: 23 issue: Pt 1 year: 1990 end-page: 32 article-title: Interphase microtubule dynamics are cell type‐specific publication-title: J Cell Sci – volume: 115 start-page: 3527 issue: Pt 17 year: 2002 end-page: 3539 article-title: Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary publication-title: J Cell Sci – volume: 10 start-page: 865 year: 2000 end-page: 868 article-title: The dynamic behavior of the APC‐binding protein EB1 on the distal ends of microtubules publication-title: Curr Biol – volume: 15 start-page: 317 year: 2004 end-page: 327 article-title: Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics publication-title: Mol Cell – volume: 7 start-page: 761 end-page: 768 article-title: 2010. Analysis of microtubule dynamic instability using a plus‐end growth marker publication-title: Nat Methods – volume: 118 start-page: 1097 year: 1992 end-page: 1108 article-title: Control of microtubule dynamics and length by cyclin A‐ and cyclin B‐dependent kinases in Xenopus egg extracts publication-title: J Cell Biol – volume: 51 start-page: 2212 year: 1991 end-page: 2222 article-title: Mechanism of inhibition of cell proliferation by Vinca alkaloids publication-title: Cancer Res – volume: 12 start-page: 971 year: 2001 end-page: 980 article-title: Cell cycle‐dependent changes in microtubule dynamics in living cells expressing green fluorescent protein‐alpha tubulin publication-title: Mol Biol Cell – volume: 13 start-page: 190 year: 2007 end-page: 202 article-title: Plk4‐induced centriole biogenesis in human cells publication-title: Dev Cell – volume: 151 start-page: 182 year: 2005 end-page: 195 article-title: Feature point tracking and trajectory analysis for video imaging in cell biology publication-title: J Struct Biol – volume: 180 start-page: 729 year: 2008 end-page: 737 article-title: Dynamic behavior of GFP‐CLIP‐170 reveals fast protein turnover on microtubule plus ends publication-title: J Cell Biol – volume: 316 start-page: 417 year: 2007 end-page: 421 article-title: Genes required for mitotic spindle assembly in Drosophila S2 cells publication-title: Science – volume: 80 start-page: 749 year: 2001 end-page: 753 article-title: EB 1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK‐52E cells publication-title: Eur J Cell Biol – volume: 14 start-page: 916 year: 2003 end-page: 925 article-title: Organization and dynamics of growing microtubule plus ends during early mitosis publication-title: Mol Biol Cell – volume: 95 start-page: 10596 year: 1998 end-page: 10601 article-title: The adenomatous polyposis coli‐binding protein EB1 is associated with cytoplasmic and spindle microtubules publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 947 year: 1999 end-page: 959 article-title: Taxol suppresses dynamics of individual microtubules in living human tumor cells publication-title: Mol Biol Cell – volume: 20 start-page: 2766 year: 2009 end-page: 2773 article-title: Functional overlap of microtubule assembly factors in chromatin‐promoted spindle assembly publication-title: Mol Biol Cell – volume: 3 start-page: 385 year: 2006 end-page: 390 article-title: High‐throughput RNAi screening by time‐lapse imaging of live human cells publication-title: Nat Methods – volume: 434 start-page: 462 year: 2005 end-page: 469 article-title: Full‐genome RNAi profiling of early embryogenesis in Caenorhabditis elegans publication-title: Nature – volume: 110 start-page: 2391 issue: Pt 19 year: 1997 end-page: 2401 article-title: Non‐centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells publication-title: J Cell Sci – volume: 90 start-page: 9552 year: 1993 end-page: 9556 article-title: Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 1763 year: 2008 end-page: 1768 article-title: Kinetochore‐microtubule interactions “in check” by Bub1, Bub3 and BubR1: The dual task of attaching and signalling publication-title: Cell Cycle – volume: 9 start-page: 223 year: 2005 end-page: 236 article-title: Identification and characterization of factors required for microtubule growth and nucleation in the early C. Elegans embryo publication-title: Dev Cell – volume: 27 start-page: 352 year: 2007 end-page: 367 article-title: NDEL1 phosphorylation by Aurora‐A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment publication-title: Mol Cell Biol – volume: 312 start-page: 237 year: 1984 end-page: 242 article-title: Dynamic instability of microtubule growth publication-title: Nature – volume: 450 start-page: 1100 year: 2007 end-page: 1105 article-title: Reconstitution of a microtubule plus‐end tracking system in vitro publication-title: Nature – volume: 13 start-page: 547 year: 2003 end-page: 550 article-title: Stu2p and XMAP215: turncoat microtubule‐associated proteins? publication-title: Trends Cell Biol – volume: 13 start-page: 83 year: 1997 end-page: 117 article-title: Microtubule polymerization dynamics publication-title: Annu Rev Cell Dev Biol – volume: 17 start-page: 336 year: 2003 end-page: 341 article-title: The ch‐TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells publication-title: Genes Dev – volume: 9 start-page: 309 year: 2008 end-page: 322 article-title: Tracking the ends: a dynamic protein network controls the fate of microtubule tips publication-title: Nat Rev Mol Cell Biol – volume: 3 start-page: E28 year: 2001 end-page: E34 article-title: The spindle: a dynamic assembly of microtubules and motors publication-title: Nat Cell Biol – volume: 239 start-page: 179 year: 2004 end-page: 272 article-title: MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule‐associated proteins publication-title: Int Rev Cytol – volume: 15 start-page: 1580 year: 2004 end-page: 1590 article-title: TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly publication-title: Mol Biol Cell – volume: 181 start-page: 421 year: 2008 end-page: 429 article-title: Augmin: a protein complex required for centrosome‐independent microtubule generation within the spindle publication-title: J Cell Biol – volume: 7 start-page: 761 ident: e_1_2_6_27_1 article-title: 2010. Analysis of microtubule dynamic instability using a plus‐end growth marker publication-title: Nat Methods doi: 10.1038/nmeth.1493 contributor: fullname: Matov A – ident: e_1_2_6_35_1 doi: 10.1038/nature08869 – ident: e_1_2_6_46_1 doi: 10.1016/j.devcel.2005.07.003 – ident: e_1_2_6_12_1 doi: 10.1177/1087057108320133 – ident: e_1_2_6_25_1 doi: 10.1016/j.cub.2009.04.033 – ident: e_1_2_6_4_1 doi: 10.1038/nature06386 – ident: e_1_2_6_49_1 doi: 10.1083/jcb.118.5.1097 – ident: e_1_2_6_2_1 doi: 10.1038/nrm2369 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.95.18.10596 – ident: e_1_2_6_36_1 doi: 10.1091/mbc.E02-09-0607 – ident: e_1_2_6_16_1 doi: 10.1083/jcb.200711053 – ident: e_1_2_6_48_1 doi: 10.1091/mbc.8.6.973 – ident: e_1_2_6_22_1 doi: 10.1016/j.devcel.2007.07.002 – ident: e_1_2_6_37_1 doi: 10.1073/pnas.0308205100 – ident: e_1_2_6_42_1 doi: 10.1083/jcb.104.3.395 – ident: e_1_2_6_51_1 doi: 10.1016/j.jsb.2009.10.004 – ident: e_1_2_6_9_1 doi: 10.1146/annurev.cellbio.13.1.83 – ident: e_1_2_6_53_1 doi: 10.1038/35050669 – ident: e_1_2_6_45_1 doi: 10.1038/nature03353 – ident: e_1_2_6_31_1 doi: 10.1016/S0076-6879(98)91007-2 – ident: e_1_2_6_40_1 doi: 10.1091/mbc.e05-12-1178 – ident: e_1_2_6_8_1 doi: 10.1038/nmeth.1558 – ident: e_1_2_6_5_1 doi: 10.1016/j.cell.2007.11.043 – ident: e_1_2_6_33_1 doi: 10.1078/0171-9335-00221 – ident: e_1_2_6_55_1 doi: 10.1091/mbc.10.4.947 – ident: e_1_2_6_10_1 doi: 10.1083/jcb.200707203 – ident: e_1_2_6_30_1 doi: 10.1038/312237a0 – ident: e_1_2_6_21_1 doi: 10.1016/S0962-8924(02)02295-X – ident: e_1_2_6_6_1 doi: 10.1002/cm.20359 – ident: e_1_2_6_34_1 doi: 10.1038/nmeth876 – ident: e_1_2_6_15_1 doi: 10.1126/science.1141314 – ident: e_1_2_6_28_1 doi: 10.1016/j.cub.2007.02.036 – ident: e_1_2_6_41_1 doi: 10.1091/mbc.12.4.971 – ident: e_1_2_6_7_1 doi: 10.1091/mbc.e03-07-0544 – ident: e_1_2_6_11_1 doi: 10.1038/nprot.2006.483 – ident: e_1_2_6_52_1 doi: 10.1083/jcb.139.2.417 – volume: 51 start-page: 2212 year: 1991 ident: e_1_2_6_18_1 article-title: Mechanism of inhibition of cell proliferation by Vinca alkaloids publication-title: Cancer Res contributor: fullname: Jordan MA – ident: e_1_2_6_32_1 doi: 10.1128/MCB.00878-06 – volume: 95 start-page: 23 issue: 1 year: 1990 ident: e_1_2_6_50_1 article-title: Interphase microtubule dynamics are cell type‐specific publication-title: J Cell Sci doi: 10.1242/jcs.95.1.23 contributor: fullname: Wadsworth P – ident: e_1_2_6_26_1 doi: 10.4161/cc.7.12.6180 – ident: e_1_2_6_23_1 doi: 10.1016/j.molcel.2004.07.012 – volume: 115 start-page: 3527 issue: 17 year: 2002 ident: e_1_2_6_24_1 article-title: Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary publication-title: J Cell Sci doi: 10.1242/jcs.115.17.3527 contributor: fullname: Komarova YA – ident: e_1_2_6_44_1 doi: 10.1083/jcb.120.4.935 – volume: 102 start-page: 401 issue: 3 year: 1992 ident: e_1_2_6_19_1 article-title: Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis publication-title: J Cell Sci doi: 10.1242/jcs.102.3.401 contributor: fullname: Jordan MA – ident: e_1_2_6_43_1 doi: 10.1016/j.jsb.2005.06.002 – ident: e_1_2_6_13_1 doi: 10.1016/S0074-7696(04)39004-2 – ident: e_1_2_6_38_1 doi: 10.1016/j.tcb.2003.09.006 – ident: e_1_2_6_47_1 doi: 10.1083/jcb.99.3.940 – ident: e_1_2_6_39_1 doi: 10.1016/S0960-9822(02)01033-3 – ident: e_1_2_6_17_1 doi: 10.1091/mbc.E09-01-0043 – volume: 110 start-page: 2391 issue: 19 year: 1997 ident: e_1_2_6_54_1 article-title: Non‐centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells publication-title: J Cell Sci doi: 10.1242/jcs.110.19.2391 contributor: fullname: Yvon AM – ident: e_1_2_6_14_1 doi: 10.1101/gad.245603 – ident: e_1_2_6_29_1 doi: 10.1016/S0960-9822(00)00600-X – ident: e_1_2_6_20_1 doi: 10.1073/pnas.90.20.9552 |
SSID | ssj0069303 |
Score | 2.1719182 |
Snippet | The genetic integrity of every organism depends on the faithful partitioning of its genome between two daughter cells in mitosis. In all eukaryotes, chromosome... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 266 |
SubjectTerms | EB3 HeLa Cells Humans microtubule dynamics Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Microtubules - metabolism mitosis Mitosis - genetics Mitosis - physiology multiple particle tracking quantitative microscopy RNA Interference - physiology RNAi screening Spindle Apparatus - metabolism |
Title | Automatic quantification of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators |
URI | https://api.istex.fr/ark:/67375/WNG-2RWB5TXV-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcm.20510 https://www.ncbi.nlm.nih.gov/pubmed/21491614 https://search.proquest.com/docview/867476992 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQCKkXCrTAFqiMVPUWIH-2c1ygFCGxhxWUlThY8U8QWtjQTSIVTjxCn7FPwoy9WUQFEuKUi-04HnvmG2fmG0K-RZrnYWxMAKY7CpIwMYGItQlCJrRhNrShwvuOkx47OkuOB-lgElWJuTCeH2J64YYnw-lrPOC5qnaeSEM15pGnLrsKWfMQD_WnzFFY4M_F1mdJFsRgZFve2d1op-34zBLN4aL-eQlmPketzuwcfiQX7YR9tMlwu6nVtr7_j8vxfV-0SBYmaJR2_fZZIjN2tEzmfX3Ku09k2G3q0nG60t9N7sOKnCRpWdAbDOWrG9VcW2p8XfuKWpeKVdF-r3v17-Ev6CTwk8E6YgcA8NCpLnG46vYK2R3o2F5i_bByXH0mZ4c_TvePgkl1hkAnqdgNrCiEKDjoB2Uwz8QYXhQxQxcJ9ITlNuTKKhYrnuWR0algVjPYGIDxVIIsOitkdlSO7BqhGY_TAsCEymIAdBzGDXmRKmHRWQpZ0SFbraTkrSfhkJ5uOZL6RrpF65DvToTTBvl4iEFrPJXnvZ8y6p_vpaeDX_KgQ2grYwlHCf-P5CNbNpUUDHwrlmVRh6x62U8Hi8CRBGycwFucBF-dhtw_cc8vb224Tj74a2qModwgs_W4sZuAc2r11e3oR8DW-Dc |
link.rule.ids | 315,782,786,1377,27931,27932,46301,46725 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVhVcCuVRlqeRELe0jZPYjjhtW8oC3T2stnQPSFb8CKq23ZRNIgEnfgK_sb-EGbtZVAQS4pSL7Tge2_PNZOYbQl4wI4o4sTYC1c2iNE5tJBNjo5hLY7mLXazR3zEc8cFx-m6aTVfIqy4XJvBDLB1ueDL8fY0HHB3SO79YQw0mkmeYXrUGp51hPN_BeMkdhSX-fHR9nuZRAmq2Y57dZTtdz2u6aA2X9cufgOZ13OoVz-Et8rGbcog3mW23jd42335jc_zPb7pNNq4AKe2HHbRJVtz8DlkPJSq_3iWzfttUntaVfm6LEFnkhUmrkp5jNF_T6vbMURtK29fU-Wysmo5H_dPL7z_gWgJTGRQkdgAMD52aCoerL06R4IEu3CcsIVYt6nvk-PD1ZH8QXRVoiEyayd3IyVLKUsAVoS2mmlgryjLhaCXBVeGEi4V2mida5AWzJpPcGQ57A2CeTpFI5z5ZnVdz94DQXCRZCXhC5wlgOgHjxqLMtHRoL8W87JHnnajUReDhUIFxmSlzrvyi9chLL8Nlg2Ixw7g1kamT0RvFxid72WT6QR30CO2ErOA04S-SYu6qtlaSg3nF85z1yFYQ_nIwBrYkwOMU3uJF-NdpqP2hfz7814bPyI3BZHikjt6O3j8iN4PXGkMqH5PVZtG6JwB7Gv3Ub--fQzH8VA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkVcgPIoC6UYCXFL27xs57ht2ZZHV2jV0pU4WPELVUs3yyaRgBM_gd_IL2HG3mxVBBLilIvtOJ6x5xtn5htCnieal3FqTASmO4myODORSLWJYia0YTa2scL7jpMhOz7LXo_z8SKqEnNhAj_E8sINd4Y_r3GDz4zbvSIN1ZhHnmN21VrGQE0REI2W1FFY4c8H1xdZEaVgZTvi2b1kt-t5zRSt4ap--RPOvA5bvd0Z3CYfuhmHcJPJTtuoHf3tNzLH__ukO-TWAo7SftCfDbJip3fJeihQ-fUemfTbpvKkrvRzW4a4Ii9KWjl6ibF8TavaT5aaUNi-ptbnYtV0NOxf_Pz-Aw4lcJTBPGIHQPDQqalwuHp2gfQOdG4_YgGxal7fJ2eDl6cHx9GiPEOks1zsRVY4IRyHA0IZTDQxhjuXMvSR4KCw3MZcWcVSxYsyMToXzGoGmgEgT2VIo_OArE6rqX1IaMHT3AGaUEUKiI7DuDF3uRIWvaWYuR551klKzgILhwx8y4nUl9IvWo-88CJcNijnE4xa47k8Hx7JZHS-n5-O38vDHqGdjCXsJfxBUk5t1dZSMHCuWFEkPbIZZL8cLAFPEsBxBm_xEvzrNOTBiX8--teGT8mNd4cD-fbV8M1jcjNcWWM85RZZbeatfQKYp1HbXrl_ATzu-vo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+quantification+of+microtubule+dynamics+enables+RNAi-screening+of+new+mitotic+spindle+regulators&rft.jtitle=Cytoskeleton+%28Hoboken%2C+N.J.%29&rft.au=Sironi%2C+Lucia&rft.au=Solon%2C+J%C3%A9r%C3%B4me&rft.au=Conrad%2C+Christian&rft.au=Mayer%2C+Thomas+U&rft.date=2011-05-01&rft.eissn=1949-3592&rft.volume=68&rft.issue=5&rft.spage=266&rft_id=info:doi/10.1002%2Fcm.20510&rft_id=info%3Apmid%2F21491614&rft.externalDocID=21491614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3584&client=summon |