Global concurrent climate extremes exacerbated by anthropogenic climate change

Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread d...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 9; no. 10; p. eabo1638
Main Authors Zhou, Sha, Yu, Bofu, Zhang, Yao
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 10.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901–2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes. Anthropogenic forcing has altered and will continue to exacerbate the extent and intensity of global concurrent climate extremes.
AbstractList Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901–2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes. Anthropogenic forcing has altered and will continue to exacerbate the extent and intensity of global concurrent climate extremes.
Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.
Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.
Author Yu, Bofu
Zhang, Yao
Zhou, Sha
Author_xml – sequence: 1
  givenname: Sha
  orcidid: 0000-0001-7161-5959
  surname: Zhou
  fullname: Zhou, Sha
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China., Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Bofu
  orcidid: 0000-0001-7266-4197
  surname: Yu
  fullname: Yu, Bofu
  organization: School of Engineering and Built Environment, Griffith University, Nathan, Queensland, Australia
– sequence: 3
  givenname: Yao
  orcidid: 0000-0002-7468-2409
  surname: Zhang
  fullname: Zhang, Yao
  organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36897946$$D View this record in MEDLINE/PubMed
BookMark eNp1UcFOGzEQtRAIKHDlWO2xl6S2d9den6oKUVoJwQXO1nh2NjHa2Km9QfD3GCWNaKWeZjTz3puneZ_YYYiBGLsUfC6EVF8zeuif5-CiUHV3wE5lrduZbJvu8EN_wi5yfuKci0apVphjdlKrzmjTqFN2dzNGB2OFMeAmJQpThaNfwUQVvUyJVpRLA0jJlVlfudcKwrRMcR0XFDzu0biEsKBzdjTAmOliV8_Y44_rh6ufs9v7m19X329n2LR6mvWDaQdn9AAasNe659r16JyrSXBthBzqVjjpUGsSdeeUElIi8MYAduCG-ox92-quN25FPRbfCUa7TsVMerURvP17E_zSLuKzFeUPrdBNUfiyU0jx94byZFc-I40jBIqbbKXulOBSGVOgnz8e21_588UCmG8BmGLOiYY9RHD7npTdJmV3SRVC8w8B_QSTj-9m_fg_2huwsJ1v
CitedBy_id crossref_primary_10_24857_rgsa_v19n2_060
crossref_primary_10_1038_s41612_025_00910_7
crossref_primary_10_1016_j_jhydrol_2024_131939
crossref_primary_10_61506_02_00244
crossref_primary_10_3390_rs16203784
crossref_primary_10_3389_fpls_2024_1505985
crossref_primary_10_1007_s00382_025_07615_w
crossref_primary_10_1016_j_uclim_2023_101557
crossref_primary_10_1016_j_apr_2023_101932
crossref_primary_10_1088_1748_9326_acec89
crossref_primary_10_1038_s41467_023_44404_7
crossref_primary_10_54033_cadpedv22n4_267
crossref_primary_10_1126_sciadv_ado6864
crossref_primary_10_1016_j_tranpol_2024_12_023
crossref_primary_10_1016_j_scitotenv_2023_165685
crossref_primary_10_1016_j_ecolind_2024_112936
crossref_primary_10_3390_rs17050848
crossref_primary_10_3390_land14030598
crossref_primary_10_1029_2023EF004074
crossref_primary_10_1016_j_jclepro_2023_139046
crossref_primary_10_1021_jacs_4c05318
crossref_primary_10_1016_j_jnc_2023_126546
crossref_primary_10_1016_j_jclepro_2024_142219
crossref_primary_10_1093_biosci_biae068
crossref_primary_10_1038_s41467_024_55175_0
crossref_primary_10_1007_s13592_024_01112_5
crossref_primary_10_3390_land13091497
crossref_primary_10_1016_j_agrformet_2024_110231
crossref_primary_10_1038_s41598_025_85808_3
crossref_primary_10_1016_j_jenvman_2024_123794
crossref_primary_10_1029_2023GL107690
crossref_primary_10_1038_s41598_024_62127_7
crossref_primary_10_3390_ani13233654
crossref_primary_10_1002_csc2_21352
crossref_primary_10_1007_s10584_024_03802_6
crossref_primary_10_1051_e3sconf_202340604011
crossref_primary_10_1016_j_geosus_2024_06_003
crossref_primary_10_1016_j_solmat_2025_113567
crossref_primary_10_1016_j_ecolind_2024_112192
crossref_primary_10_1016_j_geosus_2024_06_008
crossref_primary_10_1016_j_jclepro_2024_143653
crossref_primary_10_1016_j_jag_2024_104233
crossref_primary_10_1021_acssuschemeng_4c01707
crossref_primary_10_1038_s41612_024_00571_y
crossref_primary_10_1088_1748_9326_ad4619
crossref_primary_10_1088_1748_9326_ad6918
crossref_primary_10_3390_plants13040469
crossref_primary_10_1016_j_scitotenv_2024_177917
crossref_primary_10_1016_j_scitotenv_2024_172626
crossref_primary_10_1002_ppp_2206
crossref_primary_10_1016_j_scitotenv_2024_174427
crossref_primary_10_1007_s00477_023_02579_x
crossref_primary_10_1080_07038992_2023_2298575
crossref_primary_10_1016_j_asieco_2025_101899
crossref_primary_10_1016_j_jhydrol_2024_132335
crossref_primary_10_1016_j_scib_2023_11_013
crossref_primary_10_3389_ffgc_2024_1424174
crossref_primary_10_1177_03093247241233325
crossref_primary_10_1007_s11356_023_27229_1
crossref_primary_10_1016_j_jhydrol_2025_133043
crossref_primary_10_1111_1751_7915_14439
crossref_primary_10_3390_su16229887
crossref_primary_10_1016_j_accre_2024_05_003
crossref_primary_10_3390_atmos16010007
crossref_primary_10_5194_bg_21_5481_2024
crossref_primary_10_3390_su151511941
crossref_primary_10_1029_2024EF004845
crossref_primary_10_1073_pnas_2320600121
crossref_primary_10_1029_2024EF005256
crossref_primary_10_1016_j_jhydrol_2024_131299
crossref_primary_10_1016_j_jhydrol_2024_131332
crossref_primary_10_1038_s43247_024_01733_9
crossref_primary_10_1016_j_scitotenv_2024_176098
crossref_primary_10_1016_j_atmosres_2023_107114
crossref_primary_10_1016_j_trd_2025_104702
crossref_primary_10_1038_s41598_024_68906_6
crossref_primary_10_1038_s41612_024_00831_x
crossref_primary_10_5194_hess_29_1103_2025
crossref_primary_10_1038_s41612_024_00579_4
crossref_primary_10_1016_j_eja_2024_127395
crossref_primary_10_1038_s43247_024_01850_5
crossref_primary_10_1038_s41612_024_00689_z
crossref_primary_10_1038_s41612_023_00553_6
crossref_primary_10_1029_2022EF003388
crossref_primary_10_1007_s11269_024_03764_5
crossref_primary_10_1016_j_ecolind_2024_112188
crossref_primary_10_1088_2976_601X_ad7d12
crossref_primary_10_1016_j_ecoinf_2024_102984
crossref_primary_10_1016_j_ejrh_2025_102214
crossref_primary_10_1038_s41598_024_84975_z
crossref_primary_10_1149_2754_2726_ad3561
crossref_primary_10_3390_w16060888
crossref_primary_10_1016_j_ufug_2025_128772
crossref_primary_10_1016_j_wasman_2024_05_049
crossref_primary_10_1016_j_ecolind_2024_112109
crossref_primary_10_1016_j_ejrh_2024_101838
crossref_primary_10_1007_s00376_023_3123_5
crossref_primary_10_1016_j_indcrop_2023_117195
crossref_primary_10_3390_agriculture14112073
crossref_primary_10_1007_s00704_024_05031_4
crossref_primary_10_1016_j_agrformet_2023_109799
crossref_primary_10_1016_j_jclepro_2025_145086
crossref_primary_10_1029_2023JD039615
crossref_primary_10_1088_1748_9326_ad101c
crossref_primary_10_1111_gcb_17291
crossref_primary_10_1016_j_ejrh_2024_101968
crossref_primary_10_1016_j_seares_2024_102470
crossref_primary_10_1016_j_jcou_2024_102905
crossref_primary_10_1029_2023GL107106
crossref_primary_10_3389_fagro_2023_1284173
crossref_primary_10_1002_joc_8727
crossref_primary_10_1016_j_plaphy_2024_109392
crossref_primary_10_1016_j_scitotenv_2024_175274
crossref_primary_10_3390_w16162226
crossref_primary_10_1016_j_jhydrol_2024_130874
crossref_primary_10_1016_j_jhydrol_2025_132836
crossref_primary_10_1088_1748_9326_acfe21
crossref_primary_10_1021_acsestwater_4c00896
crossref_primary_10_1007_s00382_024_07565_9
crossref_primary_10_1038_s41598_024_65140_y
crossref_primary_10_3390_su151511866
crossref_primary_10_3390_cli12070095
crossref_primary_10_3389_fpls_2024_1294895
crossref_primary_10_1016_j_ecolind_2025_113314
crossref_primary_10_1111_gcb_70102
Cites_doi 10.1088/1748-9326/aaee96
10.1016/j.wace.2020.100299
10.1088/1748-9326/ac5712
10.1038/s41558-021-01092-9
10.1038/s41598-019-47291-5
10.1038/s41558-019-0600-z
10.1126/sciadv.aau3487
10.1029/2018GL080463
10.1038/s41586-021-03695-w
10.1038/nature12915
10.1146/annurev-earth-071719-055228
10.3390/atmos12111434
10.5194/essd-12-2959-2020
10.1002/2017RG000567
10.1038/s41558-021-01156-w
10.1073/pnas.1718031115
10.5194/gmd-9-1937-2016
10.1126/sciadv.aaw1976
10.1175/JCLI-D-21-0200.1
10.1126/science.373.6553.372
10.1073/pnas.1921628117
10.1126/sciadv.aau5740
10.1038/nclimate2617
10.1038/s43017-020-0060-z
10.5194/essd-5-71-2013
10.1073/pnas.1422945112
10.1021/acs.est.1c00024
10.1038/s41559-016-0058
10.1126/science.aaz9600
10.1061/(ASCE)1084-0699(2007)12:4(394)
10.1073/pnas.1904955116
10.1126/science.aai8579
10.1126/sciadv.1700263
10.1038/s41467-018-07954-9
10.1038/s41558-019-0637-z
10.1146/annurev-environ-102017-025835
10.1038/s41558-018-0156-3
10.1111/nyas.13912
10.1038/s41598-019-41932-5
10.1038/s41597-020-0453-3
10.1038/nature09763
10.1038/s41558-021-01170-y
10.1002/wcc.252
ContentType Journal Article
Copyright Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors
Copyright_xml – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1126/sciadv.abo1638
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Increasing global concurrent climate extremes
EISSN 2375-2548
ExternalDocumentID PMC10005174
36897946
10_1126_sciadv_abo1638
Genre Journal Article
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADPDF
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCGUY
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
OVEED
RHI
RPM
TEORI
BBORY
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c457t-df95fb97fa7acd77d07bdcbbb3e107912f351b2bc77e138b66122ca049ac8abf3
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:37:47 EDT 2025
Fri Jul 11 03:43:56 EDT 2025
Thu Jan 02 22:52:05 EST 2025
Tue Jul 01 03:11:47 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-df95fb97fa7acd77d07bdcbbb3e107912f351b2bc77e138b66122ca049ac8abf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7468-2409
0000-0001-7161-5959
0000-0001-7266-4197
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abo1638
PMID 36897946
PQID 2786102699
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10005174
proquest_miscellaneous_2786102699
pubmed_primary_36897946
crossref_primary_10_1126_sciadv_abo1638
crossref_citationtrail_10_1126_sciadv_abo1638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-10
PublicationDateYYYYMMDD 2023-03-10
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2023
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
Rohde R. (e_1_3_2_33_2) 2013; 1
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
Rohde R. (e_1_3_2_46_2) 2013; 1
e_1_3_2_30_2
Normile D. (e_1_3_2_17_2) 2021
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_7_2
  doi: 10.1088/1748-9326/aaee96
– ident: e_1_3_2_10_2
  doi: 10.1016/j.wace.2020.100299
– ident: e_1_3_2_31_2
  doi: 10.1088/1748-9326/ac5712
– ident: e_1_3_2_3_2
  doi: 10.1038/s41558-021-01092-9
– ident: e_1_3_2_42_2
  doi: 10.1038/s41598-019-47291-5
– ident: e_1_3_2_22_2
  doi: 10.1038/s41558-019-0600-z
– volume: 1
  start-page: 1000103
  year: 2013
  ident: e_1_3_2_46_2
  article-title: Berkeley earth temperature averaging process
  publication-title: Geoinform. Geostat. Overview.
– ident: e_1_3_2_13_2
  doi: 10.1126/sciadv.aau3487
– ident: e_1_3_2_39_2
  doi: 10.1029/2018GL080463
– ident: e_1_3_2_20_2
  doi: 10.1038/s41586-021-03695-w
– ident: e_1_3_2_44_2
  doi: 10.1038/nature12915
– ident: e_1_3_2_34_2
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev-earth-071719-055228
– ident: e_1_3_2_15_2
  doi: 10.3390/atmos12111434
– ident: e_1_3_2_36_2
  doi: 10.5194/essd-12-2959-2020
– ident: e_1_3_2_38_2
  doi: 10.1002/2017RG000567
– ident: e_1_3_2_30_2
  doi: 10.1038/s41558-021-01156-w
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.1718031115
– ident: e_1_3_2_35_2
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_3_2_21_2
  doi: 10.1126/sciadv.aaw1976
– ident: e_1_3_2_40_2
  doi: 10.1175/JCLI-D-21-0200.1
– ident: e_1_3_2_16_2
  doi: 10.1126/science.373.6553.372
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.1921628117
– ident: e_1_3_2_9_2
  doi: 10.1126/sciadv.aau5740
– ident: e_1_3_2_27_2
  doi: 10.1038/nclimate2617
– ident: e_1_3_2_5_2
  doi: 10.1038/s43017-020-0060-z
– ident: e_1_3_2_47_2
  doi: 10.5194/essd-5-71-2013
– ident: e_1_3_2_8_2
  doi: 10.1073/pnas.1422945112
– ident: e_1_3_2_18_2
  doi: 10.1021/acs.est.1c00024
– ident: e_1_3_2_25_2
  doi: 10.1038/s41559-016-0058
– ident: e_1_3_2_28_2
  doi: 10.1126/science.aaz9600
– ident: e_1_3_2_48_2
  doi: 10.1061/(ASCE)1084-0699(2007)12:4(394)
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.1904955116
– ident: e_1_3_2_19_2
  doi: 10.1126/science.aai8579
– ident: e_1_3_2_6_2
  doi: 10.1126/sciadv.1700263
– year: 2021
  ident: e_1_3_2_17_2
  article-title: Zhengzhou subway flooding a warning for other major cities
  publication-title: Science
– volume: 1
  start-page: 1000101
  year: 2013
  ident: e_1_3_2_33_2
  article-title: A new estimate of the average earth surface land temperature spanning 1753 to 2011
  publication-title: Geoinfor. Geostat. An Overview.
– ident: e_1_3_2_37_2
  doi: 10.1038/s41467-018-07954-9
– ident: e_1_3_2_14_2
  doi: 10.1038/s41558-019-0637-z
– ident: e_1_3_2_43_2
  doi: 10.1146/annurev-environ-102017-025835
– ident: e_1_3_2_4_2
  doi: 10.1038/s41558-018-0156-3
– ident: e_1_3_2_41_2
  doi: 10.1111/nyas.13912
– ident: e_1_3_2_23_2
  doi: 10.1038/s41598-019-41932-5
– ident: e_1_3_2_32_2
  doi: 10.1038/s41597-020-0453-3
– ident: e_1_3_2_26_2
  doi: 10.1038/nature09763
– ident: e_1_3_2_45_2
  doi: 10.1038/s41558-021-01170-y
– ident: e_1_3_2_11_2
  doi: 10.1002/wcc.252
SSID ssj0001466519
Score 2.5882368
Snippet Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eabo1638
SubjectTerms Atmospheric Science
Earth, Environmental, Ecological, and Space Sciences
SciAdv r-articles
Title Global concurrent climate extremes exacerbated by anthropogenic climate change
URI https://www.ncbi.nlm.nih.gov/pubmed/36897946
https://www.proquest.com/docview/2786102699
https://pubmed.ncbi.nlm.nih.gov/PMC10005174
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XryI9RkfJYKgHrY0m2xm9yAi4gNBTxZ6C7ubBAsl1T7E_ntnk21trYKXEJLJBmZ2dubbxzeEnHIcGJkSikpQQCMT5ehSLUkNT4OWgEhCOd_x9Bw_tKPHDu98739yChz-Cu1sPan2oNf8fJ9cocNfzh2AUelHE5Vmk4tVsoZRCWw1gyeX6pfzLVEc87LOBwuBU8RFwnE4LjexGKOWEs-f-yfnAtLdJtlwmaR_XZm-TlayYovUna8O_XNHKH2xTZ4rYn8foa-p6Jh80-tiqpr5ODTbCcIh3iiDGsZnqa8nvnL1E7B7dc1MujolvEPad7cvNw_U1VGgJuIwomkuea4l5AqUSQHSFujUaK3DDMGfDFge8kAzbQCyIBQaQzZjRiF2UEYonYe7pFb0i2yf-AF-HSKoUhJhIaCVDQ9CZZciMdanAjxCp5pLjCMZt7UuekkJNlicVJpOnKY9cjaTf6voNf6UPJkaIkEPsMsaqsj642HCQGAOyGIpPbJXGWbWVhgLaSn0PSIWTDYTsOzai2-K7mvJsh20Khrvg3_8-JCs2zL0tNznd0Rqo8E4O8ZkZaQbJcjH630naJQ98gsy_u4I
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+concurrent+climate+extremes+exacerbated+by+anthropogenic+climate+change&rft.jtitle=Science+advances&rft.au=Zhou%2C+Sha&rft.au=Yu%2C+Bofu&rft.au=Zhang%2C+Yao&rft.date=2023-03-10&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=9&rft.issue=10&rft.spage=eabo1638&rft_id=info:doi/10.1126%2Fsciadv.abo1638&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon