Global concurrent climate extremes exacerbated by anthropogenic climate change
Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread d...
Saved in:
Published in | Science advances Vol. 9; no. 10; p. eabo1638 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
10.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901–2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.
Anthropogenic forcing has altered and will continue to exacerbate the extent and intensity of global concurrent climate extremes. |
---|---|
AbstractList | Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901–2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.
Anthropogenic forcing has altered and will continue to exacerbate the extent and intensity of global concurrent climate extremes. Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes. Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes. |
Author | Yu, Bofu Zhang, Yao Zhou, Sha |
Author_xml | – sequence: 1 givenname: Sha orcidid: 0000-0001-7161-5959 surname: Zhou fullname: Zhou, Sha organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China., Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China – sequence: 2 givenname: Bofu orcidid: 0000-0001-7266-4197 surname: Yu fullname: Yu, Bofu organization: School of Engineering and Built Environment, Griffith University, Nathan, Queensland, Australia – sequence: 3 givenname: Yao orcidid: 0000-0002-7468-2409 surname: Zhang fullname: Zhang, Yao organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36897946$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UcFOGzEQtRAIKHDlWO2xl6S2d9den6oKUVoJwQXO1nh2NjHa2Km9QfD3GCWNaKWeZjTz3puneZ_YYYiBGLsUfC6EVF8zeuif5-CiUHV3wE5lrduZbJvu8EN_wi5yfuKci0apVphjdlKrzmjTqFN2dzNGB2OFMeAmJQpThaNfwUQVvUyJVpRLA0jJlVlfudcKwrRMcR0XFDzu0biEsKBzdjTAmOliV8_Y44_rh6ufs9v7m19X329n2LR6mvWDaQdn9AAasNe659r16JyrSXBthBzqVjjpUGsSdeeUElIi8MYAduCG-ox92-quN25FPRbfCUa7TsVMerURvP17E_zSLuKzFeUPrdBNUfiyU0jx94byZFc-I40jBIqbbKXulOBSGVOgnz8e21_588UCmG8BmGLOiYY9RHD7npTdJmV3SRVC8w8B_QSTj-9m_fg_2huwsJ1v |
CitedBy_id | crossref_primary_10_24857_rgsa_v19n2_060 crossref_primary_10_1038_s41612_025_00910_7 crossref_primary_10_1016_j_jhydrol_2024_131939 crossref_primary_10_61506_02_00244 crossref_primary_10_3390_rs16203784 crossref_primary_10_3389_fpls_2024_1505985 crossref_primary_10_1007_s00382_025_07615_w crossref_primary_10_1016_j_uclim_2023_101557 crossref_primary_10_1016_j_apr_2023_101932 crossref_primary_10_1088_1748_9326_acec89 crossref_primary_10_1038_s41467_023_44404_7 crossref_primary_10_54033_cadpedv22n4_267 crossref_primary_10_1126_sciadv_ado6864 crossref_primary_10_1016_j_tranpol_2024_12_023 crossref_primary_10_1016_j_scitotenv_2023_165685 crossref_primary_10_1016_j_ecolind_2024_112936 crossref_primary_10_3390_rs17050848 crossref_primary_10_3390_land14030598 crossref_primary_10_1029_2023EF004074 crossref_primary_10_1016_j_jclepro_2023_139046 crossref_primary_10_1021_jacs_4c05318 crossref_primary_10_1016_j_jnc_2023_126546 crossref_primary_10_1016_j_jclepro_2024_142219 crossref_primary_10_1093_biosci_biae068 crossref_primary_10_1038_s41467_024_55175_0 crossref_primary_10_1007_s13592_024_01112_5 crossref_primary_10_3390_land13091497 crossref_primary_10_1016_j_agrformet_2024_110231 crossref_primary_10_1038_s41598_025_85808_3 crossref_primary_10_1016_j_jenvman_2024_123794 crossref_primary_10_1029_2023GL107690 crossref_primary_10_1038_s41598_024_62127_7 crossref_primary_10_3390_ani13233654 crossref_primary_10_1002_csc2_21352 crossref_primary_10_1007_s10584_024_03802_6 crossref_primary_10_1051_e3sconf_202340604011 crossref_primary_10_1016_j_geosus_2024_06_003 crossref_primary_10_1016_j_solmat_2025_113567 crossref_primary_10_1016_j_ecolind_2024_112192 crossref_primary_10_1016_j_geosus_2024_06_008 crossref_primary_10_1016_j_jclepro_2024_143653 crossref_primary_10_1016_j_jag_2024_104233 crossref_primary_10_1021_acssuschemeng_4c01707 crossref_primary_10_1038_s41612_024_00571_y crossref_primary_10_1088_1748_9326_ad4619 crossref_primary_10_1088_1748_9326_ad6918 crossref_primary_10_3390_plants13040469 crossref_primary_10_1016_j_scitotenv_2024_177917 crossref_primary_10_1016_j_scitotenv_2024_172626 crossref_primary_10_1002_ppp_2206 crossref_primary_10_1016_j_scitotenv_2024_174427 crossref_primary_10_1007_s00477_023_02579_x crossref_primary_10_1080_07038992_2023_2298575 crossref_primary_10_1016_j_asieco_2025_101899 crossref_primary_10_1016_j_jhydrol_2024_132335 crossref_primary_10_1016_j_scib_2023_11_013 crossref_primary_10_3389_ffgc_2024_1424174 crossref_primary_10_1177_03093247241233325 crossref_primary_10_1007_s11356_023_27229_1 crossref_primary_10_1016_j_jhydrol_2025_133043 crossref_primary_10_1111_1751_7915_14439 crossref_primary_10_3390_su16229887 crossref_primary_10_1016_j_accre_2024_05_003 crossref_primary_10_3390_atmos16010007 crossref_primary_10_5194_bg_21_5481_2024 crossref_primary_10_3390_su151511941 crossref_primary_10_1029_2024EF004845 crossref_primary_10_1073_pnas_2320600121 crossref_primary_10_1029_2024EF005256 crossref_primary_10_1016_j_jhydrol_2024_131299 crossref_primary_10_1016_j_jhydrol_2024_131332 crossref_primary_10_1038_s43247_024_01733_9 crossref_primary_10_1016_j_scitotenv_2024_176098 crossref_primary_10_1016_j_atmosres_2023_107114 crossref_primary_10_1016_j_trd_2025_104702 crossref_primary_10_1038_s41598_024_68906_6 crossref_primary_10_1038_s41612_024_00831_x crossref_primary_10_5194_hess_29_1103_2025 crossref_primary_10_1038_s41612_024_00579_4 crossref_primary_10_1016_j_eja_2024_127395 crossref_primary_10_1038_s43247_024_01850_5 crossref_primary_10_1038_s41612_024_00689_z crossref_primary_10_1038_s41612_023_00553_6 crossref_primary_10_1029_2022EF003388 crossref_primary_10_1007_s11269_024_03764_5 crossref_primary_10_1016_j_ecolind_2024_112188 crossref_primary_10_1088_2976_601X_ad7d12 crossref_primary_10_1016_j_ecoinf_2024_102984 crossref_primary_10_1016_j_ejrh_2025_102214 crossref_primary_10_1038_s41598_024_84975_z crossref_primary_10_1149_2754_2726_ad3561 crossref_primary_10_3390_w16060888 crossref_primary_10_1016_j_ufug_2025_128772 crossref_primary_10_1016_j_wasman_2024_05_049 crossref_primary_10_1016_j_ecolind_2024_112109 crossref_primary_10_1016_j_ejrh_2024_101838 crossref_primary_10_1007_s00376_023_3123_5 crossref_primary_10_1016_j_indcrop_2023_117195 crossref_primary_10_3390_agriculture14112073 crossref_primary_10_1007_s00704_024_05031_4 crossref_primary_10_1016_j_agrformet_2023_109799 crossref_primary_10_1016_j_jclepro_2025_145086 crossref_primary_10_1029_2023JD039615 crossref_primary_10_1088_1748_9326_ad101c crossref_primary_10_1111_gcb_17291 crossref_primary_10_1016_j_ejrh_2024_101968 crossref_primary_10_1016_j_seares_2024_102470 crossref_primary_10_1016_j_jcou_2024_102905 crossref_primary_10_1029_2023GL107106 crossref_primary_10_3389_fagro_2023_1284173 crossref_primary_10_1002_joc_8727 crossref_primary_10_1016_j_plaphy_2024_109392 crossref_primary_10_1016_j_scitotenv_2024_175274 crossref_primary_10_3390_w16162226 crossref_primary_10_1016_j_jhydrol_2024_130874 crossref_primary_10_1016_j_jhydrol_2025_132836 crossref_primary_10_1088_1748_9326_acfe21 crossref_primary_10_1021_acsestwater_4c00896 crossref_primary_10_1007_s00382_024_07565_9 crossref_primary_10_1038_s41598_024_65140_y crossref_primary_10_3390_su151511866 crossref_primary_10_3390_cli12070095 crossref_primary_10_3389_fpls_2024_1294895 crossref_primary_10_1016_j_ecolind_2025_113314 crossref_primary_10_1111_gcb_70102 |
Cites_doi | 10.1088/1748-9326/aaee96 10.1016/j.wace.2020.100299 10.1088/1748-9326/ac5712 10.1038/s41558-021-01092-9 10.1038/s41598-019-47291-5 10.1038/s41558-019-0600-z 10.1126/sciadv.aau3487 10.1029/2018GL080463 10.1038/s41586-021-03695-w 10.1038/nature12915 10.1146/annurev-earth-071719-055228 10.3390/atmos12111434 10.5194/essd-12-2959-2020 10.1002/2017RG000567 10.1038/s41558-021-01156-w 10.1073/pnas.1718031115 10.5194/gmd-9-1937-2016 10.1126/sciadv.aaw1976 10.1175/JCLI-D-21-0200.1 10.1126/science.373.6553.372 10.1073/pnas.1921628117 10.1126/sciadv.aau5740 10.1038/nclimate2617 10.1038/s43017-020-0060-z 10.5194/essd-5-71-2013 10.1073/pnas.1422945112 10.1021/acs.est.1c00024 10.1038/s41559-016-0058 10.1126/science.aaz9600 10.1061/(ASCE)1084-0699(2007)12:4(394) 10.1073/pnas.1904955116 10.1126/science.aai8579 10.1126/sciadv.1700263 10.1038/s41467-018-07954-9 10.1038/s41558-019-0637-z 10.1146/annurev-environ-102017-025835 10.1038/s41558-018-0156-3 10.1111/nyas.13912 10.1038/s41598-019-41932-5 10.1038/s41597-020-0453-3 10.1038/nature09763 10.1038/s41558-021-01170-y 10.1002/wcc.252 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors |
Copyright_xml | – notice: Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1126/sciadv.abo1638 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Increasing global concurrent climate extremes |
EISSN | 2375-2548 |
ExternalDocumentID | PMC10005174 36897946 10_1126_sciadv_abo1638 |
Genre | Journal Article |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADPDF AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCGUY BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD OVEED RHI RPM TEORI BBORY NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c457t-df95fb97fa7acd77d07bdcbbb3e107912f351b2bc77e138b66122ca049ac8abf3 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:37:47 EDT 2025 Fri Jul 11 03:43:56 EDT 2025 Thu Jan 02 22:52:05 EST 2025 Tue Jul 01 03:11:47 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-df95fb97fa7acd77d07bdcbbb3e107912f351b2bc77e138b66122ca049ac8abf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7468-2409 0000-0001-7161-5959 0000-0001-7266-4197 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abo1638 |
PMID | 36897946 |
PQID | 2786102699 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10005174 proquest_miscellaneous_2786102699 pubmed_primary_36897946 crossref_primary_10_1126_sciadv_abo1638 crossref_citationtrail_10_1126_sciadv_abo1638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-10 |
PublicationDateYYYYMMDD | 2023-03-10 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2023 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 Rohde R. (e_1_3_2_33_2) 2013; 1 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Rohde R. (e_1_3_2_46_2) 2013; 1 e_1_3_2_30_2 Normile D. (e_1_3_2_17_2) 2021 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_7_2 doi: 10.1088/1748-9326/aaee96 – ident: e_1_3_2_10_2 doi: 10.1016/j.wace.2020.100299 – ident: e_1_3_2_31_2 doi: 10.1088/1748-9326/ac5712 – ident: e_1_3_2_3_2 doi: 10.1038/s41558-021-01092-9 – ident: e_1_3_2_42_2 doi: 10.1038/s41598-019-47291-5 – ident: e_1_3_2_22_2 doi: 10.1038/s41558-019-0600-z – volume: 1 start-page: 1000103 year: 2013 ident: e_1_3_2_46_2 article-title: Berkeley earth temperature averaging process publication-title: Geoinform. Geostat. Overview. – ident: e_1_3_2_13_2 doi: 10.1126/sciadv.aau3487 – ident: e_1_3_2_39_2 doi: 10.1029/2018GL080463 – ident: e_1_3_2_20_2 doi: 10.1038/s41586-021-03695-w – ident: e_1_3_2_44_2 doi: 10.1038/nature12915 – ident: e_1_3_2_34_2 – ident: e_1_3_2_2_2 doi: 10.1146/annurev-earth-071719-055228 – ident: e_1_3_2_15_2 doi: 10.3390/atmos12111434 – ident: e_1_3_2_36_2 doi: 10.5194/essd-12-2959-2020 – ident: e_1_3_2_38_2 doi: 10.1002/2017RG000567 – ident: e_1_3_2_30_2 doi: 10.1038/s41558-021-01156-w – ident: e_1_3_2_24_2 doi: 10.1073/pnas.1718031115 – ident: e_1_3_2_35_2 doi: 10.5194/gmd-9-1937-2016 – ident: e_1_3_2_21_2 doi: 10.1126/sciadv.aaw1976 – ident: e_1_3_2_40_2 doi: 10.1175/JCLI-D-21-0200.1 – ident: e_1_3_2_16_2 doi: 10.1126/science.373.6553.372 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.1921628117 – ident: e_1_3_2_9_2 doi: 10.1126/sciadv.aau5740 – ident: e_1_3_2_27_2 doi: 10.1038/nclimate2617 – ident: e_1_3_2_5_2 doi: 10.1038/s43017-020-0060-z – ident: e_1_3_2_47_2 doi: 10.5194/essd-5-71-2013 – ident: e_1_3_2_8_2 doi: 10.1073/pnas.1422945112 – ident: e_1_3_2_18_2 doi: 10.1021/acs.est.1c00024 – ident: e_1_3_2_25_2 doi: 10.1038/s41559-016-0058 – ident: e_1_3_2_28_2 doi: 10.1126/science.aaz9600 – ident: e_1_3_2_48_2 doi: 10.1061/(ASCE)1084-0699(2007)12:4(394) – ident: e_1_3_2_12_2 doi: 10.1073/pnas.1904955116 – ident: e_1_3_2_19_2 doi: 10.1126/science.aai8579 – ident: e_1_3_2_6_2 doi: 10.1126/sciadv.1700263 – year: 2021 ident: e_1_3_2_17_2 article-title: Zhengzhou subway flooding a warning for other major cities publication-title: Science – volume: 1 start-page: 1000101 year: 2013 ident: e_1_3_2_33_2 article-title: A new estimate of the average earth surface land temperature spanning 1753 to 2011 publication-title: Geoinfor. Geostat. An Overview. – ident: e_1_3_2_37_2 doi: 10.1038/s41467-018-07954-9 – ident: e_1_3_2_14_2 doi: 10.1038/s41558-019-0637-z – ident: e_1_3_2_43_2 doi: 10.1146/annurev-environ-102017-025835 – ident: e_1_3_2_4_2 doi: 10.1038/s41558-018-0156-3 – ident: e_1_3_2_41_2 doi: 10.1111/nyas.13912 – ident: e_1_3_2_23_2 doi: 10.1038/s41598-019-41932-5 – ident: e_1_3_2_32_2 doi: 10.1038/s41597-020-0453-3 – ident: e_1_3_2_26_2 doi: 10.1038/nature09763 – ident: e_1_3_2_45_2 doi: 10.1038/s41558-021-01170-y – ident: e_1_3_2_11_2 doi: 10.1002/wcc.252 |
SSID | ssj0001466519 |
Score | 2.5882368 |
Snippet | Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eabo1638 |
SubjectTerms | Atmospheric Science Earth, Environmental, Ecological, and Space Sciences SciAdv r-articles |
Title | Global concurrent climate extremes exacerbated by anthropogenic climate change |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36897946 https://www.proquest.com/docview/2786102699 https://pubmed.ncbi.nlm.nih.gov/PMC10005174 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XryI9RkfJYKgHrY0m2xm9yAi4gNBTxZ6C7ubBAsl1T7E_ntnk21trYKXEJLJBmZ2dubbxzeEnHIcGJkSikpQQCMT5ehSLUkNT4OWgEhCOd_x9Bw_tKPHDu98739yChz-Cu1sPan2oNf8fJ9cocNfzh2AUelHE5Vmk4tVsoZRCWw1gyeX6pfzLVEc87LOBwuBU8RFwnE4LjexGKOWEs-f-yfnAtLdJtlwmaR_XZm-TlayYovUna8O_XNHKH2xTZ4rYn8foa-p6Jh80-tiqpr5ODTbCcIh3iiDGsZnqa8nvnL1E7B7dc1MujolvEPad7cvNw_U1VGgJuIwomkuea4l5AqUSQHSFujUaK3DDMGfDFge8kAzbQCyIBQaQzZjRiF2UEYonYe7pFb0i2yf-AF-HSKoUhJhIaCVDQ9CZZciMdanAjxCp5pLjCMZt7UuekkJNlicVJpOnKY9cjaTf6voNf6UPJkaIkEPsMsaqsj642HCQGAOyGIpPbJXGWbWVhgLaSn0PSIWTDYTsOzai2-K7mvJsh20Khrvg3_8-JCs2zL0tNznd0Rqo8E4O8ZkZaQbJcjH630naJQ98gsy_u4I |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+concurrent+climate+extremes+exacerbated+by+anthropogenic+climate+change&rft.jtitle=Science+advances&rft.au=Zhou%2C+Sha&rft.au=Yu%2C+Bofu&rft.au=Zhang%2C+Yao&rft.date=2023-03-10&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=9&rft.issue=10&rft.spage=eabo1638&rft_id=info:doi/10.1126%2Fsciadv.abo1638&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |