ExsD Inhibits Expression of the Pseudomonas aeruginosa Type III Secretion System by Disrupting ExsA Self-Association and DNA Binding Activity
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 192; no. 6; pp. 1479 - 1486 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.03.2010
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. ExsA-dependent transcription is coupled to type III secretory activity through a cascade of three interacting proteins (ExsC, ExsD, and ExsE). Genetic data suggest that ExsD functions as an antiactivator by preventing ExsA-dependent transcription, ExsC functions as an anti-antiactivator by binding to and inhibiting ExsD, and ExsE binds to and inhibits ExsC. T3SS gene expression is activated in response to low-calcium growth conditions or contact with host cells, both of which trigger secretion of ExsE. In the present study we reconstitute the T3SS regulatory cascade in vitro using purified components and find that the ExsD.ExsA complex lacks DNA binding activity. As predicted by the genetic data, ExsC addition dissociates the ExsD.ExsA complex through formation of an ExsD.ExsC complex, thereby releasing ExsA to bind T3SS promoters and activate transcription. Addition of ExsE to the purified system results in formation of the ExsE.ExsC complex and prevents ExsC from dissociating the ExsD.ExsA complex. Although purified ExsA is monomeric in solution, bacterial two-hybrid analyses demonstrate that ExsA can self-associate and that ExsD inhibits self-association of ExsA. Based on these data we propose a model in which ExsD regulates ExsA-dependent transcription by inhibiting the DNA-binding and self-association properties of ExsA. Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. ExsA-dependent transcription is coupled to type III secretory activity through a cascade of three interacting proteins (ExsC, ExsD, and ExsE). Genetic data suggest that ExsD functions as an antiactivator by preventing ExsA-dependent transcription, ExsC functions as an anti-antiactivator by binding to and inhibiting ExsD, and ExsE binds to and inhibits ExsC. T3SS gene expression is activated in response to low-calcium growth conditions or contact with host cells, both of which trigger secretion of ExsE. In the present study we reconstitute the T3SS regulatory cascade in vitro using purified components and find that the ExsD*ExsA complex lacks DNA binding activity. As predicted by the genetic data, ExsC addition dissociates the ExsD-ExsA complex through formation of an ExsD-ExsC complex, thereby releasing ExsA to bind T3SS promoters and activate transcription. Addition of ExsE to the purified system results in formation of the ExsE-ExsC complex and prevents ExsC from dissociating the ExsD-ExsA complex. Although purified ExsA is monomeric in solution, bacterial two-hybrid analyses demonstrate that ExsA can self-associate and that ExsD inhibits self-association of ExsA. Based on these data we propose a model in which ExsD regulates ExsA-dependent transcription by inhibiting the DNA-binding and self-association properties of ExsA. [PUBLICATION ABSTRACT] Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. ExsA-dependent transcription is coupled to type III secretory activity through a cascade of three interacting proteins (ExsC, ExsD, and ExsE). Genetic data suggest that ExsD functions as an antiactivator by preventing ExsA-dependent transcription, ExsC functions as an anti-antiactivator by binding to and inhibiting ExsD, and ExsE binds to and inhibits ExsC. T3SS gene expression is activated in response to low-calcium growth conditions or contact with host cells, both of which trigger secretion of ExsE. In the present study we reconstitute the T3SS regulatory cascade in vitro using purified components and find that the ExsD·ExsA complex lacks DNA binding activity. As predicted by the genetic data, ExsC addition dissociates the ExsD·ExsA complex through formation of an ExsD·ExsC complex, thereby releasing ExsA to bind T3SS promoters and activate transcription. Addition of ExsE to the purified system results in formation of the ExsE·ExsC complex and prevents ExsC from dissociating the ExsD·ExsA complex. Although purified ExsA is monomeric in solution, bacterial two-hybrid analyses demonstrate that ExsA can self-associate and that ExsD inhibits self-association of ExsA. Based on these data we propose a model in which ExsD regulates ExsA-dependent transcription by inhibiting the DNA-binding and self-association properties of ExsA. Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. ExsA-dependent transcription is coupled to type III secretory activity through a cascade of three interacting proteins (ExsC, ExsD, and ExsE). Genetic data suggest that ExsD functions as an antiactivator by preventing ExsA-dependent transcription, ExsC functions as an anti-antiactivator by binding to and inhibiting ExsD, and ExsE binds to and inhibits ExsC. T3SS gene expression is activated in response to low-calcium growth conditions or contact with host cells, both of which trigger secretion of ExsE. In the present study we reconstitute the T3SS regulatory cascade in vitro using purified components and find that the ExsD.ExsA complex lacks DNA binding activity. As predicted by the genetic data, ExsC addition dissociates the ExsD.ExsA complex through formation of an ExsD.ExsC complex, thereby releasing ExsA to bind T3SS promoters and activate transcription. Addition of ExsE to the purified system results in formation of the ExsE.ExsC complex and prevents ExsC from dissociating the ExsD.ExsA complex. Although purified ExsA is monomeric in solution, bacterial two-hybrid analyses demonstrate that ExsA can self-associate and that ExsD inhibits self-association of ExsA. Based on these data we propose a model in which ExsD regulates ExsA-dependent transcription by inhibiting the DNA-binding and self-association properties of ExsA.Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. ExsA-dependent transcription is coupled to type III secretory activity through a cascade of three interacting proteins (ExsC, ExsD, and ExsE). Genetic data suggest that ExsD functions as an antiactivator by preventing ExsA-dependent transcription, ExsC functions as an anti-antiactivator by binding to and inhibiting ExsD, and ExsE binds to and inhibits ExsC. T3SS gene expression is activated in response to low-calcium growth conditions or contact with host cells, both of which trigger secretion of ExsE. In the present study we reconstitute the T3SS regulatory cascade in vitro using purified components and find that the ExsD.ExsA complex lacks DNA binding activity. As predicted by the genetic data, ExsC addition dissociates the ExsD.ExsA complex through formation of an ExsD.ExsC complex, thereby releasing ExsA to bind T3SS promoters and activate transcription. Addition of ExsE to the purified system results in formation of the ExsE.ExsC complex and prevents ExsC from dissociating the ExsD.ExsA complex. Although purified ExsA is monomeric in solution, bacterial two-hybrid analyses demonstrate that ExsA can self-associate and that ExsD inhibits self-association of ExsA. Based on these data we propose a model in which ExsD regulates ExsA-dependent transcription by inhibiting the DNA-binding and self-association properties of ExsA. |
Author | Christopher A. Vakulskas Evan D. Brutinel Timothy L. Yahr |
AuthorAffiliation | Department of Microbiology, University of Iowa, Iowa City, Iowa |
AuthorAffiliation_xml | – name: Department of Microbiology, University of Iowa, Iowa City, Iowa |
Author_xml | – sequence: 1 givenname: Evan D. surname: Brutinel fullname: Brutinel, Evan D. organization: Department of Microbiology, University of Iowa, Iowa City, Iowa – sequence: 2 givenname: Christopher A. surname: Vakulskas fullname: Vakulskas, Christopher A. organization: Department of Microbiology, University of Iowa, Iowa City, Iowa – sequence: 3 givenname: Timothy L. surname: Yahr fullname: Yahr, Timothy L. organization: Department of Microbiology, University of Iowa, Iowa City, Iowa |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22486044$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20008065$$D View this record in MEDLINE/PubMed |
BookMark | eNp90stuEzEUBmALFdE0sGKPDBJlgab4MjdvkJImQKoKkFrWluPxJI5m7OAz0zYPwTvjXMqlQiwsL_ydX-fYPkFHzjuD0HNKzihl5buL8RmhaVYkRDxCA0ryIilLzo7QgBBGE0EFP0YnACsSWZqxJ-iYEUJKkmcD9GN6BxM8c0s7tx3g6d06GADrHfY17pYGfwXTV771TgFWJvQL6zwofL1ZGzybzfCV0cF024KrDXSmxfMNnlgI_bqzbhEDYRRNUycjAK-t2lHlKjz5PMJj66qtGunO3thu8xQ9rlUD5tlhH6JvH6bX55-Syy8fZ-ejy0THObuk4hWjc8aKgpZMcZWaShmV88rkvOQ01dvpSM0zUVeCZcwwwbmolU4LJbK05kP0fp-77uetqbRxXVCNXAfbqrCRXln594mzS7nwN5LFi804iwFvDgHBf-8NdLK1oE3TKGd8D7LgPGekIDTK0_9KRpnI09jfEL16AFe-Dy5eg4yTkjKPK6IXfzb-q-P7B43g9QEo0Kqpg3Lawm_H0jInaRod3TsdPEAwtdS22z1OnNc2khK5_VzyYix3n0sSEWvePqi5j_23frnXS7tY3tpgpIJWruaSCiZzSdNC8J_dr9nx |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1128_JB_01199_13 crossref_primary_10_1371_journal_pone_0136533 crossref_primary_10_1128_JB_00049_16 crossref_primary_10_1074_jbc_RA117_001421 crossref_primary_10_1128_MMBR_00052_14 crossref_primary_10_1038_s41598_020_66555_z crossref_primary_10_1128_JB_00129_10 crossref_primary_10_3390_pathogens9090766 crossref_primary_10_1093_infdis_jiw295 crossref_primary_10_1128_JB_01662_09 crossref_primary_10_1098_rsob_120131 crossref_primary_10_1042_BCJ20220527 crossref_primary_10_1128_mBio_00831_21 crossref_primary_10_1128_spectrum_01027_22 crossref_primary_10_1016_j_jmb_2011_07_043 crossref_primary_10_1128_JB_00209_19 crossref_primary_10_1128_mbio_00106_25 crossref_primary_10_1128_jb_00015_23 crossref_primary_10_1128_JB_01969_14 crossref_primary_10_1128_msystems_00204_20 crossref_primary_10_4161_viru_1_4_12318 crossref_primary_10_1016_j_bbrc_2011_11_070 crossref_primary_10_1177_1534734614545878 crossref_primary_10_1128_JB_00990_13 crossref_primary_10_1128_msphere_00069_23 crossref_primary_10_1016_j_tim_2010_12_001 crossref_primary_10_1099_mic_0_056127_0 crossref_primary_10_3389_fmicb_2016_01434 crossref_primary_10_1080_17460441_2020_1803274 crossref_primary_10_1128_AAC_02242_15 crossref_primary_10_1128_JB_00336_19 crossref_primary_10_1111_febs_12103 crossref_primary_10_1128_JB_00231_15 crossref_primary_10_1128_JB_00159_11 crossref_primary_10_1128_JB_01079_10 crossref_primary_10_1073_pnas_1400782111 crossref_primary_10_1128_JB_00107_12 crossref_primary_10_1016_j_micres_2021_126719 |
Cites_doi | 10.1111/j.1365-2958.2006.05412.x 10.1128/JB.184.20.5529-5532.2002 10.1073/pnas.0503005102 10.1128/jb.173.20.6460-6468.1991 10.1128/JB.00884-06 10.1099/mic.0.26703-0 10.1111/j.1365-2958.2008.06179.x 10.1016/S1534-5807(03)00019-4 10.1128/JB.00902-09 10.1073/pnas.0704843104 10.1128/CMR.00013-07 10.1074/jbc.M611664200 10.1016/S0378-1119(98)00601-5 10.1016/j.devcel.2004.08.020 10.1038/nrmicro2199 10.1128/IAI.00664-07 10.1016/S0021-9258(18)65874-0 10.1016/S0378-1119(98)00130-9 10.1016/0092-8674(95)90467-0 10.1002/pro.48 10.1046/j.1365-2958.2001.02385.x 10.1128/JB.00002-09 10.1111/j.1365-2958.2004.04128.x 10.1111/j.1365-2958.2008.06237.x 10.1016/S0092-8674(00)81599-8 10.1128/JB.187.4.1441-1454.2005 10.1111/j.1365-2958.2006.05567.x 10.1111/j.1365-2958.2007.06042.x 10.1016/S0076-6879(02)58087-3 10.1073/pnas.0507407103 10.1111/j.1365-2958.2005.04645.x 10.1128/JB.186.22.7575-7585.2004 10.1073/pnas.0504405102 10.1074/jbc.M109.003533 10.1016/j.mib.2008.02.010 10.1046/j.1365-2958.2002.03228.x 10.1073/pnas.0511090103 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Mar 2010 Copyright © 2010, American Society for Microbiology 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Mar 2010 – notice: Copyright © 2010, American Society for Microbiology 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7X8 5PM |
DOI | 10.1128/JB.01457-09 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic |
DatabaseTitleList | Technology Research Database Genetics Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 1486 |
ExternalDocumentID | PMC2832532 1974922261 20008065 22486044 10_1128_JB_01457_09 jb_192_6_1479 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01-AI055042-07 – fundername: NIAID NIH HHS grantid: R01 AI055042 |
GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH AGCDD AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ZY4 ~02 ~KM .GJ 186 1VV 3O- 8WZ 9M8 A6W ADXHL AFFDN AFFNX AI. AIDAL AJUXI IQODW MVM NHB OHT P-O QZG VH1 WHG Y6R ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 7X8 5PM |
ID | FETCH-LOGICAL-c457t-d3d21b2277182a3a4edaea63de638314c00800f359fd9252e29339fac47a954f3 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Thu Aug 21 14:05:35 EDT 2025 Fri Jul 11 04:57:22 EDT 2025 Fri Jul 11 00:01:15 EDT 2025 Mon Jun 30 08:42:52 EDT 2025 Mon Jul 21 05:37:31 EDT 2025 Mon Jul 21 09:17:11 EDT 2025 Tue Jul 01 03:26:05 EDT 2025 Thu Apr 24 22:51:36 EDT 2025 Wed May 18 15:26:45 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Pseudomonadales Bacteria Pseudomonadaceae Pseudomonas aeruginosa Type III secretion system |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c457t-d3d21b2277182a3a4edaea63de638314c00800f359fd9252e29339fac47a954f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 20008065 |
PQID | 227086708 |
PQPubID | 40724 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1128_JB_01457_09 highwire_asm_jb_192_6_1479 crossref_primary_10_1128_JB_01457_09 proquest_miscellaneous_21296493 proquest_journals_227086708 pascalfrancis_primary_22486044 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2832532 proquest_miscellaneous_733620701 pubmed_primary_20008065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-00 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-00 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2010 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | (e_1_3_2_6_2) 2001; 40 (e_1_3_2_19_2) 2008; 67 (e_1_3_2_38_2) 2007; 282 e_1_3_2_21_2 (e_1_3_2_29_2) 2009; 284 (e_1_3_2_25_2) 2007; 63 (e_1_3_2_28_2) 2005; 102 (e_1_3_2_33_2) 2006; 103 (e_1_3_2_15_2) 1998; 212 e_1_3_2_8_2 (e_1_3_2_20_2) 1998; 94 (e_1_3_2_37_2) 2006; 62 e_1_3_2_17_2 (e_1_3_2_22_2) 2002; 46 e_1_3_2_18_2 (e_1_3_2_35_2) 2003; 4 (e_1_3_2_10_2) 2004; 53 e_1_3_2_30_2 (e_1_3_2_31_2) 2005; 102 e_1_3_2_32_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 (e_1_3_2_26_2) 1999; 227 e_1_3_2_3_2 e_1_3_2_36_2 (e_1_3_2_13_2) 2004; 7 e_1_3_2_14_2 (e_1_3_2_23_2) 1995; 82 (e_1_3_2_27_2) 2005; 56 (e_1_3_2_34_2) 1956; 218 (e_1_3_2_16_2) 2004; 150 (e_1_3_2_24_2) 2008; 68 (e_1_3_2_9_2) 2002; 358 (e_1_3_2_7_2) 2007; 104 (e_1_3_2_2_2) 2009; 18 19235906 - Protein Sci. 2009 Mar;18(3):503-13 9741622 - Cell. 1998 Sep 4;94(5):573-83 15073294 - Microbiology. 2004 Apr;150(Pt 4):843-51 16980486 - J Bacteriol. 2006 Oct;188(19):6832-40 17197437 - J Biol Chem. 2007 Mar 2;282(9):6136-42 19680249 - Nat Rev Microbiol. 2009 Sep;7(9):654-65 13278318 - J Biol Chem. 1956 Jan;218(1):97-106 15916611 - Mol Microbiol. 2005 Jun;56(6):1627-35 17233828 - Mol Microbiol. 2007 Feb;63(4):980-94 18047567 - Mol Microbiol. 2008 Jan;67(2):241-53 1655713 - J Bacteriol. 1991 Oct;173(20):6460-8 18396449 - Curr Opin Microbiol. 2008 Apr;11(2):128-33 12270809 - J Bacteriol. 2002 Oct;184(20):5529-32 12586068 - Dev Cell. 2003 Feb;4(2):253-63 16373506 - Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):171-6 17921255 - Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16474-9 18373522 - Mol Microbiol. 2008 May;68(3):657-71 17635873 - Infect Immun. 2007 Sep;75(9):4432-9 19369699 - J Biol Chem. 2009 Jun 5;284(23):15762-70 11309123 - Mol Microbiol. 2001 Apr;40(2):414-21 16477007 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2839-44 16995895 - Mol Microbiol. 2006 Nov;62(3):631-40 9661666 - Gene. 1998 May 28;212(1):77-86 15516570 - J Bacteriol. 2004 Nov;186(22):7575-85 15985546 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9930-5 7671300 - Cell. 1995 Sep 8;82(5):701-8 10023058 - Gene. 1999 Feb 18;227(2):197-203 15687209 - J Bacteriol. 2005 Feb;187(4):1441-54 15225323 - Mol Microbiol. 2004 Jul;53(1):297-308 19376850 - J Bacteriol. 2009 Jun;191(12):3811-21 12421316 - Mol Microbiol. 2002 Nov;46(4):1123-33 15911752 - Proc Natl Acad Sci U S A. 2005 May 31;102(22):8006-11 18430138 - Mol Microbiol. 2008 Jun;68(5):1085-95 15525535 - Dev Cell. 2004 Nov;7(5):745-54 19717612 - J Bacteriol. 2009 Nov;191(21):6654-64 12474385 - Methods Enzymol. 2002;358:153-61 17934073 - Clin Microbiol Rev. 2007 Oct;20(4):535-49 |
References_xml | – volume: 62 start-page: 631 year: 2006 ident: e_1_3_2_37_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05412.x – ident: e_1_3_2_11_2 doi: 10.1128/JB.184.20.5529-5532.2002 – volume: 102 start-page: 8006 year: 2005 ident: e_1_3_2_28_2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0503005102 – ident: e_1_3_2_12_2 doi: 10.1128/jb.173.20.6460-6468.1991 – ident: e_1_3_2_21_2 doi: 10.1128/JB.00884-06 – volume: 150 start-page: 843 year: 2004 ident: e_1_3_2_16_2 publication-title: Microbiology doi: 10.1099/mic.0.26703-0 – ident: e_1_3_2_3_2 doi: 10.1111/j.1365-2958.2008.06179.x – volume: 4 start-page: 253 year: 2003 ident: e_1_3_2_35_2 publication-title: Dev. Cell doi: 10.1016/S1534-5807(03)00019-4 – ident: e_1_3_2_32_2 doi: 10.1128/JB.00902-09 – volume: 104 start-page: 16474 year: 2007 ident: e_1_3_2_7_2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0704843104 – ident: e_1_3_2_8_2 doi: 10.1128/CMR.00013-07 – volume: 282 start-page: 6136 year: 2007 ident: e_1_3_2_38_2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M611664200 – volume: 227 start-page: 197 year: 1999 ident: e_1_3_2_26_2 publication-title: Gene doi: 10.1016/S0378-1119(98)00601-5 – volume: 7 start-page: 745 year: 2004 ident: e_1_3_2_13_2 publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.08.020 – ident: e_1_3_2_14_2 doi: 10.1038/nrmicro2199 – ident: e_1_3_2_30_2 doi: 10.1128/IAI.00664-07 – volume: 218 start-page: 97 year: 1956 ident: e_1_3_2_34_2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)65874-0 – volume: 212 start-page: 77 year: 1998 ident: e_1_3_2_15_2 publication-title: Gene doi: 10.1016/S0378-1119(98)00130-9 – volume: 82 start-page: 701 year: 1995 ident: e_1_3_2_23_2 publication-title: Cell doi: 10.1016/0092-8674(95)90467-0 – volume: 18 start-page: 503 year: 2009 ident: e_1_3_2_2_2 publication-title: Protein Sci. doi: 10.1002/pro.48 – volume: 40 start-page: 414 year: 2001 ident: e_1_3_2_6_2 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2001.02385.x – ident: e_1_3_2_4_2 doi: 10.1128/JB.00002-09 – volume: 53 start-page: 297 year: 2004 ident: e_1_3_2_10_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04128.x – volume: 68 start-page: 1085 year: 2008 ident: e_1_3_2_24_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06237.x – volume: 94 start-page: 573 year: 1998 ident: e_1_3_2_20_2 publication-title: Cell doi: 10.1016/S0092-8674(00)81599-8 – ident: e_1_3_2_17_2 doi: 10.1128/JB.187.4.1441-1454.2005 – volume: 63 start-page: 980 year: 2007 ident: e_1_3_2_25_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05567.x – volume: 67 start-page: 241 year: 2008 ident: e_1_3_2_19_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.06042.x – volume: 358 start-page: 153 year: 2002 ident: e_1_3_2_9_2 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)58087-3 – volume: 103 start-page: 171 year: 2006 ident: e_1_3_2_33_2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507407103 – volume: 56 start-page: 1627 year: 2005 ident: e_1_3_2_27_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04645.x – ident: e_1_3_2_36_2 doi: 10.1128/JB.186.22.7575-7585.2004 – volume: 102 start-page: 9930 year: 2005 ident: e_1_3_2_31_2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504405102 – volume: 284 start-page: 15762 year: 2009 ident: e_1_3_2_29_2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.003533 – ident: e_1_3_2_5_2 doi: 10.1016/j.mib.2008.02.010 – volume: 46 start-page: 1123 year: 2002 ident: e_1_3_2_22_2 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.03228.x – ident: e_1_3_2_18_2 doi: 10.1073/pnas.0511090103 – reference: 11309123 - Mol Microbiol. 2001 Apr;40(2):414-21 – reference: 15073294 - Microbiology. 2004 Apr;150(Pt 4):843-51 – reference: 17934073 - Clin Microbiol Rev. 2007 Oct;20(4):535-49 – reference: 18396449 - Curr Opin Microbiol. 2008 Apr;11(2):128-33 – reference: 19235906 - Protein Sci. 2009 Mar;18(3):503-13 – reference: 15916611 - Mol Microbiol. 2005 Jun;56(6):1627-35 – reference: 18373522 - Mol Microbiol. 2008 May;68(3):657-71 – reference: 10023058 - Gene. 1999 Feb 18;227(2):197-203 – reference: 12270809 - J Bacteriol. 2002 Oct;184(20):5529-32 – reference: 9741622 - Cell. 1998 Sep 4;94(5):573-83 – reference: 16980486 - J Bacteriol. 2006 Oct;188(19):6832-40 – reference: 15687209 - J Bacteriol. 2005 Feb;187(4):1441-54 – reference: 17233828 - Mol Microbiol. 2007 Feb;63(4):980-94 – reference: 15516570 - J Bacteriol. 2004 Nov;186(22):7575-85 – reference: 17197437 - J Biol Chem. 2007 Mar 2;282(9):6136-42 – reference: 12474385 - Methods Enzymol. 2002;358:153-61 – reference: 19680249 - Nat Rev Microbiol. 2009 Sep;7(9):654-65 – reference: 9661666 - Gene. 1998 May 28;212(1):77-86 – reference: 16373506 - Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):171-6 – reference: 15525535 - Dev Cell. 2004 Nov;7(5):745-54 – reference: 16995895 - Mol Microbiol. 2006 Nov;62(3):631-40 – reference: 19717612 - J Bacteriol. 2009 Nov;191(21):6654-64 – reference: 18430138 - Mol Microbiol. 2008 Jun;68(5):1085-95 – reference: 1655713 - J Bacteriol. 1991 Oct;173(20):6460-8 – reference: 15911752 - Proc Natl Acad Sci U S A. 2005 May 31;102(22):8006-11 – reference: 17635873 - Infect Immun. 2007 Sep;75(9):4432-9 – reference: 17921255 - Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16474-9 – reference: 19369699 - J Biol Chem. 2009 Jun 5;284(23):15762-70 – reference: 19376850 - J Bacteriol. 2009 Jun;191(12):3811-21 – reference: 12586068 - Dev Cell. 2003 Feb;4(2):253-63 – reference: 7671300 - Cell. 1995 Sep 8;82(5):701-8 – reference: 15985546 - Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9930-5 – reference: 18047567 - Mol Microbiol. 2008 Jan;67(2):241-53 – reference: 15225323 - Mol Microbiol. 2004 Jul;53(1):297-308 – reference: 13278318 - J Biol Chem. 1956 Jan;218(1):97-106 – reference: 12421316 - Mol Microbiol. 2002 Nov;46(4):1123-33 – reference: 16477007 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2839-44 |
SSID | ssj0014452 |
Score | 2.175661 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is... Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1479 |
SubjectTerms | Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Binding sites Biological and medical sciences Deoxyribonucleic acid DNA DNA, Bacterial Eukaryotes Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial - physiology Growth conditions Microbiology Miscellaneous Molecular Biology of Pathogens Mutation Protein Binding Pseudomonas aeruginosa Pseudomonas aeruginosa - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism Signal Transduction Trans-Activators - genetics Trans-Activators - metabolism Transcription, Genetic |
Title | ExsD Inhibits Expression of the Pseudomonas aeruginosa Type III Secretion System by Disrupting ExsA Self-Association and DNA Binding Activity |
URI | http://jb.asm.org/content/192/6/1479.abstract https://www.ncbi.nlm.nih.gov/pubmed/20008065 https://www.proquest.com/docview/227086708 https://www.proquest.com/docview/21296493 https://www.proquest.com/docview/733620701 https://pubmed.ncbi.nlm.nih.gov/PMC2832532 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFICtMoTEC-JONhh-2BNVRuI4SfO4QaetGoWHDpUny3EcWlbSaWmkjf_Af-acOLeOTlweGlWJ5UQ5X-xz7HMhZC-VXOrQj2ymwFzlSejYkQwc24mYTjio5HGA0cgfxsHxGR9N_Wmv1_VaKlbxvvqxMa7kf6QK50CuGCX7D5JtOoUT8B_kC0eQMBz_SsbDq_x9f57N5jEu_-uryqk1qzf-P-W6SJbwODLvS31ZfJ1ny1yaZdeTk5N-jjpjCYBJ6Iy6aDLPL4uL0hkauj-ANovUlq0Qje_y-KAfz01ADEZGYAGKW9Tc2KSDXlu9B6DgBsY_AFX51u34szwvFvm5vJn4oF1y_SJnXciqqIlq3QK33GvHrWqoxUymWLTIzEQbztXjc8Q6IHZHW5ebQjS_TwMMQxtGh_u4aRraTtTOdvUO__ijODo7PRWT4XRyh9xlYGWUseLTxkMITE3fbJZXD1WFd0Lnbztdrys0dZJp9LGVOXxmqamPssmAuemH21FsJg_Jg0pU9MDg9Yj0dPaY3DM1Sq-fkJ8IGa0hoy1kdJlSgIx2IKMtZBQhowAZbSCjBjIaX9MWMoqQ0ZuQUYCMAmS0gozWkD0lZ0fDybtju6rhYSt4PSs78RLmxgxeLxiy0pNcJ1LLwEs0DPyey1VpsqSeH6VJxHymQf30olQqHsrI56n3jGxly0y_IFT5cRqrgeI6SLmnwtj1eIAKs1Iuc5S2yJtaEEJVCe6xzspClIYuG4jRoSilJpzIIntN4wuT12Vzs-1aokLm38W3WACOIhCInkV212TcdARq8SBwOLfITi10UQ0bOVwMnUEAP4u8bq7CmI4bdTLTywKauOgMEXkWobe0wCSmDGZr1yLPDUPtzUsrMPAtEq7R1TTAhPLrV7L5rEwsj2XLfI9t__m2O-R--02_JFury0K_Au18Fe-W39AvIPvsMw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ExsD+inhibits+expression+of+the+Pseudomonas+aeruginosa+type+III+secretion+system+by+disrupting+ExsA+self-association+and+DNA+binding+activity&rft.jtitle=Journal+of+bacteriology&rft.au=Brutinel%2C+Evan+D&rft.au=Vakulskas%2C+Christopher+A&rft.au=Yahr%2C+Timothy+L&rft.date=2010-03-01&rft.issn=1098-5530&rft.eissn=1098-5530&rft.volume=192&rft.issue=6&rft.spage=1479&rft_id=info:doi/10.1128%2FJB.01457-09&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |