Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery

Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summar...

Full description

Saved in:
Bibliographic Details
Published inResearch (Washington) Vol. 6; p. 0148
Main Authors Qiu, Chong, Xia, Fei, Zhang, Junzhe, Shi, Qiaoli, Meng, Yuqing, Wang, Chen, Pang, Huanhuan, Gu, Liwei, Xu, Chengchao, Guo, Qiuyan, Wang, Jigang
Format Journal Article
LanguageEnglish
Published United States AAAS 2023
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
AbstractList Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Author Xia, Fei
Meng, Yuqing
Guo, Qiuyan
Qiu, Chong
Zhang, Junzhe
Xu, Chengchao
Wang, Chen
Shi, Qiaoli
Gu, Liwei
Wang, Jigang
Pang, Huanhuan
AuthorAffiliation 2 Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital , Southern University of Science and Technology , Shenzhen, Guangdong 518020, China
1 Artemisinin Research Center, and Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700, China
AuthorAffiliation_xml – name: 2 Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital , Southern University of Science and Technology , Shenzhen, Guangdong 518020, China
– name: 1 Artemisinin Research Center, and Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700, China
Author_xml – sequence: 1
  givenname: Chong
  surname: Qiu
  fullname: Qiu, Chong
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 2
  givenname: Fei
  surname: Xia
  fullname: Xia, Fei
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 3
  givenname: Junzhe
  surname: Zhang
  fullname: Zhang, Junzhe
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 4
  givenname: Qiaoli
  surname: Shi
  fullname: Shi, Qiaoli
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 5
  givenname: Yuqing
  surname: Meng
  fullname: Meng, Yuqing
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 6
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 7
  givenname: Huanhuan
  surname: Pang
  fullname: Pang, Huanhuan
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 8
  givenname: Liwei
  surname: Gu
  fullname: Gu, Liwei
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 9
  givenname: Chengchao
  surname: Xu
  fullname: Xu, Chengchao
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 10
  givenname: Qiuyan
  surname: Guo
  fullname: Guo, Qiuyan
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
– sequence: 11
  givenname: Jigang
  surname: Wang
  fullname: Wang, Jigang
  organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China., Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37250954$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9PHCEcxUmjqdZ67bGZYy-7MvxYhlNjrbUmGz1oz-Q78GXEzICF2U32v-_oukabeOIbeO_zArxPZC-miIR8qemci5rzk4wFIdu7Oa1F84EcsgXXM8mU2Hs1H5DjUu4ppaxWVGv5kRxwxSTVUhySm1O3hmjRVTdjhhG7gKXyKVfXa8w2DSF21Xl0qaQB-pPlpmyn6gfkHDBXIVZXEJPLq676iX2YXJvPZN9DX_D4eT0if36d3579ni2vLy7PTpczK6QaZ9YzBppCY5Vvm4UG6VStlaW-rf2CI4i2tk4761jDW9sy7SVDDxymq3tU_Ihcbrkuwb15yGGAvDEJgnnaSLkzkMdgezQAqDRrbOMkCqkVWCqolMBcy7h3emJ937IeVu2AzmKcnqN_A317EsOd6dLa1JTRRst6Inx7JuT0d4VlNEMoFvseIqZVMaxhVC-0kGySfn0d9pKy-5ZJILYCm1MpGb2xYYQxpMfs0E-h5qkAZlcA81iAyTb_z7Yjv2P4BwLCt1Q
CitedBy_id crossref_primary_10_1038_s41389_024_00512_7
crossref_primary_10_3390_pharmaceutics16050667
crossref_primary_10_1021_acs_biomac_3c01156
crossref_primary_10_1016_j_ijpharm_2024_124786
crossref_primary_10_1038_s41598_024_80646_1
crossref_primary_10_1002_adtp_202400368
crossref_primary_10_1016_j_cej_2024_155633
crossref_primary_10_1016_j_colsurfb_2024_114177
crossref_primary_10_1016_j_actbio_2025_02_024
crossref_primary_10_1016_j_ebiom_2024_105266
crossref_primary_10_1021_acs_molpharmaceut_4c00779
crossref_primary_10_3390_ph17060763
crossref_primary_10_1016_j_colsurfb_2024_114417
crossref_primary_10_1021_acsnano_3c11848
crossref_primary_10_1016_j_bioactmat_2023_12_024
crossref_primary_10_3390_molecules29133131
crossref_primary_10_1016_j_nantod_2024_102451
crossref_primary_10_1002_cmdc_202400274
crossref_primary_10_1002_adfm_202408436
crossref_primary_10_3390_ijms25147612
crossref_primary_10_1002_ird3_77
crossref_primary_10_34133_bmr_0101
crossref_primary_10_1021_acs_bioconjchem_4c00480
crossref_primary_10_1039_D4BM01290A
crossref_primary_10_1016_j_mtbio_2024_101348
crossref_primary_10_34133_research_0444
crossref_primary_10_59400_mtr_v2i1_460
crossref_primary_10_1016_j_biopha_2024_116541
crossref_primary_10_1002_smll_202400643
crossref_primary_10_3390_pharmaceutics16111366
crossref_primary_10_1016_j_cclet_2024_110736
crossref_primary_10_1039_D3TB02650G
crossref_primary_10_3390_app15063189
crossref_primary_10_1016_j_mtnano_2023_100442
crossref_primary_10_1038_s41592_023_02137_x
crossref_primary_10_1002_ange_202403833
crossref_primary_10_1186_s12951_024_02721_z
crossref_primary_10_1016_j_magmed_2025_100002
crossref_primary_10_1039_D4NA00363B
crossref_primary_10_34133_research_0612
crossref_primary_10_1016_j_nantod_2024_102391
crossref_primary_10_34133_research_0339
crossref_primary_10_2147_IJN_S443117
crossref_primary_10_3390_biom14081036
crossref_primary_10_1016_j_carres_2024_109296
crossref_primary_10_3389_fbioe_2024_1450694
crossref_primary_10_1016_j_jconrel_2025_113651
crossref_primary_10_1038_s41565_024_01715_0
crossref_primary_10_1016_j_biopha_2024_117007
crossref_primary_10_1016_j_actbio_2024_12_027
crossref_primary_10_1016_j_ijpharm_2025_125439
crossref_primary_10_1016_j_colsurfb_2024_114267
crossref_primary_10_1002_anie_202403833
crossref_primary_10_1002_adtp_202400239
crossref_primary_10_1021_jacs_4c06464
crossref_primary_10_1016_j_cej_2024_154513
crossref_primary_10_1038_s41392_025_02186_y
crossref_primary_10_34133_research_0421
crossref_primary_10_1016_j_copbio_2023_103041
crossref_primary_10_1021_acsami_3c12560
crossref_primary_10_1016_j_addr_2024_115480
Cites_doi 10.1021/acs.nanolett.0c04468
10.1039/C6NR04034A
10.3389/fcimb.2017.00400
10.1016/j.isci.2022.103809
10.1002/adma.201606628
10.1021/acs.accounts.9b00177
10.3390/pharmaceutics14091973
10.1158/0008-5472.CAN-14-3095
10.1097/MPA.0b013e318239c6e5
10.1021/nn500085k
10.1002/advs.202300311
10.1002/adma.201602173
10.1016/j.addr.2009.04.005
10.1126/science.281.5373.78
10.1007/s00249-007-0201-z
10.1073/pnas.1307010110
10.1021/acsnano.6b05434
10.1038/nsmb.1455
10.1002/jgm.3259
10.1039/C6CC01996J
10.1016/j.jconrel.2009.02.003
10.1021/ja8086104
10.1016/bs.adgen.2014.11.001
10.1039/C6TB01067A
10.1038/mt.2010.85
10.1016/j.bbamcr.2017.05.018
10.1038/srep32301
10.1038/nnano.2016.160
10.3390/nano10091816
10.1083/jcb.201003086
10.1016/j.ijpharm.2014.05.054
10.1080/1061186X.2016.1278219
10.1016/j.jconrel.2021.05.038
10.1021/acsami.0c05556
10.1038/nbt.2612
10.1038/mt.2012.185
10.1021/nl902789s
10.1007/s00418-013-1111-z
10.1021/acsabm.1c00109
10.1038/s41563-021-00988-3
10.2147/IJN.S129436
10.1016/j.bbamem.2022.184013
10.1016/j.jconrel.2009.01.018
10.1021/mp200583d
10.1016/j.tibtech.2017.03.014
10.1111/j.1365-2818.2005.01471.x
10.3389/fbioe.2022.994655
10.1021/nn503732m
10.1016/j.bcp.2019.05.021
10.1021/acsami.6b15347
10.1002/anie.201409161
10.3390/molecules27103237
10.1021/acscentsci.6b00172
10.1016/j.nano.2012.09.002
10.1021/acs.langmuir.2c00430
10.1083/jcb.201610031
10.1002/psc.2773
10.1002/adma.201506086
10.1016/j.jconrel.2020.03.013
10.1016/j.actbio.2020.05.028
10.1016/j.biochi.2019.02.012
10.1016/B978-0-12-800148-6.00009-2
10.1039/D0RA09359A
10.1016/j.omtn.2017.11.002
10.1210/en.2009-1045
10.1021/mp400470p
10.1002/med.21844
10.1038/icb.2011.20
10.1002/ctm2.292
10.1016/j.colsurfb.2016.03.035
10.7150/thno.69682
10.1038/nature13817
10.1002/adma.201605604
10.1016/j.biomaterials.2014.03.012
10.1002/mabi.202100007
10.1038/nnano.2017.52
10.1016/j.biomaterials.2018.02.007
10.1038/srep04495
10.1016/j.sbi.2022.102427
10.1073/pnas.1811520115
10.1039/c3nr01183f
10.1021/acs.chemrev.8b00199
10.1515/hsz-2016-0252
10.1039/D0NA00454E
10.1002/adma.201701170
10.1039/c3tb20514b
10.1021/acs.bioconjchem.8b00778
10.1371/journal.pone.0010459
10.1039/C9BM00831D
10.3390/ijms17081296
10.3390/molecules26010036
10.1038/mt.2013.120
10.1016/j.jconrel.2013.01.037
10.1016/j.biomaterials.2012.06.037
10.1021/nn4007048
10.1083/jcb.200902146
10.1016/j.jconrel.2013.08.005
10.1016/j.jconrel.2010.11.012
10.1002/adma.201405084
10.1021/acsnano.5b05661
10.1016/j.biomaterials.2011.05.014
10.1016/j.addr.2003.10.041
10.1016/j.jconrel.2014.01.008
10.1073/pnas.2104511118
10.2174/1566523214666140612151726
10.1007/s11095-008-9712-2
10.1007/978-1-60761-919-2_37
10.1016/j.bbamem.2012.10.017
10.1021/acs.biochem.8b00764
10.1007/s00210-022-02287-3
10.3390/ijms23158067
10.1007/978-3-319-96704-2_1
10.1021/acsami.8b09348
10.1016/j.jconrel.2014.06.049
10.1016/j.biomaterials.2013.11.046
10.1021/ar3000162
10.1186/1477-3155-12-11
10.1016/j.bbrc.2021.11.065
10.1016/j.ijpharm.2016.06.127
10.1002/adma.201902952
10.1021/mp400744a
10.1016/j.biomaterials.2010.12.057
10.1371/journal.pone.0092268
10.2217/nnm-2017-0021
10.1002/adma.201300638
10.1073/pnas.2016974118
10.1007/s00216-021-03297-5
10.1242/jcs.00327
10.1021/bm501091p
10.1002/adhm.201500129
10.1073/pnas.1522080113
10.1016/j.biomaterials.2014.05.009
10.1016/j.jconrel.2022.10.061
10.1016/j.jconrel.2011.10.020
10.1002/anie.201813665
10.1021/acs.jmedchem.5b01679
10.3402/jev.v3.24641
10.15252/embj.201899193
10.1016/j.jconrel.2010.10.017
10.1021/acsnano.9b05521
10.1021/nn304218q
10.1021/nn500777n
10.1038/s41392-021-00642-z
10.1021/acsabm.9b01131
10.1021/acs.bioconjchem.8b00732
10.1002/smll.201502388
10.1002/anie.201712996
10.1039/C7BM01051F
10.3389/fcell.2020.00163
10.1016/j.nano.2011.10.003
10.1021/acs.langmuir.2c00952
10.1021/nl071542i
10.1021/bc9600630
10.1021/bc700448h
10.1016/j.jconrel.2013.06.007
10.1089/nat.2018.0721
10.1021/ja807416t
10.1039/C4OB02041C
10.1016/j.bmc.2022.117135
10.1038/nprot.2016.119
10.1371/journal.pone.0051350
10.1021/mp300326z
10.1021/acs.bioconjchem.0c00046
10.1007/s00216-008-2012-1
10.1529/biophysj.107.126474
10.1021/mp200353m
10.1039/C8NR05520C
10.1186/s12951-019-0543-6
10.1016/j.xphs.2020.11.005
10.1194/jlr.RA119000327
10.1016/j.neuron.2013.09.010
10.1038/s41467-019-10562-w
10.1016/j.jconrel.2009.06.031
10.1002/smll.201100001
10.1007/s12565-015-0313-y
10.1016/j.jconrel.2013.12.007
10.1099/mic.0.001154
10.1016/j.ejps.2016.06.020
10.1038/nbt.2614
10.1083/jcb.201009093
10.1080/1061186X.2017.1363216
10.1016/j.semcdb.2014.03.034
10.1002/wnan.1452
10.1007/s11095-014-1598-6
10.1016/j.biomaterials.2013.08.039
10.2217/nnm-2018-0326
10.1021/nn3049494
10.1016/j.ultsonch.2016.11.002
10.1021/bi9618474
10.1016/j.chemphyslip.2014.07.010
10.1039/b717431d
10.1016/j.semcdb.2014.04.024
10.1002/mabi.202100445
10.1039/C9NR10534D
10.1016/j.bioadv.2022.213086
10.1016/j.jconrel.2017.11.019
10.1074/jbc.R109.023820
ContentType Journal Article
Copyright Copyright © 2023 Chong Qiu et al.
Copyright © 2023 Chong Qiu et al. 2023 Chong Qiu et al.
Copyright_xml – notice: Copyright © 2023 Chong Qiu et al.
– notice: Copyright © 2023 Chong Qiu et al. 2023 Chong Qiu et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.34133/research.0148
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2639-5274
ExternalDocumentID oai_doaj_org_article_aae7928c8d5e4597ac04055a2db23fd9
PMC10208951
37250954
10_34133_research_0148
Genre Journal Article
Review
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
HYE
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
GROUPED_DOAJ
ID FETCH-LOGICAL-c457t-cf22a90a8c7fb869a5d7197c0fb1f63ea4b1cd9dcd283bcb29f52efa3a133fe73
IEDL.DBID DOA
ISSN 2639-5274
IngestDate Wed Aug 27 01:31:29 EDT 2025
Thu Aug 21 18:37:41 EDT 2025
Thu Jul 10 23:49:46 EDT 2025
Mon Jul 21 05:43:28 EDT 2025
Tue Jul 01 03:44:26 EDT 2025
Thu Apr 24 22:57:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2023 Chong Qiu et al.
Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-cf22a90a8c7fb869a5d7197c0fb1f63ea4b1cd9dcd283bcb29f52efa3a133fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/aae7928c8d5e4597ac04055a2db23fd9
PMID 37250954
PQID 2820969452
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_aae7928c8d5e4597ac04055a2db23fd9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10208951
proquest_miscellaneous_2820969452
pubmed_primary_37250954
crossref_citationtrail_10_34133_research_0148
crossref_primary_10_34133_research_0148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Research (Washington)
PublicationTitleAlternate Research (Wash D C)
PublicationYear 2023
Publisher AAAS
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science (AAAS)
References Xiao B (e_1_3_2_98_2) 2016; 143
Berg K (e_1_3_2_168_2) 2005; 218
Lee MS (e_1_3_2_114_2) 2014; 192
e_1_3_2_195_2
Molla MR (e_1_3_2_122_2) 2014; 15
e_1_3_2_172_2
Mahajan S (e_1_3_2_102_2) 2022; 38
Qiu C (e_1_3_2_90_2) 2019; 10
Alamoudi K (e_1_3_2_70_2) 2017; 12
Yang J (e_1_3_2_82_2) 2016; 2
Massignani M (e_1_3_2_56_2) 2010; 5
Ho NT (e_1_3_2_85_2) 2021; 118
Sun Q (e_1_3_2_4_2) 2017; 29
e_1_3_2_158_2
Meng N (e_1_3_2_143_2) 2021; 6
Cheng Z (e_1_3_2_5_2) 2022; 10
e_1_3_2_50_2
Bailey-Hytholt CM (e_1_3_2_147_2) 2023
e_1_3_2_196_2
Villani S (e_1_3_2_124_2) 2017; 25
e_1_3_2_48_2
Ren D (e_1_3_2_133_2) 2022; 14
Wang Q (e_1_3_2_181_2) 2015; 75
Turk B (e_1_3_2_171_2) 2009; 284
e_1_3_2_40_2
Xuan M (e_1_3_2_180_2) 2015; 4
Soe TH (e_1_3_2_170_2) 2020; 26
Lee JE (e_1_3_2_115_2); 2019
Ni S (e_1_3_2_121_2) 2017; 25
Wei L (e_1_3_2_73_2) 2016; 510
e_1_3_2_59_2
Cabral H (e_1_3_2_79_2) 2009; 26
Ulhuq FR (e_1_3_2_128_2) 2022; 168
Xuan M (e_1_3_2_177_2) 2018; 57
Yao L (e_1_3_2_186_2) 2013; 167
e_1_3_2_183_2
Cupic KI (e_1_3_2_6_2) 2019; 14
e_1_3_2_13_2
e_1_3_2_36_2
Smith SA (e_1_3_2_16_2) 2019; 30
Miyoshi Y (e_1_3_2_77_2) 2020; 31
Jadhav SG (e_1_3_2_146_2) 2021; 20
Wang P (e_1_3_2_55_2) 2018; 6
Nechaev S (e_1_3_2_86_2) 2013; 170
Tapeinos C (e_1_3_2_155_2) 2018; 11
e_1_3_2_22_2
e_1_3_2_45_2
Gao W (e_1_3_2_176_2) 2013; 25
e_1_3_2_163_2
Upton DH (e_1_3_2_11_2) 2022; 12
Omata D (e_1_3_2_154_2) 2015; 89
Wang G (e_1_3_2_89_2) 2013; 9
Li C (e_1_3_2_57_2) 2021; 21
Zhang M (e_1_3_2_174_2) 2021; 11
Kermaniyan SS (e_1_3_2_125_2) 2022; 22
Rivolta I (e_1_3_2_30_2) 2011; 62
Zhou J (e_1_3_2_83_2) 2019; 58
Hu Y (e_1_3_2_61_2) 2007; 7
e_1_3_2_175_2
Liao WH (e_1_3_2_152_2) 2017; 36
e_1_3_2_198_2
Rao L (e_1_3_2_178_2) 2015; 11
Pittella F (e_1_3_2_116_2) 2014; 178
Jayakumar MK (e_1_3_2_78_2) 2014; 8
Christie RJ (e_1_3_2_97_2) 2010; 151
Zhou Z (e_1_3_2_112_2) 2017; 9
Lonn P (e_1_3_2_9_2) 2016; 6
Hayer A (e_1_3_2_201_2) 2010; 191
Ragelle H (e_1_3_2_96_2) 2013; 172
e_1_3_2_185_2
e_1_3_2_109_2
Shim G (e_1_3_2_94_2) 2011; 155
Qiu C (e_1_3_2_60_2) 2016; 8
Yameen B (e_1_3_2_141_2) 2009; 131
Lee J (e_1_3_2_101_2) 2021; 118
Gilleron J (e_1_3_2_10_2) 2013; 31
Dhandapani RK (e_1_3_2_51_2) 2021; 4
Mochida S (e_1_3_2_24_2) 2022; 10
e_1_3_2_19_2
D'Agostino M (e_1_3_2_190_2) 2018; 37
Lupien LE (e_1_3_2_37_2) 2020; 61
Suzuki M (e_1_3_2_135_2) 2022; 586
e_1_3_2_162_2
Choi KY (e_1_3_2_111_2) 2014; 8
Kim B (e_1_3_2_80_2) 2019; 31
Margiotta A (e_1_3_2_191_2) 2022; 23
Pozzi D (e_1_3_2_41_2) 2013; 10
Feng Q (e_1_3_2_71_2) 2014; 35
Pang YT (e_1_3_2_132_2) 2020; 12
Prada I (e_1_3_2_173_2) 2016; 17
Jiang X (e_1_3_2_84_2) 2013; 5
e_1_3_2_197_2
Nakase I (e_1_3_2_167_2) 2011; 683
Dong S (e_1_3_2_148_2) 2023; 78
Kwon EJ (e_1_3_2_65_2) 2008; 19
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_104_2
e_1_3_2_142_2
e_1_3_2_81_2
Griset AP (e_1_3_2_62_2) 2009; 131
Shin J (e_1_3_2_160_2) 2012; 9
Smith SM (e_1_3_2_27_2) 2022; 75
e_1_3_2_3_2
Reilly MJ (e_1_3_2_87_2) 2012; 9
Rueda-Gensini L (e_1_3_2_169_2) 2020; 10
Allolio C (e_1_3_2_18_2) 2018; 115
e_1_3_2_131_2
Qiu C (e_1_3_2_205_2) 2016; 25
Hwang ME (e_1_3_2_33_2) 2015; 32
Podinovskaia M (e_1_3_2_7_2) 2018; 57
Park TE (e_1_3_2_35_2) 2012; 33
Parton RG (e_1_3_2_202_2) 2010; 191
Le PU (e_1_3_2_199_2) 2003; 116
Lee WK (e_1_3_2_108_2) 2012; 41
Habrant D (e_1_3_2_144_2) 2016; 59
Donders EN (e_1_3_2_151_2) 2023
Chhabra R (e_1_3_2_159_2) 2014; 471
Bober Z (e_1_3_2_95_2) 2022; 27
e_1_3_2_21_2
Bassett DC (e_1_3_2_110_2) 2022; 140
Nishimura Y (e_1_3_2_166_2) 2014; 12
e_1_3_2_126_2
Zhang SK (e_1_3_2_139_2) 2020; 22
Shaheen SM (e_1_3_2_75_2) 2011; 32
e_1_3_2_103_2
e_1_3_2_187_2
Arpino G (e_1_3_2_28_2) 2022; 25
e_1_3_2_149_2
Seraj S (e_1_3_2_161_2) 2019; 166
Cao X (e_1_3_2_136_2) 2021; 413
e_1_3_2_17_2
Gao LY (e_1_3_2_72_2) 2014; 35
Peng H (e_1_3_2_140_2) 2020; 10
Kulkarni JA (e_1_3_2_145_2) 2018; 28
Lim JP (e_1_3_2_39_2) 2011; 89
e_1_3_2_2_2
Yang Q (e_1_3_2_113_2) 2021; 110
Bhaskara RM (e_1_3_2_194_2) 2017; 11
Ahmad A (e_1_3_2_12_2) 2019; 160
Tu Y (e_1_3_2_47_2) 2020; 8
e_1_3_2_130_2
Nam HY (e_1_3_2_203_2) 2009; 135
Giger EV (e_1_3_2_118_2) 2011; 150
ur Rehman Z (e_1_3_2_64_2) 2013; 7
Mulcahy LA (e_1_3_2_25_2) 2014; 3
Ye S-f (e_1_3_2_137_2) 2012; 8
Selby LI (e_1_3_2_107_2) 2017; 9
Endoh T (e_1_3_2_134_2) 2009; 61
Yang Z (e_1_3_2_46_2) 2014; 14
e_1_3_2_138_2
Benjaminsen RV (e_1_3_2_105_2) 2013; 21
You JO (e_1_3_2_123_2) 2009; 9
e_1_3_2_26_2
e_1_3_2_49_2
Zhang Y (e_1_3_2_58_2) 2013; 21
e_1_3_2_193_2
Hinde E (e_1_3_2_23_2) 2017; 12
Li Y (e_1_3_2_68_2) 2014; 176
Neuberg P (e_1_3_2_92_2) 2014; 88
Chen J (e_1_3_2_93_2) 2017; 29
Guo Y (e_1_3_2_100_2) 2021; 21
Domenech M (e_1_3_2_157_2) 2013; 7
Jiang Y (e_1_3_2_184_2) 2015; 54
e_1_3_2_106_2
Endres T (e_1_3_2_54_2) 2014; 11
Wyman TB (e_1_3_2_164_2) 1997; 36
e_1_3_2_182_2
e_1_3_2_52_2
Chiang W-H (e_1_3_2_63_2) 2014; 9
e_1_3_2_14_2
Sun P (e_1_3_2_53_2) 2017; 12
Zhang B (e_1_3_2_29_2) 2013; 34
Mondal AK (e_1_3_2_127_2) 2022; 1864
e_1_3_2_192_2
e_1_3_2_42_2
e_1_3_2_189_2
e_1_3_2_120_2
Tang MX (e_1_3_2_119_2) 1996; 7
Lim J (e_1_3_2_32_2) 2012; 7
Yu MZ (e_1_3_2_74_2) 2016; 92
Tamura A (e_1_3_2_150_2) 2013; 1
Wang H (e_1_3_2_91_2) 2022; 352
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
Guo X (e_1_3_2_179_2) 2016; 4
Yang Y (e_1_3_2_44_2) 2017; 29
Ranaweera A (e_1_3_2_67_2) 2018; 57
Xu Z (e_1_3_2_200_2) 2009; 186
Sui ZH (e_1_3_2_31_2) 2017; 7
e_1_3_2_76_2
e_1_3_2_99_2
Lai Y (e_1_3_2_188_2) 2015; 12
Omata D (e_1_3_2_153_2) 2011; 8
e_1_3_2_204_2
Wei P (e_1_3_2_69_2) 2020; 322
Pucci C (e_1_3_2_156_2) 2020; 12
Plaza-Ga I (e_1_3_2_66_2) 2019; 17
Lee M-T (e_1_3_2_129_2) 2013; 110
Huang WC (e_1_3_2_34_2) 2016; 10
Gabrielson NP (e_1_3_2_88_2) 2009; 136
e_1_3_2_117_2
Li W (e_1_3_2_165_2) 2004; 56
References_xml – volume: 21
  start-page: 3680
  issue: 8
  year: 2021
  ident: e_1_3_2_57_2
  article-title: Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c04468
– volume: 8
  start-page: 13033
  issue: 26
  year: 2016
  ident: e_1_3_2_60_2
  article-title: Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy
  publication-title: Nanoscale
  doi: 10.1039/C6NR04034A
– volume: 7
  start-page: 400
  year: 2017
  ident: e_1_3_2_31_2
  article-title: Intracellular trafficking pathways of Edwardsiella tarda: From Clathrin- and Caveolin-mediated endocytosis to endosome and lysosome
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2017.00400
– volume: 25
  issue: 2
  year: 2022
  ident: e_1_3_2_28_2
  article-title: Clathrin-mediated endocytosis cooperates with bulk endocytosis to generate vesicles
  publication-title: iScience
  doi: 10.1016/j.isci.2022.103809
– volume: 29
  issue: 14
  year: 2017
  ident: e_1_3_2_4_2
  article-title: Rational design of cancer nanomedicine: Nanoproperty integration and synchronization
  publication-title: Adv Mater
  doi: 10.1002/adma.201606628
– ident: e_1_3_2_14_2
  doi: 10.1021/acs.accounts.9b00177
– volume: 14
  issue: 9
  year: 2022
  ident: e_1_3_2_133_2
  article-title: Immune responses to gene editing by viral and non-viral delivery vectors used in retinal gene therapy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14091973
– volume: 75
  start-page: 2520
  issue: 12
  year: 2015
  ident: e_1_3_2_181_2
  article-title: Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3095
– volume: 41
  start-page: 596
  issue: 4
  year: 2012
  ident: e_1_3_2_108_2
  article-title: Cyclosporin a, but not FK506, induces osmotic lysis of pancreas zymogen granules, intra-acinar enzyme release, and lysosome instability by activating K+ channel
  publication-title: Pancreas
  doi: 10.1097/MPA.0b013e318239c6e5
– volume: 8
  start-page: 4559
  issue: 5
  year: 2014
  ident: e_1_3_2_111_2
  article-title: Versatile RNA interference nanoplatform for systemic delivery of RNAs
  publication-title: ACS Nano
  doi: 10.1021/nn500085k
– year: 2023
  ident: e_1_3_2_151_2
  article-title: Synthetic ionizable colloidal drug aggregates enable endosomal disruption
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.202300311
– ident: e_1_3_2_81_2
  doi: 10.1002/adma.201602173
– volume: 61
  start-page: 704
  issue: 9
  year: 2009
  ident: e_1_3_2_134_2
  article-title: Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2009.04.005
– ident: e_1_3_2_163_2
  doi: 10.1126/science.281.5373.78
– ident: e_1_3_2_36_2
  doi: 10.1007/s00249-007-0201-z
– volume: 110
  start-page: 14243
  issue: 35
  year: 2013
  ident: e_1_3_2_129_2
  article-title: Process of inducing pores in membranes by melittin
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1307010110
– volume: 11
  start-page: 1273
  issue: 2
  year: 2017
  ident: e_1_3_2_194_2
  article-title: Carbon nanotubes mediate fusion of lipid vesicles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05434
– ident: e_1_3_2_42_2
  doi: 10.1038/nsmb.1455
– volume: 22
  issue: 11
  year: 2020
  ident: e_1_3_2_139_2
  article-title: Antimicrobial peptide AR-23 derivatives with high endosomal disrupting ability enhance poly(l-lysine)-mediated gene transfer
  publication-title: J Gene Med
  doi: 10.1002/jgm.3259
– ident: e_1_3_2_185_2
  doi: 10.1039/C6CC01996J
– volume: 136
  start-page: 54
  issue: 1
  year: 2009
  ident: e_1_3_2_88_2
  article-title: Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2009.02.003
– volume: 131
  start-page: 2070
  issue: 6
  year: 2009
  ident: e_1_3_2_141_2
  article-title: Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes
  publication-title: J Am Chem Soc
  doi: 10.1021/ja8086104
– volume: 89
  start-page: 25
  year: 2015
  ident: e_1_3_2_154_2
  article-title: Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound
  publication-title: Adv Genet
  doi: 10.1016/bs.adgen.2014.11.001
– volume: 4
  start-page: 4191
  issue: 23
  year: 2016
  ident: e_1_3_2_179_2
  article-title: Red blood cell membrane-mediated fusion of hydrophobic quantum dots with living cell membranes for cell imaging
  publication-title: J Mater Chem B
  doi: 10.1039/C6TB01067A
– ident: e_1_3_2_20_2
  doi: 10.1038/mt.2010.85
– ident: e_1_3_2_197_2
  doi: 10.1016/j.bbamcr.2017.05.018
– volume: 6
  year: 2016
  ident: e_1_3_2_9_2
  article-title: Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics
  publication-title: Sci Rep
  doi: 10.1038/srep32301
– volume: 12
  start-page: 81
  issue: 1
  year: 2017
  ident: e_1_3_2_23_2
  article-title: Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2016.160
– year: 2023
  ident: e_1_3_2_147_2
  article-title: Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging
  publication-title: Curr Pharm Biotechnol
– volume: 10
  issue: 9
  year: 2020
  ident: e_1_3_2_169_2
  article-title: Tailoring iron oxide nanoparticles for efficient cellular internalization and endosomal escape
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10091816
– volume: 191
  start-page: 615
  issue: 3
  year: 2010
  ident: e_1_3_2_201_2
  article-title: Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201003086
– volume: 471
  start-page: 349
  issue: 1
  year: 2014
  ident: e_1_3_2_159_2
  article-title: Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2014.05.054
– volume: 25
  start-page: 451
  issue: 5
  year: 2017
  ident: e_1_3_2_121_2
  article-title: Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: Preparation, characterization and in vitro evaluation
  publication-title: J Drug Target
  doi: 10.1080/1061186X.2016.1278219
– ident: e_1_3_2_17_2
  doi: 10.1016/j.jconrel.2021.05.038
– volume: 12
  start-page: 29037
  issue: 26
  year: 2020
  ident: e_1_3_2_156_2
  article-title: Hybrid magnetic nanovectors promote selective glioblastoma cell death through a combined effect of lysosomal membrane permeabilization and chemotherapy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c05556
– volume: 2019
  start-page: 798
  issue: 5
  ident: e_1_3_2_115_2
  article-title: Enhanced transfection of human mesenchymal stem cells using a hyaluronic acid/calcium phosphate hybrid gene delivery system
  publication-title: Polymers (Basel)
– volume: 31
  start-page: 638
  issue: 7
  year: 2013
  ident: e_1_3_2_10_2
  article-title: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2612
– volume: 21
  start-page: 149
  issue: 1
  year: 2013
  ident: e_1_3_2_105_2
  article-title: The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH
  publication-title: Mol Ther
  doi: 10.1038/mt.2012.185
– volume: 9
  start-page: 4467
  issue: 12
  year: 2009
  ident: e_1_3_2_123_2
  article-title: Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer
  publication-title: Nano Lett
  doi: 10.1021/nl902789s
– ident: e_1_3_2_49_2
  doi: 10.1007/s00418-013-1111-z
– volume: 4
  start-page: 4310
  issue: 5
  year: 2021
  ident: e_1_3_2_51_2
  article-title: Development of catechin, poly-l-lysine, and double-stranded RNA nanoparticles
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.1c00109
– volume: 20
  start-page: 575
  issue: 5
  year: 2021
  ident: e_1_3_2_146_2
  article-title: Overcoming delivery barriers with LNPs
  publication-title: Nat Mater
  doi: 10.1038/s41563-021-00988-3
– volume: 12
  start-page: 3221
  year: 2017
  ident: e_1_3_2_53_2
  article-title: siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S129436
– volume: 1864
  issue: 11
  year: 2022
  ident: e_1_3_2_127_2
  article-title: Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins
  publication-title: Biochim Biophys Acta Biomembr
  doi: 10.1016/j.bbamem.2022.184013
– volume: 135
  start-page: 259
  issue: 3
  year: 2009
  ident: e_1_3_2_203_2
  article-title: Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2009.01.018
– volume: 9
  start-page: 1280
  issue: 5
  year: 2012
  ident: e_1_3_2_87_2
  article-title: Polyplexes traffic through caveolae to the Golgi and endoplasmic reticulum en route to the nucleus
  publication-title: Mol Pharm
  doi: 10.1021/mp200583d
– ident: e_1_3_2_138_2
  doi: 10.1016/j.tibtech.2017.03.014
– volume: 218
  start-page: 133
  issue: 2
  year: 2005
  ident: e_1_3_2_168_2
  article-title: Porphyrin-related photosensitizers for cancer imaging and therapeutic applications
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2005.01471.x
– volume: 10
  year: 2022
  ident: e_1_3_2_5_2
  article-title: Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2022.994655
– ident: e_1_3_2_182_2
  doi: 10.1021/nn503732m
– volume: 166
  start-page: 192
  year: 2019
  ident: e_1_3_2_161_2
  article-title: Systemic delivery of Eg5 shRNA-expressing plasmids using PEGylated DC-Chol/DOPE cationic liposome: Long-term silencing and anticancer effects in vivo
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2019.05.021
– volume: 9
  start-page: 14576
  issue: 17
  year: 2017
  ident: e_1_3_2_112_2
  article-title: Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b15347
– volume: 54
  start-page: 506
  issue: 2
  year: 2015
  ident: e_1_3_2_184_2
  article-title: Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201409161
– volume: 27
  issue: 10
  year: 2022
  ident: e_1_3_2_95_2
  article-title: Application of dendrimers in anticancer diagnostics and therapy
  publication-title: Molecules
  doi: 10.3390/molecules27103237
– volume: 2
  start-page: 621
  issue: 9
  year: 2016
  ident: e_1_3_2_82_2
  article-title: Drug delivery via cell membrane fusion using lipopeptide modified liposomes
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.6b00172
– volume: 9
  start-page: 366
  issue: 3
  year: 2013
  ident: e_1_3_2_89_2
  article-title: KDEL peptide gold nanoconstructs: Promising nanoplatforms for drug delivery
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2012.09.002
– ident: e_1_3_2_158_2
  doi: 10.1021/acs.langmuir.2c00430
– ident: e_1_3_2_50_2
  doi: 10.1083/jcb.201610031
– ident: e_1_3_2_189_2
  doi: 10.1002/psc.2773
– ident: e_1_3_2_183_2
  doi: 10.1002/adma.201506086
– volume: 322
  start-page: 81
  year: 2020
  ident: e_1_3_2_69_2
  article-title: Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2020.03.013
– ident: e_1_3_2_175_2
  doi: 10.1016/j.actbio.2020.05.028
– volume: 160
  start-page: 61
  year: 2019
  ident: e_1_3_2_12_2
  article-title: Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2019.02.012
– volume: 88
  start-page: 263
  year: 2014
  ident: e_1_3_2_92_2
  article-title: Recent developments in nucleic acid delivery with polyethylenimines
  publication-title: Adv Genet
  doi: 10.1016/B978-0-12-800148-6.00009-2
– volume: 10
  start-page: 45059
  issue: 73
  year: 2020
  ident: e_1_3_2_140_2
  article-title: pH-sensitive zwitterionic polycarboxybetaine as a potential non-viral vector for small interfering RNA delivery
  publication-title: RSC Adv
  doi: 10.1039/D0RA09359A
– ident: e_1_3_2_204_2
  doi: 10.1016/j.omtn.2017.11.002
– volume: 151
  start-page: 466
  issue: 2
  year: 2010
  ident: e_1_3_2_97_2
  article-title: Delivering the code: Polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1045
– volume: 10
  start-page: 4654
  issue: 12
  year: 2013
  ident: e_1_3_2_41_2
  article-title: Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems
  publication-title: Mol Pharm
  doi: 10.1021/mp400470p
– ident: e_1_3_2_2_2
  doi: 10.1002/med.21844
– volume: 89
  start-page: 836
  issue: 8
  year: 2011
  ident: e_1_3_2_39_2
  article-title: Macropinocytosis: An endocytic pathway for internalising large gulps
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2011.20
– volume: 11
  issue: 2
  year: 2021
  ident: e_1_3_2_174_2
  article-title: Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics
  publication-title: Clin Transl Med
  doi: 10.1002/ctm2.292
– volume: 62
  start-page: 45
  issue: 1
  year: 2011
  ident: e_1_3_2_30_2
  article-title: Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles
  publication-title: J Physiol Pharmacol
– volume: 143
  start-page: 186
  year: 2016
  ident: e_1_3_2_98_2
  article-title: Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.03.035
– volume: 12
  start-page: 4734
  issue: 10
  year: 2022
  ident: e_1_3_2_11_2
  article-title: Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy
  publication-title: Theranostics
  doi: 10.7150/thno.69682
– ident: e_1_3_2_195_2
  doi: 10.1038/nature13817
– volume: 29
  issue: 13
  year: 2017
  ident: e_1_3_2_44_2
  article-title: Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes
  publication-title: Adv Mater
  doi: 10.1002/adma.201605604
– volume: 35
  start-page: 5028
  issue: 18
  year: 2014
  ident: e_1_3_2_71_2
  article-title: Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.012
– volume: 21
  issue: 4
  year: 2021
  ident: e_1_3_2_100_2
  article-title: Construction of poly(amidoamine) dendrimer/carbon dot nanohybrids for biomedical applications
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.202100007
– ident: e_1_3_2_142_2
  doi: 10.1038/nnano.2017.52
– ident: e_1_3_2_196_2
  doi: 10.1016/j.biomaterials.2018.02.007
– ident: e_1_3_2_131_2
  doi: 10.1038/srep04495
– volume: 75
  year: 2022
  ident: e_1_3_2_27_2
  article-title: Capturing the mechanics of clathrin-mediated endocytosis
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2022.102427
– volume: 115
  start-page: 11923
  issue: 47
  year: 2018
  ident: e_1_3_2_18_2
  article-title: Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1811520115
– volume: 5
  start-page: 7256
  issue: 16
  year: 2013
  ident: e_1_3_2_84_2
  article-title: RNase non-sensitive and endocytosis independent siRNA delivery system: Delivery of siRNA into tumor cells and high efficiency induction of apoptosis
  publication-title: Nanoscale
  doi: 10.1039/c3nr01183f
– ident: e_1_3_2_103_2
  doi: 10.1021/acs.chemrev.8b00199
– ident: e_1_3_2_172_2
  doi: 10.1515/hsz-2016-0252
– ident: e_1_3_2_19_2
  doi: 10.1039/D0NA00454E
– volume: 29
  issue: 32
  year: 2017
  ident: e_1_3_2_93_2
  article-title: Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors
  publication-title: Adv Mater
  doi: 10.1002/adma.201701170
– volume: 1
  start-page: 3535
  issue: 29
  year: 2013
  ident: e_1_3_2_150_2
  article-title: A supramolecular endosomal escape approach for enhancing gene silencing of siRNA using acid-degradable cationic polyrotaxanes
  publication-title: J Mater Chem B
  doi: 10.1039/c3tb20514b
– ident: e_1_3_2_15_2
  doi: 10.1021/acs.bioconjchem.8b00778
– volume: 5
  issue: 5
  year: 2010
  ident: e_1_3_2_56_2
  article-title: Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0010459
– ident: e_1_3_2_109_2
  doi: 10.1039/C9BM00831D
– volume: 17
  start-page: 1296
  issue: 8
  year: 2016
  ident: e_1_3_2_173_2
  article-title: Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17081296
– volume: 26
  start-page: 36
  issue: 1
  year: 2020
  ident: e_1_3_2_170_2
  article-title: Photoinduced endosomal escape mechanism: A view from photochemical internalization mediated by CPP-photosensitizer conjugates
  publication-title: Molecules
  doi: 10.3390/molecules26010036
– volume: 21
  start-page: 1559
  issue: 8
  year: 2013
  ident: e_1_3_2_58_2
  article-title: Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.120
– volume: 167
  start-page: 228
  issue: 3
  year: 2013
  ident: e_1_3_2_186_2
  article-title: pHLIP(R)-mediated delivery of PEGylated liposomes to cancer cells
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2013.01.037
– volume: 33
  start-page: 7272
  issue: 29
  year: 2012
  ident: e_1_3_2_35_2
  article-title: Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.037
– volume: 7
  start-page: 5091
  issue: 6
  year: 2013
  ident: e_1_3_2_157_2
  article-title: Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields
  publication-title: ACS Nano
  doi: 10.1021/nn4007048
– volume: 186
  start-page: 343
  issue: 3
  year: 2009
  ident: e_1_3_2_200_2
  article-title: A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200902146
– volume: 172
  start-page: 207
  issue: 1
  year: 2013
  ident: e_1_3_2_96_2
  article-title: Chitosan-based siRNA delivery systems
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2013.08.005
– volume: 150
  start-page: 87
  issue: 1
  year: 2011
  ident: e_1_3_2_118_2
  article-title: Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2010.11.012
– ident: e_1_3_2_8_2
  doi: 10.1002/adma.201405084
– volume: 10
  start-page: 648
  issue: 1
  year: 2016
  ident: e_1_3_2_34_2
  article-title: Engineering chimeric receptors to investigate the size- and rigidity-dependent interaction of PEGylated nanoparticles with cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05661
– volume: 32
  start-page: 6342
  issue: 26
  year: 2011
  ident: e_1_3_2_75_2
  article-title: KALA-modified multi-layered nanoparticles as gene carriers for MHC class-I mediated antigen presentation for a DNA vaccine
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.014
– volume: 56
  start-page: 967
  issue: 7
  year: 2004
  ident: e_1_3_2_165_2
  article-title: GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2003.10.041
– volume: 178
  start-page: 18
  year: 2014
  ident: e_1_3_2_116_2
  article-title: Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.01.008
– volume: 118
  issue: 19
  year: 2021
  ident: e_1_3_2_101_2
  article-title: DNA-inspired nanomaterials for enhanced endosomal escape
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2104511118
– volume: 14
  start-page: 289
  issue: 4
  year: 2014
  ident: e_1_3_2_46_2
  article-title: Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-targeting therapy
  publication-title: Curr Gene Ther
  doi: 10.2174/1566523214666140612151726
– volume: 26
  start-page: 82
  issue: 1
  year: 2009
  ident: e_1_3_2_79_2
  article-title: A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles
  publication-title: Pharm Res
  doi: 10.1007/s11095-008-9712-2
– volume: 683
  start-page: 525
  year: 2011
  ident: e_1_3_2_167_2
  article-title: Application of a fusiogenic peptide GALA for intracellular delivery
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-919-2_37
– ident: e_1_3_2_162_2
  doi: 10.1016/j.bbamem.2012.10.017
– volume: 57
  start-page: 5480
  issue: 37
  year: 2018
  ident: e_1_3_2_67_2
  article-title: The stabilities of the soluble ectodomain and fusion peptide hairpins of the influenza virus hemagglutinin subunit II protein are positively correlated with membrane fusion
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00764
– ident: e_1_3_2_3_2
  doi: 10.1007/s00210-022-02287-3
– volume: 23
  start-page: 8067
  issue: 15
  year: 2022
  ident: e_1_3_2_191_2
  article-title: Membrane fusion and SNAREs: Interaction with Ras proteins
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23158067
– volume: 57
  start-page: 1
  year: 2018
  ident: e_1_3_2_7_2
  article-title: The endosomal network: Mediators and regulators of endosome maturation
  publication-title: Prog Mol Subcell Biol
  doi: 10.1007/978-3-319-96704-2_1
– ident: e_1_3_2_99_2
  doi: 10.1021/acsami.8b09348
– volume: 192
  start-page: 122
  year: 2014
  ident: e_1_3_2_114_2
  article-title: Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.06.049
– volume: 35
  start-page: 2066
  issue: 6
  year: 2014
  ident: e_1_3_2_72_2
  article-title: Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.11.046
– ident: e_1_3_2_120_2
  doi: 10.1021/ar3000162
– volume: 12
  year: 2014
  ident: e_1_3_2_166_2
  article-title: A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway
  publication-title: J Nanobiotechnol
  doi: 10.1186/1477-3155-12-11
– volume: 586
  start-page: 63
  year: 2022
  ident: e_1_3_2_135_2
  article-title: Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular delivery of TAT-fused proteins
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2021.11.065
– volume: 510
  start-page: 394
  issue: 1
  year: 2016
  ident: e_1_3_2_73_2
  article-title: Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.06.127
– volume: 31
  issue: 35
  year: 2019
  ident: e_1_3_2_80_2
  article-title: Securing the payload, finding the cell, and avoiding the endosome: Peptide-targeted, fusogenic porous silicon nanoparticles for delivery of siRNA
  publication-title: Adv Mater
  doi: 10.1002/adma.201902952
– volume: 11
  start-page: 1273
  issue: 4
  year: 2014
  ident: e_1_3_2_54_2
  article-title: Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots
  publication-title: Mol Pharm
  doi: 10.1021/mp400744a
– ident: e_1_3_2_117_2
  doi: 10.1016/j.biomaterials.2010.12.057
– volume: 9
  issue: 3
  year: 2014
  ident: e_1_3_2_63_2
  article-title: Dual-layered nanogel-coated hollow lipid/polypeptide conjugate assemblies for potential pH-triggered intracellular drug release
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0092268
– volume: 12
  start-page: 1421
  issue: 12
  year: 2017
  ident: e_1_3_2_70_2
  article-title: Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm-2017-0021
– volume: 25
  start-page: 3549
  issue: 26
  year: 2013
  ident: e_1_3_2_176_2
  article-title: Surface functionalization of gold nanoparticles with red blood cell membranes
  publication-title: Adv Mater
  doi: 10.1002/adma.201300638
– volume: 118
  issue: 19
  year: 2021
  ident: e_1_3_2_85_2
  article-title: Membrane fusion and drug delivery with carbon nanotube porins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2016974118
– volume: 12
  issue: 2
  year: 2015
  ident: e_1_3_2_188_2
  article-title: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion
  publication-title: Phys Biol
– volume: 413
  start-page: 3493
  issue: 13
  year: 2021
  ident: e_1_3_2_136_2
  article-title: Lysosomal escaped protein nanocarriers for nuclear-targeted siRNA delivery
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-021-03297-5
– volume: 116
  start-page: 1059
  issue: 6
  year: 2003
  ident: e_1_3_2_199_2
  article-title: Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum
  publication-title: J Cell Sci
  doi: 10.1242/jcs.00327
– volume: 15
  start-page: 4046
  issue: 11
  year: 2014
  ident: e_1_3_2_122_2
  article-title: Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger
  publication-title: Biomacromolecules
  doi: 10.1021/bm501091p
– volume: 4
  start-page: 1645
  issue: 11
  year: 2015
  ident: e_1_3_2_180_2
  article-title: Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201500129
– ident: e_1_3_2_52_2
  doi: 10.1073/pnas.1522080113
– ident: e_1_3_2_192_2
  doi: 10.1016/j.biomaterials.2014.05.009
– volume: 352
  start-page: 970
  year: 2022
  ident: e_1_3_2_91_2
  article-title: Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2022.10.061
– ident: e_1_3_2_59_2
  doi: 10.1016/j.jconrel.2011.10.020
– volume: 58
  start-page: 5236
  issue: 16
  year: 2019
  ident: e_1_3_2_83_2
  article-title: Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201813665
– volume: 59
  start-page: 3046
  issue: 7
  year: 2016
  ident: e_1_3_2_144_2
  article-title: Design of ionizable lipids to overcome the limiting step of endosomal escape: Application in the intracellular delivery of mRNA, DNA, and siRNA
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b01679
– volume: 3
  issue: 1
  year: 2014
  ident: e_1_3_2_25_2
  article-title: Routes and mechanisms of extracellular vesicle uptake
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v3.24641
– volume: 37
  issue: 19
  year: 2018
  ident: e_1_3_2_190_2
  article-title: SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle
  publication-title: EMBO J
  doi: 10.15252/embj.201899193
– volume: 155
  start-page: 60
  issue: 1
  year: 2011
  ident: e_1_3_2_94_2
  article-title: Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2010.10.017
– ident: e_1_3_2_13_2
  doi: 10.1021/acsnano.9b05521
– ident: e_1_3_2_21_2
  doi: 10.1021/nn304218q
– volume: 8
  start-page: 4848
  issue: 5
  year: 2014
  ident: e_1_3_2_78_2
  article-title: Near-infrared-light-based nano-platform boosts endosomal escape and controls gene knockdown in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn500777n
– volume: 6
  start-page: 206
  issue: 1
  year: 2021
  ident: e_1_3_2_143_2
  article-title: Membrane-destabilizing ionizable phospholipids: Novel components for organ-selective mRNA delivery and CRISPR-Cas gene editing
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-021-00642-z
– ident: e_1_3_2_198_2
  doi: 10.1021/acsabm.9b01131
– volume: 30
  start-page: 263
  issue: 2
  year: 2019
  ident: e_1_3_2_16_2
  article-title: The endosomal escape of nanoparticles: Toward more efficient cellular delivery
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.8b00732
– volume: 11
  start-page: 6225
  issue: 46
  year: 2015
  ident: e_1_3_2_178_2
  article-title: Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance
  publication-title: Small
  doi: 10.1002/smll.201502388
– volume: 25
  start-page: 660
  issue: 9
  year: 2016
  ident: e_1_3_2_205_2
  article-title: In vitro comparative evaluation of three CLD/siRNA nanoplexes prepared by different processes
  publication-title: J Chin Pharm Sci
– volume: 57
  start-page: 6049
  issue: 21
  year: 2018
  ident: e_1_3_2_177_2
  article-title: Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: Applications in cancer therapy
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201712996
– volume: 6
  start-page: 1262
  issue: 5
  year: 2018
  ident: e_1_3_2_55_2
  article-title: Acid- and reduction-sensitive micelles for improving the drug delivery efficacy for pancreatic cancer therapy
  publication-title: Biomater Sci
  doi: 10.1039/C7BM01051F
– volume: 8
  start-page: 163
  year: 2020
  ident: e_1_3_2_47_2
  article-title: Endosome-to-TGN trafficking: Organelle-vesicle and organelle-organelle interactions
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2020.00163
– volume: 8
  start-page: 833
  issue: 6
  year: 2012
  ident: e_1_3_2_137_2
  article-title: Synergistic effects of cell-penetrating peptide tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.10.003
– volume: 38
  start-page: 8382
  issue: 27
  year: 2022
  ident: e_1_3_2_102_2
  article-title: Polyethylenimine-DNA nanoparticles under endosomal acidification and implication to gene delivery
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c00952
– volume: 7
  start-page: 3056
  issue: 10
  year: 2007
  ident: e_1_3_2_61_2
  article-title: Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles
  publication-title: Nano Lett
  doi: 10.1021/nl071542i
– volume: 7
  start-page: 703
  issue: 6
  year: 1996
  ident: e_1_3_2_119_2
  article-title: In vitro gene delivery by degraded polyamidoamine dendrimers
  publication-title: Bioconjug Chem
  doi: 10.1021/bc9600630
– volume: 19
  start-page: 920
  issue: 4
  year: 2008
  ident: e_1_3_2_65_2
  article-title: Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles
  publication-title: Bioconjug Chem
  doi: 10.1021/bc700448h
– volume: 170
  start-page: 307
  issue: 3
  year: 2013
  ident: e_1_3_2_86_2
  article-title: Intracellular processing of immunostimulatory CpG-siRNA: Toll-like receptor 9 facilitates siRNA dicing and endosomal escape
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2013.06.007
– volume: 28
  start-page: 146
  issue: 3
  year: 2018
  ident: e_1_3_2_145_2
  article-title: Lipid nanoparticles enabling gene therapies: From concepts to clinical utility
  publication-title: Nucleic Acid Ther
  doi: 10.1089/nat.2018.0721
– volume: 131
  start-page: 2469
  issue: 7
  year: 2009
  ident: e_1_3_2_62_2
  article-title: Expansile nanoparticles: Synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system
  publication-title: J Am Chem Soc
  doi: 10.1021/ja807416t
– ident: e_1_3_2_126_2
  doi: 10.1039/C4OB02041C
– volume: 78
  year: 2023
  ident: e_1_3_2_148_2
  article-title: Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2022.117135
– ident: e_1_3_2_193_2
  doi: 10.1038/nprot.2016.119
– volume: 7
  issue: 12
  year: 2012
  ident: e_1_3_2_32_2
  article-title: Delivery of short interfering ribonucleic acid-complexed magnetic nanoparticles in an oscillating field occurs via caveolae-mediated endocytosis
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0051350
– volume: 9
  start-page: 3266
  issue: 11
  year: 2012
  ident: e_1_3_2_160_2
  article-title: Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: Synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics
  publication-title: Mol Pharm
  doi: 10.1021/mp300326z
– volume: 31
  start-page: 916
  issue: 3
  year: 2020
  ident: e_1_3_2_77_2
  article-title: Endosomal escape of peptide-photosensitizer conjugates is affected by amino acid sequences near the photosensitizer
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.0c00046
– ident: e_1_3_2_76_2
  doi: 10.1007/s00216-008-2012-1
– ident: e_1_3_2_130_2
  doi: 10.1529/biophysj.107.126474
– volume: 8
  start-page: 2416
  issue: 6
  year: 2011
  ident: e_1_3_2_153_2
  article-title: Bubble liposomes and ultrasound promoted endosomal escape of TAT-PEG liposomes as gene delivery carriers
  publication-title: Mol Pharm
  doi: 10.1021/mp200353m
– volume: 11
  start-page: 72
  issue: 1
  year: 2018
  ident: e_1_3_2_155_2
  article-title: Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy
  publication-title: Nanoscale
  doi: 10.1039/C8NR05520C
– volume: 17
  issue: 1
  year: 2019
  ident: e_1_3_2_66_2
  article-title: pH-triggered endosomal escape of pore-forming Listeriolysin O toxin-coated gold nanoparticles
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-019-0543-6
– volume: 110
  start-page: 876
  issue: 2
  year: 2021
  ident: e_1_3_2_113_2
  article-title: Bone-targeted calcium phosphate-polymer hybrid nanoparticle co-deliver zoledronate and docetaxel to treat bone metastasis of prostate cancer
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2020.11.005
– volume: 61
  start-page: 205
  issue: 2
  year: 2020
  ident: e_1_3_2_37_2
  article-title: Endocytosis of very low-density lipoproteins: An unexpected mechanism for lipid acquisition by breast cancer cells
  publication-title: J Lipid Res
  doi: 10.1194/jlr.RA119000327
– ident: e_1_3_2_187_2
  doi: 10.1016/j.neuron.2013.09.010
– volume: 10
  start-page: 2702
  issue: 1
  year: 2019
  ident: e_1_3_2_90_2
  article-title: Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10562-w
– ident: e_1_3_2_104_2
  doi: 10.1016/j.jconrel.2009.06.031
– ident: e_1_3_2_26_2
  doi: 10.1002/smll.201100001
– ident: e_1_3_2_40_2
  doi: 10.1007/s12565-015-0313-y
– volume: 176
  start-page: 104
  year: 2014
  ident: e_1_3_2_68_2
  article-title: Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2013.12.007
– volume: 168
  issue: 3
  year: 2022
  ident: e_1_3_2_128_2
  article-title: Bacterial pore-forming toxins
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.001154
– volume: 92
  start-page: 39
  year: 2016
  ident: e_1_3_2_74_2
  article-title: Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2016.06.020
– ident: e_1_3_2_22_2
  doi: 10.1038/nbt.2614
– volume: 191
  start-page: 439
  issue: 3
  year: 2010
  ident: e_1_3_2_202_2
  article-title: Revisiting caveolin trafficking: The end of the caveosome
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201009093
– ident: e_1_3_2_38_2
– volume: 25
  start-page: 899
  issue: 9
  year: 2017
  ident: e_1_3_2_124_2
  article-title: pH-sensitive polymersomes: Controlling swelling via copolymer structure and chemical composition
  publication-title: J Drug Target
  doi: 10.1080/1061186X.2017.1363216
– ident: e_1_3_2_45_2
  doi: 10.1016/j.semcdb.2014.03.034
– volume: 9
  issue: 5
  year: 2017
  ident: e_1_3_2_107_2
  article-title: Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles
  publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol
  doi: 10.1002/wnan.1452
– volume: 32
  start-page: 2051
  issue: 6
  year: 2015
  ident: e_1_3_2_33_2
  article-title: Dependence of PEI and PAMAM gene delivery on Clathrin- and Caveolin-dependent trafficking pathways
  publication-title: Pharm Res
  doi: 10.1007/s11095-014-1598-6
– volume: 34
  start-page: 9171
  issue: 36
  year: 2013
  ident: e_1_3_2_29_2
  article-title: LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.039
– volume: 14
  start-page: 215
  issue: 2
  year: 2019
  ident: e_1_3_2_6_2
  article-title: Controlling endosomal escape using nanoparticle composition: Current progress and future perspectives
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm-2018-0326
– volume: 7
  start-page: 3767
  issue: 5
  year: 2013
  ident: e_1_3_2_64_2
  article-title: Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: Real-time visualization of transient membrane destabilization without endosomal lysis
  publication-title: ACS Nano
  doi: 10.1021/nn3049494
– volume: 36
  start-page: 70
  year: 2017
  ident: e_1_3_2_152_2
  article-title: Intracellular triggered release of DNA-quaternary ammonium polyplex by ultrasound
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2016.11.002
– volume: 36
  start-page: 3008
  issue: 10
  year: 1997
  ident: e_1_3_2_164_2
  article-title: Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers
  publication-title: Biochemistry
  doi: 10.1021/bi9618474
– ident: e_1_3_2_43_2
  doi: 10.1016/j.chemphyslip.2014.07.010
– volume: 10
  issue: 7
  year: 2022
  ident: e_1_3_2_24_2
  article-title: Mechanisms of synaptic vesicle exo- and endocytosis
  publication-title: Biomedicine
– ident: e_1_3_2_106_2
  doi: 10.1039/b717431d
– ident: e_1_3_2_48_2
  doi: 10.1016/j.semcdb.2014.04.024
– volume: 22
  issue: 5
  year: 2022
  ident: e_1_3_2_125_2
  article-title: Understanding the biological interactions of pH-swellable nanoparticles
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.202100445
– volume: 12
  start-page: 7902
  issue: 14
  year: 2020
  ident: e_1_3_2_132_2
  article-title: Pore formation induced by nanoparticles binding to a lipid membrane
  publication-title: Nanoscale
  doi: 10.1039/C9NR10534D
– volume: 140
  year: 2022
  ident: e_1_3_2_110_2
  article-title: Self-assembled calcium pyrophosphate nanostructures for targeted molecular delivery
  publication-title: Biomater Adv
  doi: 10.1016/j.bioadv.2022.213086
– ident: e_1_3_2_149_2
  doi: 10.1016/j.jconrel.2017.11.019
– volume: 284
  start-page: 21783
  issue: 33
  year: 2009
  ident: e_1_3_2_171_2
  article-title: Lysosomes as "suicide bags" in cell death: Myth or reality?
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R109.023820
SSID ssj0002170995
Score 2.5414898
SecondaryResourceType review_article
Snippet Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 0148
SubjectTerms Review
Title Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery
URI https://www.ncbi.nlm.nih.gov/pubmed/37250954
https://www.proquest.com/docview/2820969452
https://pubmed.ncbi.nlm.nih.gov/PMC10208951
https://doaj.org/article/aae7928c8d5e4597ac04055a2db23fd9
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZEeYaXjIQEDKGNE8fx2EIrhHgMUIkt8pNWKgnqY-jCb-ecpFWLQCwsURRbinV3vvtsn79D6IwZ6Xx_0wcsbf0oosIX0gifKal4QC0lqsjyfYxve9HdK31dKvXlcsJKeuBScA0hDOMkUYmmJgL0KxSYHaWCaElCq4urexDzlhZTzgcD0AboQ0uWRueow0ZFntO_cntoK1GoIOv_CWF-T5RcijzdTbRRQUbcKodaR2sm20L1alKO8UXFHH25jZ5b1Yk-npPOQjugUvwEBgumBWEKdzKdj_N3MWzcz8blG26LkStchwcZBm-b69H0Dd-YoUvZmO2gXrfzcn3rV1UTfBVRNvGVJUTwpkgUszKJuaCaBZypppWBjUMjIhkozbXSgCykkoSDQowVoQApWcPCXVTL8szsIxw3JUjcXSAhBmQYSy0BriRJYJR2LD0e8udSTFVFKe4qWwxTWFoUUk_nUk-d1D10vuj_UZJp_Nqz7ZSy6OVIsIsPYBppZRrpX6bhodO5SlOYNO4kRGQmn45TWGfC0o1HlHhor1Tx4lchA1TIaeShZEX5K2NZbckG_YKYO3AVTwGyHvzH6A_RuittX273HKHaZDQ1xwCAJvKksHV4Pnx2vgDWuAng
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Strategies+for+Overcoming+Endosomal%2FLysosomal+Barrier+in+Nanodrug+Delivery&rft.jtitle=Research+%28Washington%29&rft.au=Chong+Qiu&rft.au=Fei+Xia&rft.au=Junzhe+Zhang&rft.au=Qiaoli+Shi&rft.date=2023&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.eissn=2639-5274&rft.volume=6&rft_id=info:doi/10.34133%2Fresearch.0148&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aae7928c8d5e4597ac04055a2db23fd9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-5274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-5274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-5274&client=summon