Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summar...
Saved in:
Published in | Research (Washington) Vol. 6; p. 0148 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAAS
2023
American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications. |
---|---|
AbstractList | Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications. Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications. |
Author | Xia, Fei Meng, Yuqing Guo, Qiuyan Qiu, Chong Zhang, Junzhe Xu, Chengchao Wang, Chen Shi, Qiaoli Gu, Liwei Wang, Jigang Pang, Huanhuan |
AuthorAffiliation | 2 Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital , Southern University of Science and Technology , Shenzhen, Guangdong 518020, China 1 Artemisinin Research Center, and Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700, China |
AuthorAffiliation_xml | – name: 2 Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital , Southern University of Science and Technology , Shenzhen, Guangdong 518020, China – name: 1 Artemisinin Research Center, and Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing 100700, China |
Author_xml | – sequence: 1 givenname: Chong surname: Qiu fullname: Qiu, Chong organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 2 givenname: Fei surname: Xia fullname: Xia, Fei organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 3 givenname: Junzhe surname: Zhang fullname: Zhang, Junzhe organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 4 givenname: Qiaoli surname: Shi fullname: Shi, Qiaoli organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 5 givenname: Yuqing surname: Meng fullname: Meng, Yuqing organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 6 givenname: Chen surname: Wang fullname: Wang, Chen organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 7 givenname: Huanhuan surname: Pang fullname: Pang, Huanhuan organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 8 givenname: Liwei surname: Gu fullname: Gu, Liwei organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 9 givenname: Chengchao surname: Xu fullname: Xu, Chengchao organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 10 givenname: Qiuyan surname: Guo fullname: Guo, Qiuyan organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China – sequence: 11 givenname: Jigang surname: Wang fullname: Wang, Jigang organization: Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China., Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37250954$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9PHCEcxUmjqdZ67bGZYy-7MvxYhlNjrbUmGz1oz-Q78GXEzICF2U32v-_oukabeOIbeO_zArxPZC-miIR8qemci5rzk4wFIdu7Oa1F84EcsgXXM8mU2Hs1H5DjUu4ppaxWVGv5kRxwxSTVUhySm1O3hmjRVTdjhhG7gKXyKVfXa8w2DSF21Xl0qaQB-pPlpmyn6gfkHDBXIVZXEJPLq676iX2YXJvPZN9DX_D4eT0if36d3579ni2vLy7PTpczK6QaZ9YzBppCY5Vvm4UG6VStlaW-rf2CI4i2tk4761jDW9sy7SVDDxymq3tU_Ihcbrkuwb15yGGAvDEJgnnaSLkzkMdgezQAqDRrbOMkCqkVWCqolMBcy7h3emJ937IeVu2AzmKcnqN_A317EsOd6dLa1JTRRst6Inx7JuT0d4VlNEMoFvseIqZVMaxhVC-0kGySfn0d9pKy-5ZJILYCm1MpGb2xYYQxpMfs0E-h5qkAZlcA81iAyTb_z7Yjv2P4BwLCt1Q |
CitedBy_id | crossref_primary_10_1038_s41389_024_00512_7 crossref_primary_10_3390_pharmaceutics16050667 crossref_primary_10_1021_acs_biomac_3c01156 crossref_primary_10_1016_j_ijpharm_2024_124786 crossref_primary_10_1038_s41598_024_80646_1 crossref_primary_10_1002_adtp_202400368 crossref_primary_10_1016_j_cej_2024_155633 crossref_primary_10_1016_j_colsurfb_2024_114177 crossref_primary_10_1016_j_actbio_2025_02_024 crossref_primary_10_1016_j_ebiom_2024_105266 crossref_primary_10_1021_acs_molpharmaceut_4c00779 crossref_primary_10_3390_ph17060763 crossref_primary_10_1016_j_colsurfb_2024_114417 crossref_primary_10_1021_acsnano_3c11848 crossref_primary_10_1016_j_bioactmat_2023_12_024 crossref_primary_10_3390_molecules29133131 crossref_primary_10_1016_j_nantod_2024_102451 crossref_primary_10_1002_cmdc_202400274 crossref_primary_10_1002_adfm_202408436 crossref_primary_10_3390_ijms25147612 crossref_primary_10_1002_ird3_77 crossref_primary_10_34133_bmr_0101 crossref_primary_10_1021_acs_bioconjchem_4c00480 crossref_primary_10_1039_D4BM01290A crossref_primary_10_1016_j_mtbio_2024_101348 crossref_primary_10_34133_research_0444 crossref_primary_10_59400_mtr_v2i1_460 crossref_primary_10_1016_j_biopha_2024_116541 crossref_primary_10_1002_smll_202400643 crossref_primary_10_3390_pharmaceutics16111366 crossref_primary_10_1016_j_cclet_2024_110736 crossref_primary_10_1039_D3TB02650G crossref_primary_10_3390_app15063189 crossref_primary_10_1016_j_mtnano_2023_100442 crossref_primary_10_1038_s41592_023_02137_x crossref_primary_10_1002_ange_202403833 crossref_primary_10_1186_s12951_024_02721_z crossref_primary_10_1016_j_magmed_2025_100002 crossref_primary_10_1039_D4NA00363B crossref_primary_10_34133_research_0612 crossref_primary_10_1016_j_nantod_2024_102391 crossref_primary_10_34133_research_0339 crossref_primary_10_2147_IJN_S443117 crossref_primary_10_3390_biom14081036 crossref_primary_10_1016_j_carres_2024_109296 crossref_primary_10_3389_fbioe_2024_1450694 crossref_primary_10_1016_j_jconrel_2025_113651 crossref_primary_10_1038_s41565_024_01715_0 crossref_primary_10_1016_j_biopha_2024_117007 crossref_primary_10_1016_j_actbio_2024_12_027 crossref_primary_10_1016_j_ijpharm_2025_125439 crossref_primary_10_1016_j_colsurfb_2024_114267 crossref_primary_10_1002_anie_202403833 crossref_primary_10_1002_adtp_202400239 crossref_primary_10_1021_jacs_4c06464 crossref_primary_10_1016_j_cej_2024_154513 crossref_primary_10_1038_s41392_025_02186_y crossref_primary_10_34133_research_0421 crossref_primary_10_1016_j_copbio_2023_103041 crossref_primary_10_1021_acsami_3c12560 crossref_primary_10_1016_j_addr_2024_115480 |
Cites_doi | 10.1021/acs.nanolett.0c04468 10.1039/C6NR04034A 10.3389/fcimb.2017.00400 10.1016/j.isci.2022.103809 10.1002/adma.201606628 10.1021/acs.accounts.9b00177 10.3390/pharmaceutics14091973 10.1158/0008-5472.CAN-14-3095 10.1097/MPA.0b013e318239c6e5 10.1021/nn500085k 10.1002/advs.202300311 10.1002/adma.201602173 10.1016/j.addr.2009.04.005 10.1126/science.281.5373.78 10.1007/s00249-007-0201-z 10.1073/pnas.1307010110 10.1021/acsnano.6b05434 10.1038/nsmb.1455 10.1002/jgm.3259 10.1039/C6CC01996J 10.1016/j.jconrel.2009.02.003 10.1021/ja8086104 10.1016/bs.adgen.2014.11.001 10.1039/C6TB01067A 10.1038/mt.2010.85 10.1016/j.bbamcr.2017.05.018 10.1038/srep32301 10.1038/nnano.2016.160 10.3390/nano10091816 10.1083/jcb.201003086 10.1016/j.ijpharm.2014.05.054 10.1080/1061186X.2016.1278219 10.1016/j.jconrel.2021.05.038 10.1021/acsami.0c05556 10.1038/nbt.2612 10.1038/mt.2012.185 10.1021/nl902789s 10.1007/s00418-013-1111-z 10.1021/acsabm.1c00109 10.1038/s41563-021-00988-3 10.2147/IJN.S129436 10.1016/j.bbamem.2022.184013 10.1016/j.jconrel.2009.01.018 10.1021/mp200583d 10.1016/j.tibtech.2017.03.014 10.1111/j.1365-2818.2005.01471.x 10.3389/fbioe.2022.994655 10.1021/nn503732m 10.1016/j.bcp.2019.05.021 10.1021/acsami.6b15347 10.1002/anie.201409161 10.3390/molecules27103237 10.1021/acscentsci.6b00172 10.1016/j.nano.2012.09.002 10.1021/acs.langmuir.2c00430 10.1083/jcb.201610031 10.1002/psc.2773 10.1002/adma.201506086 10.1016/j.jconrel.2020.03.013 10.1016/j.actbio.2020.05.028 10.1016/j.biochi.2019.02.012 10.1016/B978-0-12-800148-6.00009-2 10.1039/D0RA09359A 10.1016/j.omtn.2017.11.002 10.1210/en.2009-1045 10.1021/mp400470p 10.1002/med.21844 10.1038/icb.2011.20 10.1002/ctm2.292 10.1016/j.colsurfb.2016.03.035 10.7150/thno.69682 10.1038/nature13817 10.1002/adma.201605604 10.1016/j.biomaterials.2014.03.012 10.1002/mabi.202100007 10.1038/nnano.2017.52 10.1016/j.biomaterials.2018.02.007 10.1038/srep04495 10.1016/j.sbi.2022.102427 10.1073/pnas.1811520115 10.1039/c3nr01183f 10.1021/acs.chemrev.8b00199 10.1515/hsz-2016-0252 10.1039/D0NA00454E 10.1002/adma.201701170 10.1039/c3tb20514b 10.1021/acs.bioconjchem.8b00778 10.1371/journal.pone.0010459 10.1039/C9BM00831D 10.3390/ijms17081296 10.3390/molecules26010036 10.1038/mt.2013.120 10.1016/j.jconrel.2013.01.037 10.1016/j.biomaterials.2012.06.037 10.1021/nn4007048 10.1083/jcb.200902146 10.1016/j.jconrel.2013.08.005 10.1016/j.jconrel.2010.11.012 10.1002/adma.201405084 10.1021/acsnano.5b05661 10.1016/j.biomaterials.2011.05.014 10.1016/j.addr.2003.10.041 10.1016/j.jconrel.2014.01.008 10.1073/pnas.2104511118 10.2174/1566523214666140612151726 10.1007/s11095-008-9712-2 10.1007/978-1-60761-919-2_37 10.1016/j.bbamem.2012.10.017 10.1021/acs.biochem.8b00764 10.1007/s00210-022-02287-3 10.3390/ijms23158067 10.1007/978-3-319-96704-2_1 10.1021/acsami.8b09348 10.1016/j.jconrel.2014.06.049 10.1016/j.biomaterials.2013.11.046 10.1021/ar3000162 10.1186/1477-3155-12-11 10.1016/j.bbrc.2021.11.065 10.1016/j.ijpharm.2016.06.127 10.1002/adma.201902952 10.1021/mp400744a 10.1016/j.biomaterials.2010.12.057 10.1371/journal.pone.0092268 10.2217/nnm-2017-0021 10.1002/adma.201300638 10.1073/pnas.2016974118 10.1007/s00216-021-03297-5 10.1242/jcs.00327 10.1021/bm501091p 10.1002/adhm.201500129 10.1073/pnas.1522080113 10.1016/j.biomaterials.2014.05.009 10.1016/j.jconrel.2022.10.061 10.1016/j.jconrel.2011.10.020 10.1002/anie.201813665 10.1021/acs.jmedchem.5b01679 10.3402/jev.v3.24641 10.15252/embj.201899193 10.1016/j.jconrel.2010.10.017 10.1021/acsnano.9b05521 10.1021/nn304218q 10.1021/nn500777n 10.1038/s41392-021-00642-z 10.1021/acsabm.9b01131 10.1021/acs.bioconjchem.8b00732 10.1002/smll.201502388 10.1002/anie.201712996 10.1039/C7BM01051F 10.3389/fcell.2020.00163 10.1016/j.nano.2011.10.003 10.1021/acs.langmuir.2c00952 10.1021/nl071542i 10.1021/bc9600630 10.1021/bc700448h 10.1016/j.jconrel.2013.06.007 10.1089/nat.2018.0721 10.1021/ja807416t 10.1039/C4OB02041C 10.1016/j.bmc.2022.117135 10.1038/nprot.2016.119 10.1371/journal.pone.0051350 10.1021/mp300326z 10.1021/acs.bioconjchem.0c00046 10.1007/s00216-008-2012-1 10.1529/biophysj.107.126474 10.1021/mp200353m 10.1039/C8NR05520C 10.1186/s12951-019-0543-6 10.1016/j.xphs.2020.11.005 10.1194/jlr.RA119000327 10.1016/j.neuron.2013.09.010 10.1038/s41467-019-10562-w 10.1016/j.jconrel.2009.06.031 10.1002/smll.201100001 10.1007/s12565-015-0313-y 10.1016/j.jconrel.2013.12.007 10.1099/mic.0.001154 10.1016/j.ejps.2016.06.020 10.1038/nbt.2614 10.1083/jcb.201009093 10.1080/1061186X.2017.1363216 10.1016/j.semcdb.2014.03.034 10.1002/wnan.1452 10.1007/s11095-014-1598-6 10.1016/j.biomaterials.2013.08.039 10.2217/nnm-2018-0326 10.1021/nn3049494 10.1016/j.ultsonch.2016.11.002 10.1021/bi9618474 10.1016/j.chemphyslip.2014.07.010 10.1039/b717431d 10.1016/j.semcdb.2014.04.024 10.1002/mabi.202100445 10.1039/C9NR10534D 10.1016/j.bioadv.2022.213086 10.1016/j.jconrel.2017.11.019 10.1074/jbc.R109.023820 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Chong Qiu et al. Copyright © 2023 Chong Qiu et al. 2023 Chong Qiu et al. |
Copyright_xml | – notice: Copyright © 2023 Chong Qiu et al. – notice: Copyright © 2023 Chong Qiu et al. 2023 Chong Qiu et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.34133/research.0148 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2639-5274 |
ExternalDocumentID | oai_doaj_org_article_aae7928c8d5e4597ac04055a2db23fd9 PMC10208951 37250954 10_34133_research_0148 |
Genre | Journal Article Review |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION HYE M~E OK1 PGMZT RPM NPM 7X8 5PM GROUPED_DOAJ |
ID | FETCH-LOGICAL-c457t-cf22a90a8c7fb869a5d7197c0fb1f63ea4b1cd9dcd283bcb29f52efa3a133fe73 |
IEDL.DBID | DOA |
ISSN | 2639-5274 |
IngestDate | Wed Aug 27 01:31:29 EDT 2025 Thu Aug 21 18:37:41 EDT 2025 Thu Jul 10 23:49:46 EDT 2025 Mon Jul 21 05:43:28 EDT 2025 Tue Jul 01 03:44:26 EDT 2025 Thu Apr 24 22:57:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2023 Chong Qiu et al. Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License (CC BY 4.0). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-cf22a90a8c7fb869a5d7197c0fb1f63ea4b1cd9dcd283bcb29f52efa3a133fe73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/aae7928c8d5e4597ac04055a2db23fd9 |
PMID | 37250954 |
PQID | 2820969452 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aae7928c8d5e4597ac04055a2db23fd9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10208951 proquest_miscellaneous_2820969452 pubmed_primary_37250954 crossref_citationtrail_10_34133_research_0148 crossref_primary_10_34133_research_0148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Research (Washington) |
PublicationTitleAlternate | Research (Wash D C) |
PublicationYear | 2023 |
Publisher | AAAS American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: AAAS – name: American Association for the Advancement of Science (AAAS) |
References | Xiao B (e_1_3_2_98_2) 2016; 143 Berg K (e_1_3_2_168_2) 2005; 218 Lee MS (e_1_3_2_114_2) 2014; 192 e_1_3_2_195_2 Molla MR (e_1_3_2_122_2) 2014; 15 e_1_3_2_172_2 Mahajan S (e_1_3_2_102_2) 2022; 38 Qiu C (e_1_3_2_90_2) 2019; 10 Alamoudi K (e_1_3_2_70_2) 2017; 12 Yang J (e_1_3_2_82_2) 2016; 2 Massignani M (e_1_3_2_56_2) 2010; 5 Ho NT (e_1_3_2_85_2) 2021; 118 Sun Q (e_1_3_2_4_2) 2017; 29 e_1_3_2_158_2 Meng N (e_1_3_2_143_2) 2021; 6 Cheng Z (e_1_3_2_5_2) 2022; 10 e_1_3_2_50_2 Bailey-Hytholt CM (e_1_3_2_147_2) 2023 e_1_3_2_196_2 Villani S (e_1_3_2_124_2) 2017; 25 e_1_3_2_48_2 Ren D (e_1_3_2_133_2) 2022; 14 Wang Q (e_1_3_2_181_2) 2015; 75 Turk B (e_1_3_2_171_2) 2009; 284 e_1_3_2_40_2 Xuan M (e_1_3_2_180_2) 2015; 4 Soe TH (e_1_3_2_170_2) 2020; 26 Lee JE (e_1_3_2_115_2); 2019 Ni S (e_1_3_2_121_2) 2017; 25 Wei L (e_1_3_2_73_2) 2016; 510 e_1_3_2_59_2 Cabral H (e_1_3_2_79_2) 2009; 26 Ulhuq FR (e_1_3_2_128_2) 2022; 168 Xuan M (e_1_3_2_177_2) 2018; 57 Yao L (e_1_3_2_186_2) 2013; 167 e_1_3_2_183_2 Cupic KI (e_1_3_2_6_2) 2019; 14 e_1_3_2_13_2 e_1_3_2_36_2 Smith SA (e_1_3_2_16_2) 2019; 30 Miyoshi Y (e_1_3_2_77_2) 2020; 31 Jadhav SG (e_1_3_2_146_2) 2021; 20 Wang P (e_1_3_2_55_2) 2018; 6 Nechaev S (e_1_3_2_86_2) 2013; 170 Tapeinos C (e_1_3_2_155_2) 2018; 11 e_1_3_2_22_2 e_1_3_2_45_2 Gao W (e_1_3_2_176_2) 2013; 25 e_1_3_2_163_2 Upton DH (e_1_3_2_11_2) 2022; 12 Omata D (e_1_3_2_154_2) 2015; 89 Wang G (e_1_3_2_89_2) 2013; 9 Li C (e_1_3_2_57_2) 2021; 21 Zhang M (e_1_3_2_174_2) 2021; 11 Kermaniyan SS (e_1_3_2_125_2) 2022; 22 Rivolta I (e_1_3_2_30_2) 2011; 62 Zhou J (e_1_3_2_83_2) 2019; 58 Hu Y (e_1_3_2_61_2) 2007; 7 e_1_3_2_175_2 Liao WH (e_1_3_2_152_2) 2017; 36 e_1_3_2_198_2 Rao L (e_1_3_2_178_2) 2015; 11 Pittella F (e_1_3_2_116_2) 2014; 178 Jayakumar MK (e_1_3_2_78_2) 2014; 8 Christie RJ (e_1_3_2_97_2) 2010; 151 Zhou Z (e_1_3_2_112_2) 2017; 9 Lonn P (e_1_3_2_9_2) 2016; 6 Hayer A (e_1_3_2_201_2) 2010; 191 Ragelle H (e_1_3_2_96_2) 2013; 172 e_1_3_2_185_2 e_1_3_2_109_2 Shim G (e_1_3_2_94_2) 2011; 155 Qiu C (e_1_3_2_60_2) 2016; 8 Yameen B (e_1_3_2_141_2) 2009; 131 Lee J (e_1_3_2_101_2) 2021; 118 Gilleron J (e_1_3_2_10_2) 2013; 31 Dhandapani RK (e_1_3_2_51_2) 2021; 4 Mochida S (e_1_3_2_24_2) 2022; 10 e_1_3_2_19_2 D'Agostino M (e_1_3_2_190_2) 2018; 37 Lupien LE (e_1_3_2_37_2) 2020; 61 Suzuki M (e_1_3_2_135_2) 2022; 586 e_1_3_2_162_2 Choi KY (e_1_3_2_111_2) 2014; 8 Kim B (e_1_3_2_80_2) 2019; 31 Margiotta A (e_1_3_2_191_2) 2022; 23 Pozzi D (e_1_3_2_41_2) 2013; 10 Feng Q (e_1_3_2_71_2) 2014; 35 Pang YT (e_1_3_2_132_2) 2020; 12 Prada I (e_1_3_2_173_2) 2016; 17 Jiang X (e_1_3_2_84_2) 2013; 5 e_1_3_2_197_2 Nakase I (e_1_3_2_167_2) 2011; 683 Dong S (e_1_3_2_148_2) 2023; 78 Kwon EJ (e_1_3_2_65_2) 2008; 19 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_104_2 e_1_3_2_142_2 e_1_3_2_81_2 Griset AP (e_1_3_2_62_2) 2009; 131 Shin J (e_1_3_2_160_2) 2012; 9 Smith SM (e_1_3_2_27_2) 2022; 75 e_1_3_2_3_2 Reilly MJ (e_1_3_2_87_2) 2012; 9 Rueda-Gensini L (e_1_3_2_169_2) 2020; 10 Allolio C (e_1_3_2_18_2) 2018; 115 e_1_3_2_131_2 Qiu C (e_1_3_2_205_2) 2016; 25 Hwang ME (e_1_3_2_33_2) 2015; 32 Podinovskaia M (e_1_3_2_7_2) 2018; 57 Park TE (e_1_3_2_35_2) 2012; 33 Parton RG (e_1_3_2_202_2) 2010; 191 Le PU (e_1_3_2_199_2) 2003; 116 Lee WK (e_1_3_2_108_2) 2012; 41 Habrant D (e_1_3_2_144_2) 2016; 59 Donders EN (e_1_3_2_151_2) 2023 Chhabra R (e_1_3_2_159_2) 2014; 471 Bober Z (e_1_3_2_95_2) 2022; 27 e_1_3_2_21_2 Bassett DC (e_1_3_2_110_2) 2022; 140 Nishimura Y (e_1_3_2_166_2) 2014; 12 e_1_3_2_126_2 Zhang SK (e_1_3_2_139_2) 2020; 22 Shaheen SM (e_1_3_2_75_2) 2011; 32 e_1_3_2_103_2 e_1_3_2_187_2 Arpino G (e_1_3_2_28_2) 2022; 25 e_1_3_2_149_2 Seraj S (e_1_3_2_161_2) 2019; 166 Cao X (e_1_3_2_136_2) 2021; 413 e_1_3_2_17_2 Gao LY (e_1_3_2_72_2) 2014; 35 Peng H (e_1_3_2_140_2) 2020; 10 Kulkarni JA (e_1_3_2_145_2) 2018; 28 Lim JP (e_1_3_2_39_2) 2011; 89 e_1_3_2_2_2 Yang Q (e_1_3_2_113_2) 2021; 110 Bhaskara RM (e_1_3_2_194_2) 2017; 11 Ahmad A (e_1_3_2_12_2) 2019; 160 Tu Y (e_1_3_2_47_2) 2020; 8 e_1_3_2_130_2 Nam HY (e_1_3_2_203_2) 2009; 135 Giger EV (e_1_3_2_118_2) 2011; 150 ur Rehman Z (e_1_3_2_64_2) 2013; 7 Mulcahy LA (e_1_3_2_25_2) 2014; 3 Ye S-f (e_1_3_2_137_2) 2012; 8 Selby LI (e_1_3_2_107_2) 2017; 9 Endoh T (e_1_3_2_134_2) 2009; 61 Yang Z (e_1_3_2_46_2) 2014; 14 e_1_3_2_138_2 Benjaminsen RV (e_1_3_2_105_2) 2013; 21 You JO (e_1_3_2_123_2) 2009; 9 e_1_3_2_26_2 e_1_3_2_49_2 Zhang Y (e_1_3_2_58_2) 2013; 21 e_1_3_2_193_2 Hinde E (e_1_3_2_23_2) 2017; 12 Li Y (e_1_3_2_68_2) 2014; 176 Neuberg P (e_1_3_2_92_2) 2014; 88 Chen J (e_1_3_2_93_2) 2017; 29 Guo Y (e_1_3_2_100_2) 2021; 21 Domenech M (e_1_3_2_157_2) 2013; 7 Jiang Y (e_1_3_2_184_2) 2015; 54 e_1_3_2_106_2 Endres T (e_1_3_2_54_2) 2014; 11 Wyman TB (e_1_3_2_164_2) 1997; 36 e_1_3_2_182_2 e_1_3_2_52_2 Chiang W-H (e_1_3_2_63_2) 2014; 9 e_1_3_2_14_2 Sun P (e_1_3_2_53_2) 2017; 12 Zhang B (e_1_3_2_29_2) 2013; 34 Mondal AK (e_1_3_2_127_2) 2022; 1864 e_1_3_2_192_2 e_1_3_2_42_2 e_1_3_2_189_2 e_1_3_2_120_2 Tang MX (e_1_3_2_119_2) 1996; 7 Lim J (e_1_3_2_32_2) 2012; 7 Yu MZ (e_1_3_2_74_2) 2016; 92 Tamura A (e_1_3_2_150_2) 2013; 1 Wang H (e_1_3_2_91_2) 2022; 352 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 Guo X (e_1_3_2_179_2) 2016; 4 Yang Y (e_1_3_2_44_2) 2017; 29 Ranaweera A (e_1_3_2_67_2) 2018; 57 Xu Z (e_1_3_2_200_2) 2009; 186 Sui ZH (e_1_3_2_31_2) 2017; 7 e_1_3_2_76_2 e_1_3_2_99_2 Lai Y (e_1_3_2_188_2) 2015; 12 Omata D (e_1_3_2_153_2) 2011; 8 e_1_3_2_204_2 Wei P (e_1_3_2_69_2) 2020; 322 Pucci C (e_1_3_2_156_2) 2020; 12 Plaza-Ga I (e_1_3_2_66_2) 2019; 17 Lee M-T (e_1_3_2_129_2) 2013; 110 Huang WC (e_1_3_2_34_2) 2016; 10 Gabrielson NP (e_1_3_2_88_2) 2009; 136 e_1_3_2_117_2 Li W (e_1_3_2_165_2) 2004; 56 |
References_xml | – volume: 21 start-page: 3680 issue: 8 year: 2021 ident: e_1_3_2_57_2 article-title: Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c04468 – volume: 8 start-page: 13033 issue: 26 year: 2016 ident: e_1_3_2_60_2 article-title: Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy publication-title: Nanoscale doi: 10.1039/C6NR04034A – volume: 7 start-page: 400 year: 2017 ident: e_1_3_2_31_2 article-title: Intracellular trafficking pathways of Edwardsiella tarda: From Clathrin- and Caveolin-mediated endocytosis to endosome and lysosome publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00400 – volume: 25 issue: 2 year: 2022 ident: e_1_3_2_28_2 article-title: Clathrin-mediated endocytosis cooperates with bulk endocytosis to generate vesicles publication-title: iScience doi: 10.1016/j.isci.2022.103809 – volume: 29 issue: 14 year: 2017 ident: e_1_3_2_4_2 article-title: Rational design of cancer nanomedicine: Nanoproperty integration and synchronization publication-title: Adv Mater doi: 10.1002/adma.201606628 – ident: e_1_3_2_14_2 doi: 10.1021/acs.accounts.9b00177 – volume: 14 issue: 9 year: 2022 ident: e_1_3_2_133_2 article-title: Immune responses to gene editing by viral and non-viral delivery vectors used in retinal gene therapy publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14091973 – volume: 75 start-page: 2520 issue: 12 year: 2015 ident: e_1_3_2_181_2 article-title: Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3095 – volume: 41 start-page: 596 issue: 4 year: 2012 ident: e_1_3_2_108_2 article-title: Cyclosporin a, but not FK506, induces osmotic lysis of pancreas zymogen granules, intra-acinar enzyme release, and lysosome instability by activating K+ channel publication-title: Pancreas doi: 10.1097/MPA.0b013e318239c6e5 – volume: 8 start-page: 4559 issue: 5 year: 2014 ident: e_1_3_2_111_2 article-title: Versatile RNA interference nanoplatform for systemic delivery of RNAs publication-title: ACS Nano doi: 10.1021/nn500085k – year: 2023 ident: e_1_3_2_151_2 article-title: Synthetic ionizable colloidal drug aggregates enable endosomal disruption publication-title: Adv Sci (Weinh) doi: 10.1002/advs.202300311 – ident: e_1_3_2_81_2 doi: 10.1002/adma.201602173 – volume: 61 start-page: 704 issue: 9 year: 2009 ident: e_1_3_2_134_2 article-title: Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2009.04.005 – ident: e_1_3_2_163_2 doi: 10.1126/science.281.5373.78 – ident: e_1_3_2_36_2 doi: 10.1007/s00249-007-0201-z – volume: 110 start-page: 14243 issue: 35 year: 2013 ident: e_1_3_2_129_2 article-title: Process of inducing pores in membranes by melittin publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1307010110 – volume: 11 start-page: 1273 issue: 2 year: 2017 ident: e_1_3_2_194_2 article-title: Carbon nanotubes mediate fusion of lipid vesicles publication-title: ACS Nano doi: 10.1021/acsnano.6b05434 – ident: e_1_3_2_42_2 doi: 10.1038/nsmb.1455 – volume: 22 issue: 11 year: 2020 ident: e_1_3_2_139_2 article-title: Antimicrobial peptide AR-23 derivatives with high endosomal disrupting ability enhance poly(l-lysine)-mediated gene transfer publication-title: J Gene Med doi: 10.1002/jgm.3259 – ident: e_1_3_2_185_2 doi: 10.1039/C6CC01996J – volume: 136 start-page: 54 issue: 1 year: 2009 ident: e_1_3_2_88_2 article-title: Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells publication-title: J Control Release doi: 10.1016/j.jconrel.2009.02.003 – volume: 131 start-page: 2070 issue: 6 year: 2009 ident: e_1_3_2_141_2 article-title: Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes publication-title: J Am Chem Soc doi: 10.1021/ja8086104 – volume: 89 start-page: 25 year: 2015 ident: e_1_3_2_154_2 article-title: Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound publication-title: Adv Genet doi: 10.1016/bs.adgen.2014.11.001 – volume: 4 start-page: 4191 issue: 23 year: 2016 ident: e_1_3_2_179_2 article-title: Red blood cell membrane-mediated fusion of hydrophobic quantum dots with living cell membranes for cell imaging publication-title: J Mater Chem B doi: 10.1039/C6TB01067A – ident: e_1_3_2_20_2 doi: 10.1038/mt.2010.85 – ident: e_1_3_2_197_2 doi: 10.1016/j.bbamcr.2017.05.018 – volume: 6 year: 2016 ident: e_1_3_2_9_2 article-title: Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics publication-title: Sci Rep doi: 10.1038/srep32301 – volume: 12 start-page: 81 issue: 1 year: 2017 ident: e_1_3_2_23_2 article-title: Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release publication-title: Nat Nanotechnol doi: 10.1038/nnano.2016.160 – year: 2023 ident: e_1_3_2_147_2 article-title: Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging publication-title: Curr Pharm Biotechnol – volume: 10 issue: 9 year: 2020 ident: e_1_3_2_169_2 article-title: Tailoring iron oxide nanoparticles for efficient cellular internalization and endosomal escape publication-title: Nanomaterials (Basel) doi: 10.3390/nano10091816 – volume: 191 start-page: 615 issue: 3 year: 2010 ident: e_1_3_2_201_2 article-title: Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation publication-title: J Cell Biol doi: 10.1083/jcb.201003086 – volume: 471 start-page: 349 issue: 1 year: 2014 ident: e_1_3_2_159_2 article-title: Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2014.05.054 – volume: 25 start-page: 451 issue: 5 year: 2017 ident: e_1_3_2_121_2 article-title: Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: Preparation, characterization and in vitro evaluation publication-title: J Drug Target doi: 10.1080/1061186X.2016.1278219 – ident: e_1_3_2_17_2 doi: 10.1016/j.jconrel.2021.05.038 – volume: 12 start-page: 29037 issue: 26 year: 2020 ident: e_1_3_2_156_2 article-title: Hybrid magnetic nanovectors promote selective glioblastoma cell death through a combined effect of lysosomal membrane permeabilization and chemotherapy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c05556 – volume: 2019 start-page: 798 issue: 5 ident: e_1_3_2_115_2 article-title: Enhanced transfection of human mesenchymal stem cells using a hyaluronic acid/calcium phosphate hybrid gene delivery system publication-title: Polymers (Basel) – volume: 31 start-page: 638 issue: 7 year: 2013 ident: e_1_3_2_10_2 article-title: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape publication-title: Nat Biotechnol doi: 10.1038/nbt.2612 – volume: 21 start-page: 149 issue: 1 year: 2013 ident: e_1_3_2_105_2 article-title: The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH publication-title: Mol Ther doi: 10.1038/mt.2012.185 – volume: 9 start-page: 4467 issue: 12 year: 2009 ident: e_1_3_2_123_2 article-title: Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer publication-title: Nano Lett doi: 10.1021/nl902789s – ident: e_1_3_2_49_2 doi: 10.1007/s00418-013-1111-z – volume: 4 start-page: 4310 issue: 5 year: 2021 ident: e_1_3_2_51_2 article-title: Development of catechin, poly-l-lysine, and double-stranded RNA nanoparticles publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.1c00109 – volume: 20 start-page: 575 issue: 5 year: 2021 ident: e_1_3_2_146_2 article-title: Overcoming delivery barriers with LNPs publication-title: Nat Mater doi: 10.1038/s41563-021-00988-3 – volume: 12 start-page: 3221 year: 2017 ident: e_1_3_2_53_2 article-title: siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis publication-title: Int J Nanomedicine doi: 10.2147/IJN.S129436 – volume: 1864 issue: 11 year: 2022 ident: e_1_3_2_127_2 article-title: Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins publication-title: Biochim Biophys Acta Biomembr doi: 10.1016/j.bbamem.2022.184013 – volume: 135 start-page: 259 issue: 3 year: 2009 ident: e_1_3_2_203_2 article-title: Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles publication-title: J Control Release doi: 10.1016/j.jconrel.2009.01.018 – volume: 9 start-page: 1280 issue: 5 year: 2012 ident: e_1_3_2_87_2 article-title: Polyplexes traffic through caveolae to the Golgi and endoplasmic reticulum en route to the nucleus publication-title: Mol Pharm doi: 10.1021/mp200583d – ident: e_1_3_2_138_2 doi: 10.1016/j.tibtech.2017.03.014 – volume: 218 start-page: 133 issue: 2 year: 2005 ident: e_1_3_2_168_2 article-title: Porphyrin-related photosensitizers for cancer imaging and therapeutic applications publication-title: J Microsc doi: 10.1111/j.1365-2818.2005.01471.x – volume: 10 year: 2022 ident: e_1_3_2_5_2 article-title: Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.994655 – ident: e_1_3_2_182_2 doi: 10.1021/nn503732m – volume: 166 start-page: 192 year: 2019 ident: e_1_3_2_161_2 article-title: Systemic delivery of Eg5 shRNA-expressing plasmids using PEGylated DC-Chol/DOPE cationic liposome: Long-term silencing and anticancer effects in vivo publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2019.05.021 – volume: 9 start-page: 14576 issue: 17 year: 2017 ident: e_1_3_2_112_2 article-title: Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b15347 – volume: 54 start-page: 506 issue: 2 year: 2015 ident: e_1_3_2_184_2 article-title: Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201409161 – volume: 27 issue: 10 year: 2022 ident: e_1_3_2_95_2 article-title: Application of dendrimers in anticancer diagnostics and therapy publication-title: Molecules doi: 10.3390/molecules27103237 – volume: 2 start-page: 621 issue: 9 year: 2016 ident: e_1_3_2_82_2 article-title: Drug delivery via cell membrane fusion using lipopeptide modified liposomes publication-title: ACS Cent Sci doi: 10.1021/acscentsci.6b00172 – volume: 9 start-page: 366 issue: 3 year: 2013 ident: e_1_3_2_89_2 article-title: KDEL peptide gold nanoconstructs: Promising nanoplatforms for drug delivery publication-title: Nanomedicine doi: 10.1016/j.nano.2012.09.002 – ident: e_1_3_2_158_2 doi: 10.1021/acs.langmuir.2c00430 – ident: e_1_3_2_50_2 doi: 10.1083/jcb.201610031 – ident: e_1_3_2_189_2 doi: 10.1002/psc.2773 – ident: e_1_3_2_183_2 doi: 10.1002/adma.201506086 – volume: 322 start-page: 81 year: 2020 ident: e_1_3_2_69_2 article-title: Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy publication-title: J Control Release doi: 10.1016/j.jconrel.2020.03.013 – ident: e_1_3_2_175_2 doi: 10.1016/j.actbio.2020.05.028 – volume: 160 start-page: 61 year: 2019 ident: e_1_3_2_12_2 article-title: Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles publication-title: Biochimie doi: 10.1016/j.biochi.2019.02.012 – volume: 88 start-page: 263 year: 2014 ident: e_1_3_2_92_2 article-title: Recent developments in nucleic acid delivery with polyethylenimines publication-title: Adv Genet doi: 10.1016/B978-0-12-800148-6.00009-2 – volume: 10 start-page: 45059 issue: 73 year: 2020 ident: e_1_3_2_140_2 article-title: pH-sensitive zwitterionic polycarboxybetaine as a potential non-viral vector for small interfering RNA delivery publication-title: RSC Adv doi: 10.1039/D0RA09359A – ident: e_1_3_2_204_2 doi: 10.1016/j.omtn.2017.11.002 – volume: 151 start-page: 466 issue: 2 year: 2010 ident: e_1_3_2_97_2 article-title: Delivering the code: Polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies publication-title: Endocrinology doi: 10.1210/en.2009-1045 – volume: 10 start-page: 4654 issue: 12 year: 2013 ident: e_1_3_2_41_2 article-title: Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems publication-title: Mol Pharm doi: 10.1021/mp400470p – ident: e_1_3_2_2_2 doi: 10.1002/med.21844 – volume: 89 start-page: 836 issue: 8 year: 2011 ident: e_1_3_2_39_2 article-title: Macropinocytosis: An endocytic pathway for internalising large gulps publication-title: Immunol Cell Biol doi: 10.1038/icb.2011.20 – volume: 11 issue: 2 year: 2021 ident: e_1_3_2_174_2 article-title: Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics publication-title: Clin Transl Med doi: 10.1002/ctm2.292 – volume: 62 start-page: 45 issue: 1 year: 2011 ident: e_1_3_2_30_2 article-title: Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles publication-title: J Physiol Pharmacol – volume: 143 start-page: 186 year: 2016 ident: e_1_3_2_98_2 article-title: Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2016.03.035 – volume: 12 start-page: 4734 issue: 10 year: 2022 ident: e_1_3_2_11_2 article-title: Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy publication-title: Theranostics doi: 10.7150/thno.69682 – ident: e_1_3_2_195_2 doi: 10.1038/nature13817 – volume: 29 issue: 13 year: 2017 ident: e_1_3_2_44_2 article-title: Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes publication-title: Adv Mater doi: 10.1002/adma.201605604 – volume: 35 start-page: 5028 issue: 18 year: 2014 ident: e_1_3_2_71_2 article-title: Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.012 – volume: 21 issue: 4 year: 2021 ident: e_1_3_2_100_2 article-title: Construction of poly(amidoamine) dendrimer/carbon dot nanohybrids for biomedical applications publication-title: Macromol Biosci doi: 10.1002/mabi.202100007 – ident: e_1_3_2_142_2 doi: 10.1038/nnano.2017.52 – ident: e_1_3_2_196_2 doi: 10.1016/j.biomaterials.2018.02.007 – ident: e_1_3_2_131_2 doi: 10.1038/srep04495 – volume: 75 year: 2022 ident: e_1_3_2_27_2 article-title: Capturing the mechanics of clathrin-mediated endocytosis publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2022.102427 – volume: 115 start-page: 11923 issue: 47 year: 2018 ident: e_1_3_2_18_2 article-title: Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1811520115 – volume: 5 start-page: 7256 issue: 16 year: 2013 ident: e_1_3_2_84_2 article-title: RNase non-sensitive and endocytosis independent siRNA delivery system: Delivery of siRNA into tumor cells and high efficiency induction of apoptosis publication-title: Nanoscale doi: 10.1039/c3nr01183f – ident: e_1_3_2_103_2 doi: 10.1021/acs.chemrev.8b00199 – ident: e_1_3_2_172_2 doi: 10.1515/hsz-2016-0252 – ident: e_1_3_2_19_2 doi: 10.1039/D0NA00454E – volume: 29 issue: 32 year: 2017 ident: e_1_3_2_93_2 article-title: Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors publication-title: Adv Mater doi: 10.1002/adma.201701170 – volume: 1 start-page: 3535 issue: 29 year: 2013 ident: e_1_3_2_150_2 article-title: A supramolecular endosomal escape approach for enhancing gene silencing of siRNA using acid-degradable cationic polyrotaxanes publication-title: J Mater Chem B doi: 10.1039/c3tb20514b – ident: e_1_3_2_15_2 doi: 10.1021/acs.bioconjchem.8b00778 – volume: 5 issue: 5 year: 2010 ident: e_1_3_2_56_2 article-title: Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes publication-title: PLOS ONE doi: 10.1371/journal.pone.0010459 – ident: e_1_3_2_109_2 doi: 10.1039/C9BM00831D – volume: 17 start-page: 1296 issue: 8 year: 2016 ident: e_1_3_2_173_2 article-title: Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets publication-title: Int J Mol Sci doi: 10.3390/ijms17081296 – volume: 26 start-page: 36 issue: 1 year: 2020 ident: e_1_3_2_170_2 article-title: Photoinduced endosomal escape mechanism: A view from photochemical internalization mediated by CPP-photosensitizer conjugates publication-title: Molecules doi: 10.3390/molecules26010036 – volume: 21 start-page: 1559 issue: 8 year: 2013 ident: e_1_3_2_58_2 article-title: Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC publication-title: Mol Ther doi: 10.1038/mt.2013.120 – volume: 167 start-page: 228 issue: 3 year: 2013 ident: e_1_3_2_186_2 article-title: pHLIP(R)-mediated delivery of PEGylated liposomes to cancer cells publication-title: J Control Release doi: 10.1016/j.jconrel.2013.01.037 – volume: 33 start-page: 7272 issue: 29 year: 2012 ident: e_1_3_2_35_2 article-title: Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.037 – volume: 7 start-page: 5091 issue: 6 year: 2013 ident: e_1_3_2_157_2 article-title: Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields publication-title: ACS Nano doi: 10.1021/nn4007048 – volume: 186 start-page: 343 issue: 3 year: 2009 ident: e_1_3_2_200_2 article-title: A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking publication-title: J Cell Biol doi: 10.1083/jcb.200902146 – volume: 172 start-page: 207 issue: 1 year: 2013 ident: e_1_3_2_96_2 article-title: Chitosan-based siRNA delivery systems publication-title: J Control Release doi: 10.1016/j.jconrel.2013.08.005 – volume: 150 start-page: 87 issue: 1 year: 2011 ident: e_1_3_2_118_2 article-title: Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles publication-title: J Control Release doi: 10.1016/j.jconrel.2010.11.012 – ident: e_1_3_2_8_2 doi: 10.1002/adma.201405084 – volume: 10 start-page: 648 issue: 1 year: 2016 ident: e_1_3_2_34_2 article-title: Engineering chimeric receptors to investigate the size- and rigidity-dependent interaction of PEGylated nanoparticles with cells publication-title: ACS Nano doi: 10.1021/acsnano.5b05661 – volume: 32 start-page: 6342 issue: 26 year: 2011 ident: e_1_3_2_75_2 article-title: KALA-modified multi-layered nanoparticles as gene carriers for MHC class-I mediated antigen presentation for a DNA vaccine publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.014 – volume: 56 start-page: 967 issue: 7 year: 2004 ident: e_1_3_2_165_2 article-title: GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2003.10.041 – volume: 178 start-page: 18 year: 2014 ident: e_1_3_2_116_2 article-title: Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles publication-title: J Control Release doi: 10.1016/j.jconrel.2014.01.008 – volume: 118 issue: 19 year: 2021 ident: e_1_3_2_101_2 article-title: DNA-inspired nanomaterials for enhanced endosomal escape publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2104511118 – volume: 14 start-page: 289 issue: 4 year: 2014 ident: e_1_3_2_46_2 article-title: Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-targeting therapy publication-title: Curr Gene Ther doi: 10.2174/1566523214666140612151726 – volume: 26 start-page: 82 issue: 1 year: 2009 ident: e_1_3_2_79_2 article-title: A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles publication-title: Pharm Res doi: 10.1007/s11095-008-9712-2 – volume: 683 start-page: 525 year: 2011 ident: e_1_3_2_167_2 article-title: Application of a fusiogenic peptide GALA for intracellular delivery publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-919-2_37 – ident: e_1_3_2_162_2 doi: 10.1016/j.bbamem.2012.10.017 – volume: 57 start-page: 5480 issue: 37 year: 2018 ident: e_1_3_2_67_2 article-title: The stabilities of the soluble ectodomain and fusion peptide hairpins of the influenza virus hemagglutinin subunit II protein are positively correlated with membrane fusion publication-title: Biochemistry doi: 10.1021/acs.biochem.8b00764 – ident: e_1_3_2_3_2 doi: 10.1007/s00210-022-02287-3 – volume: 23 start-page: 8067 issue: 15 year: 2022 ident: e_1_3_2_191_2 article-title: Membrane fusion and SNAREs: Interaction with Ras proteins publication-title: Int J Mol Sci doi: 10.3390/ijms23158067 – volume: 57 start-page: 1 year: 2018 ident: e_1_3_2_7_2 article-title: The endosomal network: Mediators and regulators of endosome maturation publication-title: Prog Mol Subcell Biol doi: 10.1007/978-3-319-96704-2_1 – ident: e_1_3_2_99_2 doi: 10.1021/acsami.8b09348 – volume: 192 start-page: 122 year: 2014 ident: e_1_3_2_114_2 article-title: Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate publication-title: J Control Release doi: 10.1016/j.jconrel.2014.06.049 – volume: 35 start-page: 2066 issue: 6 year: 2014 ident: e_1_3_2_72_2 article-title: Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.11.046 – ident: e_1_3_2_120_2 doi: 10.1021/ar3000162 – volume: 12 year: 2014 ident: e_1_3_2_166_2 article-title: A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway publication-title: J Nanobiotechnol doi: 10.1186/1477-3155-12-11 – volume: 586 start-page: 63 year: 2022 ident: e_1_3_2_135_2 article-title: Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular delivery of TAT-fused proteins publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2021.11.065 – volume: 510 start-page: 394 issue: 1 year: 2016 ident: e_1_3_2_73_2 article-title: Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2016.06.127 – volume: 31 issue: 35 year: 2019 ident: e_1_3_2_80_2 article-title: Securing the payload, finding the cell, and avoiding the endosome: Peptide-targeted, fusogenic porous silicon nanoparticles for delivery of siRNA publication-title: Adv Mater doi: 10.1002/adma.201902952 – volume: 11 start-page: 1273 issue: 4 year: 2014 ident: e_1_3_2_54_2 article-title: Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots publication-title: Mol Pharm doi: 10.1021/mp400744a – ident: e_1_3_2_117_2 doi: 10.1016/j.biomaterials.2010.12.057 – volume: 9 issue: 3 year: 2014 ident: e_1_3_2_63_2 article-title: Dual-layered nanogel-coated hollow lipid/polypeptide conjugate assemblies for potential pH-triggered intracellular drug release publication-title: PLOS ONE doi: 10.1371/journal.pone.0092268 – volume: 12 start-page: 1421 issue: 12 year: 2017 ident: e_1_3_2_70_2 article-title: Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape publication-title: Nanomedicine (Lond) doi: 10.2217/nnm-2017-0021 – volume: 25 start-page: 3549 issue: 26 year: 2013 ident: e_1_3_2_176_2 article-title: Surface functionalization of gold nanoparticles with red blood cell membranes publication-title: Adv Mater doi: 10.1002/adma.201300638 – volume: 118 issue: 19 year: 2021 ident: e_1_3_2_85_2 article-title: Membrane fusion and drug delivery with carbon nanotube porins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2016974118 – volume: 12 issue: 2 year: 2015 ident: e_1_3_2_188_2 article-title: Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion publication-title: Phys Biol – volume: 413 start-page: 3493 issue: 13 year: 2021 ident: e_1_3_2_136_2 article-title: Lysosomal escaped protein nanocarriers for nuclear-targeted siRNA delivery publication-title: Anal Bioanal Chem doi: 10.1007/s00216-021-03297-5 – volume: 116 start-page: 1059 issue: 6 year: 2003 ident: e_1_3_2_199_2 article-title: Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum publication-title: J Cell Sci doi: 10.1242/jcs.00327 – volume: 15 start-page: 4046 issue: 11 year: 2014 ident: e_1_3_2_122_2 article-title: Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger publication-title: Biomacromolecules doi: 10.1021/bm501091p – volume: 4 start-page: 1645 issue: 11 year: 2015 ident: e_1_3_2_180_2 article-title: Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy publication-title: Adv Healthc Mater doi: 10.1002/adhm.201500129 – ident: e_1_3_2_52_2 doi: 10.1073/pnas.1522080113 – ident: e_1_3_2_192_2 doi: 10.1016/j.biomaterials.2014.05.009 – volume: 352 start-page: 970 year: 2022 ident: e_1_3_2_91_2 article-title: Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery publication-title: J Control Release doi: 10.1016/j.jconrel.2022.10.061 – ident: e_1_3_2_59_2 doi: 10.1016/j.jconrel.2011.10.020 – volume: 58 start-page: 5236 issue: 16 year: 2019 ident: e_1_3_2_83_2 article-title: Self-assembled and size-controllable oligonucleotide nanospheres for effective antisense gene delivery through an endocytosis-independent pathway publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201813665 – volume: 59 start-page: 3046 issue: 7 year: 2016 ident: e_1_3_2_144_2 article-title: Design of ionizable lipids to overcome the limiting step of endosomal escape: Application in the intracellular delivery of mRNA, DNA, and siRNA publication-title: J Med Chem doi: 10.1021/acs.jmedchem.5b01679 – volume: 3 issue: 1 year: 2014 ident: e_1_3_2_25_2 article-title: Routes and mechanisms of extracellular vesicle uptake publication-title: J Extracell Vesicles doi: 10.3402/jev.v3.24641 – volume: 37 issue: 19 year: 2018 ident: e_1_3_2_190_2 article-title: SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle publication-title: EMBO J doi: 10.15252/embj.201899193 – volume: 155 start-page: 60 issue: 1 year: 2011 ident: e_1_3_2_94_2 article-title: Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug publication-title: J Control Release doi: 10.1016/j.jconrel.2010.10.017 – ident: e_1_3_2_13_2 doi: 10.1021/acsnano.9b05521 – ident: e_1_3_2_21_2 doi: 10.1021/nn304218q – volume: 8 start-page: 4848 issue: 5 year: 2014 ident: e_1_3_2_78_2 article-title: Near-infrared-light-based nano-platform boosts endosomal escape and controls gene knockdown in vivo publication-title: ACS Nano doi: 10.1021/nn500777n – volume: 6 start-page: 206 issue: 1 year: 2021 ident: e_1_3_2_143_2 article-title: Membrane-destabilizing ionizable phospholipids: Novel components for organ-selective mRNA delivery and CRISPR-Cas gene editing publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-021-00642-z – ident: e_1_3_2_198_2 doi: 10.1021/acsabm.9b01131 – volume: 30 start-page: 263 issue: 2 year: 2019 ident: e_1_3_2_16_2 article-title: The endosomal escape of nanoparticles: Toward more efficient cellular delivery publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.8b00732 – volume: 11 start-page: 6225 issue: 46 year: 2015 ident: e_1_3_2_178_2 article-title: Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance publication-title: Small doi: 10.1002/smll.201502388 – volume: 25 start-page: 660 issue: 9 year: 2016 ident: e_1_3_2_205_2 article-title: In vitro comparative evaluation of three CLD/siRNA nanoplexes prepared by different processes publication-title: J Chin Pharm Sci – volume: 57 start-page: 6049 issue: 21 year: 2018 ident: e_1_3_2_177_2 article-title: Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: Applications in cancer therapy publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201712996 – volume: 6 start-page: 1262 issue: 5 year: 2018 ident: e_1_3_2_55_2 article-title: Acid- and reduction-sensitive micelles for improving the drug delivery efficacy for pancreatic cancer therapy publication-title: Biomater Sci doi: 10.1039/C7BM01051F – volume: 8 start-page: 163 year: 2020 ident: e_1_3_2_47_2 article-title: Endosome-to-TGN trafficking: Organelle-vesicle and organelle-organelle interactions publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2020.00163 – volume: 8 start-page: 833 issue: 6 year: 2012 ident: e_1_3_2_137_2 article-title: Synergistic effects of cell-penetrating peptide tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles publication-title: Nanomedicine doi: 10.1016/j.nano.2011.10.003 – volume: 38 start-page: 8382 issue: 27 year: 2022 ident: e_1_3_2_102_2 article-title: Polyethylenimine-DNA nanoparticles under endosomal acidification and implication to gene delivery publication-title: Langmuir doi: 10.1021/acs.langmuir.2c00952 – volume: 7 start-page: 3056 issue: 10 year: 2007 ident: e_1_3_2_61_2 article-title: Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles publication-title: Nano Lett doi: 10.1021/nl071542i – volume: 7 start-page: 703 issue: 6 year: 1996 ident: e_1_3_2_119_2 article-title: In vitro gene delivery by degraded polyamidoamine dendrimers publication-title: Bioconjug Chem doi: 10.1021/bc9600630 – volume: 19 start-page: 920 issue: 4 year: 2008 ident: e_1_3_2_65_2 article-title: Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles publication-title: Bioconjug Chem doi: 10.1021/bc700448h – volume: 170 start-page: 307 issue: 3 year: 2013 ident: e_1_3_2_86_2 article-title: Intracellular processing of immunostimulatory CpG-siRNA: Toll-like receptor 9 facilitates siRNA dicing and endosomal escape publication-title: J Control Release doi: 10.1016/j.jconrel.2013.06.007 – volume: 28 start-page: 146 issue: 3 year: 2018 ident: e_1_3_2_145_2 article-title: Lipid nanoparticles enabling gene therapies: From concepts to clinical utility publication-title: Nucleic Acid Ther doi: 10.1089/nat.2018.0721 – volume: 131 start-page: 2469 issue: 7 year: 2009 ident: e_1_3_2_62_2 article-title: Expansile nanoparticles: Synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system publication-title: J Am Chem Soc doi: 10.1021/ja807416t – ident: e_1_3_2_126_2 doi: 10.1039/C4OB02041C – volume: 78 year: 2023 ident: e_1_3_2_148_2 article-title: Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2022.117135 – ident: e_1_3_2_193_2 doi: 10.1038/nprot.2016.119 – volume: 7 issue: 12 year: 2012 ident: e_1_3_2_32_2 article-title: Delivery of short interfering ribonucleic acid-complexed magnetic nanoparticles in an oscillating field occurs via caveolae-mediated endocytosis publication-title: PLOS ONE doi: 10.1371/journal.pone.0051350 – volume: 9 start-page: 3266 issue: 11 year: 2012 ident: e_1_3_2_160_2 article-title: Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: Synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics publication-title: Mol Pharm doi: 10.1021/mp300326z – volume: 31 start-page: 916 issue: 3 year: 2020 ident: e_1_3_2_77_2 article-title: Endosomal escape of peptide-photosensitizer conjugates is affected by amino acid sequences near the photosensitizer publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.0c00046 – ident: e_1_3_2_76_2 doi: 10.1007/s00216-008-2012-1 – ident: e_1_3_2_130_2 doi: 10.1529/biophysj.107.126474 – volume: 8 start-page: 2416 issue: 6 year: 2011 ident: e_1_3_2_153_2 article-title: Bubble liposomes and ultrasound promoted endosomal escape of TAT-PEG liposomes as gene delivery carriers publication-title: Mol Pharm doi: 10.1021/mp200353m – volume: 11 start-page: 72 issue: 1 year: 2018 ident: e_1_3_2_155_2 article-title: Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy publication-title: Nanoscale doi: 10.1039/C8NR05520C – volume: 17 issue: 1 year: 2019 ident: e_1_3_2_66_2 article-title: pH-triggered endosomal escape of pore-forming Listeriolysin O toxin-coated gold nanoparticles publication-title: J Nanobiotechnol doi: 10.1186/s12951-019-0543-6 – volume: 110 start-page: 876 issue: 2 year: 2021 ident: e_1_3_2_113_2 article-title: Bone-targeted calcium phosphate-polymer hybrid nanoparticle co-deliver zoledronate and docetaxel to treat bone metastasis of prostate cancer publication-title: J Pharm Sci doi: 10.1016/j.xphs.2020.11.005 – volume: 61 start-page: 205 issue: 2 year: 2020 ident: e_1_3_2_37_2 article-title: Endocytosis of very low-density lipoproteins: An unexpected mechanism for lipid acquisition by breast cancer cells publication-title: J Lipid Res doi: 10.1194/jlr.RA119000327 – ident: e_1_3_2_187_2 doi: 10.1016/j.neuron.2013.09.010 – volume: 10 start-page: 2702 issue: 1 year: 2019 ident: e_1_3_2_90_2 article-title: Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes publication-title: Nat Commun doi: 10.1038/s41467-019-10562-w – ident: e_1_3_2_104_2 doi: 10.1016/j.jconrel.2009.06.031 – ident: e_1_3_2_26_2 doi: 10.1002/smll.201100001 – ident: e_1_3_2_40_2 doi: 10.1007/s12565-015-0313-y – volume: 176 start-page: 104 year: 2014 ident: e_1_3_2_68_2 article-title: Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA publication-title: J Control Release doi: 10.1016/j.jconrel.2013.12.007 – volume: 168 issue: 3 year: 2022 ident: e_1_3_2_128_2 article-title: Bacterial pore-forming toxins publication-title: Microbiology (Reading) doi: 10.1099/mic.0.001154 – volume: 92 start-page: 39 year: 2016 ident: e_1_3_2_74_2 article-title: Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2016.06.020 – ident: e_1_3_2_22_2 doi: 10.1038/nbt.2614 – volume: 191 start-page: 439 issue: 3 year: 2010 ident: e_1_3_2_202_2 article-title: Revisiting caveolin trafficking: The end of the caveosome publication-title: J Cell Biol doi: 10.1083/jcb.201009093 – ident: e_1_3_2_38_2 – volume: 25 start-page: 899 issue: 9 year: 2017 ident: e_1_3_2_124_2 article-title: pH-sensitive polymersomes: Controlling swelling via copolymer structure and chemical composition publication-title: J Drug Target doi: 10.1080/1061186X.2017.1363216 – ident: e_1_3_2_45_2 doi: 10.1016/j.semcdb.2014.03.034 – volume: 9 issue: 5 year: 2017 ident: e_1_3_2_107_2 article-title: Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol doi: 10.1002/wnan.1452 – volume: 32 start-page: 2051 issue: 6 year: 2015 ident: e_1_3_2_33_2 article-title: Dependence of PEI and PAMAM gene delivery on Clathrin- and Caveolin-dependent trafficking pathways publication-title: Pharm Res doi: 10.1007/s11095-014-1598-6 – volume: 34 start-page: 9171 issue: 36 year: 2013 ident: e_1_3_2_29_2 article-title: LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.039 – volume: 14 start-page: 215 issue: 2 year: 2019 ident: e_1_3_2_6_2 article-title: Controlling endosomal escape using nanoparticle composition: Current progress and future perspectives publication-title: Nanomedicine (Lond) doi: 10.2217/nnm-2018-0326 – volume: 7 start-page: 3767 issue: 5 year: 2013 ident: e_1_3_2_64_2 article-title: Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: Real-time visualization of transient membrane destabilization without endosomal lysis publication-title: ACS Nano doi: 10.1021/nn3049494 – volume: 36 start-page: 70 year: 2017 ident: e_1_3_2_152_2 article-title: Intracellular triggered release of DNA-quaternary ammonium polyplex by ultrasound publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2016.11.002 – volume: 36 start-page: 3008 issue: 10 year: 1997 ident: e_1_3_2_164_2 article-title: Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers publication-title: Biochemistry doi: 10.1021/bi9618474 – ident: e_1_3_2_43_2 doi: 10.1016/j.chemphyslip.2014.07.010 – volume: 10 issue: 7 year: 2022 ident: e_1_3_2_24_2 article-title: Mechanisms of synaptic vesicle exo- and endocytosis publication-title: Biomedicine – ident: e_1_3_2_106_2 doi: 10.1039/b717431d – ident: e_1_3_2_48_2 doi: 10.1016/j.semcdb.2014.04.024 – volume: 22 issue: 5 year: 2022 ident: e_1_3_2_125_2 article-title: Understanding the biological interactions of pH-swellable nanoparticles publication-title: Macromol Biosci doi: 10.1002/mabi.202100445 – volume: 12 start-page: 7902 issue: 14 year: 2020 ident: e_1_3_2_132_2 article-title: Pore formation induced by nanoparticles binding to a lipid membrane publication-title: Nanoscale doi: 10.1039/C9NR10534D – volume: 140 year: 2022 ident: e_1_3_2_110_2 article-title: Self-assembled calcium pyrophosphate nanostructures for targeted molecular delivery publication-title: Biomater Adv doi: 10.1016/j.bioadv.2022.213086 – ident: e_1_3_2_149_2 doi: 10.1016/j.jconrel.2017.11.019 – volume: 284 start-page: 21783 issue: 33 year: 2009 ident: e_1_3_2_171_2 article-title: Lysosomes as "suicide bags" in cell death: Myth or reality? publication-title: J Biol Chem doi: 10.1074/jbc.R109.023820 |
SSID | ssj0002170995 |
Score | 2.5414898 |
SecondaryResourceType | review_article |
Snippet | Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 0148 |
SubjectTerms | Review |
Title | Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37250954 https://www.proquest.com/docview/2820969452 https://pubmed.ncbi.nlm.nih.gov/PMC10208951 https://doaj.org/article/aae7928c8d5e4597ac04055a2db23fd9 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZEeYaXjIQEDKGNE8fx2EIrhHgMUIkt8pNWKgnqY-jCb-ecpFWLQCwsURRbinV3vvtsn79D6IwZ6Xx_0wcsbf0oosIX0gifKal4QC0lqsjyfYxve9HdK31dKvXlcsJKeuBScA0hDOMkUYmmJgL0KxSYHaWCaElCq4urexDzlhZTzgcD0AboQ0uWRueow0ZFntO_cntoK1GoIOv_CWF-T5RcijzdTbRRQUbcKodaR2sm20L1alKO8UXFHH25jZ5b1Yk-npPOQjugUvwEBgumBWEKdzKdj_N3MWzcz8blG26LkStchwcZBm-b69H0Dd-YoUvZmO2gXrfzcn3rV1UTfBVRNvGVJUTwpkgUszKJuaCaBZypppWBjUMjIhkozbXSgCykkoSDQowVoQApWcPCXVTL8szsIxw3JUjcXSAhBmQYSy0BriRJYJR2LD0e8udSTFVFKe4qWwxTWFoUUk_nUk-d1D10vuj_UZJp_Nqz7ZSy6OVIsIsPYBppZRrpX6bhodO5SlOYNO4kRGQmn45TWGfC0o1HlHhor1Tx4lchA1TIaeShZEX5K2NZbckG_YKYO3AVTwGyHvzH6A_RuittX273HKHaZDQ1xwCAJvKksHV4Pnx2vgDWuAng |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Strategies+for+Overcoming+Endosomal%2FLysosomal+Barrier+in+Nanodrug+Delivery&rft.jtitle=Research+%28Washington%29&rft.au=Chong+Qiu&rft.au=Fei+Xia&rft.au=Junzhe+Zhang&rft.au=Qiaoli+Shi&rft.date=2023&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.eissn=2639-5274&rft.volume=6&rft_id=info:doi/10.34133%2Fresearch.0148&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aae7928c8d5e4597ac04055a2db23fd9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-5274&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-5274&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-5274&client=summon |