Exact algorithms for problems related to the densest k-set problem

Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set S⊆V of size k such that the number of edges in the subgraph of G induced b...

Full description

Saved in:
Bibliographic Details
Published inInformation processing letters Vol. 114; no. 9; pp. 510 - 513
Main Authors Chang, Maw-Shang, Chen, Li-Hsuan, Hung, Ling-Ju, Rossmanith, Peter, Wu, Guan-Han
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2014
Elsevier Sequoia S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set S⊆V of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k. One can obtain a densest k-set of G in O(k2nk) time by exhaustive-search technique for an undirected graph of n vertices and a number k<n. However, if the value of k approaches n/2, the running time of the exhaustive-search algorithm is O⁎(2n). Whether there exists an O⁎(cn)-time algorithm with the fixed constant c<2 to find a densest k-set in an undirected graph of n vertices remains open in the literature. In this paper, we point out that the densest k-set problem and a class of problems related to the concept of densest k-sets can be solved in time O⁎(1.7315n). •An O⁎(1.7315n)-time exact algorithm for the densest k-set problem is proposed.•The algorithm can be applied to solve a series of problems related to the densest k-set problem.•All these related problems can also be solved in time O⁎(1.7315n).
AbstractList Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set S⊆V of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k. One can obtain a densest k-set of G in O(k2nk) time by exhaustive-search technique for an undirected graph of n vertices and a number k<n. However, if the value of k approaches n/2, the running time of the exhaustive-search algorithm is O⁎(2n). Whether there exists an O⁎(cn)-time algorithm with the fixed constant c<2 to find a densest k-set in an undirected graph of n vertices remains open in the literature. In this paper, we point out that the densest k-set problem and a class of problems related to the concept of densest k-sets can be solved in time O⁎(1.7315n). •An O⁎(1.7315n)-time exact algorithm for the densest k-set problem is proposed.•The algorithm can be applied to solve a series of problems related to the densest k-set problem.•All these related problems can also be solved in time O⁎(1.7315n).
Many graph concepts such as cliques, k -clubs, and k -plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E)G=(V,E) is a vertex set S[subE]VS[subE]V of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k . One can obtain a densest k -set of G in O(k super(2)n super(k))O(k2nk) time by exhaustive-search technique for an undirected graph of n vertices and a number k
Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set ... of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k. One can obtain a densest k-set of G in ... time by exhaustive-search technique for an undirected graph of n vertices and a number k<n. However, if the value of k approaches n/2, the running time of the exhaustive-search algorithm is ... Whether there exists an ...-time algorithm with the fixed constant c<2 to find a densest k-set in an undirected graph of n vertices remains open in the literature. In this paper, we point out that the densest k-set problem and a class of problems related to the concept of densest k-sets can be solved in time ... (ProQuest: ... denotes formulae/symbols omitted.)
Author Hung, Ling-Ju
Rossmanith, Peter
Chang, Maw-Shang
Chen, Li-Hsuan
Wu, Guan-Han
Author_xml – sequence: 1
  givenname: Maw-Shang
  surname: Chang
  fullname: Chang, Maw-Shang
  email: mschang@sunrise.hk.edu.tw
  organization: Department of Computer Science and Information Engineering, HungKuang University, 43302 Sha Lu, Taichung, Taiwan
– sequence: 2
  givenname: Li-Hsuan
  orcidid: 0000-0003-1426-2629
  surname: Chen
  fullname: Chen, Li-Hsuan
  email: clh100p@cs.ccu.edu.tw
  organization: Department of Computer Science and Information Engineering, National Chung Cheng University, 62102 Min-Hsiung, Chia-Yi, Taiwan
– sequence: 3
  givenname: Ling-Ju
  surname: Hung
  fullname: Hung, Ling-Ju
  email: ljhung@sunrise.hk.edu.tw
  organization: Department of Computer Science and Information Engineering, HungKuang University, 43302 Sha Lu, Taichung, Taiwan
– sequence: 4
  givenname: Peter
  surname: Rossmanith
  fullname: Rossmanith, Peter
  email: rossmani@cs.rwth-aachen.de
  organization: Department of Computer Science, RWTH Aachen University, 52056 Aachen, Germany
– sequence: 5
  givenname: Guan-Han
  surname: Wu
  fullname: Wu, Guan-Han
  email: wkh99m@cs.ccu.edu.tw
  organization: Department of Computer Science and Information Engineering, National Chung Cheng University, 62102 Min-Hsiung, Chia-Yi, Taiwan
BookMark eNqFkU1r3DAQhkVJoJuPH5CboZdevJmxJVmipzYkTSGQS3IWsjzuauu1tpK2NP8-Wra97CGBgUHwPKOR3jN2MoeZGLtCWCKgvF4v_XZaNoB8CaVAf2ALVF1TS0R9whYADdSAGj6ys5TWACB52y3Yt9u_1uXKTj9D9Hm1SdUYYrWNoZ-oHCJNNtNQ5VDlFVUDzYlSrn7VifJ_6oKdjnZKdPmvn7Pnu9unm_v64fH7j5uvD7Xjosu1s0rKngviQ69QkRaDshKptdYqgla2NHZg-6YfuEUYNQcl0Smreucaje05-3yYW-79vStrmI1PjqbJzhR2yWAnG-CCa_4-KgSC0lrs0U9H6Drs4lweUqi2aYTQWhaqO1AuhpQijcb5bLMPc47WTwbB7GMwa1NiMPsYDJQCXUw8MrfRb2x8edP5cnCofOcfT9Ek52l2NPhILpsh-DfsV_cGoOg
CODEN IFPLAT
CitedBy_id crossref_primary_10_12677_AAM_2022_112092
crossref_primary_10_1016_j_ejor_2024_12_018
crossref_primary_10_1016_j_dam_2015_04_029
crossref_primary_10_1016_j_ejor_2017_04_034
crossref_primary_10_2139_ssrn_4196893
crossref_primary_10_1007_s10732_021_09487_9
crossref_primary_10_1016_j_neucom_2018_06_058
crossref_primary_10_1016_j_tcs_2021_03_023
crossref_primary_10_1007_s12559_021_09906_w
crossref_primary_10_1016_j_neucom_2016_01_102
crossref_primary_10_1007_s00779_016_0954_4
crossref_primary_10_23919_cje_2022_00_165
crossref_primary_10_3233_JIFS_169102
crossref_primary_10_1002_cpe_4847
crossref_primary_10_1007_s00500_020_05028_x
crossref_primary_10_1038_s41598_021_95156_7
Cites_doi 10.1137/0218003
10.1016/j.ipl.2009.03.023
10.1016/j.tcs.2005.09.023
10.1007/s00224-007-1309-3
10.1007/3-540-36478-1_17
10.1016/0304-3975(94)00097-3
10.1093/comjnl/bxm086
10.1007/s10878-007-9069-1
10.1016/j.mathsocsci.2004.06.002
10.1016/0166-218X(84)90088-X
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Sep 2014
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Sep 2014
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ipl.2014.04.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
EndPage 513
ExternalDocumentID 3324613911
10_1016_j_ipl_2014_04_009
S0020019014000684
Genre Feature
GrantInformation_xml – fundername: National Science Council of Taiwan
  grantid: NSC 101-2221-E-241-019-MY3; NSC 102-2221-E-241-007-MY3
– fundername: National Science Council of Taiwan
  grantid: NSC 102-2811-E-241-001
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c457t-ca866b45e4db818e95d8a61e3aaa8e0363ef70ab2bd4a10f940861c8a8bcc2913
IEDL.DBID .~1
ISSN 0020-0190
IngestDate Mon Jul 21 11:09:47 EDT 2025
Fri Jul 11 12:37:50 EDT 2025
Fri Jul 25 07:11:50 EDT 2025
Tue Jul 01 02:26:53 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Fri Feb 23 02:16:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Partial vertex cover
Minimum (maximum) k-vertex cover
Design of algorithms
Exact algorithm
Densest (sparsest) k-set
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-ca866b45e4db818e95d8a61e3aaa8e0363ef70ab2bd4a10f940861c8a8bcc2913
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-1426-2629
PQID 1532255996
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1762045494
proquest_miscellaneous_1551089954
proquest_journals_1532255996
crossref_citationtrail_10_1016_j_ipl_2014_04_009
crossref_primary_10_1016_j_ipl_2014_04_009
elsevier_sciencedirect_doi_10_1016_j_ipl_2014_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information processing letters
PublicationYear 2014
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Cai (br0040) 2008; 51
Williams (br0190) 2007
Khuller, Saha (br0140) 2009; vol. 5555
Bourgeois, Giannakos, Lucarelli, Milis, Paschos (br0020) 2013; vol. 7748
Woeginger (br0200) 2003; 2570
Andersen, Chellapilla (br0010) 2009
Kneis, Langer, Rossmanith (br0160) 2008; vol. 5344
Gallo, Grigoriadis, Tarjan (br0100) 1989; 18
Cai, Chan, Chan (br0030) 2006; vol. 4169
Corneil, Perl (br0050) 1984; 9
Fomin, Golovach, Kratochvíl, Kratsch, Liedloff (br0080) 2009; 109
Guo, Niedermeier, Wernicke (br0120) 2007; 41
Williams (br0180) 2005; 348
Liazi, Milis, Zissimopoulos (br0170) 2007; 14
Feige, Seltser (br0070) 1997
Klinz, Woeginger (br0150) 2005; 49
Downey, Fellows (br0060) 1995; 141
Keil, Brecht (br0130) 1991; 9
Fomin, Kratsch (br0090) 2010
Goldberg (br0110) 1984
Fomin (10.1016/j.ipl.2014.04.009_br0080) 2009; 109
Williams (10.1016/j.ipl.2014.04.009_br0180) 2005; 348
Williams (10.1016/j.ipl.2014.04.009_br0190) 2007
Klinz (10.1016/j.ipl.2014.04.009_br0150) 2005; 49
Woeginger (10.1016/j.ipl.2014.04.009_br0200) 2003; 2570
Bourgeois (10.1016/j.ipl.2014.04.009_br0020) 2013; vol. 7748
Goldberg (10.1016/j.ipl.2014.04.009_br0110) 1984
Cai (10.1016/j.ipl.2014.04.009_br0030) 2006; vol. 4169
Andersen (10.1016/j.ipl.2014.04.009_br0010) 2009
Kneis (10.1016/j.ipl.2014.04.009_br0160) 2008; vol. 5344
Khuller (10.1016/j.ipl.2014.04.009_br0140) 2009; vol. 5555
Cai (10.1016/j.ipl.2014.04.009_br0040) 2008; 51
Downey (10.1016/j.ipl.2014.04.009_br0060) 1995; 141
Gallo (10.1016/j.ipl.2014.04.009_br0100) 1989; 18
Corneil (10.1016/j.ipl.2014.04.009_br0050) 1984; 9
Feige (10.1016/j.ipl.2014.04.009_br0070) 1997
Liazi (10.1016/j.ipl.2014.04.009_br0170) 2007; 14
Guo (10.1016/j.ipl.2014.04.009_br0120) 2007; 41
Keil (10.1016/j.ipl.2014.04.009_br0130) 1991; 9
Fomin (10.1016/j.ipl.2014.04.009_br0090) 2010
References_xml – year: 1984
  ident: br0110
  article-title: Finding a maximum density subgraph
– start-page: 25
  year: 2009
  end-page: 36
  ident: br0010
  article-title: Finding dense subgraphs with size bounds
  publication-title: Proceedings of WAW'09
– volume: vol. 5344
  start-page: 240
  year: 2008
  end-page: 251
  ident: br0160
  article-title: Improved upper bounds for partial vertex cover
  publication-title: Proceedings of WG 2008
– year: 2010
  ident: br0090
  article-title: Exact Exponential Algorithms
– volume: 41
  start-page: 501
  year: 2007
  end-page: 520
  ident: br0120
  article-title: Parameterized complexity of vertex cover variants
  publication-title: Theory Comput. Syst.
– volume: vol. 5555
  start-page: 597
  year: 2009
  end-page: 608
  ident: br0140
  article-title: On finding dense subgraphs
  publication-title: Proceedings of ICALP 2009
– volume: 51
  start-page: 102
  year: 2008
  end-page: 121
  ident: br0040
  article-title: Parameterized complexity of cardinality constrained optimization problems
  publication-title: Comput. J.
– year: 1997
  ident: br0070
  article-title: On the dense
– volume: 109
  start-page: 795
  year: 2009
  end-page: 798
  ident: br0080
  article-title: Sort and search: exact algorithms for generalized domination
  publication-title: Inf. Process. Lett.
– volume: 14
  start-page: 465
  year: 2007
  end-page: 474
  ident: br0170
  article-title: The densest
  publication-title: J. Comb. Optim.
– volume: vol. 4169
  start-page: 239
  year: 2006
  end-page: 250
  ident: br0030
  article-title: Random separation: a new method for solving fixed-cardinality optimization problems
  publication-title: Proceedings of IWPEC 2006
– volume: vol. 7748
  start-page: 114
  year: 2013
  end-page: 125
  ident: br0020
  article-title: Exact and approximation algorithms for densest
  publication-title: Proceedings of WALCOM 2013
– volume: 2570
  start-page: 185
  year: 2003
  end-page: 207
  ident: br0200
  article-title: Exact algorithms for NP-hard problems: a survey
  publication-title: Lect. Notes Comput. Sci.
– volume: 348
  start-page: 357
  year: 2005
  end-page: 365
  ident: br0180
  article-title: A new algorithms for optimal 2-constraint satisfication and its implications
  publication-title: Theor. Comput. Sci.
– volume: 9
  start-page: 27
  year: 1984
  end-page: 40
  ident: br0050
  article-title: Clustering and domination in perfect graphs
  publication-title: Discrete Appl. Math.
– volume: 18
  start-page: 30
  year: 1989
  end-page: 55
  ident: br0100
  article-title: A fast parametric maximum flow algorithm and applications
  publication-title: SIAM J. Comput.
– volume: 9
  start-page: 155
  year: 1991
  end-page: 159
  ident: br0130
  article-title: The complexity of clustering in planar graphs
  publication-title: J. Comb. Math. Comb. Comput.
– volume: 141
  start-page: 109
  year: 1995
  end-page: 131
  ident: br0060
  article-title: Fixed-parameter tractability and completeness II: on completeness for
  publication-title: Theor. Comput. Sci.
– volume: 49
  start-page: 111
  year: 2005
  end-page: 116
  ident: br0150
  article-title: Faster algorithms for computing power indices in weighted voting games
  publication-title: Math. Soc. Sci.
– year: 2007
  ident: br0190
  article-title: Algorithms and resource requirements for fundamental problems
– volume: vol. 7748
  start-page: 114
  year: 2013
  ident: 10.1016/j.ipl.2014.04.009_br0020
  article-title: Exact and approximation algorithms for densest k-subgraph (extended abstract)
– volume: 18
  start-page: 30
  year: 1989
  ident: 10.1016/j.ipl.2014.04.009_br0100
  article-title: A fast parametric maximum flow algorithm and applications
  publication-title: SIAM J. Comput.
  doi: 10.1137/0218003
– year: 1997
  ident: 10.1016/j.ipl.2014.04.009_br0070
– volume: 109
  start-page: 795
  year: 2009
  ident: 10.1016/j.ipl.2014.04.009_br0080
  article-title: Sort and search: exact algorithms for generalized domination
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2009.03.023
– year: 2010
  ident: 10.1016/j.ipl.2014.04.009_br0090
– volume: 348
  start-page: 357
  year: 2005
  ident: 10.1016/j.ipl.2014.04.009_br0180
  article-title: A new algorithms for optimal 2-constraint satisfication and its implications
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.09.023
– volume: 41
  start-page: 501
  year: 2007
  ident: 10.1016/j.ipl.2014.04.009_br0120
  article-title: Parameterized complexity of vertex cover variants
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-007-1309-3
– volume: vol. 5344
  start-page: 240
  year: 2008
  ident: 10.1016/j.ipl.2014.04.009_br0160
  article-title: Improved upper bounds for partial vertex cover
– volume: vol. 4169
  start-page: 239
  year: 2006
  ident: 10.1016/j.ipl.2014.04.009_br0030
  article-title: Random separation: a new method for solving fixed-cardinality optimization problems
– volume: 2570
  start-page: 185
  year: 2003
  ident: 10.1016/j.ipl.2014.04.009_br0200
  article-title: Exact algorithms for NP-hard problems: a survey
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-36478-1_17
– volume: 9
  start-page: 155
  year: 1991
  ident: 10.1016/j.ipl.2014.04.009_br0130
  article-title: The complexity of clustering in planar graphs
  publication-title: J. Comb. Math. Comb. Comput.
– volume: vol. 5555
  start-page: 597
  year: 2009
  ident: 10.1016/j.ipl.2014.04.009_br0140
  article-title: On finding dense subgraphs
– year: 2007
  ident: 10.1016/j.ipl.2014.04.009_br0190
– volume: 141
  start-page: 109
  year: 1995
  ident: 10.1016/j.ipl.2014.04.009_br0060
  article-title: Fixed-parameter tractability and completeness II: on completeness for W[1]
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)00097-3
– volume: 51
  start-page: 102
  year: 2008
  ident: 10.1016/j.ipl.2014.04.009_br0040
  article-title: Parameterized complexity of cardinality constrained optimization problems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxm086
– year: 1984
  ident: 10.1016/j.ipl.2014.04.009_br0110
– volume: 14
  start-page: 465
  year: 2007
  ident: 10.1016/j.ipl.2014.04.009_br0170
  article-title: The densest k-subgraph problem on clique graphs
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-007-9069-1
– start-page: 25
  year: 2009
  ident: 10.1016/j.ipl.2014.04.009_br0010
  article-title: Finding dense subgraphs with size bounds
– volume: 49
  start-page: 111
  year: 2005
  ident: 10.1016/j.ipl.2014.04.009_br0150
  article-title: Faster algorithms for computing power indices in weighted voting games
  publication-title: Math. Soc. Sci.
  doi: 10.1016/j.mathsocsci.2004.06.002
– volume: 9
  start-page: 27
  year: 1984
  ident: 10.1016/j.ipl.2014.04.009_br0050
  article-title: Clustering and domination in perfect graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90088-X
SSID ssj0006437
Score 2.148433
Snippet Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of...
Many graph concepts such as cliques, k -clubs, and k -plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 510
SubjectTerms Algorithms
Cohesion
Data processing
Densest (sparsest) k-set
Design of algorithms
Exact algorithm
Graph theory
Graphs
Mathematical problems
Minimum (maximum) k-vertex cover
Partial vertex cover
Running
Set theory
Social networks
Studies
Subgroups
Vertex sets
Title Exact algorithms for problems related to the densest k-set problem
URI https://dx.doi.org/10.1016/j.ipl.2014.04.009
https://www.proquest.com/docview/1532255996
https://www.proquest.com/docview/1551089954
https://www.proquest.com/docview/1762045494
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4FtcXETwJ1bY7bZOjLsqq4EnBW8iruj52F9sFT_52M2m6osgehF7aTmiYJl8mzJdvCDkyWenCBjBR6mLhCCDDaoBZEaFKtbKq5LH0BNnbfHAP1w_ZQ4f027MwSKsM2N9gukfr8OQ0ePN0MhziGV_kA2EaEDGXoSYoQIGj_OTzm-aBiamG5oEELD7LbHqO13CC2YcEvNopchL_Xpt-obRfei5XyXKIGelZ06010rGjdbLS1mOgYXpukPOLD6lrKl8fx27L__RWUReR0lAypqL-2Io1tB5TF_VRBziV-xh9iSpbt1ab5P7y4q4_iEKNhEhDVtSRlizPFWQWjHJrr-WZYTJPbE9KySxmaW1ZxFKlyoBM4pKD28MkmkmmtE550tsiC6PxyG4TytJCSp5rQE15kzJVMtA9awqu4sIY1iVx6x2hg4A41rF4FS1T7Fk4hwp0qIjdFfMuOZ41mTTqGfOMoXW5-DEEhEP3ec322t8jwvyrhMPx1Iup5V1yOHvtZg6mQ-TIjqdo4_CIoR7eHJvC6_UDh53_9W6XLOFdw0rbIwv1-9TuuzCmVgd-nB6QxbOrm8HtF1Je8Ac
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLeavbBxgJLkihSdZJ7AOHAq22tPTUSr0Zv9JuH7urJhVw4U_xB5lxnEUgtAekSjnF4yQa299MNN_MALxyRY1uA3dJjr5wwnlB3QCLKqEq1cabWqY6EGQPy9Ex_3RSnCzBzz4XhmiVEfs7TA9oHe9sRW1uzcZjyvElPhCFAQlzBY_Myn3__Sv-tzXv9j7iIr_O892dow-jJLYWSCwvqjaxWpSl4YXnzqDJ8rJwQpeZH2qthafgpq-rVJvcOK6ztJYcXf_MCi2MtbnMhvjcO3CXI1xQ24S3P37zSigS1vFKiPEl56HUQCobzyjckfFQXpVIkP82hn-ZhWDrdh_CSnRS2Xanh0ew5CeP4UHfAIJFPHgC73e-adsyfXk6vR63Z1cNQxeYxR41DQt5Mt6xdsrQzWSIcA2-jF0kjW97qadwfCuaewbLk-nErwITeaW1LC2nIvYuF6YW3A69q6RJK-fEANJeO8rGiuXUOONS9dS0c4UKVaRQleKVygG8mU-ZdeU6FgnzXuXqjz2n0JwsmrbRL4-KB75RaDjyUL2tHMDL-TAeVYq_6Imf3pAMAqCgAnwLZKrQIIBLvvZ_X_cC7o2OPh-og73D_XW4TyMdJW4DltvrG7-JPlRrnoc9y-DLbR-SX41mLJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+algorithms+for+problems+related+to+the+densest+k-set+problem&rft.jtitle=Information+processing+letters&rft.au=Chang%2C+Maw-Shang&rft.au=Chen%2C+Li-Hsuan&rft.au=Hung%2C+Ling-Ju&rft.au=Rossmanith%2C+Peter&rft.date=2014-09-01&rft.pub=Elsevier+B.V&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=114&rft.issue=9&rft.spage=510&rft.epage=513&rft_id=info:doi/10.1016%2Fj.ipl.2014.04.009&rft.externalDocID=S0020019014000684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon