Exact algorithms for problems related to the densest k-set problem
Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set S⊆V of size k such that the number of edges in the subgraph of G induced b...
Saved in:
Published in | Information processing letters Vol. 114; no. 9; pp. 510 - 513 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.2014
Elsevier Sequoia S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set S⊆V of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k. One can obtain a densest k-set of G in O(k2nk) time by exhaustive-search technique for an undirected graph of n vertices and a number k<n. However, if the value of k approaches n/2, the running time of the exhaustive-search algorithm is O⁎(2n). Whether there exists an O⁎(cn)-time algorithm with the fixed constant c<2 to find a densest k-set in an undirected graph of n vertices remains open in the literature. In this paper, we point out that the densest k-set problem and a class of problems related to the concept of densest k-sets can be solved in time O⁎(1.7315n).
•An O⁎(1.7315n)-time exact algorithm for the densest k-set problem is proposed.•The algorithm can be applied to solve a series of problems related to the densest k-set problem.•All these related problems can also be solved in time O⁎(1.7315n). |
---|---|
AbstractList | Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set S⊆V of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k. One can obtain a densest k-set of G in O(k2nk) time by exhaustive-search technique for an undirected graph of n vertices and a number k<n. However, if the value of k approaches n/2, the running time of the exhaustive-search algorithm is O⁎(2n). Whether there exists an O⁎(cn)-time algorithm with the fixed constant c<2 to find a densest k-set in an undirected graph of n vertices remains open in the literature. In this paper, we point out that the densest k-set problem and a class of problems related to the concept of densest k-sets can be solved in time O⁎(1.7315n).
•An O⁎(1.7315n)-time exact algorithm for the densest k-set problem is proposed.•The algorithm can be applied to solve a series of problems related to the densest k-set problem.•All these related problems can also be solved in time O⁎(1.7315n). Many graph concepts such as cliques, k -clubs, and k -plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E)G=(V,E) is a vertex set S[subE]VS[subE]V of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k . One can obtain a densest k -set of G in O(k super(2)n super(k))O(k2nk) time by exhaustive-search technique for an undirected graph of n vertices and a number k Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of them. A densest k-set in an undirected graph G=(V,E) is a vertex set ... of size k such that the number of edges in the subgraph of G induced by S is maximum among all subgraphs of G induced by vertex sets of size k. One can obtain a densest k-set of G in ... time by exhaustive-search technique for an undirected graph of n vertices and a number k<n. However, if the value of k approaches n/2, the running time of the exhaustive-search algorithm is ... Whether there exists an ...-time algorithm with the fixed constant c<2 to find a densest k-set in an undirected graph of n vertices remains open in the literature. In this paper, we point out that the densest k-set problem and a class of problems related to the concept of densest k-sets can be solved in time ... (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Hung, Ling-Ju Rossmanith, Peter Chang, Maw-Shang Chen, Li-Hsuan Wu, Guan-Han |
Author_xml | – sequence: 1 givenname: Maw-Shang surname: Chang fullname: Chang, Maw-Shang email: mschang@sunrise.hk.edu.tw organization: Department of Computer Science and Information Engineering, HungKuang University, 43302 Sha Lu, Taichung, Taiwan – sequence: 2 givenname: Li-Hsuan orcidid: 0000-0003-1426-2629 surname: Chen fullname: Chen, Li-Hsuan email: clh100p@cs.ccu.edu.tw organization: Department of Computer Science and Information Engineering, National Chung Cheng University, 62102 Min-Hsiung, Chia-Yi, Taiwan – sequence: 3 givenname: Ling-Ju surname: Hung fullname: Hung, Ling-Ju email: ljhung@sunrise.hk.edu.tw organization: Department of Computer Science and Information Engineering, HungKuang University, 43302 Sha Lu, Taichung, Taiwan – sequence: 4 givenname: Peter surname: Rossmanith fullname: Rossmanith, Peter email: rossmani@cs.rwth-aachen.de organization: Department of Computer Science, RWTH Aachen University, 52056 Aachen, Germany – sequence: 5 givenname: Guan-Han surname: Wu fullname: Wu, Guan-Han email: wkh99m@cs.ccu.edu.tw organization: Department of Computer Science and Information Engineering, National Chung Cheng University, 62102 Min-Hsiung, Chia-Yi, Taiwan |
BookMark | eNqFkU1r3DAQhkVJoJuPH5CboZdevJmxJVmipzYkTSGQS3IWsjzuauu1tpK2NP8-Wra97CGBgUHwPKOR3jN2MoeZGLtCWCKgvF4v_XZaNoB8CaVAf2ALVF1TS0R9whYADdSAGj6ys5TWACB52y3Yt9u_1uXKTj9D9Hm1SdUYYrWNoZ-oHCJNNtNQ5VDlFVUDzYlSrn7VifJ_6oKdjnZKdPmvn7Pnu9unm_v64fH7j5uvD7Xjosu1s0rKngviQ69QkRaDshKptdYqgla2NHZg-6YfuEUYNQcl0Smreucaje05-3yYW-79vStrmI1PjqbJzhR2yWAnG-CCa_4-KgSC0lrs0U9H6Drs4lweUqi2aYTQWhaqO1AuhpQijcb5bLMPc47WTwbB7GMwa1NiMPsYDJQCXUw8MrfRb2x8edP5cnCofOcfT9Ek52l2NPhILpsh-DfsV_cGoOg |
CODEN | IFPLAT |
CitedBy_id | crossref_primary_10_12677_AAM_2022_112092 crossref_primary_10_1016_j_ejor_2024_12_018 crossref_primary_10_1016_j_dam_2015_04_029 crossref_primary_10_1016_j_ejor_2017_04_034 crossref_primary_10_2139_ssrn_4196893 crossref_primary_10_1007_s10732_021_09487_9 crossref_primary_10_1016_j_neucom_2018_06_058 crossref_primary_10_1016_j_tcs_2021_03_023 crossref_primary_10_1007_s12559_021_09906_w crossref_primary_10_1016_j_neucom_2016_01_102 crossref_primary_10_1007_s00779_016_0954_4 crossref_primary_10_23919_cje_2022_00_165 crossref_primary_10_3233_JIFS_169102 crossref_primary_10_1002_cpe_4847 crossref_primary_10_1007_s00500_020_05028_x crossref_primary_10_1038_s41598_021_95156_7 |
Cites_doi | 10.1137/0218003 10.1016/j.ipl.2009.03.023 10.1016/j.tcs.2005.09.023 10.1007/s00224-007-1309-3 10.1007/3-540-36478-1_17 10.1016/0304-3975(94)00097-3 10.1093/comjnl/bxm086 10.1007/s10878-007-9069-1 10.1016/j.mathsocsci.2004.06.002 10.1016/0166-218X(84)90088-X |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright Elsevier Sequoia S.A. Sep 2014 |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Sep 2014 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ipl.2014.04.009 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-6119 |
EndPage | 513 |
ExternalDocumentID | 3324613911 10_1016_j_ipl_2014_04_009 S0020019014000684 |
Genre | Feature |
GrantInformation_xml | – fundername: National Science Council of Taiwan grantid: NSC 101-2221-E-241-019-MY3; NSC 102-2221-E-241-007-MY3 – fundername: National Science Council of Taiwan grantid: NSC 102-2811-E-241-001 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SME SPC SPCBC SSV SSZ T5K TN5 UQL WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c457t-ca866b45e4db818e95d8a61e3aaa8e0363ef70ab2bd4a10f940861c8a8bcc2913 |
IEDL.DBID | .~1 |
ISSN | 0020-0190 |
IngestDate | Mon Jul 21 11:09:47 EDT 2025 Fri Jul 11 12:37:50 EDT 2025 Fri Jul 25 07:11:50 EDT 2025 Tue Jul 01 02:26:53 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Fri Feb 23 02:16:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Partial vertex cover Minimum (maximum) k-vertex cover Design of algorithms Exact algorithm Densest (sparsest) k-set |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-ca866b45e4db818e95d8a61e3aaa8e0363ef70ab2bd4a10f940861c8a8bcc2913 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0003-1426-2629 |
PQID | 1532255996 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1762045494 proquest_miscellaneous_1551089954 proquest_journals_1532255996 crossref_citationtrail_10_1016_j_ipl_2014_04_009 crossref_primary_10_1016_j_ipl_2014_04_009 elsevier_sciencedirect_doi_10_1016_j_ipl_2014_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Information processing letters |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia S.A |
References | Cai (br0040) 2008; 51 Williams (br0190) 2007 Khuller, Saha (br0140) 2009; vol. 5555 Bourgeois, Giannakos, Lucarelli, Milis, Paschos (br0020) 2013; vol. 7748 Woeginger (br0200) 2003; 2570 Andersen, Chellapilla (br0010) 2009 Kneis, Langer, Rossmanith (br0160) 2008; vol. 5344 Gallo, Grigoriadis, Tarjan (br0100) 1989; 18 Cai, Chan, Chan (br0030) 2006; vol. 4169 Corneil, Perl (br0050) 1984; 9 Fomin, Golovach, Kratochvíl, Kratsch, Liedloff (br0080) 2009; 109 Guo, Niedermeier, Wernicke (br0120) 2007; 41 Williams (br0180) 2005; 348 Liazi, Milis, Zissimopoulos (br0170) 2007; 14 Feige, Seltser (br0070) 1997 Klinz, Woeginger (br0150) 2005; 49 Downey, Fellows (br0060) 1995; 141 Keil, Brecht (br0130) 1991; 9 Fomin, Kratsch (br0090) 2010 Goldberg (br0110) 1984 Fomin (10.1016/j.ipl.2014.04.009_br0080) 2009; 109 Williams (10.1016/j.ipl.2014.04.009_br0180) 2005; 348 Williams (10.1016/j.ipl.2014.04.009_br0190) 2007 Klinz (10.1016/j.ipl.2014.04.009_br0150) 2005; 49 Woeginger (10.1016/j.ipl.2014.04.009_br0200) 2003; 2570 Bourgeois (10.1016/j.ipl.2014.04.009_br0020) 2013; vol. 7748 Goldberg (10.1016/j.ipl.2014.04.009_br0110) 1984 Cai (10.1016/j.ipl.2014.04.009_br0030) 2006; vol. 4169 Andersen (10.1016/j.ipl.2014.04.009_br0010) 2009 Kneis (10.1016/j.ipl.2014.04.009_br0160) 2008; vol. 5344 Khuller (10.1016/j.ipl.2014.04.009_br0140) 2009; vol. 5555 Cai (10.1016/j.ipl.2014.04.009_br0040) 2008; 51 Downey (10.1016/j.ipl.2014.04.009_br0060) 1995; 141 Gallo (10.1016/j.ipl.2014.04.009_br0100) 1989; 18 Corneil (10.1016/j.ipl.2014.04.009_br0050) 1984; 9 Feige (10.1016/j.ipl.2014.04.009_br0070) 1997 Liazi (10.1016/j.ipl.2014.04.009_br0170) 2007; 14 Guo (10.1016/j.ipl.2014.04.009_br0120) 2007; 41 Keil (10.1016/j.ipl.2014.04.009_br0130) 1991; 9 Fomin (10.1016/j.ipl.2014.04.009_br0090) 2010 |
References_xml | – year: 1984 ident: br0110 article-title: Finding a maximum density subgraph – start-page: 25 year: 2009 end-page: 36 ident: br0010 article-title: Finding dense subgraphs with size bounds publication-title: Proceedings of WAW'09 – volume: vol. 5344 start-page: 240 year: 2008 end-page: 251 ident: br0160 article-title: Improved upper bounds for partial vertex cover publication-title: Proceedings of WG 2008 – year: 2010 ident: br0090 article-title: Exact Exponential Algorithms – volume: 41 start-page: 501 year: 2007 end-page: 520 ident: br0120 article-title: Parameterized complexity of vertex cover variants publication-title: Theory Comput. Syst. – volume: vol. 5555 start-page: 597 year: 2009 end-page: 608 ident: br0140 article-title: On finding dense subgraphs publication-title: Proceedings of ICALP 2009 – volume: 51 start-page: 102 year: 2008 end-page: 121 ident: br0040 article-title: Parameterized complexity of cardinality constrained optimization problems publication-title: Comput. J. – year: 1997 ident: br0070 article-title: On the dense – volume: 109 start-page: 795 year: 2009 end-page: 798 ident: br0080 article-title: Sort and search: exact algorithms for generalized domination publication-title: Inf. Process. Lett. – volume: 14 start-page: 465 year: 2007 end-page: 474 ident: br0170 article-title: The densest publication-title: J. Comb. Optim. – volume: vol. 4169 start-page: 239 year: 2006 end-page: 250 ident: br0030 article-title: Random separation: a new method for solving fixed-cardinality optimization problems publication-title: Proceedings of IWPEC 2006 – volume: vol. 7748 start-page: 114 year: 2013 end-page: 125 ident: br0020 article-title: Exact and approximation algorithms for densest publication-title: Proceedings of WALCOM 2013 – volume: 2570 start-page: 185 year: 2003 end-page: 207 ident: br0200 article-title: Exact algorithms for NP-hard problems: a survey publication-title: Lect. Notes Comput. Sci. – volume: 348 start-page: 357 year: 2005 end-page: 365 ident: br0180 article-title: A new algorithms for optimal 2-constraint satisfication and its implications publication-title: Theor. Comput. Sci. – volume: 9 start-page: 27 year: 1984 end-page: 40 ident: br0050 article-title: Clustering and domination in perfect graphs publication-title: Discrete Appl. Math. – volume: 18 start-page: 30 year: 1989 end-page: 55 ident: br0100 article-title: A fast parametric maximum flow algorithm and applications publication-title: SIAM J. Comput. – volume: 9 start-page: 155 year: 1991 end-page: 159 ident: br0130 article-title: The complexity of clustering in planar graphs publication-title: J. Comb. Math. Comb. Comput. – volume: 141 start-page: 109 year: 1995 end-page: 131 ident: br0060 article-title: Fixed-parameter tractability and completeness II: on completeness for publication-title: Theor. Comput. Sci. – volume: 49 start-page: 111 year: 2005 end-page: 116 ident: br0150 article-title: Faster algorithms for computing power indices in weighted voting games publication-title: Math. Soc. Sci. – year: 2007 ident: br0190 article-title: Algorithms and resource requirements for fundamental problems – volume: vol. 7748 start-page: 114 year: 2013 ident: 10.1016/j.ipl.2014.04.009_br0020 article-title: Exact and approximation algorithms for densest k-subgraph (extended abstract) – volume: 18 start-page: 30 year: 1989 ident: 10.1016/j.ipl.2014.04.009_br0100 article-title: A fast parametric maximum flow algorithm and applications publication-title: SIAM J. Comput. doi: 10.1137/0218003 – year: 1997 ident: 10.1016/j.ipl.2014.04.009_br0070 – volume: 109 start-page: 795 year: 2009 ident: 10.1016/j.ipl.2014.04.009_br0080 article-title: Sort and search: exact algorithms for generalized domination publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2009.03.023 – year: 2010 ident: 10.1016/j.ipl.2014.04.009_br0090 – volume: 348 start-page: 357 year: 2005 ident: 10.1016/j.ipl.2014.04.009_br0180 article-title: A new algorithms for optimal 2-constraint satisfication and its implications publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2005.09.023 – volume: 41 start-page: 501 year: 2007 ident: 10.1016/j.ipl.2014.04.009_br0120 article-title: Parameterized complexity of vertex cover variants publication-title: Theory Comput. Syst. doi: 10.1007/s00224-007-1309-3 – volume: vol. 5344 start-page: 240 year: 2008 ident: 10.1016/j.ipl.2014.04.009_br0160 article-title: Improved upper bounds for partial vertex cover – volume: vol. 4169 start-page: 239 year: 2006 ident: 10.1016/j.ipl.2014.04.009_br0030 article-title: Random separation: a new method for solving fixed-cardinality optimization problems – volume: 2570 start-page: 185 year: 2003 ident: 10.1016/j.ipl.2014.04.009_br0200 article-title: Exact algorithms for NP-hard problems: a survey publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-36478-1_17 – volume: 9 start-page: 155 year: 1991 ident: 10.1016/j.ipl.2014.04.009_br0130 article-title: The complexity of clustering in planar graphs publication-title: J. Comb. Math. Comb. Comput. – volume: vol. 5555 start-page: 597 year: 2009 ident: 10.1016/j.ipl.2014.04.009_br0140 article-title: On finding dense subgraphs – year: 2007 ident: 10.1016/j.ipl.2014.04.009_br0190 – volume: 141 start-page: 109 year: 1995 ident: 10.1016/j.ipl.2014.04.009_br0060 article-title: Fixed-parameter tractability and completeness II: on completeness for W[1] publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)00097-3 – volume: 51 start-page: 102 year: 2008 ident: 10.1016/j.ipl.2014.04.009_br0040 article-title: Parameterized complexity of cardinality constrained optimization problems publication-title: Comput. J. doi: 10.1093/comjnl/bxm086 – year: 1984 ident: 10.1016/j.ipl.2014.04.009_br0110 – volume: 14 start-page: 465 year: 2007 ident: 10.1016/j.ipl.2014.04.009_br0170 article-title: The densest k-subgraph problem on clique graphs publication-title: J. Comb. Optim. doi: 10.1007/s10878-007-9069-1 – start-page: 25 year: 2009 ident: 10.1016/j.ipl.2014.04.009_br0010 article-title: Finding dense subgraphs with size bounds – volume: 49 start-page: 111 year: 2005 ident: 10.1016/j.ipl.2014.04.009_br0150 article-title: Faster algorithms for computing power indices in weighted voting games publication-title: Math. Soc. Sci. doi: 10.1016/j.mathsocsci.2004.06.002 – volume: 9 start-page: 27 year: 1984 ident: 10.1016/j.ipl.2014.04.009_br0050 article-title: Clustering and domination in perfect graphs publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90088-X |
SSID | ssj0006437 |
Score | 2.148433 |
Snippet | Many graph concepts such as cliques, k-clubs, and k-plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of... Many graph concepts such as cliques, k -clubs, and k -plexes are used to define cohesive subgroups in a social network. The concept of densest k-set is one of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 510 |
SubjectTerms | Algorithms Cohesion Data processing Densest (sparsest) k-set Design of algorithms Exact algorithm Graph theory Graphs Mathematical problems Minimum (maximum) k-vertex cover Partial vertex cover Running Set theory Social networks Studies Subgroups Vertex sets |
Title | Exact algorithms for problems related to the densest k-set problem |
URI | https://dx.doi.org/10.1016/j.ipl.2014.04.009 https://www.proquest.com/docview/1532255996 https://www.proquest.com/docview/1551089954 https://www.proquest.com/docview/1762045494 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4FtcXETwJ1bY7bZOjLsqq4EnBW8iruj52F9sFT_52M2m6osgehF7aTmiYJl8mzJdvCDkyWenCBjBR6mLhCCDDaoBZEaFKtbKq5LH0BNnbfHAP1w_ZQ4f027MwSKsM2N9gukfr8OQ0ePN0MhziGV_kA2EaEDGXoSYoQIGj_OTzm-aBiamG5oEELD7LbHqO13CC2YcEvNopchL_Xpt-obRfei5XyXKIGelZ06010rGjdbLS1mOgYXpukPOLD6lrKl8fx27L__RWUReR0lAypqL-2Io1tB5TF_VRBziV-xh9iSpbt1ab5P7y4q4_iEKNhEhDVtSRlizPFWQWjHJrr-WZYTJPbE9KySxmaW1ZxFKlyoBM4pKD28MkmkmmtE550tsiC6PxyG4TytJCSp5rQE15kzJVMtA9awqu4sIY1iVx6x2hg4A41rF4FS1T7Fk4hwp0qIjdFfMuOZ41mTTqGfOMoXW5-DEEhEP3ec322t8jwvyrhMPx1Iup5V1yOHvtZg6mQ-TIjqdo4_CIoR7eHJvC6_UDh53_9W6XLOFdw0rbIwv1-9TuuzCmVgd-nB6QxbOrm8HtF1Je8Ac |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLeavbBxgJLkihSdZJ7AOHAq22tPTUSr0Zv9JuH7urJhVw4U_xB5lxnEUgtAekSjnF4yQa299MNN_MALxyRY1uA3dJjr5wwnlB3QCLKqEq1cabWqY6EGQPy9Ex_3RSnCzBzz4XhmiVEfs7TA9oHe9sRW1uzcZjyvElPhCFAQlzBY_Myn3__Sv-tzXv9j7iIr_O892dow-jJLYWSCwvqjaxWpSl4YXnzqDJ8rJwQpeZH2qthafgpq-rVJvcOK6ztJYcXf_MCi2MtbnMhvjcO3CXI1xQ24S3P37zSigS1vFKiPEl56HUQCobzyjckfFQXpVIkP82hn-ZhWDrdh_CSnRS2Xanh0ew5CeP4UHfAIJFPHgC73e-adsyfXk6vR63Z1cNQxeYxR41DQt5Mt6xdsrQzWSIcA2-jF0kjW97qadwfCuaewbLk-nErwITeaW1LC2nIvYuF6YW3A69q6RJK-fEANJeO8rGiuXUOONS9dS0c4UKVaRQleKVygG8mU-ZdeU6FgnzXuXqjz2n0JwsmrbRL4-KB75RaDjyUL2tHMDL-TAeVYq_6Imf3pAMAqCgAnwLZKrQIIBLvvZ_X_cC7o2OPh-og73D_XW4TyMdJW4DltvrG7-JPlRrnoc9y-DLbR-SX41mLJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+algorithms+for+problems+related+to+the+densest+k-set+problem&rft.jtitle=Information+processing+letters&rft.au=Chang%2C+Maw-Shang&rft.au=Chen%2C+Li-Hsuan&rft.au=Hung%2C+Ling-Ju&rft.au=Rossmanith%2C+Peter&rft.date=2014-09-01&rft.pub=Elsevier+B.V&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=114&rft.issue=9&rft.spage=510&rft.epage=513&rft_id=info:doi/10.1016%2Fj.ipl.2014.04.009&rft.externalDocID=S0020019014000684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon |