Stochastic Scheduling Subject to Preemptive-Repeat Breakdowns with Incomplete Information
This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the...
Saved in:
Published in | Operations research Vol. 57; no. 5; pp. 1236 - 1249 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hanover, MD
INFORMS
01.09.2009
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the loss of the work done on the job being processed. The breakdown process of the machine is allowed to depend on the job it is processing. The processing times required to complete the jobs, and the machine uptimes and downtimes, are random variables with incomplete information on their probability distributions characterized by unknown parameters. We establish the preemptive-repeat model with incomplete information and investigate its probabilistic characteristics. We show that optimal static policies can be obtained for a wide range of performance measures, which are determined by the prior distributions of the unknown parameters. We derive optimal dynamic policies via Gittins indices represented by the posterior distributions, which are updated adaptively based on processing histories. Under appropriate conditions, the optimal dynamic policies can be calculated by one-step reward rates in a closed form. As a by-product, we also show that our incomplete information model subsumes the traditional preemptive-repeat models with complete information as extreme cases. |
---|---|
AbstractList | This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the loss of the work done on the job being processed. The breakdown process of the machine is allowed to depend on the job it is processing. The processing times required to complete the jobs, and the machine uptimes and downtimes, are random variables with incomplete information on their probability distributions characterized by unknown parameters. We establish the preemptive-repeat model with incomplete information and investigate its probabilistic characteristics. We show that optimal static policies can be obtained for a wide range of performance measures, which are determined by the prior distributions of the unknown parameters. We derive optimal dynamic policies via Gittins indices represented by the posterior distributions, which are updated adaptively based on processing histories. Under appropriate conditions, the optimal dynamic policies can be calculated by one-step reward rates in a closed form. As a by-product, we also show that our incomplete information model subsumes the traditional preemptive-repeat models with complete information as extreme cases. This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the loss of the work done on the job being processed. The breakdown process of the machine is allowed to depend on the job it is processing. The processing times required to complete the jobs, and the machine uptimes and downtimes, are random variables with incomplete information on their probability distributions characterized by unknown parameters. We establish the preemptive-repeat model with incomplete information and investigate its probabilistic characteristics. We show that optimal static policies can be obtained for a wide range of performance measures, which are determined by the prior distributions of the unknown parameters. We derive optimal dynamic policies via Gittins indices represented by the posterior distributions, which are updated adaptively based on processing histories. Under appropriate conditions, the optimal dynamic policies can be calculated by one-step reward rates in a closed form. As a by-product, we also show that our incomplete information model subsumes the traditional preemptive-repeat models with complete information as extreme cases. [PUBLICATION ABSTRACT] |
Audience | Trade |
Author | Cai, Xiaoqiang Zhou, Xian Wu, Xianyi |
Author_xml | – sequence: 1 fullname: Cai, Xiaoqiang – sequence: 2 fullname: Wu, Xianyi – sequence: 3 fullname: Zhou, Xian |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22040605$$DView record in Pascal Francis |
BookMark | eNqFkdtrFDEUxoNUcFt99U0YBOnTrMnkMpPHWrwUCkpXQZ9CJnOyk3V2MibZLv73ZjqVgiB9yiH8vu9cvlN0MvoREHpJ8JpUTf3WTwHWBDd4jYXAT9CK8EqUnAl6glYYU1xSwb4_Q6cx7jDGkgu-Qj82yZtex-RMsTE9dIfBjdtic2h3YFKRfPElAOyn5G6hvIEJdCreBdA_O38cY3F0qS-uRuP30wAJcml92Ovk_PgcPbV6iPDi_j1D3z68_3r5qbz-_PHq8uK6NIzXqWxNa2ylcUetbC2hFlPoZENa3VnGasklA5nLyvBWioYAMC4rZqkU1HbY0DP0evGdgv91gJjUzh_CmFuqikhSM4ZlhsoF2uoBlMtTpqDNFkYIeshntC5_X1SEME4byjP_5t5UR6MHG_RoXFRTcHsdfquqwgwLPHNs4UzwMQawyrh0t372d4MiWM3ZqDkbNWej5myybP2P7K_zfwWvFsEuJh8e5uCCsIayh_3cXQDxcb_zhe_dtj-6sNxkFs5gVLxWPAupoH8AA3m62Q |
CODEN | OPREAI |
CitedBy_id | crossref_primary_10_1137_19M1282386 crossref_primary_10_1287_mnsc_2015_2185 crossref_primary_10_1080_24725854_2018_1511938 crossref_primary_10_1111_poms_12080 crossref_primary_10_1016_j_cie_2022_108214 crossref_primary_10_1080_24725854_2018_1460518 crossref_primary_10_1007_s10951_012_0306_9 crossref_primary_10_1007_s00170_015_7915_3 crossref_primary_10_1007_s10479_018_2962_4 crossref_primary_10_1109_ACCESS_2021_3053714 crossref_primary_10_1016_j_ejor_2019_02_030 crossref_primary_10_1080_00207543_2015_1129467 crossref_primary_10_2139_ssrn_2210804 crossref_primary_10_1007_s10951_009_0132_x crossref_primary_10_1016_j_ejor_2011_05_044 crossref_primary_10_1016_j_ejor_2014_03_017 crossref_primary_10_1007_s11590_024_02102_3 crossref_primary_10_3934_jimo_2016023 |
Cites_doi | 10.1017/S0269964803174037 10.1017/S0269964800000619 10.1023/A:1020952823369 10.2307/1427399 10.1002/nav.20024 10.1016/S0927-0507(06)14001-3 10.1017/S0269964800002138 10.1109/TSMCB.2003.817048 10.1287/opre.47.3.422 10.4135/9781452205564.n13 10.1016/j.orl.2006.08.005 10.1002/1520-6750(199104)38:2<261::AID-NAV3220380210>3.0.CO;2-I 10.1080/07408170108936884 10.1287/opre.40.5.959 10.1145/277651.277684 10.1145/637201.637238 10.2307/1427585 10.1109/TAC.1985.1103989 10.1109/TSE.1987.233168 10.1029/91WR01307 10.1017/S0269964800001194 10.1016/j.orl.2005.02.002 10.1016/S0895-7177(97)00134-9 10.1111/j.1467-8667.2007.00478.x 10.1007/BF00288977 10.1287/opre.45.6.894 10.1109/TSM.2006.879408 10.1109/12.257705 10.1016/S0377-2217(00)00322-2 10.1109/TASE.2005.844119 10.1002/1520-6750(199010)37:5<661::AID-NAV3220370506>3.0.CO;2-3 10.1023/A:1019189326131 10.1093/biomet/48.1-2.57 10.1142/5632 |
ContentType | Journal Article |
Copyright | Copyright 2009 INFORMS 2015 INIST-CNRS COPYRIGHT 2009 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2009 |
Copyright_xml | – notice: Copyright 2009 INFORMS – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2009 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2009 |
DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88F 8AL 8AO 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V M0C M0N M0S M1P M1Q M2O M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1287/opre.1080.0660 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Military Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Proquest Medical Database Military Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Computer Science Business Applied Sciences |
EISSN | 1526-5463 |
EndPage | 1249 |
ExternalDocumentID | 1885559731 A211453835 22040605 10_1287_opre_1080_0660 25614834 opre.1080.0660 opres_57_5_1236 |
Genre | Research Article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 02 08R 123 1AW 1OL 29N 2AX 3V. 4.4 7WY 7X7 85S 88E 8AL 8AO 8FE 8FG 8FI 8FJ 8FL 8G5 8V8 92 AABCJ ABBHK ABEFU ABJCF ABPPZ ABSIS ABUWG ABWPA ACDCL ACHQT ACIWK ACNCT ACUWV ACVYA ADBBV ADGDI ADNFJ AENEX AEUPB AFFNX AFKRA AJPNJ AKVCP ALMA_UNASSIGNED_HOLDINGS AQNXB AQSKT ARAPS AZQEC B-7 BBAFP BENPR BEZIV BGLVJ BPHCQ BVXVI CBXGM CCKSF CS3 CWXUR CYVLN DWQXO DZ EBA EBE EBO EBR EBS EBU ECR EHE EJD EMI EMK EPL F20 F5P FH7 FRNLG FYUFA GENNL GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA GUQSH HCIFZ H~9 IAO ICJ IEA IGG IOF ITC JAV JBC JPL JSODD JST K6 K60 K6V K7- L6V LI M0C M0N M1P M1Q M2O M7S MBDVC MV1 N95 NIEAY P2P P62 PQEST PQQKQ PQUKI PRG PROAC PSQYO PTHSS QVA RNS RPU SA0 TAE TH9 TN5 U5U VQA WH7 X XFK XHC XI7 XJT XXP YNT YZZ ZCG ABDEX AETEA G8K HGD HVGLF Y99 YHZ ZY4 -DZ -~X 18M AAAZS AAWTO AAXLS AAYOK ABAWQ ABKVW ABLWH ABXSQ ABYYQ ACGFO ACHJO ACSVP ACXJH ADEPB ADMHC ADMHG ADNWM ADULT AEGXH AEMOZ AFAIT AFTQD AGKTX AHAJD AHQJS AIAGR ALIPV APTMU ASMEE BAAKF CCPQU HF~ HMCUK IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA UKHRP XOL XSW ~02 ~92 AAYXX ABDPE CITATION YYP IQODW PJZUB PPXIY PQGLB 7XB 8FK JQ2 K9. L.- PKEHL PRINS Q9U |
ID | FETCH-LOGICAL-c457t-bcbcf2a0d3f9bf13f03ed981badf4479594e9df42c5b9681ee45924f3963fd0c3 |
IEDL.DBID | 7X7 |
ISSN | 0030-364X |
IngestDate | Sat Aug 16 21:27:15 EDT 2025 Fri Jun 13 00:43:38 EDT 2025 Mon Jul 21 09:16:57 EDT 2025 Tue Jul 01 00:21:46 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Thu Jun 19 16:02:46 EDT 2025 Tue Jan 05 23:29:22 EST 2021 Fri Jan 15 03:35:45 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Performance evaluation Markov process Preemption Stochastic model Optimal policy Processing time learning History Modeling Dynamic conditions Uncertain system Dynamic programming Incomplete information Random variable Posterior distribution Single machine Execution time Probabilistic approach Prior distribution Scheduling production/scheduling: stochastic Stochastic programming Exact solution Production management Optimal control Reward probability: stochastic model applications By product dynamic programming/optimal control: semi-Markov |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-bcbcf2a0d3f9bf13f03ed981badf4479594e9df42c5b9681ee45924f3963fd0c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 219174409 |
PQPubID | 37962 |
PageCount | 14 |
ParticipantIDs | gale_infotracgeneralonefile_A211453835 crossref_primary_10_1287_opre_1080_0660 crossref_citationtrail_10_1287_opre_1080_0660 pascalfrancis_primary_22040605 proquest_journals_219174409 jstor_primary_25614834 highwire_informs_opres_57_5_1236 informs_primary_10_1287_opre_1080_0660 |
ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-01 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hanover, MD |
PublicationPlace_xml | – name: Hanover, MD – name: Linthicum |
PublicationTitle | Operations research |
PublicationYear | 2009 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Gittins J. C. (B17) 1989 Pinedo M. (B31) 2002 Glazebrook K. D. (B18) 1995; 57 Hanemann A. (B20) 2005 |
References_xml | – ident: B12 – ident: B9 – ident: B35 – ident: B14 – ident: B10 – ident: B3 – ident: B20 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B31 – ident: B33 – ident: B37 – ident: B8 – ident: B36 – ident: B11 – ident: B13 – ident: B2 – ident: B26 – ident: B4 – ident: B28 – ident: B6 – ident: B24 – ident: B22 – ident: B17 – ident: B32 – ident: B15 – ident: B30 – ident: B34 – ident: B19 – ident: B38 – ident: B7 doi: 10.1017/S0269964803174037 – ident: B32 doi: 10.1017/S0269964800000619 – ident: B23 doi: 10.1023/A:1020952823369 – ident: B26 doi: 10.2307/1427399 – ident: B8 doi: 10.1002/nav.20024 – ident: B3 doi: 10.1016/S0927-0507(06)14001-3 – ident: B14 doi: 10.1017/S0269964800002138 – ident: B15 doi: 10.1109/TSMCB.2003.817048 – ident: B6 doi: 10.1287/opre.47.3.422 – volume-title: Multi-Armed Bandit Allocation Indices year: 1989 ident: B17 – ident: B13 doi: 10.4135/9781452205564.n13 – volume: 57 start-page: 705 year: 1995 ident: B18 publication-title: J. Roy. Statist. Soc., Ser. B (Methodological) – ident: B28 doi: 10.1016/j.orl.2006.08.005 – ident: B1 doi: 10.1002/1520-6750(199104)38:2<261::AID-NAV3220380210>3.0.CO;2-I – ident: B10 doi: 10.1080/07408170108936884 – ident: B19 doi: 10.1287/opre.40.5.959 – ident: B4 doi: 10.1145/277651.277684 – ident: B22 doi: 10.1145/637201.637238 – ident: B25 doi: 10.2307/1427585 – ident: B35 doi: 10.1109/TAC.1985.1103989 – ident: B30 doi: 10.1109/TSE.1987.233168 – volume-title: Scheduling: Theory, Algorithms, and Systems year: 2002 ident: B31 – ident: B29 doi: 10.1029/91WR01307 – ident: B33 doi: 10.1017/S0269964800001194 – ident: B24 doi: 10.1016/j.orl.2005.02.002 – ident: B38 doi: 10.1016/S0895-7177(97)00134-9 – ident: B16 doi: 10.1111/j.1467-8667.2007.00478.x – ident: B2 doi: 10.1007/BF00288977 – ident: B37 doi: 10.1287/opre.45.6.894 – ident: B12 doi: 10.1109/TSM.2006.879408 – ident: B11 doi: 10.1109/12.257705 – ident: B27 doi: 10.1016/S0377-2217(00)00322-2 – ident: B9 doi: 10.1109/TASE.2005.844119 – volume-title: Proc. Eur. Univ. Inform. Systems Conf. (EUNIS 2005) year: 2005 ident: B20 – ident: B5 doi: 10.1002/1520-6750(199010)37:5<661::AID-NAV3220370506>3.0.CO;2-3 – ident: B34 doi: 10.1023/A:1019189326131 – ident: B21 doi: 10.1093/biomet/48.1-2.57 – ident: B36 doi: 10.1142/5632 |
SSID | ssj0009565 |
Score | 2.0193157 |
Snippet | This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the... |
SourceID | proquest gale pascalfrancis crossref jstor informs highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1236 |
SubjectTerms | Analysis Applied sciences Dynamic programming dynamic programming/optimal control Exact sciences and technology Information modeling Information operations learning Markov processes Mass production Mathematical programming Mathematical sequences Operational research and scientific management Operational research. Management science Operations research Optimal policy Probability Probability distributions Production scheduling Random variables Scheduling Scheduling, sequencing semi-Markov stochastic Stochastic analysis stochastic model applications Stochastic models Stopping distances Studies |
Title | Stochastic Scheduling Subject to Preemptive-Repeat Breakdowns with Incomplete Information |
URI | http://or.journal.informs.org/cgi/content/abstract/57/5/1236 https://www.jstor.org/stable/25614834 https://www.proquest.com/docview/219174409 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RT9swED6NIiH2MEY3tKyj8gMa8JDRxk7iPE2A6NAkEBoglScrcWyQtrUdyf7_7hy7gCY2Kaqi2nWq3Pnz3fn8HcBOnWaVyMssRluojgXZcDJHZ0UWibR0LES4gNvZeXZ6Lb5O06nPzWl8WmXARAfU9VxTjPwgIcdCoDfyefErpqJRtLnqK2iswCoxl1FGVz7NH3HuZl0BA45Qk4mp52xEH-GAKoy49LpPo46d8mFNCsgc6ILdMScyIJuQskj5k2WDr9B2tS_-gnG3Nk1ewytvVLLDTgs24YWZ9WEt5LT3YSPUbmB-Kvfh5SMiwj5s-u8btud5qPffwM1lO9d3JRE54-_ucE2io-sMoYZiN6yds4t7Y34uCDBjNOQR1dkR2qDfa4pYM4rwMoQfyllHy5z5g0-kCG_henJydXwa-0oMsRZp3saVrrRNylHNbVHZMbcjbuoCLd6ytkJQuXJhCrxNdFoVmRwbI1J07CzH6W3rkeZb0JvNZ-YdsEJmpjA5NldWSK5lgZhrxzrHS465jCAOslDa05RTtYwfitwVlJ0i2XleU5RdBLvL_ouOoOPZnh9JtIqkiSPq2-594t8iCix1iK6wQPjnaQQsCF950buhGpXmKlXEV4NjhZb_PXTL6cyyW-KoV7mIYPhEiR46JIir6GRGMAhapTyuNGo5C97_s3UA692uF-XCfYBee__bbKPx1FZDN0XwU06-DGH16OT84tsfWkcYlg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5AF1aEQrFB56HtLuxkzgHhMpj2dKHkGil5eQmjk0lYHdpgqr-KP4jM469LULAqdIeotjrXWXGM_M5M98APKrTrBJ5mcUYC9WxoBhO5ghWZJFIS2Uhwh247e1no0PxfpyOF-BnqIWhtMpgE52hrqeazsg3EwIWAtHIy9n3mJpG0cvV0EGj04odc3aKiK15sf0Gxfs4SYZvD16PYt9UINYizdu40pW2SdmvuS0qO-C2z01dYPBW1lYI6rwtTIGXiU6rIpMDY0SKGMVy1FRb9zXHda_AVcHxBhWmD99d4PjNuoYJHE1bJsaeIxIxySZ1NHHpfBv9jg3z3AcGTxDoiV1ZFQWsTUiRpHzNskGR2a7Xxh9uw_nC4W246YNYttVp3TIsmEkProUc-h7cCr0imDcdPbhxgfiwB8v-fsOeed7r53fg08d2qo9LIo7G7x2jD6RSeYamjc6KWDtlH06M-TYjAx0jcEAvwl5hzPulphNyRifKDM0d5cgjEmC-0IoUbwUOL0VIq7A4mU7MXWCFzExhchyurJBcywJtvB3oHD9ywGUEcZCF0p4WnbpzfFUEj1B2imTneVRRdhE8nc-fdYQgf535hESrSJq4ov7cPU_8W0S5pbYQegt0NzyNgAXhKy96t1Sj0lylivhxcK0w8r8fXXU6M5-WOKpXLiJY_02JzickaMcR1EawFrRKeTvWqPmuu_fP0YdwfXSwt6t2t_d31mCpe-NGeXj3YbE9-WEeYODWVutuuzA4uuz9-QuGt1Rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU3wMFhhIhsMP_DzIbSJ7Th5QGgwqo3BNAkmlSeTODaTYG23BCH-NP477hK7G0LA06Q-VI3rVP3Od_c55-8AHtQyq4QqsxhzoToWlMPlCslKXqS5o2Mhottwe3eQ7R6JNxM5WYKf4SwMlVUGn9g56npmaI98mBKxEMhGhs5XRRzujF_MT2NqIEUPWkM3jd5C9u2P78jemud7Owj1wzQdv_7wajf2DQZiI6Rq48pUxqXlqOauqFzC3YjbusBErqydENSFW9gC36ZGVkWWJ9YKiXzFcbRaV48Mx3mvwFXFZUJLTE3UBb3frG-ewNHNZWLi9SKRnwypu0lX2vds1CtjnsfDEBWCVHF3xIqS1yaUS1LtZtkgfK7vu_FHCOni4vgmrPqElm33FrgGS3Y6gJVQTz-AG6FvBPNuZADXL4ggDmDNf96wJ14D--kt-Pi-nZnjkkSk8XvHGA_p2DxDN0f7RqydscMza0_m5KxjJBEYUdhLzH-_1LRbzmh3maHro3p5ZAXMH7oiI7wNR5cC0josT2dTewdYkWe2sAovV07k3OQF-nuXGIWvPOF5BHHAQhsvkU6dOr5qokqInSbsvKYqYhfB48X4eS8O8teRjwhaTWjijOZz_3_izyL5Lb2NNFxg6OEyAhbA1x76bqpGS6WlJq0cnCtc-d9N1zubWQxLO9lXLiLY-s2Izgek6NOR4EawGaxKe5_W6MUK3Pjn1fuwgitTv9072N-Ea_3DNyrJuwvL7dk3ew9zuLba6lYLg0-XvTx_AUHqWJ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Scheduling+Subject+to+Preemptive-Repeat+Breakdowns+with+Incomplete+Information&rft.jtitle=Operations+research&rft.au=Cai%2C+Xiaoqiang&rft.au=Wu%2C+Xianyi&rft.au=Zhou%2C+Xian&rft.date=2009-09-01&rft.issn=0030-364X&rft.eissn=1526-5463&rft.volume=57&rft.issue=5&rft.spage=1236&rft.epage=1249&rft_id=info:doi/10.1287%2Fopre.1080.0660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_opre_1080_0660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon |