Stochastic Scheduling Subject to Preemptive-Repeat Breakdowns with Incomplete Information

This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the...

Full description

Saved in:
Bibliographic Details
Published inOperations research Vol. 57; no. 5; pp. 1236 - 1249
Main Authors Cai, Xiaoqiang, Wu, Xianyi, Zhou, Xian
Format Journal Article
LanguageEnglish
Published Hanover, MD INFORMS 01.09.2009
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the loss of the work done on the job being processed. The breakdown process of the machine is allowed to depend on the job it is processing. The processing times required to complete the jobs, and the machine uptimes and downtimes, are random variables with incomplete information on their probability distributions characterized by unknown parameters. We establish the preemptive-repeat model with incomplete information and investigate its probabilistic characteristics. We show that optimal static policies can be obtained for a wide range of performance measures, which are determined by the prior distributions of the unknown parameters. We derive optimal dynamic policies via Gittins indices represented by the posterior distributions, which are updated adaptively based on processing histories. Under appropriate conditions, the optimal dynamic policies can be calculated by one-step reward rates in a closed form. As a by-product, we also show that our incomplete information model subsumes the traditional preemptive-repeat models with complete information as extreme cases.
AbstractList This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the loss of the work done on the job being processed. The breakdown process of the machine is allowed to depend on the job it is processing. The processing times required to complete the jobs, and the machine uptimes and downtimes, are random variables with incomplete information on their probability distributions characterized by unknown parameters. We establish the preemptive-repeat model with incomplete information and investigate its probabilistic characteristics. We show that optimal static policies can be obtained for a wide range of performance measures, which are determined by the prior distributions of the unknown parameters. We derive optimal dynamic policies via Gittins indices represented by the posterior distributions, which are updated adaptively based on processing histories. Under appropriate conditions, the optimal dynamic policies can be calculated by one-step reward rates in a closed form. As a by-product, we also show that our incomplete information model subsumes the traditional preemptive-repeat models with complete information as extreme cases.
This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the probability distributions involved in the decision process. We focus on the preemptive-repeat discipline, under which a machine breakdown leads to the loss of the work done on the job being processed. The breakdown process of the machine is allowed to depend on the job it is processing. The processing times required to complete the jobs, and the machine uptimes and downtimes, are random variables with incomplete information on their probability distributions characterized by unknown parameters. We establish the preemptive-repeat model with incomplete information and investigate its probabilistic characteristics. We show that optimal static policies can be obtained for a wide range of performance measures, which are determined by the prior distributions of the unknown parameters. We derive optimal dynamic policies via Gittins indices represented by the posterior distributions, which are updated adaptively based on processing histories. Under appropriate conditions, the optimal dynamic policies can be calculated by one-step reward rates in a closed form. As a by-product, we also show that our incomplete information model subsumes the traditional preemptive-repeat models with complete information as extreme cases. [PUBLICATION ABSTRACT]
Audience Trade
Author Cai, Xiaoqiang
Zhou, Xian
Wu, Xianyi
Author_xml – sequence: 1
  fullname: Cai, Xiaoqiang
– sequence: 2
  fullname: Wu, Xianyi
– sequence: 3
  fullname: Zhou, Xian
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22040605$$DView record in Pascal Francis
BookMark eNqFkdtrFDEUxoNUcFt99U0YBOnTrMnkMpPHWrwUCkpXQZ9CJnOyk3V2MibZLv73ZjqVgiB9yiH8vu9cvlN0MvoREHpJ8JpUTf3WTwHWBDd4jYXAT9CK8EqUnAl6glYYU1xSwb4_Q6cx7jDGkgu-Qj82yZtex-RMsTE9dIfBjdtic2h3YFKRfPElAOyn5G6hvIEJdCreBdA_O38cY3F0qS-uRuP30wAJcml92Ovk_PgcPbV6iPDi_j1D3z68_3r5qbz-_PHq8uK6NIzXqWxNa2ylcUetbC2hFlPoZENa3VnGasklA5nLyvBWioYAMC4rZqkU1HbY0DP0evGdgv91gJjUzh_CmFuqikhSM4ZlhsoF2uoBlMtTpqDNFkYIeshntC5_X1SEME4byjP_5t5UR6MHG_RoXFRTcHsdfquqwgwLPHNs4UzwMQawyrh0t372d4MiWM3ZqDkbNWej5myybP2P7K_zfwWvFsEuJh8e5uCCsIayh_3cXQDxcb_zhe_dtj-6sNxkFs5gVLxWPAupoH8AA3m62Q
CODEN OPREAI
CitedBy_id crossref_primary_10_1137_19M1282386
crossref_primary_10_1287_mnsc_2015_2185
crossref_primary_10_1080_24725854_2018_1511938
crossref_primary_10_1111_poms_12080
crossref_primary_10_1016_j_cie_2022_108214
crossref_primary_10_1080_24725854_2018_1460518
crossref_primary_10_1007_s10951_012_0306_9
crossref_primary_10_1007_s00170_015_7915_3
crossref_primary_10_1007_s10479_018_2962_4
crossref_primary_10_1109_ACCESS_2021_3053714
crossref_primary_10_1016_j_ejor_2019_02_030
crossref_primary_10_1080_00207543_2015_1129467
crossref_primary_10_2139_ssrn_2210804
crossref_primary_10_1007_s10951_009_0132_x
crossref_primary_10_1016_j_ejor_2011_05_044
crossref_primary_10_1016_j_ejor_2014_03_017
crossref_primary_10_1007_s11590_024_02102_3
crossref_primary_10_3934_jimo_2016023
Cites_doi 10.1017/S0269964803174037
10.1017/S0269964800000619
10.1023/A:1020952823369
10.2307/1427399
10.1002/nav.20024
10.1016/S0927-0507(06)14001-3
10.1017/S0269964800002138
10.1109/TSMCB.2003.817048
10.1287/opre.47.3.422
10.4135/9781452205564.n13
10.1016/j.orl.2006.08.005
10.1002/1520-6750(199104)38:2<261::AID-NAV3220380210>3.0.CO;2-I
10.1080/07408170108936884
10.1287/opre.40.5.959
10.1145/277651.277684
10.1145/637201.637238
10.2307/1427585
10.1109/TAC.1985.1103989
10.1109/TSE.1987.233168
10.1029/91WR01307
10.1017/S0269964800001194
10.1016/j.orl.2005.02.002
10.1016/S0895-7177(97)00134-9
10.1111/j.1467-8667.2007.00478.x
10.1007/BF00288977
10.1287/opre.45.6.894
10.1109/TSM.2006.879408
10.1109/12.257705
10.1016/S0377-2217(00)00322-2
10.1109/TASE.2005.844119
10.1002/1520-6750(199010)37:5<661::AID-NAV3220370506>3.0.CO;2-3
10.1023/A:1019189326131
10.1093/biomet/48.1-2.57
10.1142/5632
ContentType Journal Article
Copyright Copyright 2009 INFORMS
2015 INIST-CNRS
COPYRIGHT 2009 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2009
Copyright_xml – notice: Copyright 2009 INFORMS
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2009 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Sep/Oct 2009
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88F
8AL
8AO
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
M0C
M0N
M0S
M1P
M1Q
M2O
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1287/opre.1080.0660
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Military Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Proquest Medical Database
Military Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
Applied Sciences
EISSN 1526-5463
EndPage 1249
ExternalDocumentID 1885559731
A211453835
22040605
10_1287_opre_1080_0660
25614834
opre.1080.0660
opres_57_5_1236
Genre Research Article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 02
08R
123
1AW
1OL
29N
2AX
3V.
4.4
7WY
7X7
85S
88E
8AL
8AO
8FE
8FG
8FI
8FJ
8FL
8G5
8V8
92
AABCJ
ABBHK
ABEFU
ABJCF
ABPPZ
ABSIS
ABUWG
ABWPA
ACDCL
ACHQT
ACIWK
ACNCT
ACUWV
ACVYA
ADBBV
ADGDI
ADNFJ
AENEX
AEUPB
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
ARAPS
AZQEC
B-7
BBAFP
BENPR
BEZIV
BGLVJ
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DWQXO
DZ
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMI
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
GENNL
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
H~9
IAO
ICJ
IEA
IGG
IOF
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
LI
M0C
M0N
M1P
M1Q
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRG
PROAC
PSQYO
PTHSS
QVA
RNS
RPU
SA0
TAE
TH9
TN5
U5U
VQA
WH7
X
XFK
XHC
XI7
XJT
XXP
YNT
YZZ
ZCG
ABDEX
AETEA
G8K
HGD
HVGLF
Y99
YHZ
ZY4
-DZ
-~X
18M
AAAZS
AAWTO
AAXLS
AAYOK
ABAWQ
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACSVP
ACXJH
ADEPB
ADMHC
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
CCPQU
HF~
HMCUK
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
UKHRP
XOL
XSW
~02
~92
AAYXX
ABDPE
CITATION
YYP
IQODW
PJZUB
PPXIY
PQGLB
7XB
8FK
JQ2
K9.
L.-
PKEHL
PRINS
Q9U
ID FETCH-LOGICAL-c457t-bcbcf2a0d3f9bf13f03ed981badf4479594e9df42c5b9681ee45924f3963fd0c3
IEDL.DBID 7X7
ISSN 0030-364X
IngestDate Sat Aug 16 21:27:15 EDT 2025
Fri Jun 13 00:43:38 EDT 2025
Mon Jul 21 09:16:57 EDT 2025
Tue Jul 01 00:21:46 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Thu Jun 19 16:02:46 EDT 2025
Tue Jan 05 23:29:22 EST 2021
Fri Jan 15 03:35:45 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Performance evaluation
Markov process
Preemption
Stochastic model
Optimal policy
Processing time
learning
History
Modeling
Dynamic conditions
Uncertain system
Dynamic programming
Incomplete information
Random variable
Posterior distribution
Single machine
Execution time
Probabilistic approach
Prior distribution
Scheduling
production/scheduling: stochastic
Stochastic programming
Exact solution
Production management
Optimal control
Reward
probability: stochastic model applications
By product
dynamic programming/optimal control: semi-Markov
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-bcbcf2a0d3f9bf13f03ed981badf4479594e9df42c5b9681ee45924f3963fd0c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 219174409
PQPubID 37962
PageCount 14
ParticipantIDs gale_infotracgeneralonefile_A211453835
crossref_primary_10_1287_opre_1080_0660
crossref_citationtrail_10_1287_opre_1080_0660
pascalfrancis_primary_22040605
proquest_journals_219174409
jstor_primary_25614834
highwire_informs_opres_57_5_1236
informs_primary_10_1287_opre_1080_0660
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Hanover, MD
PublicationPlace_xml – name: Hanover, MD
– name: Linthicum
PublicationTitle Operations research
PublicationYear 2009
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Gittins J. C. (B17) 1989
Pinedo M. (B31) 2002
Glazebrook K. D. (B18) 1995; 57
Hanemann A. (B20) 2005
References_xml – ident: B12
– ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B37
– ident: B8
– ident: B36
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B34
– ident: B19
– ident: B38
– ident: B7
  doi: 10.1017/S0269964803174037
– ident: B32
  doi: 10.1017/S0269964800000619
– ident: B23
  doi: 10.1023/A:1020952823369
– ident: B26
  doi: 10.2307/1427399
– ident: B8
  doi: 10.1002/nav.20024
– ident: B3
  doi: 10.1016/S0927-0507(06)14001-3
– ident: B14
  doi: 10.1017/S0269964800002138
– ident: B15
  doi: 10.1109/TSMCB.2003.817048
– ident: B6
  doi: 10.1287/opre.47.3.422
– volume-title: Multi-Armed Bandit Allocation Indices
  year: 1989
  ident: B17
– ident: B13
  doi: 10.4135/9781452205564.n13
– volume: 57
  start-page: 705
  year: 1995
  ident: B18
  publication-title: J. Roy. Statist. Soc., Ser. B (Methodological)
– ident: B28
  doi: 10.1016/j.orl.2006.08.005
– ident: B1
  doi: 10.1002/1520-6750(199104)38:2<261::AID-NAV3220380210>3.0.CO;2-I
– ident: B10
  doi: 10.1080/07408170108936884
– ident: B19
  doi: 10.1287/opre.40.5.959
– ident: B4
  doi: 10.1145/277651.277684
– ident: B22
  doi: 10.1145/637201.637238
– ident: B25
  doi: 10.2307/1427585
– ident: B35
  doi: 10.1109/TAC.1985.1103989
– ident: B30
  doi: 10.1109/TSE.1987.233168
– volume-title: Scheduling: Theory, Algorithms, and Systems
  year: 2002
  ident: B31
– ident: B29
  doi: 10.1029/91WR01307
– ident: B33
  doi: 10.1017/S0269964800001194
– ident: B24
  doi: 10.1016/j.orl.2005.02.002
– ident: B38
  doi: 10.1016/S0895-7177(97)00134-9
– ident: B16
  doi: 10.1111/j.1467-8667.2007.00478.x
– ident: B2
  doi: 10.1007/BF00288977
– ident: B37
  doi: 10.1287/opre.45.6.894
– ident: B12
  doi: 10.1109/TSM.2006.879408
– ident: B11
  doi: 10.1109/12.257705
– ident: B27
  doi: 10.1016/S0377-2217(00)00322-2
– ident: B9
  doi: 10.1109/TASE.2005.844119
– volume-title: Proc. Eur. Univ. Inform. Systems Conf. (EUNIS 2005)
  year: 2005
  ident: B20
– ident: B5
  doi: 10.1002/1520-6750(199010)37:5<661::AID-NAV3220370506>3.0.CO;2-3
– ident: B34
  doi: 10.1023/A:1019189326131
– ident: B21
  doi: 10.1093/biomet/48.1-2.57
– ident: B36
  doi: 10.1142/5632
SSID ssj0009565
Score 2.0193157
Snippet This paper considers the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns with incomplete information on the...
SourceID proquest
gale
pascalfrancis
crossref
jstor
informs
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1236
SubjectTerms Analysis
Applied sciences
Dynamic programming
dynamic programming/optimal control
Exact sciences and technology
Information modeling
Information operations
learning
Markov processes
Mass production
Mathematical programming
Mathematical sequences
Operational research and scientific management
Operational research. Management science
Operations research
Optimal policy
Probability
Probability distributions
Production scheduling
Random variables
Scheduling
Scheduling, sequencing
semi-Markov
stochastic
Stochastic analysis
stochastic model applications
Stochastic models
Stopping distances
Studies
Title Stochastic Scheduling Subject to Preemptive-Repeat Breakdowns with Incomplete Information
URI http://or.journal.informs.org/cgi/content/abstract/57/5/1236
https://www.jstor.org/stable/25614834
https://www.proquest.com/docview/219174409
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RT9swED6NIiH2MEY3tKyj8gMa8JDRxk7iPE2A6NAkEBoglScrcWyQtrUdyf7_7hy7gCY2Kaqi2nWq3Pnz3fn8HcBOnWaVyMssRluojgXZcDJHZ0UWibR0LES4gNvZeXZ6Lb5O06nPzWl8WmXARAfU9VxTjPwgIcdCoDfyefErpqJRtLnqK2iswCoxl1FGVz7NH3HuZl0BA45Qk4mp52xEH-GAKoy49LpPo46d8mFNCsgc6ILdMScyIJuQskj5k2WDr9B2tS_-gnG3Nk1ewytvVLLDTgs24YWZ9WEt5LT3YSPUbmB-Kvfh5SMiwj5s-u8btud5qPffwM1lO9d3JRE54-_ucE2io-sMoYZiN6yds4t7Y34uCDBjNOQR1dkR2qDfa4pYM4rwMoQfyllHy5z5g0-kCG_henJydXwa-0oMsRZp3saVrrRNylHNbVHZMbcjbuoCLd6ytkJQuXJhCrxNdFoVmRwbI1J07CzH6W3rkeZb0JvNZ-YdsEJmpjA5NldWSK5lgZhrxzrHS465jCAOslDa05RTtYwfitwVlJ0i2XleU5RdBLvL_ouOoOPZnh9JtIqkiSPq2-594t8iCix1iK6wQPjnaQQsCF950buhGpXmKlXEV4NjhZb_PXTL6cyyW-KoV7mIYPhEiR46JIir6GRGMAhapTyuNGo5C97_s3UA692uF-XCfYBee__bbKPx1FZDN0XwU06-DGH16OT84tsfWkcYlg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5AF1aEQrFB56HtLuxkzgHhMpj2dKHkGil5eQmjk0lYHdpgqr-KP4jM469LULAqdIeotjrXWXGM_M5M98APKrTrBJ5mcUYC9WxoBhO5ghWZJFIS2Uhwh247e1no0PxfpyOF-BnqIWhtMpgE52hrqeazsg3EwIWAtHIy9n3mJpG0cvV0EGj04odc3aKiK15sf0Gxfs4SYZvD16PYt9UINYizdu40pW2SdmvuS0qO-C2z01dYPBW1lYI6rwtTIGXiU6rIpMDY0SKGMVy1FRb9zXHda_AVcHxBhWmD99d4PjNuoYJHE1bJsaeIxIxySZ1NHHpfBv9jg3z3AcGTxDoiV1ZFQWsTUiRpHzNskGR2a7Xxh9uw_nC4W246YNYttVp3TIsmEkProUc-h7cCr0imDcdPbhxgfiwB8v-fsOeed7r53fg08d2qo9LIo7G7x2jD6RSeYamjc6KWDtlH06M-TYjAx0jcEAvwl5hzPulphNyRifKDM0d5cgjEmC-0IoUbwUOL0VIq7A4mU7MXWCFzExhchyurJBcywJtvB3oHD9ywGUEcZCF0p4WnbpzfFUEj1B2imTneVRRdhE8nc-fdYQgf535hESrSJq4ov7cPU_8W0S5pbYQegt0NzyNgAXhKy96t1Sj0lylivhxcK0w8r8fXXU6M5-WOKpXLiJY_02JzickaMcR1EawFrRKeTvWqPmuu_fP0YdwfXSwt6t2t_d31mCpe-NGeXj3YbE9-WEeYODWVutuuzA4uuz9-QuGt1Rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU3wMFhhIhsMP_DzIbSJ7Th5QGgwqo3BNAkmlSeTODaTYG23BCH-NP477hK7G0LA06Q-VI3rVP3Od_c55-8AHtQyq4QqsxhzoToWlMPlCslKXqS5o2Mhottwe3eQ7R6JNxM5WYKf4SwMlVUGn9g56npmaI98mBKxEMhGhs5XRRzujF_MT2NqIEUPWkM3jd5C9u2P78jemud7Owj1wzQdv_7wajf2DQZiI6Rq48pUxqXlqOauqFzC3YjbusBErqydENSFW9gC36ZGVkWWJ9YKiXzFcbRaV48Mx3mvwFXFZUJLTE3UBb3frG-ewNHNZWLi9SKRnwypu0lX2vds1CtjnsfDEBWCVHF3xIqS1yaUS1LtZtkgfK7vu_FHCOni4vgmrPqElm33FrgGS3Y6gJVQTz-AG6FvBPNuZADXL4ggDmDNf96wJ14D--kt-Pi-nZnjkkSk8XvHGA_p2DxDN0f7RqydscMza0_m5KxjJBEYUdhLzH-_1LRbzmh3maHro3p5ZAXMH7oiI7wNR5cC0josT2dTewdYkWe2sAovV07k3OQF-nuXGIWvPOF5BHHAQhsvkU6dOr5qokqInSbsvKYqYhfB48X4eS8O8teRjwhaTWjijOZz_3_izyL5Lb2NNFxg6OEyAhbA1x76bqpGS6WlJq0cnCtc-d9N1zubWQxLO9lXLiLY-s2Izgek6NOR4EawGaxKe5_W6MUK3Pjn1fuwgitTv9072N-Ea_3DNyrJuwvL7dk3ew9zuLba6lYLg0-XvTx_AUHqWJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Scheduling+Subject+to+Preemptive-Repeat+Breakdowns+with+Incomplete+Information&rft.jtitle=Operations+research&rft.au=Cai%2C+Xiaoqiang&rft.au=Wu%2C+Xianyi&rft.au=Zhou%2C+Xian&rft.date=2009-09-01&rft.issn=0030-364X&rft.eissn=1526-5463&rft.volume=57&rft.issue=5&rft.spage=1236&rft.epage=1249&rft_id=info:doi/10.1287%2Fopre.1080.0660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_opre_1080_0660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-364X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-364X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-364X&client=summon