Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previou...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 21; pp. 8791 - 8796 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.05.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. |
---|---|
AbstractList | Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. [PUBLICATION ABSTRACT] Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. |
Author | Reddy, Sirigiri Divijendra Natha Pillai, M. Radhakrishna Kumar, Rakesh Ohshiro, Kazufumi Zhang, Jun-Xiang Eswaran, Jeyanthy Li, Da-Qiang Pakala, Suresh B. Zhang, Yanping Wang, Lei de Alborán, Ignacio Moreno |
Author_xml | – sequence: 1 givenname: Da-Qiang surname: Li fullname: Li, Da-Qiang – sequence: 2 givenname: Suresh B. surname: Pakala fullname: Pakala, Suresh B. – sequence: 3 givenname: Sirigiri Divijendra Natha surname: Reddy fullname: Reddy, Sirigiri Divijendra Natha – sequence: 4 givenname: Kazufumi surname: Ohshiro fullname: Ohshiro, Kazufumi – sequence: 5 givenname: Jun-Xiang surname: Zhang fullname: Zhang, Jun-Xiang – sequence: 6 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 7 givenname: Yanping surname: Zhang fullname: Zhang, Yanping – sequence: 8 givenname: Ignacio Moreno surname: de Alborán fullname: de Alborán, Ignacio Moreno – sequence: 9 givenname: M. Radhakrishna surname: Pillai fullname: Pillai, M. Radhakrishna – sequence: 10 givenname: Jeyanthy surname: Eswaran fullname: Eswaran, Jeyanthy – sequence: 11 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21555589$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9vFCEUx4mpsdvq2ZM68aKXsTDMDMzFxDb-Spp40TN5wzx22czACkzN-teXdbeuNlFC8iB83pcvvHdGTpx3SMhTRt8wKvjFxkHMKya57BiVD8iC0Y6Vbd3RE7KgtBKlrKv6lJzFuKaUdo2kj8hpxZo8ZLcgPy_tYAPqZL2DsYA5-YDLeYQct8WEegXOxqnwJm8SxDxtLCFGry0kHIpN8AmtK1gJY8LgINkbLALCYN2yMAEmLDaQVj9gW2TMO-2X6DCrPCYPDYwRnxziOfn24f3Xq0_l9ZePn6_eXZe6bkQqOwE9NVXD-k5iPTS9AMP6oe-F5mYwhukWhKa85aClGEyNyBrWikpL0IYN_Jy83etu5n7CQaNLAUa1CXaCsFUerPr7xNmVWvobxRmteN1kgVcHgeC_zxiTmmzUOI7g0M9RyVaKVtaCZvL1f0kmmZCcNqLK6Mt76NrP-fvGX3odq2W3u_n5n9Z_e76rXwaaPaCDjzGgUdom2BUzv8SOilG16xO16xN17JOcd3Ev70763xkvDlZ2B0daZjNKio5l4tmeWMfcPEevjcwfyRm_Bdgm2Hs |
CitedBy_id | crossref_primary_10_1038_onc_2017_201 crossref_primary_10_18632_oncotarget_21784 crossref_primary_10_1158_0008_5472_CAN_12_3998 crossref_primary_10_1074_jbc_M111_314088 crossref_primary_10_1007_s10735_019_09821_3 crossref_primary_10_1007_s12038_022_00263_w crossref_primary_10_1038_s41388_019_1132_8 crossref_primary_10_1016_j_gene_2016_02_012 crossref_primary_10_1002_jcb_26494 crossref_primary_10_1016_j_bbagrm_2016_05_002 crossref_primary_10_1038_ncomms3545 crossref_primary_10_1158_0008_5472_CAN_11_2345 crossref_primary_10_1016_j_cellsig_2012_01_013 crossref_primary_10_1074_jbc_M112_404061 crossref_primary_10_1007_s10555_014_9511_7 crossref_primary_10_1158_0008_5472_CAN_11_2180 crossref_primary_10_18632_oncotarget_18556 crossref_primary_10_2174_1389203723666220705152713 crossref_primary_10_3390_ijms14059751 |
Cites_doi | 10.1038/sj.onc.1205277 10.1038/35050532 10.1074/jbc.M110.139469 10.1016/0092-8674(95)90214-7 10.1073/pnas.0502330102 10.1016/S0378-1119(01)00563-7 10.1073/pnas.1004796107 10.1073/pnas.0506230102 10.1038/sj.onc.1210839 10.1073/pnas.0601989103 10.1083/jcb.200908103 10.1016/S0092-8674(00)80441-9 10.1016/j.jmb.2008.05.043 10.1101/gad.827300 10.1038/nature03098 10.1053/j.seminoncol.2003.08.005 10.1016/j.ccr.2004.09.020 10.1158/0008-5472.CAN-07-0750 10.1097/00000441-198711000-00015 10.1073/pnas.0705878104 10.1073/pnas.0908027106 10.1158/0008-5472.CAN-07-1960 10.1038/387296a0 10.1042/bj3480281 10.1038/nrc1954 10.1074/jbc.R600029200 10.1016/S1074-7613(01)00088-7 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences May 24, 2011 |
Copyright_xml | – notice: Copyright National Academy of Sciences May 24, 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1018389108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8796 |
ExternalDocumentID | PMC3102345 2360145181 21555589 10_1073_pnas_1018389108 108_21_8791 25831031 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA100302 – fundername: NCI NIH HHS grantid: CA98823 – fundername: NCI NIH HHS grantid: CA98823S1 – fundername: NCI NIH HHS grantid: R01 CA127770 – fundername: NCI NIH HHS grantid: R01 CA098823 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c457t-97ab0f251b98e4d5b7af1bdbb7c3fdff1c6a7c0363ac87df4ee151672c8acf1d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:58:19 EDT 2025 Thu Jul 10 22:14:07 EDT 2025 Thu Jul 10 18:13:45 EDT 2025 Mon Jun 30 08:10:28 EDT 2025 Thu Jun 12 08:56:43 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 00:47:10 EDT 2025 Wed Nov 11 00:29:35 EST 2020 Thu May 29 08:40:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c457t-97ab0f251b98e4d5b7af1bdbb7c3fdff1c6a7c0363ac87df4ee151672c8acf1d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: R.K. designed research; D.-Q.L., S.B.P., S.D.N.R., K.O., and J.-X.Z. performed research; Y.Z. and I.M.d.A. contributed new reagents/analytic tools; L.W., M.R.P., and J.E. analyzed data; and D.-Q.L. and R.K. wrote the paper. Edited* by George R. Stark, Lerner Research Institute NE2, Cleveland, OH, and approved April 8, 2011 (received for review December 8, 2010) |
PMID | 21555589 |
PQID | 868914895 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1817830572 proquest_miscellaneous_868768470 crossref_primary_10_1073_pnas_1018389108 pnas_primary_108_21_8791 jstor_primary_25831031 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3102345 pubmed_primary_21555589 crossref_citationtrail_10_1073_pnas_1018389108 proquest_journals_868914895 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-24 |
PublicationDateYYYYMMDD | 2011-05-24 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Merlo GR (e_1_3_3_14_2) 1994; 9 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_11_2 e_1_3_3_10_2 McMasters KM (e_1_3_3_15_2) 1996; 13 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_27_2 doi: 10.1038/sj.onc.1205277 – ident: e_1_3_3_2_2 doi: 10.1038/35050532 – ident: e_1_3_3_26_2 doi: 10.1074/jbc.M110.139469 – volume: 13 start-page: 1731 year: 1996 ident: e_1_3_3_15_2 article-title: mdm2 deletion does not alter growth characteristics of p53-deficient embryo fibroblasts publication-title: Oncogene – ident: e_1_3_3_10_2 doi: 10.1016/0092-8674(95)90214-7 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.0502330102 – ident: e_1_3_3_18_2 doi: 10.1016/S0378-1119(01)00563-7 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1004796107 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.0506230102 – ident: e_1_3_3_3_2 doi: 10.1038/sj.onc.1210839 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.0601989103 – ident: e_1_3_3_17_2 doi: 10.1083/jcb.200908103 – ident: e_1_3_3_29_2 doi: 10.1016/S0092-8674(00)80441-9 – ident: e_1_3_3_24_2 doi: 10.1016/j.jmb.2008.05.043 – ident: e_1_3_3_12_2 doi: 10.1101/gad.827300 – ident: e_1_3_3_9_2 doi: 10.1038/nature03098 – ident: e_1_3_3_7_2 doi: 10.1053/j.seminoncol.2003.08.005 – volume: 9 start-page: 443 year: 1994 ident: e_1_3_3_14_2 article-title: Growth suppression of normal mammary epithelial cells by wild-type p53 publication-title: Oncogene – ident: e_1_3_3_19_2 doi: 10.1016/j.ccr.2004.09.020 – ident: e_1_3_3_5_2 doi: 10.1158/0008-5472.CAN-07-0750 – ident: e_1_3_3_22_2 doi: 10.1097/00000441-198711000-00015 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.0705878104 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.0908027106 – ident: e_1_3_3_28_2 doi: 10.1158/0008-5472.CAN-07-1960 – ident: e_1_3_3_16_2 doi: 10.1038/387296a0 – ident: e_1_3_3_23_2 doi: 10.1042/bj3480281 – ident: e_1_3_3_11_2 doi: 10.1038/nrc1954 – ident: e_1_3_3_1_2 doi: 10.1074/jbc.R600029200 – ident: e_1_3_3_20_2 doi: 10.1016/S1074-7613(01)00088-7 |
SSID | ssj0009580 |
Score | 2.1585042 |
Snippet | Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8791 |
SubjectTerms | adenosinetriphosphatase Antibodies Biological Sciences Cancer carcinogenesis Cell Line Cells Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism DNA Down regulation Epithelial cells Gene Expression Regulation Genes Histone Deacetylases - genetics Histone Deacetylases - metabolism histones Homeostasis Homeostasis - genetics Humans Metastasis neoplasms Neoplasms - etiology nucleosomes nucleotide sequences Promoter regions proteasome endopeptidase complex Proteins Reading Frames Repressor Proteins - antagonists & inhibitors Repressor Proteins - genetics Repressor Proteins - metabolism signal transduction Trans-Activators Transcription factors Transcriptional Activation Tumor Suppressor Protein p53 Tumors |
Title | Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis |
URI | https://www.jstor.org/stable/25831031 http://www.pnas.org/content/108/21/8791.abstract https://www.ncbi.nlm.nih.gov/pubmed/21555589 https://www.proquest.com/docview/868914895 https://www.proquest.com/docview/1817830572 https://www.proquest.com/docview/868768470 https://pubmed.ncbi.nlm.nih.gov/PMC3102345 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKFAaCshIHIpWKZunnWNBrSpUtgW2Um-RnTjdQJugzS5I_dX8BGZsbx6lrYBLtEocO8l8OzO2Z74h5DU4vTLOPOWGuczdUETSBa9auiLw82AshIoCTHD-OIkPT8MPZ9HZ2tqvXtTSciF3s6sb80r-R6pwDuSKWbL_INm2UzgBv0G-cAQJw_GvZPyuNBbJLOcJpCMwpeVx4_xSYVIv1sDQW-gLAX5gUzausAJRSBBQY7HLkefqTfPKkIDPTVz9qMC4LSRenf0UOjuwrrL6HHVj2fR92pPWBjariIPJaolxr0tYsVqkGbmjk0lX_vjIZrq7nwCo592O1jdxIUzY0Fw1s6449GeVG7vwpcSaXvMStPaP8quq8rnAcWetnTme4cp7bWJGrpbF8rLsr3Hgom3k-t0a510P3VfuPhjc0N6njD4Hd8iNQ1ORtFX4Y95DtknQtvqbM1M77A_DApoQqyFXosH1Do67u7aXAYX35Dg9OD06Sqf7Z9PhVe0y-EGsSyMjV8A9HyY2vjYlfZpobpKm7KusyKhY8Pba2AM_yoTSIj8vNLpprnQ95LfnQ00fkgd28kP3DJI3yJqqHpGN1TemO5YD_c1jcjWANh1Cm7bQpnVBb4Q2tdCmA2hTC22qoU0ttCk060H7CTk92J--P3RtmRA3CyO2cBMm5LgAP10mXIV5JJkoPJlLybKgyIvCy2LBMgxYEBlneREqBW5uzPyMi6zw8mCTrFd1pbYITaRMci9OQsaxJjeTsRQBZzIYZzCA8hyyu_roaWY59LGUy0WqYzlYkKIA0k5KDtlpb_hu6GNub7qppdi28yNdBBAG3dJNu_t56nspQtUh2ytRp1YvNSmPob-QJ5FDXrVXwWjgTqCoVL2EUbnHOFh65juE3tIGusFNejZ2yFODne7JYBISRTxxCBugqm2AnPXDK1U509z1AVLFhNGzOx98m9zvtMBzsr6YL9UL8P0X8qX-u_wGpE4OEA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+autoregulatory+mechanism+of+metastasis-associated+protein+1-alternative+reading+frame+pathway+in+oncogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Da-Qiang&rft.au=Pakala%2C+Suresh+B&rft.au=Reddy%2C+Sirigiri+Divijendra+Natha&rft.au=Ohshiro%2C+Kazufumi&rft.date=2011-05-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=21&rft.spage=8791&rft_id=info:doi/10.1073%2Fpnas.1018389108&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2360145181 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F21.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F21.cover.gif |