Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis

Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previou...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 21; pp. 8791 - 8796
Main Authors Li, Da-Qiang, Pakala, Suresh B., Reddy, Sirigiri Divijendra Natha, Ohshiro, Kazufumi, Zhang, Jun-Xiang, Wang, Lei, Zhang, Yanping, de Alborán, Ignacio Moreno, Pillai, M. Radhakrishna, Eswaran, Jeyanthy, Kumar, Rakesh
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.05.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.
AbstractList Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. [PUBLICATION ABSTRACT]
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.
Author Reddy, Sirigiri Divijendra Natha
Pillai, M. Radhakrishna
Kumar, Rakesh
Ohshiro, Kazufumi
Zhang, Jun-Xiang
Eswaran, Jeyanthy
Li, Da-Qiang
Pakala, Suresh B.
Zhang, Yanping
Wang, Lei
de Alborán, Ignacio Moreno
Author_xml – sequence: 1
  givenname: Da-Qiang
  surname: Li
  fullname: Li, Da-Qiang
– sequence: 2
  givenname: Suresh B.
  surname: Pakala
  fullname: Pakala, Suresh B.
– sequence: 3
  givenname: Sirigiri Divijendra Natha
  surname: Reddy
  fullname: Reddy, Sirigiri Divijendra Natha
– sequence: 4
  givenname: Kazufumi
  surname: Ohshiro
  fullname: Ohshiro, Kazufumi
– sequence: 5
  givenname: Jun-Xiang
  surname: Zhang
  fullname: Zhang, Jun-Xiang
– sequence: 6
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 7
  givenname: Yanping
  surname: Zhang
  fullname: Zhang, Yanping
– sequence: 8
  givenname: Ignacio Moreno
  surname: de Alborán
  fullname: de Alborán, Ignacio Moreno
– sequence: 9
  givenname: M. Radhakrishna
  surname: Pillai
  fullname: Pillai, M. Radhakrishna
– sequence: 10
  givenname: Jeyanthy
  surname: Eswaran
  fullname: Eswaran, Jeyanthy
– sequence: 11
  givenname: Rakesh
  surname: Kumar
  fullname: Kumar, Rakesh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21555589$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEUx4mpsdvq2ZM68aKXsTDMDMzFxDb-Spp40TN5wzx22czACkzN-teXdbeuNlFC8iB83pcvvHdGTpx3SMhTRt8wKvjFxkHMKya57BiVD8iC0Y6Vbd3RE7KgtBKlrKv6lJzFuKaUdo2kj8hpxZo8ZLcgPy_tYAPqZL2DsYA5-YDLeYQct8WEegXOxqnwJm8SxDxtLCFGry0kHIpN8AmtK1gJY8LgINkbLALCYN2yMAEmLDaQVj9gW2TMO-2X6DCrPCYPDYwRnxziOfn24f3Xq0_l9ZePn6_eXZe6bkQqOwE9NVXD-k5iPTS9AMP6oe-F5mYwhukWhKa85aClGEyNyBrWikpL0IYN_Jy83etu5n7CQaNLAUa1CXaCsFUerPr7xNmVWvobxRmteN1kgVcHgeC_zxiTmmzUOI7g0M9RyVaKVtaCZvL1f0kmmZCcNqLK6Mt76NrP-fvGX3odq2W3u_n5n9Z_e76rXwaaPaCDjzGgUdom2BUzv8SOilG16xO16xN17JOcd3Ev70763xkvDlZ2B0daZjNKio5l4tmeWMfcPEevjcwfyRm_Bdgm2Hs
CitedBy_id crossref_primary_10_1038_onc_2017_201
crossref_primary_10_18632_oncotarget_21784
crossref_primary_10_1158_0008_5472_CAN_12_3998
crossref_primary_10_1074_jbc_M111_314088
crossref_primary_10_1007_s10735_019_09821_3
crossref_primary_10_1007_s12038_022_00263_w
crossref_primary_10_1038_s41388_019_1132_8
crossref_primary_10_1016_j_gene_2016_02_012
crossref_primary_10_1002_jcb_26494
crossref_primary_10_1016_j_bbagrm_2016_05_002
crossref_primary_10_1038_ncomms3545
crossref_primary_10_1158_0008_5472_CAN_11_2345
crossref_primary_10_1016_j_cellsig_2012_01_013
crossref_primary_10_1074_jbc_M112_404061
crossref_primary_10_1007_s10555_014_9511_7
crossref_primary_10_1158_0008_5472_CAN_11_2180
crossref_primary_10_18632_oncotarget_18556
crossref_primary_10_2174_1389203723666220705152713
crossref_primary_10_3390_ijms14059751
Cites_doi 10.1038/sj.onc.1205277
10.1038/35050532
10.1074/jbc.M110.139469
10.1016/0092-8674(95)90214-7
10.1073/pnas.0502330102
10.1016/S0378-1119(01)00563-7
10.1073/pnas.1004796107
10.1073/pnas.0506230102
10.1038/sj.onc.1210839
10.1073/pnas.0601989103
10.1083/jcb.200908103
10.1016/S0092-8674(00)80441-9
10.1016/j.jmb.2008.05.043
10.1101/gad.827300
10.1038/nature03098
10.1053/j.seminoncol.2003.08.005
10.1016/j.ccr.2004.09.020
10.1158/0008-5472.CAN-07-0750
10.1097/00000441-198711000-00015
10.1073/pnas.0705878104
10.1073/pnas.0908027106
10.1158/0008-5472.CAN-07-1960
10.1038/387296a0
10.1042/bj3480281
10.1038/nrc1954
10.1074/jbc.R600029200
10.1016/S1074-7613(01)00088-7
ContentType Journal Article
Copyright Copyright National Academy of Sciences May 24, 2011
Copyright_xml – notice: Copyright National Academy of Sciences May 24, 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1018389108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic


Virology and AIDS Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8796
ExternalDocumentID PMC3102345
2360145181
21555589
10_1073_pnas_1018389108
108_21_8791
25831031
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA100302
– fundername: NCI NIH HHS
  grantid: CA98823
– fundername: NCI NIH HHS
  grantid: CA98823S1
– fundername: NCI NIH HHS
  grantid: R01 CA127770
– fundername: NCI NIH HHS
  grantid: R01 CA098823
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c457t-97ab0f251b98e4d5b7af1bdbb7c3fdff1c6a7c0363ac87df4ee151672c8acf1d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:58:19 EDT 2025
Thu Jul 10 22:14:07 EDT 2025
Thu Jul 10 18:13:45 EDT 2025
Mon Jun 30 08:10:28 EDT 2025
Thu Jun 12 08:56:43 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 00:47:10 EDT 2025
Wed Nov 11 00:29:35 EST 2020
Thu May 29 08:40:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c457t-97ab0f251b98e4d5b7af1bdbb7c3fdff1c6a7c0363ac87df4ee151672c8acf1d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: R.K. designed research; D.-Q.L., S.B.P., S.D.N.R., K.O., and J.-X.Z. performed research; Y.Z. and I.M.d.A. contributed new reagents/analytic tools; L.W., M.R.P., and J.E. analyzed data; and D.-Q.L. and R.K. wrote the paper.
Edited* by George R. Stark, Lerner Research Institute NE2, Cleveland, OH, and approved April 8, 2011 (received for review December 8, 2010)
PMID 21555589
PQID 868914895
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1817830572
proquest_miscellaneous_868768470
crossref_primary_10_1073_pnas_1018389108
pnas_primary_108_21_8791
jstor_primary_25831031
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3102345
pubmed_primary_21555589
crossref_citationtrail_10_1073_pnas_1018389108
proquest_journals_868914895
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-24
PublicationDateYYYYMMDD 2011-05-24
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Merlo GR (e_1_3_3_14_2) 1994; 9
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_11_2
e_1_3_3_10_2
McMasters KM (e_1_3_3_15_2) 1996; 13
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_27_2
  doi: 10.1038/sj.onc.1205277
– ident: e_1_3_3_2_2
  doi: 10.1038/35050532
– ident: e_1_3_3_26_2
  doi: 10.1074/jbc.M110.139469
– volume: 13
  start-page: 1731
  year: 1996
  ident: e_1_3_3_15_2
  article-title: mdm2 deletion does not alter growth characteristics of p53-deficient embryo fibroblasts
  publication-title: Oncogene
– ident: e_1_3_3_10_2
  doi: 10.1016/0092-8674(95)90214-7
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.0502330102
– ident: e_1_3_3_18_2
  doi: 10.1016/S0378-1119(01)00563-7
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1004796107
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.0506230102
– ident: e_1_3_3_3_2
  doi: 10.1038/sj.onc.1210839
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.0601989103
– ident: e_1_3_3_17_2
  doi: 10.1083/jcb.200908103
– ident: e_1_3_3_29_2
  doi: 10.1016/S0092-8674(00)80441-9
– ident: e_1_3_3_24_2
  doi: 10.1016/j.jmb.2008.05.043
– ident: e_1_3_3_12_2
  doi: 10.1101/gad.827300
– ident: e_1_3_3_9_2
  doi: 10.1038/nature03098
– ident: e_1_3_3_7_2
  doi: 10.1053/j.seminoncol.2003.08.005
– volume: 9
  start-page: 443
  year: 1994
  ident: e_1_3_3_14_2
  article-title: Growth suppression of normal mammary epithelial cells by wild-type p53
  publication-title: Oncogene
– ident: e_1_3_3_19_2
  doi: 10.1016/j.ccr.2004.09.020
– ident: e_1_3_3_5_2
  doi: 10.1158/0008-5472.CAN-07-0750
– ident: e_1_3_3_22_2
  doi: 10.1097/00000441-198711000-00015
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0705878104
– ident: e_1_3_3_25_2
  doi: 10.1073/pnas.0908027106
– ident: e_1_3_3_28_2
  doi: 10.1158/0008-5472.CAN-07-1960
– ident: e_1_3_3_16_2
  doi: 10.1038/387296a0
– ident: e_1_3_3_23_2
  doi: 10.1042/bj3480281
– ident: e_1_3_3_11_2
  doi: 10.1038/nrc1954
– ident: e_1_3_3_1_2
  doi: 10.1074/jbc.R600029200
– ident: e_1_3_3_20_2
  doi: 10.1016/S1074-7613(01)00088-7
SSID ssj0009580
Score 2.1585042
Snippet Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8791
SubjectTerms adenosinetriphosphatase
Antibodies
Biological Sciences
Cancer
carcinogenesis
Cell Line
Cells
Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
DNA
Down regulation
Epithelial cells
Gene Expression Regulation
Genes
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
histones
Homeostasis
Homeostasis - genetics
Humans
Metastasis
neoplasms
Neoplasms - etiology
nucleosomes
nucleotide sequences
Promoter regions
proteasome endopeptidase complex
Proteins
Reading Frames
Repressor Proteins - antagonists & inhibitors
Repressor Proteins - genetics
Repressor Proteins - metabolism
signal transduction
Trans-Activators
Transcription factors
Transcriptional Activation
Tumor Suppressor Protein p53
Tumors
Title Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis
URI https://www.jstor.org/stable/25831031
http://www.pnas.org/content/108/21/8791.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21555589
https://www.proquest.com/docview/868914895
https://www.proquest.com/docview/1817830572
https://www.proquest.com/docview/868768470
https://pubmed.ncbi.nlm.nih.gov/PMC3102345
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKFAaCshIHIpWKZunnWNBrSpUtgW2Um-RnTjdQJugzS5I_dX8BGZsbx6lrYBLtEocO8l8OzO2Z74h5DU4vTLOPOWGuczdUETSBa9auiLw82AshIoCTHD-OIkPT8MPZ9HZ2tqvXtTSciF3s6sb80r-R6pwDuSKWbL_INm2UzgBv0G-cAQJw_GvZPyuNBbJLOcJpCMwpeVx4_xSYVIv1sDQW-gLAX5gUzausAJRSBBQY7HLkefqTfPKkIDPTVz9qMC4LSRenf0UOjuwrrL6HHVj2fR92pPWBjariIPJaolxr0tYsVqkGbmjk0lX_vjIZrq7nwCo592O1jdxIUzY0Fw1s6449GeVG7vwpcSaXvMStPaP8quq8rnAcWetnTme4cp7bWJGrpbF8rLsr3Hgom3k-t0a510P3VfuPhjc0N6njD4Hd8iNQ1ORtFX4Y95DtknQtvqbM1M77A_DApoQqyFXosH1Do67u7aXAYX35Dg9OD06Sqf7Z9PhVe0y-EGsSyMjV8A9HyY2vjYlfZpobpKm7KusyKhY8Pba2AM_yoTSIj8vNLpprnQ95LfnQ00fkgd28kP3DJI3yJqqHpGN1TemO5YD_c1jcjWANh1Cm7bQpnVBb4Q2tdCmA2hTC22qoU0ttCk060H7CTk92J--P3RtmRA3CyO2cBMm5LgAP10mXIV5JJkoPJlLybKgyIvCy2LBMgxYEBlneREqBW5uzPyMi6zw8mCTrFd1pbYITaRMci9OQsaxJjeTsRQBZzIYZzCA8hyyu_roaWY59LGUy0WqYzlYkKIA0k5KDtlpb_hu6GNub7qppdi28yNdBBAG3dJNu_t56nspQtUh2ytRp1YvNSmPob-QJ5FDXrVXwWjgTqCoVL2EUbnHOFh65juE3tIGusFNejZ2yFODne7JYBISRTxxCBugqm2AnPXDK1U509z1AVLFhNGzOx98m9zvtMBzsr6YL9UL8P0X8qX-u_wGpE4OEA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+autoregulatory+mechanism+of+metastasis-associated+protein+1-alternative+reading+frame+pathway+in+oncogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Da-Qiang&rft.au=Pakala%2C+Suresh+B&rft.au=Reddy%2C+Sirigiri+Divijendra+Natha&rft.au=Ohshiro%2C+Kazufumi&rft.date=2011-05-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=21&rft.spage=8791&rft_id=info:doi/10.1073%2Fpnas.1018389108&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2360145181
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F21.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F21.cover.gif