Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. We aimed to use federated learning, a machine learning techniqu...
Saved in:
Published in | JMIR medical informatics Vol. 9; no. 1; p. e24207 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
27.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability.
We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days.
Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator.
The LASSO
model outperformed the LASSO
model at 3 hospitals, and the MLP
model performed better than the MLP
model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSO
model outperformed the LASSO
model at all hospitals, and the MLP
model outperformed the MLP
model at 2 hospitals.
The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy. |
---|---|
AbstractList | Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability.BACKGROUNDMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability.We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days.OBJECTIVEWe aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days.Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator.METHODSPatient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator.The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals.RESULTSThe LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals.The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.CONCLUSIONSThe federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy. BackgroundMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. ObjectiveWe aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. MethodsPatient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. ResultsThe LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. ConclusionsThe federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy. Background: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. Objective: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. Methods: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. Results: The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. Conclusions: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy. Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. The LASSO model outperformed the LASSO model at 3 hospitals, and the MLP model performed better than the MLP model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSO model outperformed the LASSO model at all hospitals, and the MLP model outperformed the MLP model at 2 hospitals. The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy. |
Author | De Freitas, Jessica K Vaid, Akhil Teng, Shelly Johnson, Kipp W Kumar, Arvind Somani, Sulaiman Klang, Eyal Kwon, Young Joon Wanyan, Tingyi Nadkarni, Girish N Xu, Jie Wang, Fei Böttinger, Erwin Costa, Anthony Zhao, Shan Paranjpe, Ishan Lee, Samuel Charney, Alexander W Jaladanki, Suraj K Bicak, Mesude Fayad, Zahi A Miotto, Riccardo Glicksberg, Benjamin S |
AuthorAffiliation | 1 The Hasso Plattner Institute for Digital Health at Mount Sinai Icahn School of Medicine at Mount Sinai New York, NY United States 11 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York, NY United States 9 Department of Anesthesiology Perioperative and Pain Medicine Icahn School of Medicine at Mount Sinai New York, NY United States 2 The Mount Sinai Clinical Intelligence Center New York, NY United States 8 Department of Neurological Surgery Icahn School of Medicine at Mount Sinai New York, NY United States 3 Department of Population Health Sciences Weill Cornell Medicine New York, NY United States 7 Institute for Healthcare Delivery Science Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York, NY United States 14 Department of Radiology Icahn School of Medicine at Mount Sinai New York, NY United States 4 Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY United States 5 Intelligen |
AuthorAffiliation_xml | – name: 12 Digital Health Center Hasso Plattner Institute University of Potsdam Potsdam Germany – name: 3 Department of Population Health Sciences Weill Cornell Medicine New York, NY United States – name: 6 School of Information University of Texas Austin Austin, TX United States – name: 15 Department of Medicine Icahn School of Medicine at Mount Sinai New York, NY United States – name: 8 Department of Neurological Surgery Icahn School of Medicine at Mount Sinai New York, NY United States – name: 14 Department of Radiology Icahn School of Medicine at Mount Sinai New York, NY United States – name: 10 The Pamela Sklar Division of Psychiatric Genomics Icahn School of Medicine at Mount Sinai New York, NY United States – name: 9 Department of Anesthesiology Perioperative and Pain Medicine Icahn School of Medicine at Mount Sinai New York, NY United States – name: 16 The Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai New York, NY United States – name: 7 Institute for Healthcare Delivery Science Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York, NY United States – name: 1 The Hasso Plattner Institute for Digital Health at Mount Sinai Icahn School of Medicine at Mount Sinai New York, NY United States – name: 11 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York, NY United States – name: 5 Intelligent System Engineering Indiana University Bloomington, IN United States – name: 2 The Mount Sinai Clinical Intelligence Center New York, NY United States – name: 4 Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY United States – name: 13 The BioMedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York, NY United States |
Author_xml | – sequence: 1 givenname: Akhil orcidid: 0000-0002-3343-744X surname: Vaid fullname: Vaid, Akhil – sequence: 2 givenname: Suraj K orcidid: 0000-0003-0406-2973 surname: Jaladanki fullname: Jaladanki, Suraj K – sequence: 3 givenname: Jie orcidid: 0000-0001-5291-5198 surname: Xu fullname: Xu, Jie – sequence: 4 givenname: Shelly orcidid: 0000-0002-0699-7169 surname: Teng fullname: Teng, Shelly – sequence: 5 givenname: Arvind orcidid: 0000-0002-2865-1732 surname: Kumar fullname: Kumar, Arvind – sequence: 6 givenname: Samuel orcidid: 0000-0003-2536-2684 surname: Lee fullname: Lee, Samuel – sequence: 7 givenname: Sulaiman orcidid: 0000-0003-0913-8674 surname: Somani fullname: Somani, Sulaiman – sequence: 8 givenname: Ishan orcidid: 0000-0001-5144-0370 surname: Paranjpe fullname: Paranjpe, Ishan – sequence: 9 givenname: Jessica K orcidid: 0000-0001-8546-9112 surname: De Freitas fullname: De Freitas, Jessica K – sequence: 10 givenname: Tingyi orcidid: 0000-0002-5011-3973 surname: Wanyan fullname: Wanyan, Tingyi – sequence: 11 givenname: Kipp W orcidid: 0000-0002-5102-741X surname: Johnson fullname: Johnson, Kipp W – sequence: 12 givenname: Mesude orcidid: 0000-0002-4546-9801 surname: Bicak fullname: Bicak, Mesude – sequence: 13 givenname: Eyal orcidid: 0000-0002-4567-3108 surname: Klang fullname: Klang, Eyal – sequence: 14 givenname: Young Joon orcidid: 0000-0002-0893-9472 surname: Kwon fullname: Kwon, Young Joon – sequence: 15 givenname: Anthony orcidid: 0000-0002-2202-6450 surname: Costa fullname: Costa, Anthony – sequence: 16 givenname: Shan orcidid: 0000-0002-6618-8793 surname: Zhao fullname: Zhao, Shan – sequence: 17 givenname: Riccardo orcidid: 0000-0002-7815-6000 surname: Miotto fullname: Miotto, Riccardo – sequence: 18 givenname: Alexander W orcidid: 0000-0001-8135-6858 surname: Charney fullname: Charney, Alexander W – sequence: 19 givenname: Erwin orcidid: 0000-0001-6868-6676 surname: Böttinger fullname: Böttinger, Erwin – sequence: 20 givenname: Zahi A orcidid: 0000-0002-3439-7347 surname: Fayad fullname: Fayad, Zahi A – sequence: 21 givenname: Girish N orcidid: 0000-0001-6319-4314 surname: Nadkarni fullname: Nadkarni, Girish N – sequence: 22 givenname: Fei orcidid: 0000-0001-9459-9461 surname: Wang fullname: Wang, Fei – sequence: 23 givenname: Benjamin S orcidid: 0000-0003-4515-8090 surname: Glicksberg fullname: Glicksberg, Benjamin S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33400679$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkttqGzEQQJeS0qSpf6EISqFQ3EparbTqQyC4SW1wSCi9PAqtNLIV1pKrlQPpX_SPK8dJG-dJYuZwNJqZl9VBiAGqakTwB0ok_0gZxeJZdUSpJGPJJTt4dD-sRsNwjTEmjHDOxYvqsK4ZxlzIo-rPOVhIOoNFc9Ap-LBA0aGzHkxOMXiDpqD7vERfwcRkB5Qjmq3WKd4Auogp697nW3SVwHqTfQzIBzSNw9pvM7-L9UpnDyEP6Kcvlsnlj9nnMZGf0IU2Sx_g_6un62ItwVfVc6f7AUb353H1_fzs22Q6nl9-mU1O52PDGpHHkpqWC807SRtrBe1cDayhlltWojURWMi66VjLqHNadNrpVjiJqYO2axtbH1eznddGfa3Wya90ulVRe3UXiGmhdMre9KAIcQSw0ZjVmJVWa0ddYxmnnDjTAhTXyc613nQrsKZ8OOl-T7qfCX6pFvFGiVJe28gieHcvSPHXBoasVn4w0Pc6QNwMijLRNDXmUhT0zRP0Om5SKK1StCGkEG2zpV4_ruhfKQ-TL8D7HWBSHIYETpkys-0IS4G-VwSr7Wqpu9Uq9Nsn9INwn_sLBIvMBA |
CitedBy_id | crossref_primary_10_2196_37578 crossref_primary_10_1016_j_artmed_2024_102873 crossref_primary_10_1093_jamia_ocac012 crossref_primary_10_1097_MNH_0000000000000808 crossref_primary_10_1145_3533708 crossref_primary_10_1128_mbio_01508_23 crossref_primary_10_48121_jihsam_1533583 crossref_primary_10_1007_s41060_025_00756_5 crossref_primary_10_1038_s41591_021_01506_3 crossref_primary_10_1038_s41598_023_36175_4 crossref_primary_10_1016_j_ijmedinf_2023_105210 crossref_primary_10_1136_bmj_m1328 crossref_primary_10_1186_s12911_022_02057_4 crossref_primary_10_3389_fdata_2024_1266031 crossref_primary_10_1016_j_knosys_2024_112600 crossref_primary_10_1145_3514500 crossref_primary_10_1371_journal_pdig_0000117 crossref_primary_10_1016_j_xops_2021_100069 crossref_primary_10_1016_j_heliyon_2023_e19210 crossref_primary_10_1053_j_akdh_2022_11_007 crossref_primary_10_1016_j_jbi_2023_104485 crossref_primary_10_3390_diagnostics12112835 crossref_primary_10_1093_jamia_ocac083 crossref_primary_10_1093_jamia_ocad170 crossref_primary_10_1136_bmjgh_2022_011454 crossref_primary_10_3389_fcell_2021_718974 crossref_primary_10_1016_j_asoc_2025_112747 crossref_primary_10_1016_j_imu_2022_100983 crossref_primary_10_1016_j_im_2024_103922 crossref_primary_10_32604_cmes_2024_048932 crossref_primary_10_2174_0115680266282179240124072121 crossref_primary_10_3390_app112311191 crossref_primary_10_1097_CCE_0000000000001067 crossref_primary_10_1007_s10586_022_03658_4 crossref_primary_10_1016_j_ajhg_2022_08_002 crossref_primary_10_32604_iasc_2022_023763 crossref_primary_10_1007_s10462_024_11067_9 crossref_primary_10_1016_j_cmpb_2024_108104 crossref_primary_10_1016_j_csbj_2021_05_010 crossref_primary_10_2196_32949 crossref_primary_10_1016_j_future_2023_02_021 crossref_primary_10_1109_ACCESS_2023_3241488 crossref_primary_10_1109_ACCESS_2022_3202922 crossref_primary_10_1109_TEM_2021_3094544 crossref_primary_10_1142_S021962202250050X crossref_primary_10_1186_s12889_024_19196_0 crossref_primary_10_1016_j_patter_2023_100898 crossref_primary_10_1038_s42256_021_00337_8 crossref_primary_10_1177_20552076241282242 crossref_primary_10_1007_s11042_023_18065_z crossref_primary_10_1038_s41551_023_01056_8 crossref_primary_10_1016_j_isci_2024_110943 crossref_primary_10_1007_s00500_021_06514_6 crossref_primary_10_1109_OJCS_2022_3206407 crossref_primary_10_4103_jehp_jehp_20_22 crossref_primary_10_1109_TII_2022_3190034 crossref_primary_10_3389_fdgth_2025_1535018 crossref_primary_10_3390_s23146518 crossref_primary_10_1038_s41380_023_02334_2 crossref_primary_10_1109_TII_2021_3138993 crossref_primary_10_3389_fcvm_2024_1399138 crossref_primary_10_3390_fi15110370 crossref_primary_10_1109_ACCESS_2022_3210702 crossref_primary_10_4258_hir_2024_30_1_3 crossref_primary_10_1080_09540091_2021_1936455 crossref_primary_10_5812_semj_119172 crossref_primary_10_1109_JIOT_2023_3329061 crossref_primary_10_1155_2023_5968168 crossref_primary_10_3934_mbe_2022466 crossref_primary_10_3390_jpm11090893 crossref_primary_10_3390_e26100871 crossref_primary_10_1109_ACCESS_2023_3333229 crossref_primary_10_1109_JAS_2023_123123 crossref_primary_10_4258_hir_2023_29_2_168 crossref_primary_10_1016_j_ebiom_2024_105006 crossref_primary_10_3390_bdcc6040127 crossref_primary_10_1016_j_imu_2021_100825 crossref_primary_10_1016_j_patter_2021_100269 crossref_primary_10_1155_2022_7697863 crossref_primary_10_20517_rdodj_2023_16 crossref_primary_10_1145_3501813 crossref_primary_10_1186_s12911_022_02014_1 crossref_primary_10_2196_47673 crossref_primary_10_1109_TCYB_2023_3247365 crossref_primary_10_5812_semj_117849 crossref_primary_10_1109_JPROC_2021_3119950 crossref_primary_10_28979_jarnas_1555351 crossref_primary_10_1109_ACCESS_2023_3320716 crossref_primary_10_3390_s23020743 crossref_primary_10_1016_j_ipm_2024_103682 crossref_primary_10_3390_electronics12071687 crossref_primary_10_3233_HIS_220006 crossref_primary_10_1016_j_ijmedinf_2021_104556 crossref_primary_10_3390_electronics12183878 crossref_primary_10_1016_j_jbi_2025_104780 crossref_primary_10_1186_s12879_024_10230_5 crossref_primary_10_2196_31549 crossref_primary_10_1007_s40747_023_00972_1 crossref_primary_10_1007_s12559_024_10332_x crossref_primary_10_2196_45823 |
Cites_doi | 10.1093/cid/ciaa880 10.1093/jamia/ocaa172 10.1038/nrd.2016.33 10.1016/S1473-3099(20)30120-1 10.1101/2020.05.10.20096073 10.1016/S2213-2600(20)30076-X 10.1038/s41591-020-0931-3 10.1161/CIRCULATIONAHA.120.046941 10.7326/M20-0504 10.1016/j.jacc.2020.06.007 10.1001/jama.2020.2648 10.1038/s41746-020-00308-0 10.1038/s41591-020-1004-3 10.1148/radiol.2020200230 10.1016/j.jacc.2020.05.001 |
ContentType | Journal Article |
Copyright | Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. 2021 |
Copyright_xml | – notice: Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.2196/24207 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest One Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Healthcare Administration Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Health Management Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2291-9694 |
ExternalDocumentID | oai_doaj_org_article_11f1e0ca04304420af2f5d46261fc8ee PMC7842859 33400679 10_2196_24207 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001433 |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c457t-92c867a6b925dd72bf3e452d6d47a631707935b4842ffa7bafa87f902fe8b85d3 |
IEDL.DBID | 7X7 |
ISSN | 2291-9694 |
IngestDate | Wed Aug 27 01:23:28 EDT 2025 Thu Aug 21 14:12:36 EDT 2025 Fri Jul 11 02:22:16 EDT 2025 Fri Jul 25 04:02:34 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Tue Jul 01 04:31:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COVID-19 electronic health records machine learning federated learning |
Language | English |
License | Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-92c867a6b925dd72bf3e452d6d47a631707935b4842ffa7bafa87f902fe8b85d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0893-9472 0000-0002-0699-7169 0000-0001-8546-9112 0000-0001-9459-9461 0000-0003-2536-2684 0000-0002-2202-6450 0000-0002-6618-8793 0000-0002-3439-7347 0000-0001-5144-0370 0000-0001-6319-4314 0000-0002-4546-9801 0000-0001-5291-5198 0000-0002-5011-3973 0000-0003-0406-2973 0000-0003-4515-8090 0000-0002-2865-1732 0000-0001-8135-6858 0000-0002-5102-741X 0000-0002-4567-3108 0000-0002-7815-6000 0000-0001-6868-6676 0000-0002-3343-744X 0000-0003-0913-8674 |
OpenAccessLink | https://www.proquest.com/docview/2511973857?pq-origsite=%requestingapplication% |
PMID | 33400679 |
PQID | 2511973857 |
PQPubID | 4997117 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11f1e0ca04304420af2f5d46261fc8ee pubmedcentral_primary_oai_pubmedcentral_nih_gov_7842859 proquest_miscellaneous_2475530697 proquest_journals_2511973857 pubmed_primary_33400679 crossref_citationtrail_10_2196_24207 crossref_primary_10_2196_24207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210127 |
PublicationDateYYYYMMDD | 2021-01-27 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
PublicationTitle | JMIR medical informatics |
PublicationTitleAlternate | JMIR Med Inform |
PublicationYear | 2021 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref13 ref12 Kumar, R (ref15) ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref7 Xu, J (ref14) ref9 ref4 ref3 ref6 ref5 32817979 - medRxiv. 2020 Aug 14 |
References_xml | – ident: ref15 publication-title: arXiv – ident: ref10 doi: 10.1093/cid/ciaa880 – ident: ref17 doi: 10.1093/jamia/ocaa172 – ident: ref13 doi: 10.1038/nrd.2016.33 – ident: ref1 doi: 10.1016/S1473-3099(20)30120-1 – ident: ref16 doi: 10.1101/2020.05.10.20096073 – ident: ref7 doi: 10.1016/S2213-2600(20)30076-X – ident: ref11 doi: 10.1038/s41591-020-0931-3 – ident: ref3 doi: 10.1161/CIRCULATIONAHA.120.046941 – ident: ref14 publication-title: arXiv – ident: ref5 doi: 10.7326/M20-0504 – ident: ref9 doi: 10.1016/j.jacc.2020.06.007 – ident: ref4 doi: 10.1001/jama.2020.2648 – ident: ref12 doi: 10.1038/s41746-020-00308-0 – ident: ref2 doi: 10.1038/s41591-020-1004-3 – ident: ref6 doi: 10.1148/radiol.2020200230 – ident: ref8 doi: 10.1016/j.jacc.2020.05.001 – reference: 32817979 - medRxiv. 2020 Aug 14;: |
SSID | ssj0001416667 |
Score | 2.5194688 |
Snippet | Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19... Background: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on... BackgroundMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e24207 |
SubjectTerms | Cardiovascular disease Coronaviruses COVID-19 Demographics Electronic health records Hospitals Machine learning Medical research Mortality Multimedia Original Paper Patients |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB4RUVaWUdluKjMQ1YuP42RuvFUVayqEUbpEd22WlKluxy4V_wT9mxs6mu6hSL73alu14xplvMpNvCDkIDVhVjA86q2PBdWzgzkVZSA8aHRLHHP6NPL6U59f84lbcLpX6wpywTA-cD-6wLGMZho1FbirO2dBGFoXngMPL2OgQ8O0LNm_JmUpfVziGw9QGeYW5zqBlh2CKsGTskvFJHP1_A5Yv8yOXDM7oDXndIUV6lHe4RdZC-5ZsjLtY-DZ5GiEPBEBFTzuS1J90GulZX9eG5l-MaPYwZ3Q-pfkTQqDjBLoBgNOre5wQpUMnLV1UEZk8wqxXmXJ1Rm8mMMvJtx9fT4vSfKHjlH8Z_qx61PGSvyPXo7PvJ-dFV2ChaLhQ88KwRktlpTNMeK-Yi1XggnnpObQCskD2POG45ixGq5yNFgRphiwG7bTw1Q5Zb6dt-EAo90ZVzkrhwWW0woCbIllQjXGAeGT0A3KwOPm66djHsQjGrxq8EBRQnQQ0IHv9sN-ZbuPlgGMUW9-J7NipAXSm7nSm_pfODMjuQuh1d2VnNUsR1UoLWGO_74bLhhEU24bpA4zhCsssSQNj3mcd6XdSVRxNvxkQtaI9K1td7Wknd4nQW8EBa2E-_o9n-0Q2GabdDMuCqV2yPr9_CJ8BN83dXroizzUhF8s priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_SQhFE_PZqLRH6unqXzadQpNYeVVjtg6e-LdlNUg_Krr27gu1_4X_sTDa3dkvxdTObzWZmmJnM5DeE7PkarCrmByurQ8Z1qEHngsykA4n2EWMObyMXn-XxjH_6Ia5VE6YNXN4a2mE_qdni7PXv88t3oPD7WMYMAvQGrAzeJ98EY6RQN4vk4cdjFo55MbVF7g2oB1YogvXf5mHeLJS8ZnmmD8j95DLSg47HD8kd3zwiW0VKij8mf6YICAE-o6MJLfWUtoEe9Q1uaHfXiHah5pKuWtqdJXhaxB8HT5yeLHBCZBOdN3TdTmR-BbOedNirS_p9DrMcfvn28UM2MW9pEQsx_b-vHiSA8idkNj36enicpU4LWc2FWmWG1VoqKyvDhHOKVSH3XDAnHYen4GIgjJ6ouOYsBKsqGyxw1IxZ8LrSwuVPyUbTNv45odwZlVdWCgexoxUG4hXJvKpNBa6PDG5E9tY7X9YJhhy7YZyVEI4gg8rIoBHZ7cl-dbgbNwneI9v6QYTJjg_axWmZtA7CmzDx49oisBmHt2xgQThYkJyEWns_Ijtrppdr0StZTK3mWsA3XvXDoHWYSrGNby-AhivstyQN0DzrZKRfSZ5z9AHMiKiB9AyWOhxp5j8jsreCDdbCbP9_WS_IXYaVNeNJxtQO2VgtLvxLcI1W1W4U_r-EGw_C priority: 102 providerName: Scholars Portal |
Title | Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33400679 https://www.proquest.com/docview/2511973857 https://www.proquest.com/docview/2475530697 https://pubmed.ncbi.nlm.nih.gov/PMC7842859 https://doaj.org/article/11f1e0ca04304420af2f5d46261fc8ee |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgkyYkhLiOwKiMtNdoreNbeJm20WogZVSIQd8iJ7ZHJZSMtnvhX_CPd47jpuuEeMlD7DiWz3H8nUu-Q8ihq-FUxfhgZbRPufY17DkvU2lBo13gmMO_kYsLeX7JP8_ELDrcljGtcv1NDB9q29boIz9iIeCVaaGOr3-nWDUKo6uxhMZDsovUZZjSpWZq42PhGBRTe-QxZjyDrh3BgYSFY-8cQYGp_1_w8n6W5J1jZ_KUPIl4kZ50An5GHrjmOdkrYkT8Bfk7QTYIAIyWRqrUK9p6Ou6r29DuRyPa2ZlLumpp50hwtAjQG2A4nS5wQJQRnTd0XUtk_gdGnXbEq0v6Yw6jnH35_uljOso_0CJkYbrNW08iO_lLcjkZfzs7T2OZhbTmQq3SnNVaKiOrnAlrFat85rhgVloOdwFfIIeeqLjmzHujKuMNiDMfMu90pYXNXpGdpm3ca0K5BRFVRgoLhqMRORgrkjlV5xXgHultQg7XK1_WkYMcS2H8KsEWQQGVQUAJGfTdrjvSjfsdTlFsfSNyZIcb7eKqjFsObBs_csPaIKsZh6eMZ15YmJAc-Vo7l5CDtdDLuHGX5UbNEvK-b4Yth3EU07j2BvpwhcWWZA599jsd6WeSZRwBQJ4QtaU9W1PdbmnmPwOtt4IF1iJ_8_9pvSWPGKbVDEcpUwdkZ7W4ce8AF62qQVD-Adk9HV9Mvw6CdwGuBde3MuES3Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9NADLZGJw0khHinMMYhjY_R2su9JEgI7aVVy9ZSoY3tW0hyd6MSSkbbCcG_4I_wG7Hz1nVCfNvX3OVixfbZPvseA2zbFK0q5QeTOHCeCFyKOueUpwxKtC0w5ug28misBifiw5k8W4M_9V0YKqus98RiozZ5SmfkO7xIePmB1O8vvnvUNYqyq3ULjVIsDu3PHxiyzd8ND5C_bzjv9473B17VVcBLhdQLL-RpoHSskpBLYzRPnG-F5EYZgU_RnBJknExEILhzsU5iFyP1YYc7GySBND6uewvWhY-hTAvW93rjyaflqY6gNJzegLtUY43SvYMmkFrVXjF6RW-Afzm01-syrxi6_n24V3mobLcUqQewZrOHsDGqcvCP4Hef8CfQRTWsAmc9Z7ljvaafDiuvNrEysp2zRc7KowvLRoWzj44_m8xoQZIKNs1Y3b1k-gtXnZRQr3N2OsVV9j9-Hh543fAtGxV1n3b51d0KD_0xnNwIC55AK8sz-wyYMCgUSaykwVA1liGGR4pbnYYJelrKmTZs138-SivUc2q-8S3C6IcYFBUMasNWM-2ihPm4PmGP2NYMEip38SCfnUeVkmM05bq2k8aEoybwrdhxJw0SpLouDaxtw2bN9KjaKubRUrDb8LoZRiWnzE2c2fwS5whN7Z1UiHOeljLSUOL7glyOsA16RXpWSF0dyaZfCyBxjT84kOHz_5P1Cm4PjkdH0dFwfPgC7nAq6ul0Pa43obWYXdqX6JUtkq1KFRh8uWnt-wuMj029 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIVVICPFNYAwjjcdojeOPBAmhsa5aGR19YNC3LIntUQklo-2E4L_g3-Gv4y5fXSfE215jx3F8d7473_l3ADs2R61K8cEsjZwvIpejzDnlK4McbSuMObqNPD5Whyfi_VRON-BPexeG0irbPbHaqE2Z0xn5Lq8CXmGEDrxr0iImg-Hb8-8-VZCiSGtbTqNmkSP78we6b4s3owHS-hXnw4NP-4d-U2HAz4XUSz_meaR0qrKYS2M0z1xoheRGGYFPUbUSfJzMRCS4c6nOUpfin8R97myURdKEOO4NuKlDGZCM6alene8ICsjpHtymbGvk811UhlS09pL6q6oE_Mu0vZqheUnlDe_CncZWZXs1c92DDVvch964icY_gN9DQqJAY9WwBqb1jJWOHXSVdVh9yYnVPu6CLUtWH2JYNq7MfnQB2GROAxJ_sFnB2joms1846qQGfV2wLzMcZf_j59HAD-LXbFxlgNrVV_caZPSHcHItBHgEm0VZ2CfAhEH2yFIlDTqtqYzRUVLc6jzO0OZSzniw0658kjf451SG41uCfhARKKkI5MF21-28Bvy42uEdka1rJHzu6kE5P0sacUe_ygW2n6eEqCbwrdRxJw1OSAUuj6z1YKsletJsGotkxeIevOyaUdwphpMWtrzAPkJToScVY5_HNY90MwlDQcZH7IFe4561qa63FLOvFaS4xgWOZPz0_9N6AT2UueTD6PjoGdzilN3TD3yut2BzOb-wz9E8W2bblRwwOL1uwfsLNm1QjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+of+Electronic+Health+Records+to+Improve+Mortality+Prediction+in+Hospitalized+Patients+With+COVID-19%3A+Machine+Learning+Approach&rft.jtitle=JMIR+medical+informatics&rft.au=Vaid%2C+Akhil&rft.au=Jaladanki%2C+Suraj+K&rft.au=Xu%2C+Jie&rft.au=Teng%2C+Shelly&rft.date=2021-01-27&rft.pub=JMIR+Publications&rft.eissn=2291-9694&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2196%2F24207&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |