Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach

Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. We aimed to use federated learning, a machine learning techniqu...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 9; no. 1; p. e24207
Main Authors Vaid, Akhil, Jaladanki, Suraj K, Xu, Jie, Teng, Shelly, Kumar, Arvind, Lee, Samuel, Somani, Sulaiman, Paranjpe, Ishan, De Freitas, Jessica K, Wanyan, Tingyi, Johnson, Kipp W, Bicak, Mesude, Klang, Eyal, Kwon, Young Joon, Costa, Anthony, Zhao, Shan, Miotto, Riccardo, Charney, Alexander W, Böttinger, Erwin, Fayad, Zahi A, Nadkarni, Girish N, Wang, Fei, Glicksberg, Benjamin S
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 27.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. The LASSO model outperformed the LASSO model at 3 hospitals, and the MLP model performed better than the MLP model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSO model outperformed the LASSO model at all hospitals, and the MLP model outperformed the MLP model at 2 hospitals. The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
AbstractList Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability.BACKGROUNDMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability.We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days.OBJECTIVEWe aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days.Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator.METHODSPatient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator.The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals.RESULTSThe LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals.The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.CONCLUSIONSThe federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
BackgroundMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. ObjectiveWe aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. MethodsPatient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. ResultsThe LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. ConclusionsThe federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
Background: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. Objective: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. Methods: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. Results: The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled model at 2 hospitals. Conclusions: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. The LASSO model outperformed the LASSO model at 3 hospitals, and the MLP model performed better than the MLP model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSO model outperformed the LASSO model at all hospitals, and the MLP model outperformed the MLP model at 2 hospitals. The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
Author De Freitas, Jessica K
Vaid, Akhil
Teng, Shelly
Johnson, Kipp W
Kumar, Arvind
Somani, Sulaiman
Klang, Eyal
Kwon, Young Joon
Wanyan, Tingyi
Nadkarni, Girish N
Xu, Jie
Wang, Fei
Böttinger, Erwin
Costa, Anthony
Zhao, Shan
Paranjpe, Ishan
Lee, Samuel
Charney, Alexander W
Jaladanki, Suraj K
Bicak, Mesude
Fayad, Zahi A
Miotto, Riccardo
Glicksberg, Benjamin S
AuthorAffiliation 1 The Hasso Plattner Institute for Digital Health at Mount Sinai Icahn School of Medicine at Mount Sinai New York, NY United States
11 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York, NY United States
9 Department of Anesthesiology Perioperative and Pain Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
2 The Mount Sinai Clinical Intelligence Center New York, NY United States
8 Department of Neurological Surgery Icahn School of Medicine at Mount Sinai New York, NY United States
3 Department of Population Health Sciences Weill Cornell Medicine New York, NY United States
7 Institute for Healthcare Delivery Science Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York, NY United States
14 Department of Radiology Icahn School of Medicine at Mount Sinai New York, NY United States
4 Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY United States
5 Intelligen
AuthorAffiliation_xml – name: 12 Digital Health Center Hasso Plattner Institute University of Potsdam Potsdam Germany
– name: 3 Department of Population Health Sciences Weill Cornell Medicine New York, NY United States
– name: 6 School of Information University of Texas Austin Austin, TX United States
– name: 15 Department of Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 8 Department of Neurological Surgery Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 14 Department of Radiology Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 10 The Pamela Sklar Division of Psychiatric Genomics Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 9 Department of Anesthesiology Perioperative and Pain Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 16 The Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 7 Institute for Healthcare Delivery Science Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 1 The Hasso Plattner Institute for Digital Health at Mount Sinai Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 11 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 5 Intelligent System Engineering Indiana University Bloomington, IN United States
– name: 2 The Mount Sinai Clinical Intelligence Center New York, NY United States
– name: 4 Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY United States
– name: 13 The BioMedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York, NY United States
Author_xml – sequence: 1
  givenname: Akhil
  orcidid: 0000-0002-3343-744X
  surname: Vaid
  fullname: Vaid, Akhil
– sequence: 2
  givenname: Suraj K
  orcidid: 0000-0003-0406-2973
  surname: Jaladanki
  fullname: Jaladanki, Suraj K
– sequence: 3
  givenname: Jie
  orcidid: 0000-0001-5291-5198
  surname: Xu
  fullname: Xu, Jie
– sequence: 4
  givenname: Shelly
  orcidid: 0000-0002-0699-7169
  surname: Teng
  fullname: Teng, Shelly
– sequence: 5
  givenname: Arvind
  orcidid: 0000-0002-2865-1732
  surname: Kumar
  fullname: Kumar, Arvind
– sequence: 6
  givenname: Samuel
  orcidid: 0000-0003-2536-2684
  surname: Lee
  fullname: Lee, Samuel
– sequence: 7
  givenname: Sulaiman
  orcidid: 0000-0003-0913-8674
  surname: Somani
  fullname: Somani, Sulaiman
– sequence: 8
  givenname: Ishan
  orcidid: 0000-0001-5144-0370
  surname: Paranjpe
  fullname: Paranjpe, Ishan
– sequence: 9
  givenname: Jessica K
  orcidid: 0000-0001-8546-9112
  surname: De Freitas
  fullname: De Freitas, Jessica K
– sequence: 10
  givenname: Tingyi
  orcidid: 0000-0002-5011-3973
  surname: Wanyan
  fullname: Wanyan, Tingyi
– sequence: 11
  givenname: Kipp W
  orcidid: 0000-0002-5102-741X
  surname: Johnson
  fullname: Johnson, Kipp W
– sequence: 12
  givenname: Mesude
  orcidid: 0000-0002-4546-9801
  surname: Bicak
  fullname: Bicak, Mesude
– sequence: 13
  givenname: Eyal
  orcidid: 0000-0002-4567-3108
  surname: Klang
  fullname: Klang, Eyal
– sequence: 14
  givenname: Young Joon
  orcidid: 0000-0002-0893-9472
  surname: Kwon
  fullname: Kwon, Young Joon
– sequence: 15
  givenname: Anthony
  orcidid: 0000-0002-2202-6450
  surname: Costa
  fullname: Costa, Anthony
– sequence: 16
  givenname: Shan
  orcidid: 0000-0002-6618-8793
  surname: Zhao
  fullname: Zhao, Shan
– sequence: 17
  givenname: Riccardo
  orcidid: 0000-0002-7815-6000
  surname: Miotto
  fullname: Miotto, Riccardo
– sequence: 18
  givenname: Alexander W
  orcidid: 0000-0001-8135-6858
  surname: Charney
  fullname: Charney, Alexander W
– sequence: 19
  givenname: Erwin
  orcidid: 0000-0001-6868-6676
  surname: Böttinger
  fullname: Böttinger, Erwin
– sequence: 20
  givenname: Zahi A
  orcidid: 0000-0002-3439-7347
  surname: Fayad
  fullname: Fayad, Zahi A
– sequence: 21
  givenname: Girish N
  orcidid: 0000-0001-6319-4314
  surname: Nadkarni
  fullname: Nadkarni, Girish N
– sequence: 22
  givenname: Fei
  orcidid: 0000-0001-9459-9461
  surname: Wang
  fullname: Wang, Fei
– sequence: 23
  givenname: Benjamin S
  orcidid: 0000-0003-4515-8090
  surname: Glicksberg
  fullname: Glicksberg, Benjamin S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33400679$$D View this record in MEDLINE/PubMed
BookMark eNpdkttqGzEQQJeS0qSpf6EISqFQ3EparbTqQyC4SW1wSCi9PAqtNLIV1pKrlQPpX_SPK8dJG-dJYuZwNJqZl9VBiAGqakTwB0ok_0gZxeJZdUSpJGPJJTt4dD-sRsNwjTEmjHDOxYvqsK4ZxlzIo-rPOVhIOoNFc9Ap-LBA0aGzHkxOMXiDpqD7vERfwcRkB5Qjmq3WKd4Auogp697nW3SVwHqTfQzIBzSNw9pvM7-L9UpnDyEP6Kcvlsnlj9nnMZGf0IU2Sx_g_6un62ItwVfVc6f7AUb353H1_fzs22Q6nl9-mU1O52PDGpHHkpqWC807SRtrBe1cDayhlltWojURWMi66VjLqHNadNrpVjiJqYO2axtbH1eznddGfa3Wya90ulVRe3UXiGmhdMre9KAIcQSw0ZjVmJVWa0ddYxmnnDjTAhTXyc613nQrsKZ8OOl-T7qfCX6pFvFGiVJe28gieHcvSPHXBoasVn4w0Pc6QNwMijLRNDXmUhT0zRP0Om5SKK1StCGkEG2zpV4_ruhfKQ-TL8D7HWBSHIYETpkys-0IS4G-VwSr7Wqpu9Uq9Nsn9INwn_sLBIvMBA
CitedBy_id crossref_primary_10_2196_37578
crossref_primary_10_1016_j_artmed_2024_102873
crossref_primary_10_1093_jamia_ocac012
crossref_primary_10_1097_MNH_0000000000000808
crossref_primary_10_1145_3533708
crossref_primary_10_1128_mbio_01508_23
crossref_primary_10_48121_jihsam_1533583
crossref_primary_10_1007_s41060_025_00756_5
crossref_primary_10_1038_s41591_021_01506_3
crossref_primary_10_1038_s41598_023_36175_4
crossref_primary_10_1016_j_ijmedinf_2023_105210
crossref_primary_10_1136_bmj_m1328
crossref_primary_10_1186_s12911_022_02057_4
crossref_primary_10_3389_fdata_2024_1266031
crossref_primary_10_1016_j_knosys_2024_112600
crossref_primary_10_1145_3514500
crossref_primary_10_1371_journal_pdig_0000117
crossref_primary_10_1016_j_xops_2021_100069
crossref_primary_10_1016_j_heliyon_2023_e19210
crossref_primary_10_1053_j_akdh_2022_11_007
crossref_primary_10_1016_j_jbi_2023_104485
crossref_primary_10_3390_diagnostics12112835
crossref_primary_10_1093_jamia_ocac083
crossref_primary_10_1093_jamia_ocad170
crossref_primary_10_1136_bmjgh_2022_011454
crossref_primary_10_3389_fcell_2021_718974
crossref_primary_10_1016_j_asoc_2025_112747
crossref_primary_10_1016_j_imu_2022_100983
crossref_primary_10_1016_j_im_2024_103922
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_3390_app112311191
crossref_primary_10_1097_CCE_0000000000001067
crossref_primary_10_1007_s10586_022_03658_4
crossref_primary_10_1016_j_ajhg_2022_08_002
crossref_primary_10_32604_iasc_2022_023763
crossref_primary_10_1007_s10462_024_11067_9
crossref_primary_10_1016_j_cmpb_2024_108104
crossref_primary_10_1016_j_csbj_2021_05_010
crossref_primary_10_2196_32949
crossref_primary_10_1016_j_future_2023_02_021
crossref_primary_10_1109_ACCESS_2023_3241488
crossref_primary_10_1109_ACCESS_2022_3202922
crossref_primary_10_1109_TEM_2021_3094544
crossref_primary_10_1142_S021962202250050X
crossref_primary_10_1186_s12889_024_19196_0
crossref_primary_10_1016_j_patter_2023_100898
crossref_primary_10_1038_s42256_021_00337_8
crossref_primary_10_1177_20552076241282242
crossref_primary_10_1007_s11042_023_18065_z
crossref_primary_10_1038_s41551_023_01056_8
crossref_primary_10_1016_j_isci_2024_110943
crossref_primary_10_1007_s00500_021_06514_6
crossref_primary_10_1109_OJCS_2022_3206407
crossref_primary_10_4103_jehp_jehp_20_22
crossref_primary_10_1109_TII_2022_3190034
crossref_primary_10_3389_fdgth_2025_1535018
crossref_primary_10_3390_s23146518
crossref_primary_10_1038_s41380_023_02334_2
crossref_primary_10_1109_TII_2021_3138993
crossref_primary_10_3389_fcvm_2024_1399138
crossref_primary_10_3390_fi15110370
crossref_primary_10_1109_ACCESS_2022_3210702
crossref_primary_10_4258_hir_2024_30_1_3
crossref_primary_10_1080_09540091_2021_1936455
crossref_primary_10_5812_semj_119172
crossref_primary_10_1109_JIOT_2023_3329061
crossref_primary_10_1155_2023_5968168
crossref_primary_10_3934_mbe_2022466
crossref_primary_10_3390_jpm11090893
crossref_primary_10_3390_e26100871
crossref_primary_10_1109_ACCESS_2023_3333229
crossref_primary_10_1109_JAS_2023_123123
crossref_primary_10_4258_hir_2023_29_2_168
crossref_primary_10_1016_j_ebiom_2024_105006
crossref_primary_10_3390_bdcc6040127
crossref_primary_10_1016_j_imu_2021_100825
crossref_primary_10_1016_j_patter_2021_100269
crossref_primary_10_1155_2022_7697863
crossref_primary_10_20517_rdodj_2023_16
crossref_primary_10_1145_3501813
crossref_primary_10_1186_s12911_022_02014_1
crossref_primary_10_2196_47673
crossref_primary_10_1109_TCYB_2023_3247365
crossref_primary_10_5812_semj_117849
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_28979_jarnas_1555351
crossref_primary_10_1109_ACCESS_2023_3320716
crossref_primary_10_3390_s23020743
crossref_primary_10_1016_j_ipm_2024_103682
crossref_primary_10_3390_electronics12071687
crossref_primary_10_3233_HIS_220006
crossref_primary_10_1016_j_ijmedinf_2021_104556
crossref_primary_10_3390_electronics12183878
crossref_primary_10_1016_j_jbi_2025_104780
crossref_primary_10_1186_s12879_024_10230_5
crossref_primary_10_2196_31549
crossref_primary_10_1007_s40747_023_00972_1
crossref_primary_10_1007_s12559_024_10332_x
crossref_primary_10_2196_45823
Cites_doi 10.1093/cid/ciaa880
10.1093/jamia/ocaa172
10.1038/nrd.2016.33
10.1016/S1473-3099(20)30120-1
10.1101/2020.05.10.20096073
10.1016/S2213-2600(20)30076-X
10.1038/s41591-020-0931-3
10.1161/CIRCULATIONAHA.120.046941
10.7326/M20-0504
10.1016/j.jacc.2020.06.007
10.1001/jama.2020.2648
10.1038/s41746-020-00308-0
10.1038/s41591-020-1004-3
10.1148/radiol.2020200230
10.1016/j.jacc.2020.05.001
ContentType Journal Article
Copyright Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021.
2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. 2021
Copyright_xml – notice: Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021.
– notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.2196/24207
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_11f1e0ca04304420af2f5d46261fc8ee
PMC7842859
33400679
10_2196_24207
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001433
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c457t-92c867a6b925dd72bf3e452d6d47a631707935b4842ffa7bafa87f902fe8b85d3
IEDL.DBID 7X7
ISSN 2291-9694
IngestDate Wed Aug 27 01:23:28 EDT 2025
Thu Aug 21 14:12:36 EDT 2025
Fri Jul 11 02:22:16 EDT 2025
Fri Jul 25 04:02:34 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 04:31:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
electronic health records
machine learning
federated learning
Language English
License Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.01.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-92c867a6b925dd72bf3e452d6d47a631707935b4842ffa7bafa87f902fe8b85d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0893-9472
0000-0002-0699-7169
0000-0001-8546-9112
0000-0001-9459-9461
0000-0003-2536-2684
0000-0002-2202-6450
0000-0002-6618-8793
0000-0002-3439-7347
0000-0001-5144-0370
0000-0001-6319-4314
0000-0002-4546-9801
0000-0001-5291-5198
0000-0002-5011-3973
0000-0003-0406-2973
0000-0003-4515-8090
0000-0002-2865-1732
0000-0001-8135-6858
0000-0002-5102-741X
0000-0002-4567-3108
0000-0002-7815-6000
0000-0001-6868-6676
0000-0002-3343-744X
0000-0003-0913-8674
OpenAccessLink https://www.proquest.com/docview/2511973857?pq-origsite=%requestingapplication%
PMID 33400679
PQID 2511973857
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_11f1e0ca04304420af2f5d46261fc8ee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7842859
proquest_miscellaneous_2475530697
proquest_journals_2511973857
pubmed_primary_33400679
crossref_citationtrail_10_2196_24207
crossref_primary_10_2196_24207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210127
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 1
  year: 2021
  text: 20210127
  day: 27
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2021
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref12
Kumar, R (ref15)
ref11
ref10
ref2
ref1
ref17
ref16
ref8
ref7
Xu, J (ref14)
ref9
ref4
ref3
ref6
ref5
32817979 - medRxiv. 2020 Aug 14
References_xml – ident: ref15
  publication-title: arXiv
– ident: ref10
  doi: 10.1093/cid/ciaa880
– ident: ref17
  doi: 10.1093/jamia/ocaa172
– ident: ref13
  doi: 10.1038/nrd.2016.33
– ident: ref1
  doi: 10.1016/S1473-3099(20)30120-1
– ident: ref16
  doi: 10.1101/2020.05.10.20096073
– ident: ref7
  doi: 10.1016/S2213-2600(20)30076-X
– ident: ref11
  doi: 10.1038/s41591-020-0931-3
– ident: ref3
  doi: 10.1161/CIRCULATIONAHA.120.046941
– ident: ref14
  publication-title: arXiv
– ident: ref5
  doi: 10.7326/M20-0504
– ident: ref9
  doi: 10.1016/j.jacc.2020.06.007
– ident: ref4
  doi: 10.1001/jama.2020.2648
– ident: ref12
  doi: 10.1038/s41746-020-00308-0
– ident: ref2
  doi: 10.1038/s41591-020-1004-3
– ident: ref6
  doi: 10.1148/radiol.2020200230
– ident: ref8
  doi: 10.1016/j.jacc.2020.05.001
– reference: 32817979 - medRxiv. 2020 Aug 14;:
SSID ssj0001416667
Score 2.5194688
Snippet Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19...
Background: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on...
BackgroundMachine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e24207
SubjectTerms Cardiovascular disease
Coronaviruses
COVID-19
Demographics
Electronic health records
Hospitals
Machine learning
Medical research
Mortality
Multimedia
Original Paper
Patients
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB4RUVaWUdluKjMQ1YuP42RuvFUVayqEUbpEd22WlKluxy4V_wT9mxs6mu6hSL73alu14xplvMpNvCDkIDVhVjA86q2PBdWzgzkVZSA8aHRLHHP6NPL6U59f84lbcLpX6wpywTA-cD-6wLGMZho1FbirO2dBGFoXngMPL2OgQ8O0LNm_JmUpfVziGw9QGeYW5zqBlh2CKsGTskvFJHP1_A5Yv8yOXDM7oDXndIUV6lHe4RdZC-5ZsjLtY-DZ5GiEPBEBFTzuS1J90GulZX9eG5l-MaPYwZ3Q-pfkTQqDjBLoBgNOre5wQpUMnLV1UEZk8wqxXmXJ1Rm8mMMvJtx9fT4vSfKHjlH8Z_qx61PGSvyPXo7PvJ-dFV2ChaLhQ88KwRktlpTNMeK-Yi1XggnnpObQCskD2POG45ixGq5yNFgRphiwG7bTw1Q5Zb6dt-EAo90ZVzkrhwWW0woCbIllQjXGAeGT0A3KwOPm66djHsQjGrxq8EBRQnQQ0IHv9sN-ZbuPlgGMUW9-J7NipAXSm7nSm_pfODMjuQuh1d2VnNUsR1UoLWGO_74bLhhEU24bpA4zhCsssSQNj3mcd6XdSVRxNvxkQtaI9K1td7Wknd4nQW8EBa2E-_o9n-0Q2GabdDMuCqV2yPr9_CJ8BN83dXroizzUhF8s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_SQhFE_PZqLRH6unqXzadQpNYeVVjtg6e-LdlNUg_Krr27gu1_4X_sTDa3dkvxdTObzWZmmJnM5DeE7PkarCrmByurQ8Z1qEHngsykA4n2EWMObyMXn-XxjH_6Ia5VE6YNXN4a2mE_qdni7PXv88t3oPD7WMYMAvQGrAzeJ98EY6RQN4vk4cdjFo55MbVF7g2oB1YogvXf5mHeLJS8ZnmmD8j95DLSg47HD8kd3zwiW0VKij8mf6YICAE-o6MJLfWUtoEe9Q1uaHfXiHah5pKuWtqdJXhaxB8HT5yeLHBCZBOdN3TdTmR-BbOedNirS_p9DrMcfvn28UM2MW9pEQsx_b-vHiSA8idkNj36enicpU4LWc2FWmWG1VoqKyvDhHOKVSH3XDAnHYen4GIgjJ6ouOYsBKsqGyxw1IxZ8LrSwuVPyUbTNv45odwZlVdWCgexoxUG4hXJvKpNBa6PDG5E9tY7X9YJhhy7YZyVEI4gg8rIoBHZ7cl-dbgbNwneI9v6QYTJjg_axWmZtA7CmzDx49oisBmHt2xgQThYkJyEWns_Ijtrppdr0StZTK3mWsA3XvXDoHWYSrGNby-AhivstyQN0DzrZKRfSZ5z9AHMiKiB9AyWOhxp5j8jsreCDdbCbP9_WS_IXYaVNeNJxtQO2VgtLvxLcI1W1W4U_r-EGw_C
  priority: 102
  providerName: Scholars Portal
Title Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/33400679
https://www.proquest.com/docview/2511973857
https://www.proquest.com/docview/2475530697
https://pubmed.ncbi.nlm.nih.gov/PMC7842859
https://doaj.org/article/11f1e0ca04304420af2f5d46261fc8ee
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgkyYkhLiOwKiMtNdoreNbeJm20WogZVSIQd8iJ7ZHJZSMtnvhX_CPd47jpuuEeMlD7DiWz3H8nUu-Q8ihq-FUxfhgZbRPufY17DkvU2lBo13gmMO_kYsLeX7JP8_ELDrcljGtcv1NDB9q29boIz9iIeCVaaGOr3-nWDUKo6uxhMZDsovUZZjSpWZq42PhGBRTe-QxZjyDrh3BgYSFY-8cQYGp_1_w8n6W5J1jZ_KUPIl4kZ50An5GHrjmOdkrYkT8Bfk7QTYIAIyWRqrUK9p6Ou6r29DuRyPa2ZlLumpp50hwtAjQG2A4nS5wQJQRnTd0XUtk_gdGnXbEq0v6Yw6jnH35_uljOso_0CJkYbrNW08iO_lLcjkZfzs7T2OZhbTmQq3SnNVaKiOrnAlrFat85rhgVloOdwFfIIeeqLjmzHujKuMNiDMfMu90pYXNXpGdpm3ca0K5BRFVRgoLhqMRORgrkjlV5xXgHultQg7XK1_WkYMcS2H8KsEWQQGVQUAJGfTdrjvSjfsdTlFsfSNyZIcb7eKqjFsObBs_csPaIKsZh6eMZ15YmJAc-Vo7l5CDtdDLuHGX5UbNEvK-b4Yth3EU07j2BvpwhcWWZA599jsd6WeSZRwBQJ4QtaU9W1PdbmnmPwOtt4IF1iJ_8_9pvSWPGKbVDEcpUwdkZ7W4ce8AF62qQVD-Adk9HV9Mvw6CdwGuBde3MuES3Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9NADLZGJw0khHinMMYhjY_R2su9JEgI7aVVy9ZSoY3tW0hyd6MSSkbbCcG_4I_wG7Hz1nVCfNvX3OVixfbZPvseA2zbFK0q5QeTOHCeCFyKOueUpwxKtC0w5ug28misBifiw5k8W4M_9V0YKqus98RiozZ5SmfkO7xIePmB1O8vvnvUNYqyq3ULjVIsDu3PHxiyzd8ND5C_bzjv9473B17VVcBLhdQLL-RpoHSskpBLYzRPnG-F5EYZgU_RnBJknExEILhzsU5iFyP1YYc7GySBND6uewvWhY-hTAvW93rjyaflqY6gNJzegLtUY43SvYMmkFrVXjF6RW-Afzm01-syrxi6_n24V3mobLcUqQewZrOHsDGqcvCP4Hef8CfQRTWsAmc9Z7ljvaafDiuvNrEysp2zRc7KowvLRoWzj44_m8xoQZIKNs1Y3b1k-gtXnZRQr3N2OsVV9j9-Hh543fAtGxV1n3b51d0KD_0xnNwIC55AK8sz-wyYMCgUSaykwVA1liGGR4pbnYYJelrKmTZs138-SivUc2q-8S3C6IcYFBUMasNWM-2ihPm4PmGP2NYMEip38SCfnUeVkmM05bq2k8aEoybwrdhxJw0SpLouDaxtw2bN9KjaKubRUrDb8LoZRiWnzE2c2fwS5whN7Z1UiHOeljLSUOL7glyOsA16RXpWSF0dyaZfCyBxjT84kOHz_5P1Cm4PjkdH0dFwfPgC7nAq6ul0Pa43obWYXdqX6JUtkq1KFRh8uWnt-wuMj029
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIVVICPFNYAwjjcdojeOPBAmhsa5aGR19YNC3LIntUQklo-2E4L_g3-Gv4y5fXSfE215jx3F8d7473_l3ADs2R61K8cEsjZwvIpejzDnlK4McbSuMObqNPD5Whyfi_VRON-BPexeG0irbPbHaqE2Z0xn5Lq8CXmGEDrxr0iImg-Hb8-8-VZCiSGtbTqNmkSP78we6b4s3owHS-hXnw4NP-4d-U2HAz4XUSz_meaR0qrKYS2M0z1xoheRGGYFPUbUSfJzMRCS4c6nOUpfin8R97myURdKEOO4NuKlDGZCM6alene8ICsjpHtymbGvk811UhlS09pL6q6oE_Mu0vZqheUnlDe_CncZWZXs1c92DDVvch964icY_gN9DQqJAY9WwBqb1jJWOHXSVdVh9yYnVPu6CLUtWH2JYNq7MfnQB2GROAxJ_sFnB2joms1846qQGfV2wLzMcZf_j59HAD-LXbFxlgNrVV_caZPSHcHItBHgEm0VZ2CfAhEH2yFIlDTqtqYzRUVLc6jzO0OZSzniw0658kjf451SG41uCfhARKKkI5MF21-28Bvy42uEdka1rJHzu6kE5P0sacUe_ygW2n6eEqCbwrdRxJw1OSAUuj6z1YKsletJsGotkxeIevOyaUdwphpMWtrzAPkJToScVY5_HNY90MwlDQcZH7IFe4561qa63FLOvFaS4xgWOZPz0_9N6AT2UueTD6PjoGdzilN3TD3yut2BzOb-wz9E8W2bblRwwOL1uwfsLNm1QjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+of+Electronic+Health+Records+to+Improve+Mortality+Prediction+in+Hospitalized+Patients+With+COVID-19%3A+Machine+Learning+Approach&rft.jtitle=JMIR+medical+informatics&rft.au=Vaid%2C+Akhil&rft.au=Jaladanki%2C+Suraj+K&rft.au=Xu%2C+Jie&rft.au=Teng%2C+Shelly&rft.date=2021-01-27&rft.pub=JMIR+Publications&rft.eissn=2291-9694&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2196%2F24207&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon