The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen
This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-en...
Saved in:
Published in | Animal bioscience Vol. 29; no. 3; pp. 365 - 371 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Asian - Australasian Association of Animal Production Societies
01.03.2016
Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 아세아·태평양축산학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1011-2367 2765-0189 1976-5517 2765-0235 |
DOI | 10.5713/ajas.15.0626 |
Cover
Abstract | This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation. |
---|---|
AbstractList | This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation. This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-ncapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nanoencapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation. (Key Words: Biohydrogenation, Conjugated Linoleic Acid, Nano-encapsulation, Rumen Fermentation) This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens ( B. fibrisolvens ) was incubated with CLA-FFAs, the concentrations of cis -9, trans -11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis -9, trans -11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation. This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nanoencapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation. KCI Citation Count: 3 |
Audience | Academic |
Author | Heo, Wan Cho, Sung Do Jeong, Ha Yeon Kwon, Seong Min Yoon, Ho Baek Ki, Kwang Seok Ahn, Young Dae Kim, Young Jun Kim, Eun Tae Lee, Sung Sill Kim, Jun Ho |
AuthorAffiliation | 2 Policy Research and Planning Team, Korea Institute for Advancement of Technology, Seoul 135-513, Korea 4 Division of Applied Life Science (BK21 + , IALS), Gyeongsang National University, Jinju 660-701, Korea 3 Cheongwon Green Land, Cheongju 363-820, Korea 1 National Institute of Animal Science, RDA, Cheonan 331-808, Korea Department of Food and Biotechnology, Korea University, Sejong 339-700, Korea |
AuthorAffiliation_xml | – name: 1 National Institute of Animal Science, RDA, Cheonan 331-808, Korea – name: 4 Division of Applied Life Science (BK21 + , IALS), Gyeongsang National University, Jinju 660-701, Korea – name: Department of Food and Biotechnology, Korea University, Sejong 339-700, Korea – name: 2 Policy Research and Planning Team, Korea Institute for Advancement of Technology, Seoul 135-513, Korea – name: 3 Cheongwon Green Land, Cheongju 363-820, Korea |
Author_xml | – sequence: 1 givenname: Wan surname: Heo fullname: Heo, Wan – sequence: 2 givenname: Eun Tae surname: Kim fullname: Kim, Eun Tae – sequence: 3 givenname: Sung Do surname: Cho fullname: Cho, Sung Do – sequence: 4 givenname: Jun Ho surname: Kim fullname: Kim, Jun Ho – sequence: 5 givenname: Seong Min surname: Kwon fullname: Kwon, Seong Min – sequence: 6 givenname: Ha Yeon surname: Jeong fullname: Jeong, Ha Yeon – sequence: 7 givenname: Kwang Seok surname: Ki fullname: Ki, Kwang Seok – sequence: 8 givenname: Ho Baek surname: Yoon fullname: Yoon, Ho Baek – sequence: 9 givenname: Young Dae surname: Ahn fullname: Ahn, Young Dae – sequence: 10 givenname: Sung Sill surname: Lee fullname: Lee, Sung Sill – sequence: 11 givenname: Young Jun surname: Kim fullname: Kim, Young Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26950867$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002083626$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kk1vEzEQhleoiH7AjTPyESQ22Ltre3NBiqIWIkWASjhbs147deq1g-2t1L_BL8ablAoQyIcZa5559doz58WJ804VxUuCZ5ST-h3sIM4InWFWsSfFGZlzVlJK-EnOMSFlVTN-WpzHuMOYNhVvnxWnFZtT3DJ-VvzY3Ci0cujOpODRpdZKpoi8Rp_A-VI5Cfs4WkiqR0vvduP2kK6N81YZiRbS9Mg79DVBZ6xJ91Prf0FwPbpSYVAuQTK57Uvw2lgVkXEoZSPXY649L55qsFG9eIgXxbery83yY7n-_GG1XKxL2VCeylZ3PZW0IS1lUGNKgYFqqQbQnEnW43yhQLuq73En6zknSra443VLGoalqi-KN0ddF7S4lUZ4MIe49eI2iMX1ZiVIRSY8s--P7H7sBtXL_IIAVuyDGSDcHzr_rDhzk3XuRNMSwlueBV4_CAT_fVQxicFEqawFp_wYBeGc8IoyTDI6O6JbsEoYp31WlPn0ajAyD3_6MrFoGkazOz5pv_rd3KOrX1POwNsjIIOPMSj9iBAspiUS0xIJQsW0RBmv_sKlOQ4sGzH2300_AZjUzNA |
CitedBy_id | crossref_primary_10_1016_j_tifs_2017_10_017 crossref_primary_10_1093_nutrit_nuad047 crossref_primary_10_1016_j_cis_2022_102772 crossref_primary_10_1002_ejlt_201600345 |
Cites_doi | 10.2527/jas.2007-0588 10.1017/S0021859600032081 10.1016/S0021-9258(18)96781-5 10.1128/AEM.67.6.2766-2774.2001 10.1007/s11746-001-0301-4 10.1007/s10482-006-9121-7 10.1080/10408398.2010.501409 10.13031/2013.30813 10.1111/j.1574-6941.2006.00190.x 10.3168/jds.S0022-0302(00)74966-6 10.1128/JB.88.4.1056-1064.1964 10.5713/ajas.2005.221 10.1017/S175173111000042X 10.1042/bj0430099 10.1017/S1751731109990462 10.3923/pjn.2004.82.98 10.1017/S0007114500000581 10.1007/s12275-013-1070-z 10.1016/j.meatsci.2011.09.016 10.1016/0889-1575(92)90037-K 10.1021/jf00044a035 10.1111/j.1574-6941.2007.00394.x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 Asian - Australasian Association of Animal Production Societies Copyright © 2016 by Asian-Australasian Journal of Animal Sciences 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 Asian - Australasian Association of Animal Production Societies – notice: Copyright © 2016 by Asian-Australasian Journal of Animal Sciences 2016 |
DBID | AAYXX CITATION NPM 7X8 5PM ACYCR |
DOI | 10.5713/ajas.15.0626 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1976-5517 2765-0235 |
EndPage | 371 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1218146 PMC4811787 A446521877 26950867 10_5713_ajas_15_0626 |
Genre | Journal Article |
GroupedDBID | 23N 2XV 5GY 9ZL AAFWJ AAYXX ABDBF ACUHS ACYCR ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD GJPHO GROUPED_DOAJ HYE IAG IAO IPNFZ ITC JDI KQ8 M48 OK1 P2P PGMZT PV9 RIG RPM RZL SJN ~KM KVFHK NPM 7X8 5PM EYRJQ ICW IGS ISR N95 XI7 |
ID | FETCH-LOGICAL-c457t-8fbd5c541856a3055a6ae85faaf76c6d0e855a5b2dd0bc3971ec80b7381460ce3 |
IEDL.DBID | M48 |
ISSN | 1011-2367 2765-0189 |
IngestDate | Tue Jun 25 21:12:37 EDT 2024 Thu Aug 21 18:29:46 EDT 2025 Thu Jul 10 18:03:19 EDT 2025 Sat Mar 08 18:35:52 EST 2025 Thu Apr 03 07:03:38 EDT 2025 Tue Jul 01 04:08:51 EDT 2025 Thu Apr 24 22:55:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Biohydrogenation Conjugated Linoleic Acid Nano-encapsulation Rumen Fermentation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-8fbd5c541856a3055a6ae85faaf76c6d0e855a5b2dd0bc3971ec80b7381460ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. G704-001112.2016.29.3.020 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.5713/ajas.15.0626 |
PMID | 26950867 |
PQID | 1771725601 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1218146 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4811787 proquest_miscellaneous_1771725601 gale_infotracacademiconefile_A446521877 pubmed_primary_26950867 crossref_primary_10_5713_ajas_15_0626 crossref_citationtrail_10_5713_ajas_15_0626 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Animal bioscience |
PublicationTitleAlternate | Asian-Australas J Anim Sci |
PublicationYear | 2016 |
Publisher | Asian - Australasian Association of Animal Production Societies Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 아세아·태평양축산학회 |
Publisher_xml | – name: Asian - Australasian Association of Animal Production Societies – name: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) – name: 아세아·태평양축산학회 |
References | (E1DMBP_2016_v29n3_365_028) 2009; 3 (E1DMBP_2016_v29n3_365_011) 1966; 241 (E1DMBP_2016_v29n3_365_025) 1994; 42 (E1DMBP_2016_v29n3_365_015) 2013; 51 (E1DMBP_2016_v29n3_365_006) 2000; 83 (E1DMBP_2016_v29n3_365_001) 1992; 5 (E1DMBP_2016_v29n3_365_018) 1948; 43 (E1DMBP_2016_v29n3_365_017) 1981; 96 (E1DMBP_2016_v29n3_365_022) 1964; 88 (E1DMBP_2016_v29n3_365_024) 2012; 90 (E1DMBP_2016_v29n3_365_005) 2007; 62 (E1DMBP_2016_v29n3_365_014) 2000; 83 (E1DMBP_2016_v29n3_365_020) 2007; 91 (E1DMBP_2016_v29n3_365_027) 2005; 18 (E1DMBP_2016_v29n3_365_009) 2008; 86 (E1DMBP_2016_v29n3_365_010) 2008; 78 (E1DMBP_2016_v29n3_365_019) 1988; 31 (E1DMBP_2016_v29n3_365_012) 2004; 3 (E1DMBP_2016_v29n3_365_016) 2010; 4 (E1DMBP_2016_v29n3_365_003) 2011; 4 (E1DMBP_2016_v29n3_365_004) 2006; 58 (E1DMBP_2016_v29n3_365_007) 2012; 52 (E1DMBP_2016_v29n3_365_026) 2001; 67 (E1DMBP_2016_v29n3_365_013) 2001; 78 17077990 - Antonie Van Leeuwenhoek. 2007 May;91(4):417-22 10953669 - Br J Nutr. 2000 May;83(5):459-65 22444606 - Animal. 2010 Jul;4(7):1008-23 10821577 - J Dairy Sci. 2000 May;83(5):1016-27 22019314 - Meat Sci. 2012 Mar;90(3):558-63 22444989 - Animal. 2009 Nov;3(11):1562-9 22452730 - Crit Rev Food Sci Nutr. 2012;52(6):488-513 5936712 - J Biol Chem. 1966 Mar 25;241(6):1350-4 11375193 - Appl Environ Microbiol. 2001 Jun;67(6):2766-74 16748377 - Biochem J. 1948;43(1):99-109 18042812 - J Anim Sci. 2008 Feb;86(2):397-412 17117998 - FEMS Microbiol Ecol. 2006 Dec;58(3):572-82 14219019 - J Bacteriol. 1964 Oct;88:1056-64 23990298 - J Microbiol. 2013 Aug;51(4):471-6 17949432 - FEMS Microbiol Ecol. 2007 Dec;62(3):313-22 |
References_xml | – volume: 86 start-page: 397 year: 2008 ident: E1DMBP_2016_v29n3_365_009 publication-title: J. Anim. Sci. doi: 10.2527/jas.2007-0588 – volume: 96 start-page: 251 year: 1981 ident: E1DMBP_2016_v29n3_365_017 publication-title: J. Agric. Sci. doi: 10.1017/S0021859600032081 – volume: 241 start-page: 1350 year: 1966 ident: E1DMBP_2016_v29n3_365_011 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96781-5 – volume: 67 start-page: 2766 year: 2001 ident: E1DMBP_2016_v29n3_365_026 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.6.2766-2774.2001 – volume: 78 start-page: 511 year: 2008 ident: E1DMBP_2016_v29n3_365_010 publication-title: Veterinarski Arhiv. – volume: 78 start-page: 547 year: 2001 ident: E1DMBP_2016_v29n3_365_013 publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-001-0301-4 – volume: 91 start-page: 417 year: 2007 ident: E1DMBP_2016_v29n3_365_020 publication-title: Antonie. Van Leeuwenhoek. doi: 10.1007/s10482-006-9121-7 – volume: 52 start-page: 488 year: 2012 ident: E1DMBP_2016_v29n3_365_007 publication-title: Crit. Rev. Food Sci. doi: 10.1080/10408398.2010.501409 – volume: 31 start-page: 1005 year: 1988 ident: E1DMBP_2016_v29n3_365_019 publication-title: Trans. ASAE. doi: 10.13031/2013.30813 – volume: 4 start-page: 12 year: 2011 ident: E1DMBP_2016_v29n3_365_003 publication-title: Int. J. Appl. Res. Nat. Prod. – volume: 58 start-page: 572 year: 2006 ident: E1DMBP_2016_v29n3_365_004 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2006.00190.x – volume: 83 start-page: 1016 year: 2000 ident: E1DMBP_2016_v29n3_365_006 publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(00)74966-6 – volume: 88 start-page: 1056 year: 1964 ident: E1DMBP_2016_v29n3_365_022 publication-title: J. Bacteriol. doi: 10.1128/JB.88.4.1056-1064.1964 – volume: 18 start-page: 221 year: 2005 ident: E1DMBP_2016_v29n3_365_027 publication-title: Asian Australas. J. Anim. Sci. doi: 10.5713/ajas.2005.221 – volume: 4 start-page: 1008 year: 2010 ident: E1DMBP_2016_v29n3_365_016 publication-title: Animal doi: 10.1017/S175173111000042X – volume: 43 start-page: 99 year: 1948 ident: E1DMBP_2016_v29n3_365_018 publication-title: Biochem. J. doi: 10.1042/bj0430099 – volume: 3 start-page: 1562 year: 2009 ident: E1DMBP_2016_v29n3_365_028 publication-title: Animal doi: 10.1017/S1751731109990462 – volume: 3 start-page: 82 year: 2004 ident: E1DMBP_2016_v29n3_365_012 publication-title: Pakistan J. Nutr. doi: 10.3923/pjn.2004.82.98 – volume: 83 start-page: 459 year: 2000 ident: E1DMBP_2016_v29n3_365_014 publication-title: Br. J. Nutr. doi: 10.1017/S0007114500000581 – volume: 51 start-page: 471 year: 2013 ident: E1DMBP_2016_v29n3_365_015 publication-title: J. Microbiol. doi: 10.1007/s12275-013-1070-z – volume: 90 start-page: 558 year: 2012 ident: E1DMBP_2016_v29n3_365_024 publication-title: Meat Sci. doi: 10.1016/j.meatsci.2011.09.016 – volume: 5 start-page: 185 year: 1992 ident: E1DMBP_2016_v29n3_365_001 publication-title: J. Food Compost. Anal. doi: 10.1016/0889-1575(92)90037-K – volume: 42 start-page: 1757 year: 1994 ident: E1DMBP_2016_v29n3_365_025 publication-title: J. Agric. Food Chem. doi: 10.1021/jf00044a035 – volume: 62 start-page: 313 year: 2007 ident: E1DMBP_2016_v29n3_365_005 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00394.x – reference: 22452730 - Crit Rev Food Sci Nutr. 2012;52(6):488-513 – reference: 17949432 - FEMS Microbiol Ecol. 2007 Dec;62(3):313-22 – reference: 16748377 - Biochem J. 1948;43(1):99-109 – reference: 22444989 - Animal. 2009 Nov;3(11):1562-9 – reference: 22444606 - Animal. 2010 Jul;4(7):1008-23 – reference: 14219019 - J Bacteriol. 1964 Oct;88:1056-64 – reference: 18042812 - J Anim Sci. 2008 Feb;86(2):397-412 – reference: 17117998 - FEMS Microbiol Ecol. 2006 Dec;58(3):572-82 – reference: 5936712 - J Biol Chem. 1966 Mar 25;241(6):1350-4 – reference: 23990298 - J Microbiol. 2013 Aug;51(4):471-6 – reference: 11375193 - Appl Environ Microbiol. 2001 Jun;67(6):2766-74 – reference: 10821577 - J Dairy Sci. 2000 May;83(5):1016-27 – reference: 22019314 - Meat Sci. 2012 Mar;90(3):558-63 – reference: 17077990 - Antonie Van Leeuwenhoek. 2007 May;91(4):417-22 – reference: 10953669 - Br J Nutr. 2000 May;83(5):459-65 |
SSID | ssj0054278 ssib044729589 ssj0002513319 ssib053376655 |
Score | 2.0652275 |
Snippet | This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial... This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial... |
SourceID | nrf pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 365 |
SubjectTerms | Dairy cattle Food and nutrition Linoleic acids Methods Properties Rumen fermentation 축산학 |
Title | The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26950867 https://www.proquest.com/docview/1771725601 https://pubmed.ncbi.nlm.nih.gov/PMC4811787 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002083626 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Animal Bioscience, 2016, 29(3), , pp.365-371 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa28QIPiDvdoDIIxANySZr4sidUTatW0BBCVNqb5dhOyVbZkLaIvfAj-MWck6QVhU3iJRfFsaOcY_v7fPkOIS8SUSqrvGGF4p7lw1wxZaVgErpiq9ShTJrBnNMP4mSavzvjZztkHW20-4GLK6kdxpOa1vPBj2-Xb6HCA34dcOBYb8y5WQxSPkgAnO-SG9AnCaRhp_lmPoFjQIlm3jNNGWqWtUvg_3l7q3PqmujdUJdXwc-_V1H-0S2N75DbHZ6ko9YB7pIdH-6RW6NZ3Wlq-PvkF7gCnQT6vVrWkbZyxQsaSwota2TgpQaY8hwwp6NHMZyvZs0lkNQ495WlI1s5GgMFWNospL3EV69NaIKjY2jtuy1NgX5sg4IvaBUogE36CRrD8IBMx8efj05YF4qB2ZzLJVNl4bjlqHQjDIqEGWG84qUxpRRWuARuuOHF0LmksIBxUm9VUsgMRxgT67OHZC_E4B8TilO9zgHPK1yWH2a2EKlKsqGUxqBUjOuR12sbaNvplGO4jLkGvoIW02gxnXKNFuuRl5vUX1t9jmvSvUJzanQkyM2abvcBfBP-BD1C4TiAO1L2yHOwuL6wlUbpbTzPor6oNRCMiU4REuWQ3bO1Q2iojzjJYoKPKyhPAkFueG6PPGodZPNhQ4ExdwUUIbdcZ5MAC9x-EqovjeZ3jhuCldz_j3IPyE1AdaJdKPeE7C3rlX8KyGlZ9IEzTN73m3GHflNB8Pjz-DepkRu7 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+In+vitro+Effects+of+Nano-encapsulated+Conjugated+Linoleic+Acid+on+Stability+of+Conjugated+Linoleic+Acid+and+Fermentation+Profiles+in+the+Rumen&rft.jtitle=Asian-australasian+journal+of+animal+sciences&rft.au=Heo%2C+Wan&rft.au=Kim%2C+Eun+Tae&rft.au=Cho%2C+Sung+Do&rft.au=Kim%2C+Jun+Ho&rft.date=2016-03-01&rft.issn=1011-2367&rft.volume=29&rft.issue=3&rft.spage=365&rft.epage=371&rft_id=info:doi/10.5713%2Fajas.15.0626&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2367&client=summon |