Thermal Properties of Human Soft Tissue and Its Equivalents in a Wide Low-Temperature Range
A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to...
Saved in:
Published in | Journal of engineering physics and thermophysics Vol. 94; no. 1; pp. 233 - 246 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40
o
С, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure. |
---|---|
AbstractList | A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from -160 to 40[degrees]C, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure. A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from -160 to 40[degrees]C, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure. Keywords: differential scanning calorimetry (DSC), heat capacity, thermal conductivity, biological tissue, prostate, liver, pancreas, heart, kidney. A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40 o С, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure. A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40oС, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure. |
Audience | Academic |
Author | Zherdev, A. A. Pushkarev, A. V. Tsiganov, D. I. Vasilyev, A. O. Agafonkina, I. V. Belozerov, A. G. Shakurov, A. V. |
Author_xml | – sequence: 1 givenname: I. V. surname: Agafonkina fullname: Agafonkina, I. V. organization: All-Russian Scientific Research Institute of Refrigeration Industry — Branch of V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences – sequence: 2 givenname: A. G. surname: Belozerov fullname: Belozerov, A. G. organization: V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences – sequence: 3 givenname: A. O. surname: Vasilyev fullname: Vasilyev, A. O. organization: Bauman Moscow State Technical University (National Research University) – sequence: 4 givenname: A. V. surname: Pushkarev fullname: Pushkarev, A. V. organization: Bauman Moscow State Technical University (National Research University) – sequence: 5 givenname: D. I. surname: Tsiganov fullname: Tsiganov, D. I. organization: Bauman Moscow State Technical University (National Research University) – sequence: 6 givenname: A. V. surname: Shakurov fullname: Shakurov, A. V. email: shakurov@bmstu.ru organization: Bauman Moscow State Technical University (National Research University) – sequence: 7 givenname: A. A. surname: Zherdev fullname: Zherdev, A. A. organization: Bauman Moscow State Technical University (National Research University) |
BookMark | eNp9kU1rGzEQhkVIIU7aP5CToKceNtXXrnaPxqSNwdCQOKSQg5B3Z10Fr-RI2ib-953UhWAIRQiNhuedkeY9Jcc-eCDknLMLzpj-mjirG14w8bpFI4rdEZnwUsui1vznMcasEgXjojwhpyk9MsaaWskJeVj-gjjYDb2OYQsxO0g09PRqHKynt6HPdOlSGoFa39F5TvTyaXS_7QY8xs5TS-9dB3QRnoslDFjB5jECvbF-DR_Jh95uEnz6d56Ru2-Xy9lVsfjxfT6bLopWlToXGqRaaaEUt9Y2kuuVbEpeVRJAsY5LW3eVapTqW9tUom7KDjDRS7xLXnUgz8jnfd1tDE8jpGwewxg9tjSixHEIprl6o9b4euN8H3K07eBSa6bYTDDOdI3UxTsUrg4G1-LQe4f5A8GXAwEyGV7y2o4pmfntzSEr9mwbQ0oRerONbrBxZzgzrz6avY8GfTR_fTQ7FMm9KCGMU41vv_uP6g_8XJ9V |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2021_10_020 crossref_primary_10_1088_1742_6596_2103_1_012049 crossref_primary_10_1016_j_cryobiol_2022_10_002 crossref_primary_10_17816_RF114722 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122194 crossref_primary_10_1080_02656736_2022_2067596 crossref_primary_10_1080_02656736_2022_2091799 crossref_primary_10_1016_j_mtla_2023_101909 crossref_primary_10_3390_pharmaceutics13122133 crossref_primary_10_17816_RF112350 crossref_primary_10_1080_02656736_2022_2028908 crossref_primary_10_3390_s21124236 crossref_primary_10_3390_s24113655 crossref_primary_10_1016_j_ijrefrig_2023_08_001 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2019.118946 10.1007/978-90-481-8831-4 10.1177/1533034617716041 10.1016/j.jtherbio.2012.12.003 10.17691/stm2017.9.2.23 10.1016/j.ijrefrig.2016.03.007 10.1115/1.4037406 10.1007/s10973-011-1550-5 10.1007/978-3-662-06710-9 10.1007/s10891-019-02019-0 10.1007/s10891-019-02051-0 10.1177/1533034615580694 10.1111/j.1365-2621.1969.tb01516.x 10.1117/1.JBO.24.2.027001 10.1007/s00270-018-1950-z 10.1016/0306-4565(83)90014-1 10.20914/2310-1202-2018-4-25-29 10.1080/10255842.2011.643469 10.1016/j.ijheatmasstransfer.2015.05.117 10.1080/10255842.2016.1154546 10.1038/nbt.3889 10.1016/j.cryobiol.2009.11.004 10.1002/mma.3548 10.1007/s10891-019-02003-8 10.1007/s00270-016-1562-4 10.1070/PU2008v051n03ABEH006449 10.1038/nrc3672 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10891-021-02292-y |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-871X |
EndPage | 246 |
ExternalDocumentID | A663201078 10_1007_s10891_021_02292_y |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBD EBLON EBS EIOEI EJD EMK ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c457t-7e34b72441aaa9317b3951663ee40d13a8d64944fca962895ded64f3fca316de3 |
IEDL.DBID | AGYKE |
ISSN | 1062-0125 |
IngestDate | Tue Nov 05 21:08:05 EST 2024 Fri Feb 23 00:10:56 EST 2024 Fri Feb 02 04:00:11 EST 2024 Thu Aug 01 19:30:25 EDT 2024 Thu Sep 12 22:31:03 EDT 2024 Sat Dec 16 12:09:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | kidney differential scanning calorimetry (DSC) biological tissue liver pancreas heat capacity prostate thermal conductivity heart |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-7e34b72441aaa9317b3951663ee40d13a8d64944fca962895ded64f3fca316de3 |
PQID | 2502220714 |
PQPubID | 1456344 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2502220714 gale_infotracmisc_A663201078 gale_infotracacademiconefile_A663201078 gale_incontextgauss_ISR_A663201078 crossref_primary_10_1007_s10891_021_02292_y springer_journals_10_1007_s10891_021_02292_y |
PublicationCentury | 2000 |
PublicationDate | 1-2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 1-2021 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | Journal of engineering physics and thermophysics |
PublicationTitleAbbrev | J Eng Phys Thermophy |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | CorreiaLPde MouraEAPiresHMMacêdoRODifferent salinities water characterization by DSCcoolingJ. Therm. Anal. Calorim.2011106245946110.1007/s10973-011-1550-5 BoasFESrimathveeravalliGDurackJCKayeEAErinjeriJPZivEMaybodyMYarmohammadiHSolomonSBDevelopment of a searchable database of cryoablation simulations for use in treatment planningCardioVasc. Interv. Radiol.201740576176810.1007/s00270-016-1562-4 BerezovskyYMKorolevIAAgafonkinaIVSarantsevTAStudy of the influence of beef humidity on the number of related moisture by calorimetric methodProc. Voronezh State Univ. Eng. Technol.2018804252910.20914/2310-1202-2018-4-25-29 ASTM E1269-11, ASTM International, West Conshohocken, PA (2011). ASHRAE Handbook. Refrigeration, SI Edition (2014). B. Han and J. C. Bischof, Effect of thermal properties on heat transfer in cryopreservation and cryosurgery, in: Advances in Heat and Mass Transfer in Biotechnology, American Society of Mechanical Engineers (2002), pp. 7–15. VasilyevAOGovorovAVPushkarevAVTsiganovDIShakurovAVThermophysical modeling of cryosurgry with the case study of prostate cancerTekhnol. Zhivykh Sistem20141144753 GavdushAAChernomyrdinNVMalakhovKMTerahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: A road toward intraoperative THz diagnosisJ. Biomed. Opt.20192421510.1117/1.JBO.24.2.027001 L. E. Ehrlich, G. M. Fahy, B. G. Wowk, J. A. Malen, and Y. Rabin, Thermal analyses of a human kidney and a rabbit kidney during cryopreservation by vitrification, J. Biomech. Eng., 140, No. 1 (2018). KeelanRhangHZShimadaKRabinYGraphics processing unit-based bioheat simulation to facilitate rapid decision making associated with cryosurgery trainingTechnol. Cancer Res Treat.201515237738610.1177/1533034615580694 D. E. Ponomare v and A. V. Pushkarev, Research of human kidney thermal properties for the purpose of cryosurgery, J. Phys.: Conf. Ser., 891, No. 1, No. 012336 (2017). D. Tarwidi, Go dunov method for multiprobe cryosurgery simulation with complex-shaped tumors, in: AIP Conf. Proc., 1707, No. 060002 (2016). J. Choi, M. Mo rrissey, and J. C. Bischof, Thermal processing of biological tissue at high temperatures: Impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25–80oC, J. Heat Transf.,135, No. 6 [061302] (2013). J. Y. Chan and E. H. Ooi, Sensitivity of thermophysiological models of cryoablation to the thermal and biophysical properties of tissues, Cryobiology, 73, No. 3, 304–315 (2016). A. V. Shakurov, A. V. Pushkarev, A. A. Zherdev, and D. I. Tsiganov, Target region temperature history approach for increasing accuracy of cryoexposure dose providing, Refrig. Sci. Technol., September, 3–7 (2018). I. A. Burkov, A. V. Pushkarev, A. V. Shakurov, D. I. Tsiganov, and A. A. Zherdev, Numerical simulation of multiprobe cryoablation synergy using heat source boundary, Int. J. Heat Mass Transf., 147, No. 118946 (2020). JaberzadehAEssertCPre-operative planning of multiple probes in three dimensions for liver cryosurgery: Comparison of different optimization methodsMath. Methods Appl. Sci.2016391647644772355715110.1002/mma.3548 T. E. Cooper and G. J. Trezek, Correlation of thermal properties of some human tissues with water content, Aerosp. Med.,42, 24–27 (1971). A. G. Belozero v, U. M. Berezovsky, and I. A. Korolev, Approach to optimizing parameters of differential scanning calorimeter temperature programs to ensure the stability of research mode at subzero temperatures, Int. Res. J., No. 12 (54), Part 1, 120–124 (2016). Belozero vAGBerezovskyYMZherdevAAKorolevIAPushkarevAVAgafonkinaIVTsiganovDIA study of the thermophysical properties of human prostate tumor tissues in the temperature range from –160 to +40oCBiofizika2018632268273 ZhmakinAIPhysical aspects of cryobiologyPhysics-Uspekhi200851323125210.1070/PU2008v051n03ABEH006449 G. W. H. Höhne, G. F. Hemminger, and H. J. Flammenheim, Differential Scanning Calorimetry, Springer (2003). JoshiPSehrawatARabinYComputerized planning of prostate cryosurgery and shape considerationsTechnol. Cancer Res. Treat.20171661272128310.1177/1533034617716041 EisenbergDKauzmannWThe Structure and Properties of Water1969OxfordOxford University Press WernerJDTregnagoACNettoGJFrangakisCGeorgiadesCSSingle 15-min protocol yields the same cryoablation size and margin as the conventional 10–8–10-min protocol: Results of kidney and liver swine experimentCardioVasc. Intervent. Radiol.20184171089109410.1007/s00270-018-1950-z LazarevSIGolovinYMKovalevSVLevinAACharacteristics of thermal action on porous cellulose acetate composite materialJ. Eng. Phys. Thermophys.2019921050105410.1007/s10891-019-02019-0 MikhailikVADmitrenkoNVSnezhkinYFInvestigation of the infl uence of hydration on the heat of evaporation of water from sucrose solutionsJ. Eng. Phys. Thermophys.20199291692210.1007/s10891-019-02003-8 Khanevi chMDManikhasGMFedosenkoKVFadeevRVDinikinMSYusifovSAThe effect of local cryogenic treatment on the morpho-functional state of the pancreasJ. Int. Acad. Refrig.201327375 L. Riedel, Zum Problem des gebundenen Wassers in Fleisch, Kältetechnik, 13, No. 3, 122–128 (1961). P. A. Hasgall, E. Neufeld, M. C. Gosselin, A. Klingenböck, and N. Kuster, IT´IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0, March 1st, 2019. A. J. Welch an d M. J. C. van Gemert (Eds.), Optical-Thermal Response of Laser-Irradiated Tissue, Springer (2011). C. Kim, A. P. O’ Rourke, D. M. Mahvi, and J. G. Webster, Finite-element analysis of ex vivo and in vivo hepatic cryoablation, Biomed. Eng. IEEE Trans., 54, No. 7, 1177–1185 (2007). ShakurovAVPushkarevAVPushkarevVATsiganovDIPrerequisites for developing new generation cryosurgical devicesSovrem. Tekhnol. Med.20179217818710.17691/stm2017.9.2.23 BhowmikASinghRRepakaRMishrabSCConventional and newly developed bioheat transport models in vascularized tissuesJ. Therm. Biology20133810712510.1016/j.jtherbio.2012.12.003 F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, IPEM (2012). ShurrabMWangHKuboNFukunagaTKurataKTakamatsuHThe cooling performance of a cryoprobe: Establishing guidelines for the safety margins in cryosurgeryInt. J. Refrigeration20166730831810.1016/j.ijrefrig.2016.03.007 GiwaSLewisJKAlvarezLThe promise of organ and tissue preservation to transform medicineNature Biotechnol.201735653054210.1038/nbt.3889 D. J. Cleland, Prediction of food thermal properties to enable accurate design of food refrigeration processes, in: Proc. 25th IIR Int. Congress of Refrigeration, 24–30 August, 2019, Montreal, Canada (2019), pp. 1–13. FlemingAKCalorimetric properties of lamb and other meatsJ. Food Technol.1969419921510.1111/j.1365-2621.1969.tb01516.x J. Choi and J. C. Bischof, Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology, Cryobiology, 60, No. 1, 52–70 (2010). BelozerovAGBerezovskyYMKorolevIAAgafonkinaIVResearch of thermophysical properties of chicken meatPoultry Poultry Products201711821 M. Shahedi, D. W. Cool, G. S. Bauman, M. Bastian-Jordan, A. Fenster, and A. D. Ward, Accuracy validation of an automated method for prostate segmentation in magnetic resonance imaging, J. Digital Imaging, 30, No. 6, 782795 (2017). TsiganovDICryomedicine: Processes and Apparatus2011MoscowSayns Press MagalovZShitzerADeganiDAn efficient technique for estimating the two-dimensional temperature distributions around multiple cryosurgical probes based on combining contributions of unit circlesComput. Methods Biomech. Biomed. Eng.201619131462147410.1080/10255842.2016.1154546 Dombrov skyLANenarokomovaNBTsiganovDIZeigarnikYAModeling of repeating freezing of biological tissues and analysis of possible microwave monitoring of local regions of thawingInt. J. Heat Mass Transf.20158989490210.1016/j.ijheatmasstransfer.2015.05.117 ASTM E793-06, ASTM International, West Conshohocken, PA (2012). ZhdanovaAOKralinovaSSKuznetsovGVStrizhakPAThermophysical and thermokinetic characteristics of forest combustible materialsJ. Eng. Phys. Thermophys.2019921355136310.1007/s10891-019-02051-0 S. Kakaç, M. R. Avelino, and H. F. Smirnov (Eds.), Low Temperature and Cryogenic Refrigeration, Springer (2012), pp. 265–294. BerezovskyYMKorolevIAAgafonkinaIVSarantsevTAA study of thermophysical properties of NOR and DFD beefInnovatsionnye Technol. Proizv. Khraneniya Mater. Tsennostei Gos. Nuzhd2018994654 GiorgiGAvalleLBrignoneMPianaMCavigliaGAn optimisation approach to multiprobe cryosurgery planningComput. Methods Biomech. Biomed. Eng.201316888589510.1080/10255842.2011.643469 RabinYThe effect of temperature-dependent thermal conductivity in heat transfer simulations of frozen biomaterialsCryoLett.200021163170 HolmesKRRyanWChenMMThermal conductivity and H2O content in rabbit kidney cortex and medullaJ. Therm. Biol.19838431131310.1016/0306-4565(83)90014-1 ChuKFDupuyDEThermal ablation of tumours: Biological mechanisms and advances in therapyNature Rev. Cancer201414319920810.1038/nrc3672 L. Riedel, Kalorimetrische Untersuchungen über das Gefrieren von Fleisch, Kältetechnik, 9, No. 2, 38–40 (1957). A Jaberzadeh (2292_CR12) 2016; 39 M Shurrab (2292_CR9) 2016; 67 KR Holmes (2292_CR39) 1983; 8 A Bhowmik (2292_CR22) 2013; 38 LP Correia (2292_CR31) 2011; 106 KF Chu (2292_CR3) 2014; 14 AK Fleming (2292_CR45) 1969; 4 2292_CR47 VA Mikhailik (2292_CR54) 2019; 92 YM Berezovsky (2292_CR49) 2018; 80 AA Gavdush (2292_CR40) 2019; 24 2292_CR41 2292_CR43 2292_CR1 2292_CR46 AO Zhdanova (2292_CR48) 2019; 92 YM Berezovsky (2292_CR51) 2018; 9 G Giorgi (2292_CR10) 2013; 16 AG Belozero v (2292_CR29) 2018; 63 P Joshi (2292_CR25) 2017; 16 2292_CR14 Y Rabin (2292_CR16) 2000; 21 2292_CR17 2292_CR18 2292_CR19 2292_CR53 2292_CR11 D Eisenberg (2292_CR44) 1969 S Giwa (2292_CR2) 2017; 35 JD Werner (2292_CR24) 2018; 41 DI Tsiganov (2292_CR52) 2011 Z Magalov (2292_CR6) 2016; 19 2292_CR27 LA Dombrov sky (2292_CR15) 2015; 89 2292_CR28 FE Boas (2292_CR13) 2017; 40 SI Lazarev (2292_CR42) 2019; 92 MD Khanevi ch (2292_CR26) 2013; 2 2292_CR20 2292_CR21 R Keelan (2292_CR7) 2015; 15 2292_CR23 2292_CR5 AI Zhmakin (2292_CR4) 2008; 51 AO Vasilyev (2292_CR36) 2014; 11 AG Belozerov (2292_CR50) 2017; 1 2292_CR37 2292_CR38 2292_CR30 2292_CR32 2292_CR33 AV Shakurov (2292_CR8) 2017; 9 2292_CR34 2292_CR35 |
References_xml | – ident: 2292_CR11 doi: 10.1016/j.ijheatmasstransfer.2019.118946 – ident: 2292_CR5 – ident: 2292_CR37 doi: 10.1007/978-90-481-8831-4 – volume: 16 start-page: 1272 issue: 6 year: 2017 ident: 2292_CR25 publication-title: Technol. Cancer Res. Treat. doi: 10.1177/1533034617716041 contributor: fullname: P Joshi – volume: 38 start-page: 107 year: 2013 ident: 2292_CR22 publication-title: J. Therm. Biology doi: 10.1016/j.jtherbio.2012.12.003 contributor: fullname: A Bhowmik – volume: 1 start-page: 18 year: 2017 ident: 2292_CR50 publication-title: Poultry Poultry Products contributor: fullname: AG Belozerov – ident: 2292_CR1 – volume: 9 start-page: 178 issue: 2 year: 2017 ident: 2292_CR8 publication-title: Sovrem. Tekhnol. Med. doi: 10.17691/stm2017.9.2.23 contributor: fullname: AV Shakurov – volume: 67 start-page: 308 year: 2016 ident: 2292_CR9 publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2016.03.007 contributor: fullname: M Shurrab – ident: 2292_CR35 – ident: 2292_CR23 doi: 10.1115/1.4037406 – ident: 2292_CR33 – volume-title: Cryomedicine: Processes and Apparatus year: 2011 ident: 2292_CR52 contributor: fullname: DI Tsiganov – volume: 106 start-page: 459 issue: 2 year: 2011 ident: 2292_CR31 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-011-1550-5 contributor: fullname: LP Correia – ident: 2292_CR27 – ident: 2292_CR34 doi: 10.1007/978-3-662-06710-9 – ident: 2292_CR41 – volume: 92 start-page: 1050 year: 2019 ident: 2292_CR42 publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/s10891-019-02019-0 contributor: fullname: SI Lazarev – volume: 92 start-page: 1355 year: 2019 ident: 2292_CR48 publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/s10891-019-02051-0 contributor: fullname: AO Zhdanova – volume: 15 start-page: 377 issue: 2 year: 2015 ident: 2292_CR7 publication-title: Technol. Cancer Res Treat. doi: 10.1177/1533034615580694 contributor: fullname: R Keelan – volume: 4 start-page: 199 year: 1969 ident: 2292_CR45 publication-title: J. Food Technol. doi: 10.1111/j.1365-2621.1969.tb01516.x contributor: fullname: AK Fleming – volume: 21 start-page: 163 year: 2000 ident: 2292_CR16 publication-title: CryoLett. contributor: fullname: Y Rabin – volume: 24 start-page: 1 issue: 2 year: 2019 ident: 2292_CR40 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.24.2.027001 contributor: fullname: AA Gavdush – volume: 2 start-page: 73 year: 2013 ident: 2292_CR26 publication-title: J. Int. Acad. Refrig. contributor: fullname: MD Khanevi ch – ident: 2292_CR38 – volume: 41 start-page: 1089 issue: 7 year: 2018 ident: 2292_CR24 publication-title: CardioVasc. Intervent. Radiol. doi: 10.1007/s00270-018-1950-z contributor: fullname: JD Werner – volume: 8 start-page: 311 issue: 4 year: 1983 ident: 2292_CR39 publication-title: J. Therm. Biol. doi: 10.1016/0306-4565(83)90014-1 contributor: fullname: KR Holmes – ident: 2292_CR17 – ident: 2292_CR30 – volume: 80 start-page: 25 issue: 4 year: 2018 ident: 2292_CR49 publication-title: Proc. Voronezh State Univ. Eng. Technol. doi: 10.20914/2310-1202-2018-4-25-29 contributor: fullname: YM Berezovsky – volume: 16 start-page: 885 issue: 8 year: 2013 ident: 2292_CR10 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.643469 contributor: fullname: G Giorgi – volume: 9 start-page: 46 issue: 9 year: 2018 ident: 2292_CR51 publication-title: Innovatsionnye Technol. Proizv. Khraneniya Mater. Tsennostei Gos. Nuzhd contributor: fullname: YM Berezovsky – ident: 2292_CR28 – ident: 2292_CR21 – ident: 2292_CR47 – volume: 89 start-page: 894 year: 2015 ident: 2292_CR15 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.05.117 contributor: fullname: LA Dombrov sky – ident: 2292_CR18 – ident: 2292_CR14 – volume: 19 start-page: 1462 issue: 13 year: 2016 ident: 2292_CR6 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1154546 contributor: fullname: Z Magalov – volume: 35 start-page: 530 issue: 6 year: 2017 ident: 2292_CR2 publication-title: Nature Biotechnol. doi: 10.1038/nbt.3889 contributor: fullname: S Giwa – volume-title: The Structure and Properties of Water year: 1969 ident: 2292_CR44 contributor: fullname: D Eisenberg – ident: 2292_CR20 doi: 10.1016/j.cryobiol.2009.11.004 – volume: 63 start-page: 268 issue: 2 year: 2018 ident: 2292_CR29 publication-title: Biofizika contributor: fullname: AG Belozero v – ident: 2292_CR43 – ident: 2292_CR46 – volume: 39 start-page: 4764 issue: 16 year: 2016 ident: 2292_CR12 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3548 contributor: fullname: A Jaberzadeh – volume: 11 start-page: 47 issue: 4 year: 2014 ident: 2292_CR36 publication-title: Tekhnol. Zhivykh Sistem contributor: fullname: AO Vasilyev – volume: 92 start-page: 916 year: 2019 ident: 2292_CR54 publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/s10891-019-02003-8 contributor: fullname: VA Mikhailik – ident: 2292_CR53 – volume: 40 start-page: 761 issue: 5 year: 2017 ident: 2292_CR13 publication-title: CardioVasc. Interv. Radiol. doi: 10.1007/s00270-016-1562-4 contributor: fullname: FE Boas – volume: 51 start-page: 231 issue: 3 year: 2008 ident: 2292_CR4 publication-title: Physics-Uspekhi doi: 10.1070/PU2008v051n03ABEH006449 contributor: fullname: AI Zhmakin – ident: 2292_CR19 – volume: 14 start-page: 199 issue: 3 year: 2014 ident: 2292_CR3 publication-title: Nature Rev. Cancer doi: 10.1038/nrc3672 contributor: fullname: KF Chu – ident: 2292_CR32 |
SSID | ssj0009843 |
Score | 2.2955556 |
Snippet | A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models.... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 233 |
SubjectTerms | Biological properties Calorimetry Classical Mechanics Complex Systems Cryogenic treatment Cryoscopy Differential scanning calorimetry Engineering Engineering Thermodynamics Equivalence Heat Heat and Mass Transfer Human tissues Industrial Chemistry/Chemical Engineering Latent heat Liver Low temperature Melt temperature Moisture content Muscles Prediction models Simulation Soft tissues Synthetic training devices Thermal conductivity Thermal diffusivity Thermal properties Thermodynamic properties Thermodynamics |
Title | Thermal Properties of Human Soft Tissue and Its Equivalents in a Wide Low-Temperature Range |
URI | https://link.springer.com/article/10.1007/s10891-021-02292-y https://www.proquest.com/docview/2502220714 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xEBI9tDzVbQFZqBIHCNrEzuu4qpZHW1AFuwLEwXJiG61aZdtNVhX8emayjpYFekBKDolHkeN55LM98wXgi_VtbILMejFPtSdsG12K27an0zQOVW7auaalgbPz6KQvvl2H19M67jrZvdmRrAP1k1q3hJJ0AjqDNPDu52HRFZ4udo5vvnenXLuJy6uPKOsgCF2tzOtPmfkePY_KL7ZH66_O0QfoNbU7k2STX4fjKjvMH15SOb7lhVbgvUOhrDMxm1WYM8UavHvCTbgGS3VuaF6uwy2aEobv3-wnLdyPiIGVDS2rl__ZJYZx1qu1x1Sh2WlVsu7f8QANmFI02KBgil0NtGE_hv-8nkGUPmFxZhdU1rAB_aNu7-uJ5_7J4OUijCsvNlxkMWICXymVIvjIOGI0hC3GiLb2uUp0JFIhbK7SCCdzoTZ4w3K85n6kDd-EhWJYmI_AfKUtgk_LjcZZXqKVwfBCAUT4wkShaMF-oxn5Z0K9IackyzR4EgdP1oMn71uwS8qTxGlRUNLMnRqXpTy9vJAd7B5t-sdJC_ackB1WI5UrV4OAHSIarBnJrRlJdLp8trmxEemcvpSIJhFtUUVYCw4anU-b_9_3T28T_wzLQW02dGzBQjUam22ERlW241xhB-b7QecRMQUCtw |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lrH2oXTZStOviTHYw2aILfnrMZSWpEvCaB0W2INQLKkEitPGDqX_fe8cm9Rd91CwH2wdRtzpTj9Jdz8DfLOuDY03tU7IY-0I20GX4rbj6DgOfZWaTqppa2A4CnpjcTnxJ1VRWF5nu9dHkmWkflbsFlGWjke3F3vO4zvYIn51Yswfe9011W5UpdUHlHTg-VWpzOvfaExHL4PyP6ej5aRzsQe7FVpk3ZV5P8KGyVqw84xDsAXvyxzONP8Ef9HkGGZv2W_aYF8QUyqbW1Zu07NrDLcsKbXMVKZZv8jZ-f1yhgONUinYLGOK_ZlpwwbzBycxiKZXbMvsisoPPsP44jw56znVvxOcVPhh4YSGi2mIc7erlIoRJEw5YimEF8aIjna5inQgYiFsquIAF12-NvjCcnzmbqAN34fNbJ6ZA2Cu0hZBouVG42os0spgGCBHF64wgS_a8KNWobxbUWTINRkyKVyiwmWpcPnYhq-kZUncExklt9yoZZ7L_vWV7GL36HA-jNrwvRKy82KhUlXVCmCHiK6qIXnckETnSJvNtTFl5Zy5RNSHqIgqt9rwszbwuvn_fT98m_gX-NBLhgM56I9-HcG2Vw47uo5hs1gszQnCmWJ6Wo7eJ34Q6F0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5tRZvYA2MMRDe2WWjSHrZAEzu_HivWjgJDCIrGtAfLiW1UMaWsSTXBX89dfqgt2x4mpOQhsRVd7PPls_3dF4D31rWh8RLrhDzWjrAdHFLcdhwdx6GvUtNJNS0NfD0O9s_FwYV_MZfFX7Ldmy3JKqeBVJqyYvda2925xLeIGDsenV7sOTePYUmQMlILlrpfvh_2ZsK7UU2yD4iC4Pl14szfn7Lwcbofov_YKy0_Qf3noBrjK-bJ1c60SHbS23u6jg95u1VYqfEp61YO9QIemWwNns2pFq7Bk5I1muYv4Qc6GQb2n-yElvQnpM3KxpaVGwPsDAM8G5b9ylSm2aDIWe_XdISuTeQNNsqYYt9G2rCj8W9naBC_V_rO7JQSHtbhvN8b7u079d8anFT4YeGEhoskRLTgKqVihCUJR_SGgMYY0dEuV5EORCyETVUc4DTP1wZvWI7X3A204RvQysaZ2QTmKm0RllpuNM7_Iq0MBh4KLcIVJvBFGz423SSvK1EOOZNfpsaT2HiybDx504Zt6klJahcZ0Wku1TTP5eDsVHbRPKIDhFEbPtSV7LiYqFTV2QloEAlkLdTcWqiJwzFdLG4cRtbhIJeIMxGHUa5YGz41_T8r_rftr_6v-jt4evK5L48Gx4evYdkrPYiOLWgVk6l5g_ipSN7WQ-QOw5kOhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THERMAL+PROPERTIES+OF+HUMAN+SOFT+TISSUE+AND+ITS+EQUIVALENTS+IN+A+WIDE+LOW-TEMPERATURE+RANGE&rft.jtitle=Journal+of+engineering+physics+and+thermophysics&rft.au=Agafonkina%2C+I.V&rft.au=Belozerov%2C+A.G&rft.au=Vasilyev%2C+A.O&rft.au=Pushkarev%2C+A.V&rft.date=2021-01-01&rft.pub=Springer&rft.issn=1062-0125&rft.eissn=1573-871X&rft.volume=94&rft.issue=1&rft.spage=233&rft_id=info:doi/10.1007%2Fs10891-021-02292-y&rft.externalDocID=A663201078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-0125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-0125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-0125&client=summon |