Thermal Properties of Human Soft Tissue and Its Equivalents in a Wide Low-Temperature Range

A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering physics and thermophysics Vol. 94; no. 1; pp. 233 - 246
Main Authors Agafonkina, I. V., Belozerov, A. G., Vasilyev, A. O., Pushkarev, A. V., Tsiganov, D. I., Shakurov, A. V., Zherdev, A. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40 o С, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure.
AbstractList A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from -160 to 40[degrees]C, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure.
A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from -160 to 40[degrees]C, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure. Keywords: differential scanning calorimetry (DSC), heat capacity, thermal conductivity, biological tissue, prostate, liver, pancreas, heart, kidney.
A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40 o С, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure.
A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40oС, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure.
Audience Academic
Author Zherdev, A. A.
Pushkarev, A. V.
Tsiganov, D. I.
Vasilyev, A. O.
Agafonkina, I. V.
Belozerov, A. G.
Shakurov, A. V.
Author_xml – sequence: 1
  givenname: I. V.
  surname: Agafonkina
  fullname: Agafonkina, I. V.
  organization: All-Russian Scientific Research Institute of Refrigeration Industry — Branch of V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
– sequence: 2
  givenname: A. G.
  surname: Belozerov
  fullname: Belozerov, A. G.
  organization: V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
– sequence: 3
  givenname: A. O.
  surname: Vasilyev
  fullname: Vasilyev, A. O.
  organization: Bauman Moscow State Technical University (National Research University)
– sequence: 4
  givenname: A. V.
  surname: Pushkarev
  fullname: Pushkarev, A. V.
  organization: Bauman Moscow State Technical University (National Research University)
– sequence: 5
  givenname: D. I.
  surname: Tsiganov
  fullname: Tsiganov, D. I.
  organization: Bauman Moscow State Technical University (National Research University)
– sequence: 6
  givenname: A. V.
  surname: Shakurov
  fullname: Shakurov, A. V.
  email: shakurov@bmstu.ru
  organization: Bauman Moscow State Technical University (National Research University)
– sequence: 7
  givenname: A. A.
  surname: Zherdev
  fullname: Zherdev, A. A.
  organization: Bauman Moscow State Technical University (National Research University)
BookMark eNp9kU1rGzEQhkVIIU7aP5CToKceNtXXrnaPxqSNwdCQOKSQg5B3Z10Fr-RI2ib-953UhWAIRQiNhuedkeY9Jcc-eCDknLMLzpj-mjirG14w8bpFI4rdEZnwUsui1vznMcasEgXjojwhpyk9MsaaWskJeVj-gjjYDb2OYQsxO0g09PRqHKynt6HPdOlSGoFa39F5TvTyaXS_7QY8xs5TS-9dB3QRnoslDFjB5jECvbF-DR_Jh95uEnz6d56Ru2-Xy9lVsfjxfT6bLopWlToXGqRaaaEUt9Y2kuuVbEpeVRJAsY5LW3eVapTqW9tUom7KDjDRS7xLXnUgz8jnfd1tDE8jpGwewxg9tjSixHEIprl6o9b4euN8H3K07eBSa6bYTDDOdI3UxTsUrg4G1-LQe4f5A8GXAwEyGV7y2o4pmfntzSEr9mwbQ0oRerONbrBxZzgzrz6avY8GfTR_fTQ7FMm9KCGMU41vv_uP6g_8XJ9V
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2021_10_020
crossref_primary_10_1088_1742_6596_2103_1_012049
crossref_primary_10_1016_j_cryobiol_2022_10_002
crossref_primary_10_17816_RF114722
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122194
crossref_primary_10_1080_02656736_2022_2067596
crossref_primary_10_1080_02656736_2022_2091799
crossref_primary_10_1016_j_mtla_2023_101909
crossref_primary_10_3390_pharmaceutics13122133
crossref_primary_10_17816_RF112350
crossref_primary_10_1080_02656736_2022_2028908
crossref_primary_10_3390_s21124236
crossref_primary_10_3390_s24113655
crossref_primary_10_1016_j_ijrefrig_2023_08_001
Cites_doi 10.1016/j.ijheatmasstransfer.2019.118946
10.1007/978-90-481-8831-4
10.1177/1533034617716041
10.1016/j.jtherbio.2012.12.003
10.17691/stm2017.9.2.23
10.1016/j.ijrefrig.2016.03.007
10.1115/1.4037406
10.1007/s10973-011-1550-5
10.1007/978-3-662-06710-9
10.1007/s10891-019-02019-0
10.1007/s10891-019-02051-0
10.1177/1533034615580694
10.1111/j.1365-2621.1969.tb01516.x
10.1117/1.JBO.24.2.027001
10.1007/s00270-018-1950-z
10.1016/0306-4565(83)90014-1
10.20914/2310-1202-2018-4-25-29
10.1080/10255842.2011.643469
10.1016/j.ijheatmasstransfer.2015.05.117
10.1080/10255842.2016.1154546
10.1038/nbt.3889
10.1016/j.cryobiol.2009.11.004
10.1002/mma.3548
10.1007/s10891-019-02003-8
10.1007/s00270-016-1562-4
10.1070/PU2008v051n03ABEH006449
10.1038/nrc3672
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10891-021-02292-y
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-871X
EndPage 246
ExternalDocumentID A663201078
10_1007_s10891_021_02292_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c457t-7e34b72441aaa9317b3951663ee40d13a8d64944fca962895ded64f3fca316de3
IEDL.DBID AGYKE
ISSN 1062-0125
IngestDate Tue Nov 05 21:08:05 EST 2024
Fri Feb 23 00:10:56 EST 2024
Fri Feb 02 04:00:11 EST 2024
Thu Aug 01 19:30:25 EDT 2024
Thu Sep 12 22:31:03 EDT 2024
Sat Dec 16 12:09:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords kidney
differential scanning calorimetry (DSC)
biological tissue
liver
pancreas
heat capacity
prostate
thermal conductivity
heart
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-7e34b72441aaa9317b3951663ee40d13a8d64944fca962895ded64f3fca316de3
PQID 2502220714
PQPubID 1456344
PageCount 14
ParticipantIDs proquest_journals_2502220714
gale_infotracmisc_A663201078
gale_infotracacademiconefile_A663201078
gale_incontextgauss_ISR_A663201078
crossref_primary_10_1007_s10891_021_02292_y
springer_journals_10_1007_s10891_021_02292_y
PublicationCentury 2000
PublicationDate 1-2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 1-2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Journal of engineering physics and thermophysics
PublicationTitleAbbrev J Eng Phys Thermophy
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CorreiaLPde MouraEAPiresHMMacêdoRODifferent salinities water characterization by DSCcoolingJ. Therm. Anal. Calorim.2011106245946110.1007/s10973-011-1550-5
BoasFESrimathveeravalliGDurackJCKayeEAErinjeriJPZivEMaybodyMYarmohammadiHSolomonSBDevelopment of a searchable database of cryoablation simulations for use in treatment planningCardioVasc. Interv. Radiol.201740576176810.1007/s00270-016-1562-4
BerezovskyYMKorolevIAAgafonkinaIVSarantsevTAStudy of the influence of beef humidity on the number of related moisture by calorimetric methodProc. Voronezh State Univ. Eng. Technol.2018804252910.20914/2310-1202-2018-4-25-29
ASTM E1269-11, ASTM International, West Conshohocken, PA (2011).
ASHRAE Handbook. Refrigeration, SI Edition (2014).
B. Han and J. C. Bischof, Effect of thermal properties on heat transfer in cryopreservation and cryosurgery, in: Advances in Heat and Mass Transfer in Biotechnology, American Society of Mechanical Engineers (2002), pp. 7–15.
VasilyevAOGovorovAVPushkarevAVTsiganovDIShakurovAVThermophysical modeling of cryosurgry with the case study of prostate cancerTekhnol. Zhivykh Sistem20141144753
GavdushAAChernomyrdinNVMalakhovKMTerahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: A road toward intraoperative THz diagnosisJ. Biomed. Opt.20192421510.1117/1.JBO.24.2.027001
L. E. Ehrlich, G. M. Fahy, B. G. Wowk, J. A. Malen, and Y. Rabin, Thermal analyses of a human kidney and a rabbit kidney during cryopreservation by vitrification, J. Biomech. Eng., 140, No. 1 (2018).
KeelanRhangHZShimadaKRabinYGraphics processing unit-based bioheat simulation to facilitate rapid decision making associated with cryosurgery trainingTechnol. Cancer Res Treat.201515237738610.1177/1533034615580694
D. E. Ponomare v and A. V. Pushkarev, Research of human kidney thermal properties for the purpose of cryosurgery, J. Phys.: Conf. Ser., 891, No. 1, No. 012336 (2017).
D. Tarwidi, Go dunov method for multiprobe cryosurgery simulation with complex-shaped tumors, in: AIP Conf. Proc., 1707, No. 060002 (2016).
J. Choi, M. Mo rrissey, and J. C. Bischof, Thermal processing of biological tissue at high temperatures: Impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25–80oC, J. Heat Transf.,135, No. 6 [061302] (2013).
J. Y. Chan and E. H. Ooi, Sensitivity of thermophysiological models of cryoablation to the thermal and biophysical properties of tissues, Cryobiology, 73, No. 3, 304–315 (2016).
A. V. Shakurov, A. V. Pushkarev, A. A. Zherdev, and D. I. Tsiganov, Target region temperature history approach for increasing accuracy of cryoexposure dose providing, Refrig. Sci. Technol., September, 3–7 (2018).
I. A. Burkov, A. V. Pushkarev, A. V. Shakurov, D. I. Tsiganov, and A. A. Zherdev, Numerical simulation of multiprobe cryoablation synergy using heat source boundary, Int. J. Heat Mass Transf., 147, No. 118946 (2020).
JaberzadehAEssertCPre-operative planning of multiple probes in three dimensions for liver cryosurgery: Comparison of different optimization methodsMath. Methods Appl. Sci.2016391647644772355715110.1002/mma.3548
T. E. Cooper and G. J. Trezek, Correlation of thermal properties of some human tissues with water content, Aerosp. Med.,42, 24–27 (1971).
A. G. Belozero v, U. M. Berezovsky, and I. A. Korolev, Approach to optimizing parameters of differential scanning calorimeter temperature programs to ensure the stability of research mode at subzero temperatures, Int. Res. J., No. 12 (54), Part 1, 120–124 (2016).
Belozero vAGBerezovskyYMZherdevAAKorolevIAPushkarevAVAgafonkinaIVTsiganovDIA study of the thermophysical properties of human prostate tumor tissues in the temperature range from –160 to +40oCBiofizika2018632268273
ZhmakinAIPhysical aspects of cryobiologyPhysics-Uspekhi200851323125210.1070/PU2008v051n03ABEH006449
G. W. H. Höhne, G. F. Hemminger, and H. J. Flammenheim, Differential Scanning Calorimetry, Springer (2003).
JoshiPSehrawatARabinYComputerized planning of prostate cryosurgery and shape considerationsTechnol. Cancer Res. Treat.20171661272128310.1177/1533034617716041
EisenbergDKauzmannWThe Structure and Properties of Water1969OxfordOxford University Press
WernerJDTregnagoACNettoGJFrangakisCGeorgiadesCSSingle 15-min protocol yields the same cryoablation size and margin as the conventional 10–8–10-min protocol: Results of kidney and liver swine experimentCardioVasc. Intervent. Radiol.20184171089109410.1007/s00270-018-1950-z
LazarevSIGolovinYMKovalevSVLevinAACharacteristics of thermal action on porous cellulose acetate composite materialJ. Eng. Phys. Thermophys.2019921050105410.1007/s10891-019-02019-0
MikhailikVADmitrenkoNVSnezhkinYFInvestigation of the infl uence of hydration on the heat of evaporation of water from sucrose solutionsJ. Eng. Phys. Thermophys.20199291692210.1007/s10891-019-02003-8
Khanevi chMDManikhasGMFedosenkoKVFadeevRVDinikinMSYusifovSAThe effect of local cryogenic treatment on the morpho-functional state of the pancreasJ. Int. Acad. Refrig.201327375
L. Riedel, Zum Problem des gebundenen Wassers in Fleisch, Kältetechnik, 13, No. 3, 122–128 (1961).
P. A. Hasgall, E. Neufeld, M. C. Gosselin, A. Klingenböck, and N. Kuster, IT´IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0, March 1st, 2019.
A. J. Welch an d M. J. C. van Gemert (Eds.), Optical-Thermal Response of Laser-Irradiated Tissue, Springer (2011).
C. Kim, A. P. O’ Rourke, D. M. Mahvi, and J. G. Webster, Finite-element analysis of ex vivo and in vivo hepatic cryoablation, Biomed. Eng. IEEE Trans., 54, No. 7, 1177–1185 (2007).
ShakurovAVPushkarevAVPushkarevVATsiganovDIPrerequisites for developing new generation cryosurgical devicesSovrem. Tekhnol. Med.20179217818710.17691/stm2017.9.2.23
BhowmikASinghRRepakaRMishrabSCConventional and newly developed bioheat transport models in vascularized tissuesJ. Therm. Biology20133810712510.1016/j.jtherbio.2012.12.003
F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, IPEM (2012).
ShurrabMWangHKuboNFukunagaTKurataKTakamatsuHThe cooling performance of a cryoprobe: Establishing guidelines for the safety margins in cryosurgeryInt. J. Refrigeration20166730831810.1016/j.ijrefrig.2016.03.007
GiwaSLewisJKAlvarezLThe promise of organ and tissue preservation to transform medicineNature Biotechnol.201735653054210.1038/nbt.3889
D. J. Cleland, Prediction of food thermal properties to enable accurate design of food refrigeration processes, in: Proc. 25th IIR Int. Congress of Refrigeration, 24–30 August, 2019, Montreal, Canada (2019), pp. 1–13.
FlemingAKCalorimetric properties of lamb and other meatsJ. Food Technol.1969419921510.1111/j.1365-2621.1969.tb01516.x
J. Choi and J. C. Bischof, Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology, Cryobiology, 60, No. 1, 52–70 (2010).
BelozerovAGBerezovskyYMKorolevIAAgafonkinaIVResearch of thermophysical properties of chicken meatPoultry Poultry Products201711821
M. Shahedi, D. W. Cool, G. S. Bauman, M. Bastian-Jordan, A. Fenster, and A. D. Ward, Accuracy validation of an automated method for prostate segmentation in magnetic resonance imaging, J. Digital Imaging, 30, No. 6, 782795 (2017).
TsiganovDICryomedicine: Processes and Apparatus2011MoscowSayns Press
MagalovZShitzerADeganiDAn efficient technique for estimating the two-dimensional temperature distributions around multiple cryosurgical probes based on combining contributions of unit circlesComput. Methods Biomech. Biomed. Eng.201619131462147410.1080/10255842.2016.1154546
Dombrov skyLANenarokomovaNBTsiganovDIZeigarnikYAModeling of repeating freezing of biological tissues and analysis of possible microwave monitoring of local regions of thawingInt. J. Heat Mass Transf.20158989490210.1016/j.ijheatmasstransfer.2015.05.117
ASTM E793-06, ASTM International, West Conshohocken, PA (2012).
ZhdanovaAOKralinovaSSKuznetsovGVStrizhakPAThermophysical and thermokinetic characteristics of forest combustible materialsJ. Eng. Phys. Thermophys.2019921355136310.1007/s10891-019-02051-0
S. Kakaç, M. R. Avelino, and H. F. Smirnov (Eds.), Low Temperature and Cryogenic Refrigeration, Springer (2012), pp. 265–294.
BerezovskyYMKorolevIAAgafonkinaIVSarantsevTAA study of thermophysical properties of NOR and DFD beefInnovatsionnye Technol. Proizv. Khraneniya Mater. Tsennostei Gos. Nuzhd2018994654
GiorgiGAvalleLBrignoneMPianaMCavigliaGAn optimisation approach to multiprobe cryosurgery planningComput. Methods Biomech. Biomed. Eng.201316888589510.1080/10255842.2011.643469
RabinYThe effect of temperature-dependent thermal conductivity in heat transfer simulations of frozen biomaterialsCryoLett.200021163170
HolmesKRRyanWChenMMThermal conductivity and H2O content in rabbit kidney cortex and medullaJ. Therm. Biol.19838431131310.1016/0306-4565(83)90014-1
ChuKFDupuyDEThermal ablation of tumours: Biological mechanisms and advances in therapyNature Rev. Cancer201414319920810.1038/nrc3672
L. Riedel, Kalorimetrische Untersuchungen über das Gefrieren von Fleisch, Kältetechnik, 9, No. 2, 38–40 (1957).
A Jaberzadeh (2292_CR12) 2016; 39
M Shurrab (2292_CR9) 2016; 67
KR Holmes (2292_CR39) 1983; 8
A Bhowmik (2292_CR22) 2013; 38
LP Correia (2292_CR31) 2011; 106
KF Chu (2292_CR3) 2014; 14
AK Fleming (2292_CR45) 1969; 4
2292_CR47
VA Mikhailik (2292_CR54) 2019; 92
YM Berezovsky (2292_CR49) 2018; 80
AA Gavdush (2292_CR40) 2019; 24
2292_CR41
2292_CR43
2292_CR1
2292_CR46
AO Zhdanova (2292_CR48) 2019; 92
YM Berezovsky (2292_CR51) 2018; 9
G Giorgi (2292_CR10) 2013; 16
AG Belozero v (2292_CR29) 2018; 63
P Joshi (2292_CR25) 2017; 16
2292_CR14
Y Rabin (2292_CR16) 2000; 21
2292_CR17
2292_CR18
2292_CR19
2292_CR53
2292_CR11
D Eisenberg (2292_CR44) 1969
S Giwa (2292_CR2) 2017; 35
JD Werner (2292_CR24) 2018; 41
DI Tsiganov (2292_CR52) 2011
Z Magalov (2292_CR6) 2016; 19
2292_CR27
LA Dombrov sky (2292_CR15) 2015; 89
2292_CR28
FE Boas (2292_CR13) 2017; 40
SI Lazarev (2292_CR42) 2019; 92
MD Khanevi ch (2292_CR26) 2013; 2
2292_CR20
2292_CR21
R Keelan (2292_CR7) 2015; 15
2292_CR23
2292_CR5
AI Zhmakin (2292_CR4) 2008; 51
AO Vasilyev (2292_CR36) 2014; 11
AG Belozerov (2292_CR50) 2017; 1
2292_CR37
2292_CR38
2292_CR30
2292_CR32
2292_CR33
AV Shakurov (2292_CR8) 2017; 9
2292_CR34
2292_CR35
References_xml – ident: 2292_CR11
  doi: 10.1016/j.ijheatmasstransfer.2019.118946
– ident: 2292_CR5
– ident: 2292_CR37
  doi: 10.1007/978-90-481-8831-4
– volume: 16
  start-page: 1272
  issue: 6
  year: 2017
  ident: 2292_CR25
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/1533034617716041
  contributor:
    fullname: P Joshi
– volume: 38
  start-page: 107
  year: 2013
  ident: 2292_CR22
  publication-title: J. Therm. Biology
  doi: 10.1016/j.jtherbio.2012.12.003
  contributor:
    fullname: A Bhowmik
– volume: 1
  start-page: 18
  year: 2017
  ident: 2292_CR50
  publication-title: Poultry Poultry Products
  contributor:
    fullname: AG Belozerov
– ident: 2292_CR1
– volume: 9
  start-page: 178
  issue: 2
  year: 2017
  ident: 2292_CR8
  publication-title: Sovrem. Tekhnol. Med.
  doi: 10.17691/stm2017.9.2.23
  contributor:
    fullname: AV Shakurov
– volume: 67
  start-page: 308
  year: 2016
  ident: 2292_CR9
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2016.03.007
  contributor:
    fullname: M Shurrab
– ident: 2292_CR35
– ident: 2292_CR23
  doi: 10.1115/1.4037406
– ident: 2292_CR33
– volume-title: Cryomedicine: Processes and Apparatus
  year: 2011
  ident: 2292_CR52
  contributor:
    fullname: DI Tsiganov
– volume: 106
  start-page: 459
  issue: 2
  year: 2011
  ident: 2292_CR31
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-011-1550-5
  contributor:
    fullname: LP Correia
– ident: 2292_CR27
– ident: 2292_CR34
  doi: 10.1007/978-3-662-06710-9
– ident: 2292_CR41
– volume: 92
  start-page: 1050
  year: 2019
  ident: 2292_CR42
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-019-02019-0
  contributor:
    fullname: SI Lazarev
– volume: 92
  start-page: 1355
  year: 2019
  ident: 2292_CR48
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-019-02051-0
  contributor:
    fullname: AO Zhdanova
– volume: 15
  start-page: 377
  issue: 2
  year: 2015
  ident: 2292_CR7
  publication-title: Technol. Cancer Res Treat.
  doi: 10.1177/1533034615580694
  contributor:
    fullname: R Keelan
– volume: 4
  start-page: 199
  year: 1969
  ident: 2292_CR45
  publication-title: J. Food Technol.
  doi: 10.1111/j.1365-2621.1969.tb01516.x
  contributor:
    fullname: AK Fleming
– volume: 21
  start-page: 163
  year: 2000
  ident: 2292_CR16
  publication-title: CryoLett.
  contributor:
    fullname: Y Rabin
– volume: 24
  start-page: 1
  issue: 2
  year: 2019
  ident: 2292_CR40
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.24.2.027001
  contributor:
    fullname: AA Gavdush
– volume: 2
  start-page: 73
  year: 2013
  ident: 2292_CR26
  publication-title: J. Int. Acad. Refrig.
  contributor:
    fullname: MD Khanevi ch
– ident: 2292_CR38
– volume: 41
  start-page: 1089
  issue: 7
  year: 2018
  ident: 2292_CR24
  publication-title: CardioVasc. Intervent. Radiol.
  doi: 10.1007/s00270-018-1950-z
  contributor:
    fullname: JD Werner
– volume: 8
  start-page: 311
  issue: 4
  year: 1983
  ident: 2292_CR39
  publication-title: J. Therm. Biol.
  doi: 10.1016/0306-4565(83)90014-1
  contributor:
    fullname: KR Holmes
– ident: 2292_CR17
– ident: 2292_CR30
– volume: 80
  start-page: 25
  issue: 4
  year: 2018
  ident: 2292_CR49
  publication-title: Proc. Voronezh State Univ. Eng. Technol.
  doi: 10.20914/2310-1202-2018-4-25-29
  contributor:
    fullname: YM Berezovsky
– volume: 16
  start-page: 885
  issue: 8
  year: 2013
  ident: 2292_CR10
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.643469
  contributor:
    fullname: G Giorgi
– volume: 9
  start-page: 46
  issue: 9
  year: 2018
  ident: 2292_CR51
  publication-title: Innovatsionnye Technol. Proizv. Khraneniya Mater. Tsennostei Gos. Nuzhd
  contributor:
    fullname: YM Berezovsky
– ident: 2292_CR28
– ident: 2292_CR21
– ident: 2292_CR47
– volume: 89
  start-page: 894
  year: 2015
  ident: 2292_CR15
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.05.117
  contributor:
    fullname: LA Dombrov sky
– ident: 2292_CR18
– ident: 2292_CR14
– volume: 19
  start-page: 1462
  issue: 13
  year: 2016
  ident: 2292_CR6
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1154546
  contributor:
    fullname: Z Magalov
– volume: 35
  start-page: 530
  issue: 6
  year: 2017
  ident: 2292_CR2
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt.3889
  contributor:
    fullname: S Giwa
– volume-title: The Structure and Properties of Water
  year: 1969
  ident: 2292_CR44
  contributor:
    fullname: D Eisenberg
– ident: 2292_CR20
  doi: 10.1016/j.cryobiol.2009.11.004
– volume: 63
  start-page: 268
  issue: 2
  year: 2018
  ident: 2292_CR29
  publication-title: Biofizika
  contributor:
    fullname: AG Belozero v
– ident: 2292_CR43
– ident: 2292_CR46
– volume: 39
  start-page: 4764
  issue: 16
  year: 2016
  ident: 2292_CR12
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3548
  contributor:
    fullname: A Jaberzadeh
– volume: 11
  start-page: 47
  issue: 4
  year: 2014
  ident: 2292_CR36
  publication-title: Tekhnol. Zhivykh Sistem
  contributor:
    fullname: AO Vasilyev
– volume: 92
  start-page: 916
  year: 2019
  ident: 2292_CR54
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-019-02003-8
  contributor:
    fullname: VA Mikhailik
– ident: 2292_CR53
– volume: 40
  start-page: 761
  issue: 5
  year: 2017
  ident: 2292_CR13
  publication-title: CardioVasc. Interv. Radiol.
  doi: 10.1007/s00270-016-1562-4
  contributor:
    fullname: FE Boas
– volume: 51
  start-page: 231
  issue: 3
  year: 2008
  ident: 2292_CR4
  publication-title: Physics-Uspekhi
  doi: 10.1070/PU2008v051n03ABEH006449
  contributor:
    fullname: AI Zhmakin
– ident: 2292_CR19
– volume: 14
  start-page: 199
  issue: 3
  year: 2014
  ident: 2292_CR3
  publication-title: Nature Rev. Cancer
  doi: 10.1038/nrc3672
  contributor:
    fullname: KF Chu
– ident: 2292_CR32
SSID ssj0009843
Score 2.2955556
Snippet A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 233
SubjectTerms Biological properties
Calorimetry
Classical Mechanics
Complex Systems
Cryogenic treatment
Cryoscopy
Differential scanning calorimetry
Engineering
Engineering Thermodynamics
Equivalence
Heat
Heat and Mass Transfer
Human tissues
Industrial Chemistry/Chemical Engineering
Latent heat
Liver
Low temperature
Melt temperature
Moisture content
Muscles
Prediction models
Simulation
Soft tissues
Synthetic training devices
Thermal conductivity
Thermal diffusivity
Thermal properties
Thermodynamic properties
Thermodynamics
Title Thermal Properties of Human Soft Tissue and Its Equivalents in a Wide Low-Temperature Range
URI https://link.springer.com/article/10.1007/s10891-021-02292-y
https://www.proquest.com/docview/2502220714
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xEBI9tDzVbQFZqBIHCNrEzuu4qpZHW1AFuwLEwXJiG61aZdtNVhX8emayjpYFekBKDolHkeN55LM98wXgi_VtbILMejFPtSdsG12K27an0zQOVW7auaalgbPz6KQvvl2H19M67jrZvdmRrAP1k1q3hJJ0AjqDNPDu52HRFZ4udo5vvnenXLuJy6uPKOsgCF2tzOtPmfkePY_KL7ZH66_O0QfoNbU7k2STX4fjKjvMH15SOb7lhVbgvUOhrDMxm1WYM8UavHvCTbgGS3VuaF6uwy2aEobv3-wnLdyPiIGVDS2rl__ZJYZx1qu1x1Sh2WlVsu7f8QANmFI02KBgil0NtGE_hv-8nkGUPmFxZhdU1rAB_aNu7-uJ5_7J4OUijCsvNlxkMWICXymVIvjIOGI0hC3GiLb2uUp0JFIhbK7SCCdzoTZ4w3K85n6kDd-EhWJYmI_AfKUtgk_LjcZZXqKVwfBCAUT4wkShaMF-oxn5Z0K9IackyzR4EgdP1oMn71uwS8qTxGlRUNLMnRqXpTy9vJAd7B5t-sdJC_ackB1WI5UrV4OAHSIarBnJrRlJdLp8trmxEemcvpSIJhFtUUVYCw4anU-b_9_3T28T_wzLQW02dGzBQjUam22ERlW241xhB-b7QecRMQUCtw
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lrH2oXTZStOviTHYw2aILfnrMZSWpEvCaB0W2INQLKkEitPGDqX_fe8cm9Rd91CwH2wdRtzpTj9Jdz8DfLOuDY03tU7IY-0I20GX4rbj6DgOfZWaTqppa2A4CnpjcTnxJ1VRWF5nu9dHkmWkflbsFlGWjke3F3vO4zvYIn51Yswfe9011W5UpdUHlHTg-VWpzOvfaExHL4PyP6ej5aRzsQe7FVpk3ZV5P8KGyVqw84xDsAXvyxzONP8Ef9HkGGZv2W_aYF8QUyqbW1Zu07NrDLcsKbXMVKZZv8jZ-f1yhgONUinYLGOK_ZlpwwbzBycxiKZXbMvsisoPPsP44jw56znVvxOcVPhh4YSGi2mIc7erlIoRJEw5YimEF8aIjna5inQgYiFsquIAF12-NvjCcnzmbqAN34fNbJ6ZA2Cu0hZBouVG42os0spgGCBHF64wgS_a8KNWobxbUWTINRkyKVyiwmWpcPnYhq-kZUncExklt9yoZZ7L_vWV7GL36HA-jNrwvRKy82KhUlXVCmCHiK6qIXnckETnSJvNtTFl5Zy5RNSHqIgqt9rwszbwuvn_fT98m_gX-NBLhgM56I9-HcG2Vw47uo5hs1gszQnCmWJ6Wo7eJ34Q6F0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5tRZvYA2MMRDe2WWjSHrZAEzu_HivWjgJDCIrGtAfLiW1UMaWsSTXBX89dfqgt2x4mpOQhsRVd7PPls_3dF4D31rWh8RLrhDzWjrAdHFLcdhwdx6GvUtNJNS0NfD0O9s_FwYV_MZfFX7Ldmy3JKqeBVJqyYvda2925xLeIGDsenV7sOTePYUmQMlILlrpfvh_2ZsK7UU2yD4iC4Pl14szfn7Lwcbofov_YKy0_Qf3noBrjK-bJ1c60SHbS23u6jg95u1VYqfEp61YO9QIemWwNns2pFq7Bk5I1muYv4Qc6GQb2n-yElvQnpM3KxpaVGwPsDAM8G5b9ylSm2aDIWe_XdISuTeQNNsqYYt9G2rCj8W9naBC_V_rO7JQSHtbhvN8b7u079d8anFT4YeGEhoskRLTgKqVihCUJR_SGgMYY0dEuV5EORCyETVUc4DTP1wZvWI7X3A204RvQysaZ2QTmKm0RllpuNM7_Iq0MBh4KLcIVJvBFGz423SSvK1EOOZNfpsaT2HiybDx504Zt6klJahcZ0Wku1TTP5eDsVHbRPKIDhFEbPtSV7LiYqFTV2QloEAlkLdTcWqiJwzFdLG4cRtbhIJeIMxGHUa5YGz41_T8r_rftr_6v-jt4evK5L48Gx4evYdkrPYiOLWgVk6l5g_ipSN7WQ-QOw5kOhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THERMAL+PROPERTIES+OF+HUMAN+SOFT+TISSUE+AND+ITS+EQUIVALENTS+IN+A+WIDE+LOW-TEMPERATURE+RANGE&rft.jtitle=Journal+of+engineering+physics+and+thermophysics&rft.au=Agafonkina%2C+I.V&rft.au=Belozerov%2C+A.G&rft.au=Vasilyev%2C+A.O&rft.au=Pushkarev%2C+A.V&rft.date=2021-01-01&rft.pub=Springer&rft.issn=1062-0125&rft.eissn=1573-871X&rft.volume=94&rft.issue=1&rft.spage=233&rft_id=info:doi/10.1007%2Fs10891-021-02292-y&rft.externalDocID=A663201078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-0125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-0125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-0125&client=summon