Deep-Learning-Assisted Underwater 3D Tactile Tensegrity

The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data an...

Full description

Saved in:
Bibliographic Details
Published inResearch (Washington) Vol. 6; p. 0062
Main Authors Xu, Peng, Zheng, Jiaxi, Liu, Jianhua, Liu, Xiangyu, Wang, Xinyu, Wang, Siyuan, Guan, Tangzhen, Fu, Xianping, Xu, Minyi, Xie, Guangming, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published United States AAAS 2023
American Association for the Advancement of Science (AAAS)
Online AccessGet full text

Cover

Loading…
Abstract The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals’ musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.
AbstractList The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals’ musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.
The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals' musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals' musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.
Author Xu, Peng
Guan, Tangzhen
Liu, Jianhua
Liu, Xiangyu
Wang, Xinyu
Zheng, Jiaxi
Fu, Xianping
Xu, Minyi
Xie, Guangming
Wang, Siyuan
Wang, Zhong Lin
AuthorAffiliation 5 School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta, GA 30332-0245 , USA
2 School of Information Science and Technology , Dalian Maritime University , Dalian 116026 , China
4 Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100871 , China
1 Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College , Dalian Maritime University , Dalian 116026 , China
3 Intelligent Biomimetic Design Lab, College of Engineering , Peking University , Beijing 100871 , China
AuthorAffiliation_xml – name: 1 Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College , Dalian Maritime University , Dalian 116026 , China
– name: 2 School of Information Science and Technology , Dalian Maritime University , Dalian 116026 , China
– name: 4 Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100871 , China
– name: 5 School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta, GA 30332-0245 , USA
– name: 3 Intelligent Biomimetic Design Lab, College of Engineering , Peking University , Beijing 100871 , China
Author_xml – sequence: 1
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 2
  givenname: Jiaxi
  surname: Zheng
  fullname: Zheng, Jiaxi
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 3
  givenname: Jianhua
  surname: Liu
  fullname: Liu, Jianhua
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 4
  givenname: Xiangyu
  surname: Liu
  fullname: Liu, Xiangyu
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 5
  givenname: Xinyu
  surname: Wang
  fullname: Wang, Xinyu
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 6
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 7
  givenname: Tangzhen
  surname: Guan
  fullname: Guan, Tangzhen
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 8
  givenname: Xianping
  surname: Fu
  fullname: Fu, Xianping
  organization: School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
– sequence: 9
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
  organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
– sequence: 10
  givenname: Guangming
  surname: Xie
  fullname: Xie, Guangming
  organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China
– sequence: 11
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100871, China., School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36930813$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vEzEQxS1UREvplSPKkcum_lp_nFDVAq0UiUt6tib2bOpq4w22A-p_j9s0qEXiNNb4vd-T5r0nR2lKSMhHRudCMiHOMxaE7O_mlCr-hpxwJWzXcy2PXryPyVkp95RSzjS1tn9HjoWyghomToi-Qtx2i0ZJMa27i1JiqRhmtylg_g0V80xczZbgaxxxtsRUcJ1jffhA3g4wFjx7nqfk9tvX5eV1t_jx_ebyYtF52evaqZUehOVBcNXyWLAcddA8WDv4HoxnTDPgFJSVvRKBW-PBU42K0UEb8OKU3Oy5YYJ7t81xA_nBTRDd02LKawe5Rj-is7gC5o2W0A9SUG97TZkwwQyAAfzQWF_2rO1utcHgMdUM4yvo658U79x6-uUYbSCrZCN8fibk6ecOS3WbWDyOIyScdsVxbYy2WkvepJ9ehv1NOZy-CeRe4PNUSsbB-VihxukxO44t1D2V7A4lu8eSm23-j-1A_o_hD43Rqsk
CitedBy_id crossref_primary_10_1109_TIM_2025_3541696
crossref_primary_10_1016_j_device_2024_100525
crossref_primary_10_34133_research_0452
crossref_primary_10_1002_admt_202500072
crossref_primary_10_1002_smll_202308491
crossref_primary_10_1016_j_nanoen_2023_108906
crossref_primary_10_3390_app13158669
crossref_primary_10_1002_inf2_12534
crossref_primary_10_1016_j_cej_2025_160604
crossref_primary_10_1007_s12274_024_6903_3
crossref_primary_10_1016_j_mtener_2023_101393
crossref_primary_10_1007_s11071_024_09443_9
crossref_primary_10_1002_aisy_202300382
crossref_primary_10_1002_ece2_52
crossref_primary_10_1016_j_nanoen_2023_109018
crossref_primary_10_1109_LRA_2025_3543139
crossref_primary_10_34133_research_0456
crossref_primary_10_1002_aisy_202400576
crossref_primary_10_1016_j_nanoen_2024_109316
crossref_primary_10_1557_s43577_025_00875_1
crossref_primary_10_3390_app15052846
crossref_primary_10_1002_admt_202401053
crossref_primary_10_1109_JSEN_2024_3395970
crossref_primary_10_34133_cbsystems_0112
Cites_doi 10.1016/j.nanoen.2017.08.018
10.1038/s41467-019-12465-2
10.1002/aenm.201901124
10.1109/ICRA48506.2021.9561816
10.1109/IROS45743.2020.9341236
10.1016/j.robot.2019.103332
10.3390/s19102285
10.1002/admt.202101098
10.1038/s41467-020-19059-3
10.1038/s41467-021-25637-w
10.1002/adma.202203814
10.1016/j.eng.2022.04.009
10.1109/JSEN.2019.2959574
10.1109/TNNLS.2020.2980892
10.1126/scirobotics.abj1362
10.1109/TRO.2020.3003230
10.1089/soro.2016.0065
10.1109/LRA.2020.3008120
10.1109/ICRA.2015.7139590
10.1109/ICRA.2014.6907361
10.3390/bios9020062
10.1016/j.oceaneng.2019.04.011
10.1038/s41467-021-27672-z
10.1016/j.matt.2021.08.014
10.1038/s41928-020-0428-6
10.1016/j.energy.2022.123318
10.1016/j.isprsjprs.2011.02.009
10.1109/ICRA.2016.7487331
10.1016/j.oceaneng.2017.04.047
10.1002/adma.201806849
10.1109/TRO.2006.878980
10.1109/LRA.2021.3091384
10.1109/OCEANS-TAIPEI.2014.6964469
10.1126/scirobotics.abf6354
10.1007/s00773-017-0432-3
10.1016/j.oceaneng.2019.106309
10.1016/j.nanoen.2017.06.035
10.1109/OCEANS.2012.6404978
10.1016/j.scib.2020.10.002
10.1002/rob.21951
10.1109/3477.956031
10.1109/IROS.2018.8594374
10.3390/s111110958
10.1038/s41528-022-00160-0
10.1007/s12274-017-1951-2
10.1126/scirobotics.aau6914
ContentType Journal Article
Copyright Copyright © 2023 Peng Xu et al.
Copyright © 2023 Peng Xu et al. 2023 Peng Xu et al.
Copyright_xml – notice: Copyright © 2023 Peng Xu et al.
– notice: Copyright © 2023 Peng Xu et al. 2023 Peng Xu et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.34133/research.0062
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2639-5274
ExternalDocumentID oai_doaj_org_article_9eba1c874a5f430c9570138d8faedacf
PMC10013964
36930813
10_34133_research_0062
Genre Journal Article
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
HYE
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
GROUPED_DOAJ
ID FETCH-LOGICAL-c457t-6b7f392d3260811d92e7d72d99fc5a8c1171a20a694563d298cac07e610f78ac3
IEDL.DBID DOA
ISSN 2639-5274
IngestDate Wed Aug 27 01:22:27 EDT 2025
Thu Aug 21 18:37:37 EDT 2025
Thu Jul 10 22:04:13 EDT 2025
Fri May 23 01:44:35 EDT 2025
Tue Jul 01 03:44:25 EDT 2025
Thu Apr 24 23:01:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2023 Peng Xu et al.
Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-6b7f392d3260811d92e7d72d99fc5a8c1171a20a694563d298cac07e610f78ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/9eba1c874a5f430c9570138d8faedacf
PMID 36930813
PQID 2788797742
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9eba1c874a5f430c9570138d8faedacf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10013964
proquest_miscellaneous_2788797742
pubmed_primary_36930813
crossref_citationtrail_10_34133_research_0062
crossref_primary_10_34133_research_0062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Research (Washington)
PublicationTitleAlternate Research (Wash D C)
PublicationYear 2023
Publisher AAAS
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science (AAAS)
References Paul C (e_1_3_4_12_2) 2006; 22
e_1_3_4_23_2
e_1_3_4_21_2
Wu ZY (e_1_3_4_44_2) 2019; 9
Wang ZL (e_1_3_4_41_2) 2017; 39
Bruno F (e_1_3_4_9_2) 2011; 66
e_1_3_4_46_2
Vidal E (e_1_3_4_6_2) 2020; 37
Prado da Fonseca V (e_1_3_4_22_2) 2019; 19
Melo J (e_1_3_4_4_2) 2017; 139
Kuzdeuov A (e_1_3_4_19_2) 2019; 20
Wang X (e_1_3_4_40_2) 2021; 7
He B (e_1_3_4_5_2) 2011; 11
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
Zhang Y (e_1_3_4_3_2) 2019; 189
e_1_3_4_15_2
e_1_3_4_13_2
e_1_3_4_36_2
Liu M (e_1_3_4_27_2) 2022; 13
Jin T (e_1_3_4_35_2) 2020; 11
e_1_3_4_17_2
Xie WB (e_1_3_4_39_2) 2021; 2021
Zhang X (e_1_3_4_30_2) 2022; 15
e_1_3_4_2_2
Wu J (e_1_3_4_43_2) 2022; 245
Ma Z (e_1_3_4_29_2) 2022; 34
Xu P (e_1_3_4_48_2) 2022; 6
Xu P (e_1_3_4_47_2) 2021; 2021
Xia X (e_1_3_4_37_2) 2019; 10
Wang H (e_1_3_4_38_2) 2020; 66
Shi Q (e_1_3_4_42_2) 2017; 40
e_1_3_4_26_2
e_1_3_4_49_2
Zhou H (e_1_3_4_50_2) 2021; 35
Foresti GL (e_1_3_4_8_2) 2001; 31
Cao R (e_1_3_4_45_2) 2018; 11
Kappassov Z (e_1_3_4_25_2) 2020; 123
Navarro SE (e_1_3_4_28_2) 2020; 5
e_1_3_4_33_2
e_1_3_4_31_2
Li WY (e_1_3_4_20_2) 2021; 6
e_1_3_4_16_2
e_1_3_4_14_2
e_1_3_4_18_2
Zheng W (e_1_3_4_24_2) 2020; 32
Dimitratos SD (e_1_3_4_10_2) 2019; 9
Lin YH (e_1_3_4_7_2) 2017; 22
References_xml – volume: 40
  start-page: 203
  year: 2017
  ident: e_1_3_4_42_2
  article-title: Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.018
– volume: 10
  start-page: 4428
  issue: 1
  year: 2019
  ident: e_1_3_4_37_2
  article-title: A universal standardized method for output capability assessment of nanogenerators
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12465-2
– volume: 9
  start-page: 1901124
  year: 2019
  ident: e_1_3_4_44_2
  article-title: Multifunctional sensor based on translational-rotary triboelectric nanogenerator
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201901124
– ident: e_1_3_4_18_2
  doi: 10.1109/ICRA48506.2021.9561816
– ident: e_1_3_4_11_2
  doi: 10.1109/IROS45743.2020.9341236
– volume: 123
  start-page: 103332
  year: 2020
  ident: e_1_3_4_25_2
  article-title: Touch driven controller and tactile features for physical interactions
  publication-title: Rob Auton Syst
  doi: 10.1016/j.robot.2019.103332
– volume: 19
  start-page: 2285
  year: 2019
  ident: e_1_3_4_22_2
  article-title: Estimating the orientation of objects from tactile sensing data using machine learning methods and visual frames of reference
  publication-title: Sensors
  doi: 10.3390/s19102285
– volume: 7
  issue: 6
  year: 2021
  ident: e_1_3_4_40_2
  article-title: A self powered triboelectric coral like sensor integrated buoy for irregular and UltraLow Frequency Ocean wave monitoring
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.202101098
– volume: 11
  start-page: 5381
  issue: 1
  year: 2020
  ident: e_1_3_4_35_2
  article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19059-3
– ident: e_1_3_4_36_2
  doi: 10.1038/s41467-021-25637-w
– volume: 34
  start-page: 2203814
  year: 2022
  ident: e_1_3_4_29_2
  article-title: A superconducting material based maglev generator used for outer space
  publication-title: Adv Mater
  doi: 10.1002/adma.202203814
– volume: 15
  start-page: 196
  year: 2022
  ident: e_1_3_4_30_2
  article-title: 3D-printed Superhydrophobic and magnetic device that can self-powered sense a tiny droplet impact
  publication-title: Engineering
  doi: 10.1016/j.eng.2022.04.009
– volume: 20
  start-page: 3655
  year: 2019
  ident: e_1_3_4_19_2
  article-title: Neural network augmented sensor fusion for pose estimation of tensegrity manipulators
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2019.2959574
– volume: 32
  start-page: 1192
  year: 2020
  ident: e_1_3_4_24_2
  article-title: Lifelong visual-tactile cross-modal learning for robotic material perception
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2980892
– ident: e_1_3_4_26_2
  doi: 10.1126/scirobotics.abj1362
– ident: e_1_3_4_23_2
  doi: 10.1109/TRO.2020.3003230
– volume: 2021
  start-page: 9864967
  year: 2021
  ident: e_1_3_4_47_2
  article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping
  publication-title: Research
– ident: e_1_3_4_49_2
  doi: 10.1089/soro.2016.0065
– volume: 5
  start-page: 5621
  year: 2020
  ident: e_1_3_4_28_2
  article-title: A model-based sensor fusion approach for force and shape estimation in soft robotics
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.3008120
– volume: 35
  start-page: 11106
  issue: 12
  year: 2021
  ident: e_1_3_4_50_2
  article-title: Beyond efficient transformer for long sequence time-series forecasting
  publication-title: Proc Conf AAAI Artif Intell
– ident: e_1_3_4_14_2
  doi: 10.1109/ICRA.2015.7139590
– ident: e_1_3_4_15_2
  doi: 10.1109/ICRA.2014.6907361
– volume: 9
  start-page: 62
  year: 2019
  ident: e_1_3_4_10_2
  article-title: Biosensors to monitor water quality utilizing insect odorant-binding proteins as detector elements
  publication-title: Biosensors
  doi: 10.3390/bios9020062
– ident: e_1_3_4_2_2
  doi: 10.1016/j.oceaneng.2019.04.011
– volume: 13
  start-page: 79
  issue: 1
  year: 2022
  ident: e_1_3_4_27_2
  article-title: A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27672-z
– ident: e_1_3_4_21_2
  doi: 10.1016/j.matt.2021.08.014
– ident: e_1_3_4_46_2
  doi: 10.1038/s41928-020-0428-6
– volume: 245
  start-page: 123318
  year: 2022
  ident: e_1_3_4_43_2
  article-title: Investigation on a spring-integrated mechanical power take off system for wave energy conversion purpose
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123318
– volume: 66
  start-page: 508
  year: 2011
  ident: e_1_3_4_9_2
  article-title: Experimentation of structured light and stereo vision for underwater 3d reconstruction
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2011.02.009
– ident: e_1_3_4_17_2
  doi: 10.1109/ICRA.2016.7487331
– volume: 139
  start-page: 250
  year: 2017
  ident: e_1_3_4_4_2
  article-title: Survey on advances on terrain based navigation for autonomous underwater vehicles
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.04.047
– ident: e_1_3_4_13_2
  doi: 10.1002/adma.201806849
– volume: 22
  start-page: 944
  year: 2006
  ident: e_1_3_4_12_2
  article-title: Design and control of tensegrity robots for locomotion
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2006.878980
– volume: 6
  start-page: 6228
  year: 2021
  ident: e_1_3_4_20_2
  article-title: Shape recognition of a tensegrity with soft sensor threads and artificial muscles using a recurrent neural network
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2021.3091384
– ident: e_1_3_4_34_2
  doi: 10.1109/OCEANS-TAIPEI.2014.6964469
– ident: e_1_3_4_31_2
  doi: 10.1126/scirobotics.abf6354
– volume: 22
  start-page: 513
  year: 2017
  ident: e_1_3_4_7_2
  article-title: The initial study of lls-based binocular stereo-vision system on underwater 3d image reconstruction in the laboratory
  publication-title: J Mar Sci Technol
  doi: 10.1007/s00773-017-0432-3
– volume: 189
  start-page: 106309
  year: 2019
  ident: e_1_3_4_3_2
  article-title: MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106309
– volume: 39
  start-page: 9
  year: 2017
  ident: e_1_3_4_41_2
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– ident: e_1_3_4_33_2
  doi: 10.1109/OCEANS.2012.6404978
– volume: 66
  start-page: 490
  issue: 5
  year: 2020
  ident: e_1_3_4_38_2
  article-title: Triboelectric nanogenerators for human-health care
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.10.002
– volume: 2021
  start-page: 5963293
  year: 2021
  ident: e_1_3_4_39_2
  article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting
  publication-title: Research
– volume: 37
  start-page: 1123
  year: 2020
  ident: e_1_3_4_6_2
  article-title: Multisensor online 3D view planning for autonomous underwater exploration
  publication-title: J Field Robot
  doi: 10.1002/rob.21951
– volume: 31
  start-page: 691
  year: 2001
  ident: e_1_3_4_8_2
  article-title: Visual inspection of sea bottom structures by an autonomous underwater vehicle
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.956031
– ident: e_1_3_4_16_2
  doi: 10.1109/IROS.2018.8594374
– volume: 11
  start-page: 10958
  year: 2011
  ident: e_1_3_4_5_2
  article-title: Autonomous navigation for autonomous underwater vehicles based on information filters and active
  publication-title: Sensors
  doi: 10.3390/s111110958
– volume: 6
  start-page: 25
  year: 2022
  ident: e_1_3_4_48_2
  article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception
  publication-title: Npj Flex Electron
  doi: 10.1038/s41528-022-00160-0
– volume: 11
  start-page: 3771
  year: 2018
  ident: e_1_3_4_45_2
  article-title: Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1951-2
– ident: e_1_3_4_32_2
  doi: 10.1126/scirobotics.aau6914
SSID ssj0002170995
Score 2.3554635
Snippet The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 0062
Title Deep-Learning-Assisted Underwater 3D Tactile Tensegrity
URI https://www.ncbi.nlm.nih.gov/pubmed/36930813
https://www.proquest.com/docview/2788797742
https://pubmed.ncbi.nlm.nih.gov/PMC10013964
https://doaj.org/article/9eba1c874a5f430c9570138d8faedacf
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykxfx2_pFBUE9hDVt2iRHPzaGME8beCtpPlSQbsyJN3-779t2YxXFi5ce2kDD-zR5nzRvnoeQ88wb5UTmqTFOwwLFR7SAtEyN1AYzBOcaTyMPH7LBmN8_po8rVl9YE1bLA9eB6ypXaGak4Dr1PImMSgVurlnptbPaeJx9IeetLKZwDgaiDdQnrVUacaJOuo14zjNWcsWtLFSJ9f_EML8XSq5knv4m2WgoY3hdd3WLrLlym2w1g_ItvGyUo692iLhzbkobydQnCqFHEG1YmRt9AKuchcldOMKzDK8uHMEK1j2hed0uGfd7o9sBbZwRqOGpmNOsEB6IjQXuBSmdWRU7YUVslfIm1dIwJpiOI50p4EeJjZU02kTCAVfyAlBI9kinnJTugIQSzdClND5ihjPLC6uTwttCx0oXPvIBoYtI5aaRDUf3itcclg9VZPNFZHOMbEAulu2ntWDGry1vMPDLVih0Xd0A-PMG_vwv-ANytoAth4GBux26dJP3tzzGOklkt_Ci_RrG5asSNICULAmIbAHc6kv7SfnyXIlvs4o0Z_zwP3p_RNbRvr7-pXNMOvPZuzsBkjMvTqvvGa7Dz94XcXH_qg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Assisted+Underwater+3D+Tactile+Tensegrity&rft.jtitle=Research+%28Washington%29&rft.au=Peng+Xu&rft.au=Jiaxi+Zheng&rft.au=Jianhua+Liu&rft.au=Xiangyu+Liu&rft.date=2023&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.eissn=2639-5274&rft.volume=6&rft_id=info:doi/10.34133%2Fresearch.0062&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9eba1c874a5f430c9570138d8faedacf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-5274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-5274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-5274&client=summon