Deep-Learning-Assisted Underwater 3D Tactile Tensegrity
The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data an...
Saved in:
Published in | Research (Washington) Vol. 6; p. 0062 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAAS
2023
American Association for the Advancement of Science (AAAS) |
Online Access | Get full text |
Cover
Loading…
Abstract | The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals’ musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback. |
---|---|
AbstractList | The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals’ musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback. The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals' musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals' musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback. |
Author | Xu, Peng Guan, Tangzhen Liu, Jianhua Liu, Xiangyu Wang, Xinyu Zheng, Jiaxi Fu, Xianping Xu, Minyi Xie, Guangming Wang, Siyuan Wang, Zhong Lin |
AuthorAffiliation | 5 School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta, GA 30332-0245 , USA 2 School of Information Science and Technology , Dalian Maritime University , Dalian 116026 , China 4 Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100871 , China 1 Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College , Dalian Maritime University , Dalian 116026 , China 3 Intelligent Biomimetic Design Lab, College of Engineering , Peking University , Beijing 100871 , China |
AuthorAffiliation_xml | – name: 1 Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College , Dalian Maritime University , Dalian 116026 , China – name: 2 School of Information Science and Technology , Dalian Maritime University , Dalian 116026 , China – name: 4 Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100871 , China – name: 5 School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta, GA 30332-0245 , USA – name: 3 Intelligent Biomimetic Design Lab, College of Engineering , Peking University , Beijing 100871 , China |
Author_xml | – sequence: 1 givenname: Peng surname: Xu fullname: Xu, Peng organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 2 givenname: Jiaxi surname: Zheng fullname: Zheng, Jiaxi organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 3 givenname: Jianhua surname: Liu fullname: Liu, Jianhua organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 4 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 5 givenname: Xinyu surname: Wang fullname: Wang, Xinyu organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 6 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 7 givenname: Tangzhen surname: Guan fullname: Guan, Tangzhen organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 8 givenname: Xianping surname: Fu fullname: Fu, Xianping organization: School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China – sequence: 9 givenname: Minyi surname: Xu fullname: Xu, Minyi organization: Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China – sequence: 10 givenname: Guangming surname: Xie fullname: Xie, Guangming organization: Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China – sequence: 11 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100871, China., School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36930813$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEQxS1UREvplSPKkcum_lp_nFDVAq0UiUt6tib2bOpq4w22A-p_j9s0qEXiNNb4vd-T5r0nR2lKSMhHRudCMiHOMxaE7O_mlCr-hpxwJWzXcy2PXryPyVkp95RSzjS1tn9HjoWyghomToi-Qtx2i0ZJMa27i1JiqRhmtylg_g0V80xczZbgaxxxtsRUcJ1jffhA3g4wFjx7nqfk9tvX5eV1t_jx_ebyYtF52evaqZUehOVBcNXyWLAcddA8WDv4HoxnTDPgFJSVvRKBW-PBU42K0UEb8OKU3Oy5YYJ7t81xA_nBTRDd02LKawe5Rj-is7gC5o2W0A9SUG97TZkwwQyAAfzQWF_2rO1utcHgMdUM4yvo658U79x6-uUYbSCrZCN8fibk6ecOS3WbWDyOIyScdsVxbYy2WkvepJ9ehv1NOZy-CeRe4PNUSsbB-VihxukxO44t1D2V7A4lu8eSm23-j-1A_o_hD43Rqsk |
CitedBy_id | crossref_primary_10_1109_TIM_2025_3541696 crossref_primary_10_1016_j_device_2024_100525 crossref_primary_10_34133_research_0452 crossref_primary_10_1002_admt_202500072 crossref_primary_10_1002_smll_202308491 crossref_primary_10_1016_j_nanoen_2023_108906 crossref_primary_10_3390_app13158669 crossref_primary_10_1002_inf2_12534 crossref_primary_10_1016_j_cej_2025_160604 crossref_primary_10_1007_s12274_024_6903_3 crossref_primary_10_1016_j_mtener_2023_101393 crossref_primary_10_1007_s11071_024_09443_9 crossref_primary_10_1002_aisy_202300382 crossref_primary_10_1002_ece2_52 crossref_primary_10_1016_j_nanoen_2023_109018 crossref_primary_10_1109_LRA_2025_3543139 crossref_primary_10_34133_research_0456 crossref_primary_10_1002_aisy_202400576 crossref_primary_10_1016_j_nanoen_2024_109316 crossref_primary_10_1557_s43577_025_00875_1 crossref_primary_10_3390_app15052846 crossref_primary_10_1002_admt_202401053 crossref_primary_10_1109_JSEN_2024_3395970 crossref_primary_10_34133_cbsystems_0112 |
Cites_doi | 10.1016/j.nanoen.2017.08.018 10.1038/s41467-019-12465-2 10.1002/aenm.201901124 10.1109/ICRA48506.2021.9561816 10.1109/IROS45743.2020.9341236 10.1016/j.robot.2019.103332 10.3390/s19102285 10.1002/admt.202101098 10.1038/s41467-020-19059-3 10.1038/s41467-021-25637-w 10.1002/adma.202203814 10.1016/j.eng.2022.04.009 10.1109/JSEN.2019.2959574 10.1109/TNNLS.2020.2980892 10.1126/scirobotics.abj1362 10.1109/TRO.2020.3003230 10.1089/soro.2016.0065 10.1109/LRA.2020.3008120 10.1109/ICRA.2015.7139590 10.1109/ICRA.2014.6907361 10.3390/bios9020062 10.1016/j.oceaneng.2019.04.011 10.1038/s41467-021-27672-z 10.1016/j.matt.2021.08.014 10.1038/s41928-020-0428-6 10.1016/j.energy.2022.123318 10.1016/j.isprsjprs.2011.02.009 10.1109/ICRA.2016.7487331 10.1016/j.oceaneng.2017.04.047 10.1002/adma.201806849 10.1109/TRO.2006.878980 10.1109/LRA.2021.3091384 10.1109/OCEANS-TAIPEI.2014.6964469 10.1126/scirobotics.abf6354 10.1007/s00773-017-0432-3 10.1016/j.oceaneng.2019.106309 10.1016/j.nanoen.2017.06.035 10.1109/OCEANS.2012.6404978 10.1016/j.scib.2020.10.002 10.1002/rob.21951 10.1109/3477.956031 10.1109/IROS.2018.8594374 10.3390/s111110958 10.1038/s41528-022-00160-0 10.1007/s12274-017-1951-2 10.1126/scirobotics.aau6914 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Peng Xu et al. Copyright © 2023 Peng Xu et al. 2023 Peng Xu et al. |
Copyright_xml | – notice: Copyright © 2023 Peng Xu et al. – notice: Copyright © 2023 Peng Xu et al. 2023 Peng Xu et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.34133/research.0062 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2639-5274 |
ExternalDocumentID | oai_doaj_org_article_9eba1c874a5f430c9570138d8faedacf PMC10013964 36930813 10_34133_research_0062 |
Genre | Journal Article |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION HYE M~E OK1 PGMZT RPM NPM 7X8 5PM GROUPED_DOAJ |
ID | FETCH-LOGICAL-c457t-6b7f392d3260811d92e7d72d99fc5a8c1171a20a694563d298cac07e610f78ac3 |
IEDL.DBID | DOA |
ISSN | 2639-5274 |
IngestDate | Wed Aug 27 01:22:27 EDT 2025 Thu Aug 21 18:37:37 EDT 2025 Thu Jul 10 22:04:13 EDT 2025 Fri May 23 01:44:35 EDT 2025 Tue Jul 01 03:44:25 EDT 2025 Thu Apr 24 23:01:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2023 Peng Xu et al. Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-6b7f392d3260811d92e7d72d99fc5a8c1171a20a694563d298cac07e610f78ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/9eba1c874a5f430c9570138d8faedacf |
PMID | 36930813 |
PQID | 2788797742 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9eba1c874a5f430c9570138d8faedacf pubmedcentral_primary_oai_pubmedcentral_nih_gov_10013964 proquest_miscellaneous_2788797742 pubmed_primary_36930813 crossref_citationtrail_10_34133_research_0062 crossref_primary_10_34133_research_0062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Research (Washington) |
PublicationTitleAlternate | Research (Wash D C) |
PublicationYear | 2023 |
Publisher | AAAS American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: AAAS – name: American Association for the Advancement of Science (AAAS) |
References | Paul C (e_1_3_4_12_2) 2006; 22 e_1_3_4_23_2 e_1_3_4_21_2 Wu ZY (e_1_3_4_44_2) 2019; 9 Wang ZL (e_1_3_4_41_2) 2017; 39 Bruno F (e_1_3_4_9_2) 2011; 66 e_1_3_4_46_2 Vidal E (e_1_3_4_6_2) 2020; 37 Prado da Fonseca V (e_1_3_4_22_2) 2019; 19 Melo J (e_1_3_4_4_2) 2017; 139 Kuzdeuov A (e_1_3_4_19_2) 2019; 20 Wang X (e_1_3_4_40_2) 2021; 7 He B (e_1_3_4_5_2) 2011; 11 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 Zhang Y (e_1_3_4_3_2) 2019; 189 e_1_3_4_15_2 e_1_3_4_13_2 e_1_3_4_36_2 Liu M (e_1_3_4_27_2) 2022; 13 Jin T (e_1_3_4_35_2) 2020; 11 e_1_3_4_17_2 Xie WB (e_1_3_4_39_2) 2021; 2021 Zhang X (e_1_3_4_30_2) 2022; 15 e_1_3_4_2_2 Wu J (e_1_3_4_43_2) 2022; 245 Ma Z (e_1_3_4_29_2) 2022; 34 Xu P (e_1_3_4_48_2) 2022; 6 Xu P (e_1_3_4_47_2) 2021; 2021 Xia X (e_1_3_4_37_2) 2019; 10 Wang H (e_1_3_4_38_2) 2020; 66 Shi Q (e_1_3_4_42_2) 2017; 40 e_1_3_4_26_2 e_1_3_4_49_2 Zhou H (e_1_3_4_50_2) 2021; 35 Foresti GL (e_1_3_4_8_2) 2001; 31 Cao R (e_1_3_4_45_2) 2018; 11 Kappassov Z (e_1_3_4_25_2) 2020; 123 Navarro SE (e_1_3_4_28_2) 2020; 5 e_1_3_4_33_2 e_1_3_4_31_2 Li WY (e_1_3_4_20_2) 2021; 6 e_1_3_4_16_2 e_1_3_4_14_2 e_1_3_4_18_2 Zheng W (e_1_3_4_24_2) 2020; 32 Dimitratos SD (e_1_3_4_10_2) 2019; 9 Lin YH (e_1_3_4_7_2) 2017; 22 |
References_xml | – volume: 40 start-page: 203 year: 2017 ident: e_1_3_4_42_2 article-title: Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.018 – volume: 10 start-page: 4428 issue: 1 year: 2019 ident: e_1_3_4_37_2 article-title: A universal standardized method for output capability assessment of nanogenerators publication-title: Nat Commun doi: 10.1038/s41467-019-12465-2 – volume: 9 start-page: 1901124 year: 2019 ident: e_1_3_4_44_2 article-title: Multifunctional sensor based on translational-rotary triboelectric nanogenerator publication-title: Adv Energy Mater doi: 10.1002/aenm.201901124 – ident: e_1_3_4_18_2 doi: 10.1109/ICRA48506.2021.9561816 – ident: e_1_3_4_11_2 doi: 10.1109/IROS45743.2020.9341236 – volume: 123 start-page: 103332 year: 2020 ident: e_1_3_4_25_2 article-title: Touch driven controller and tactile features for physical interactions publication-title: Rob Auton Syst doi: 10.1016/j.robot.2019.103332 – volume: 19 start-page: 2285 year: 2019 ident: e_1_3_4_22_2 article-title: Estimating the orientation of objects from tactile sensing data using machine learning methods and visual frames of reference publication-title: Sensors doi: 10.3390/s19102285 – volume: 7 issue: 6 year: 2021 ident: e_1_3_4_40_2 article-title: A self powered triboelectric coral like sensor integrated buoy for irregular and UltraLow Frequency Ocean wave monitoring publication-title: Adv Mater Technol doi: 10.1002/admt.202101098 – volume: 11 start-page: 5381 issue: 1 year: 2020 ident: e_1_3_4_35_2 article-title: Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications publication-title: Nat Commun doi: 10.1038/s41467-020-19059-3 – ident: e_1_3_4_36_2 doi: 10.1038/s41467-021-25637-w – volume: 34 start-page: 2203814 year: 2022 ident: e_1_3_4_29_2 article-title: A superconducting material based maglev generator used for outer space publication-title: Adv Mater doi: 10.1002/adma.202203814 – volume: 15 start-page: 196 year: 2022 ident: e_1_3_4_30_2 article-title: 3D-printed Superhydrophobic and magnetic device that can self-powered sense a tiny droplet impact publication-title: Engineering doi: 10.1016/j.eng.2022.04.009 – volume: 20 start-page: 3655 year: 2019 ident: e_1_3_4_19_2 article-title: Neural network augmented sensor fusion for pose estimation of tensegrity manipulators publication-title: IEEE Sensors J doi: 10.1109/JSEN.2019.2959574 – volume: 32 start-page: 1192 year: 2020 ident: e_1_3_4_24_2 article-title: Lifelong visual-tactile cross-modal learning for robotic material perception publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2980892 – ident: e_1_3_4_26_2 doi: 10.1126/scirobotics.abj1362 – ident: e_1_3_4_23_2 doi: 10.1109/TRO.2020.3003230 – volume: 2021 start-page: 9864967 year: 2021 ident: e_1_3_4_47_2 article-title: A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping publication-title: Research – ident: e_1_3_4_49_2 doi: 10.1089/soro.2016.0065 – volume: 5 start-page: 5621 year: 2020 ident: e_1_3_4_28_2 article-title: A model-based sensor fusion approach for force and shape estimation in soft robotics publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.3008120 – volume: 35 start-page: 11106 issue: 12 year: 2021 ident: e_1_3_4_50_2 article-title: Beyond efficient transformer for long sequence time-series forecasting publication-title: Proc Conf AAAI Artif Intell – ident: e_1_3_4_14_2 doi: 10.1109/ICRA.2015.7139590 – ident: e_1_3_4_15_2 doi: 10.1109/ICRA.2014.6907361 – volume: 9 start-page: 62 year: 2019 ident: e_1_3_4_10_2 article-title: Biosensors to monitor water quality utilizing insect odorant-binding proteins as detector elements publication-title: Biosensors doi: 10.3390/bios9020062 – ident: e_1_3_4_2_2 doi: 10.1016/j.oceaneng.2019.04.011 – volume: 13 start-page: 79 issue: 1 year: 2022 ident: e_1_3_4_27_2 article-title: A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments publication-title: Nat Commun doi: 10.1038/s41467-021-27672-z – ident: e_1_3_4_21_2 doi: 10.1016/j.matt.2021.08.014 – ident: e_1_3_4_46_2 doi: 10.1038/s41928-020-0428-6 – volume: 245 start-page: 123318 year: 2022 ident: e_1_3_4_43_2 article-title: Investigation on a spring-integrated mechanical power take off system for wave energy conversion purpose publication-title: Energy doi: 10.1016/j.energy.2022.123318 – volume: 66 start-page: 508 year: 2011 ident: e_1_3_4_9_2 article-title: Experimentation of structured light and stereo vision for underwater 3d reconstruction publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2011.02.009 – ident: e_1_3_4_17_2 doi: 10.1109/ICRA.2016.7487331 – volume: 139 start-page: 250 year: 2017 ident: e_1_3_4_4_2 article-title: Survey on advances on terrain based navigation for autonomous underwater vehicles publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.04.047 – ident: e_1_3_4_13_2 doi: 10.1002/adma.201806849 – volume: 22 start-page: 944 year: 2006 ident: e_1_3_4_12_2 article-title: Design and control of tensegrity robots for locomotion publication-title: IEEE Trans Robot doi: 10.1109/TRO.2006.878980 – volume: 6 start-page: 6228 year: 2021 ident: e_1_3_4_20_2 article-title: Shape recognition of a tensegrity with soft sensor threads and artificial muscles using a recurrent neural network publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2021.3091384 – ident: e_1_3_4_34_2 doi: 10.1109/OCEANS-TAIPEI.2014.6964469 – ident: e_1_3_4_31_2 doi: 10.1126/scirobotics.abf6354 – volume: 22 start-page: 513 year: 2017 ident: e_1_3_4_7_2 article-title: The initial study of lls-based binocular stereo-vision system on underwater 3d image reconstruction in the laboratory publication-title: J Mar Sci Technol doi: 10.1007/s00773-017-0432-3 – volume: 189 start-page: 106309 year: 2019 ident: e_1_3_4_3_2 article-title: MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106309 – volume: 39 start-page: 9 year: 2017 ident: e_1_3_4_41_2 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – ident: e_1_3_4_33_2 doi: 10.1109/OCEANS.2012.6404978 – volume: 66 start-page: 490 issue: 5 year: 2020 ident: e_1_3_4_38_2 article-title: Triboelectric nanogenerators for human-health care publication-title: Sci Bull doi: 10.1016/j.scib.2020.10.002 – volume: 2021 start-page: 5963293 year: 2021 ident: e_1_3_4_39_2 article-title: A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting publication-title: Research – volume: 37 start-page: 1123 year: 2020 ident: e_1_3_4_6_2 article-title: Multisensor online 3D view planning for autonomous underwater exploration publication-title: J Field Robot doi: 10.1002/rob.21951 – volume: 31 start-page: 691 year: 2001 ident: e_1_3_4_8_2 article-title: Visual inspection of sea bottom structures by an autonomous underwater vehicle publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.956031 – ident: e_1_3_4_16_2 doi: 10.1109/IROS.2018.8594374 – volume: 11 start-page: 10958 year: 2011 ident: e_1_3_4_5_2 article-title: Autonomous navigation for autonomous underwater vehicles based on information filters and active publication-title: Sensors doi: 10.3390/s111110958 – volume: 6 start-page: 25 year: 2022 ident: e_1_3_4_48_2 article-title: A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception publication-title: Npj Flex Electron doi: 10.1038/s41528-022-00160-0 – volume: 11 start-page: 3771 year: 2018 ident: e_1_3_4_45_2 article-title: Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring publication-title: Nano Res doi: 10.1007/s12274-017-1951-2 – ident: e_1_3_4_32_2 doi: 10.1126/scirobotics.aau6914 |
SSID | ssj0002170995 |
Score | 2.3554635 |
Snippet | The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 0062 |
Title | Deep-Learning-Assisted Underwater 3D Tactile Tensegrity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36930813 https://www.proquest.com/docview/2788797742 https://pubmed.ncbi.nlm.nih.gov/PMC10013964 https://doaj.org/article/9eba1c874a5f430c9570138d8faedacf |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykxfx2_pFBUE9hDVt2iRHPzaGME8beCtpPlSQbsyJN3-779t2YxXFi5ce2kDD-zR5nzRvnoeQ88wb5UTmqTFOwwLFR7SAtEyN1AYzBOcaTyMPH7LBmN8_po8rVl9YE1bLA9eB6ypXaGak4Dr1PImMSgVurlnptbPaeJx9IeetLKZwDgaiDdQnrVUacaJOuo14zjNWcsWtLFSJ9f_EML8XSq5knv4m2WgoY3hdd3WLrLlym2w1g_ItvGyUo692iLhzbkobydQnCqFHEG1YmRt9AKuchcldOMKzDK8uHMEK1j2hed0uGfd7o9sBbZwRqOGpmNOsEB6IjQXuBSmdWRU7YUVslfIm1dIwJpiOI50p4EeJjZU02kTCAVfyAlBI9kinnJTugIQSzdClND5ihjPLC6uTwttCx0oXPvIBoYtI5aaRDUf3itcclg9VZPNFZHOMbEAulu2ntWDGry1vMPDLVih0Xd0A-PMG_vwv-ANytoAth4GBux26dJP3tzzGOklkt_Ci_RrG5asSNICULAmIbAHc6kv7SfnyXIlvs4o0Z_zwP3p_RNbRvr7-pXNMOvPZuzsBkjMvTqvvGa7Dz94XcXH_qg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Assisted+Underwater+3D+Tactile+Tensegrity&rft.jtitle=Research+%28Washington%29&rft.au=Peng+Xu&rft.au=Jiaxi+Zheng&rft.au=Jianhua+Liu&rft.au=Xiangyu+Liu&rft.date=2023&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.eissn=2639-5274&rft.volume=6&rft_id=info:doi/10.34133%2Fresearch.0062&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9eba1c874a5f430c9570138d8faedacf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-5274&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-5274&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-5274&client=summon |