Thermal building control using active ventilated block integrating phase change material

•Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled with PCM.•Hybrid simulations by finite element and electrical analogy.•Resistance and capacitance (RC)-network model for modelling intra-ven...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 187; pp. 50 - 63
Main Authors Laaouatni, Amine, Martaj, Nadia, Bennacer, Rachid, Lachi, Mohammed, El Omari, Mohamed, El Ganaoui, Mohammed
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.03.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0378-7788
1872-6178
DOI10.1016/j.enbuild.2019.01.024

Cover

Loading…
Abstract •Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled with PCM.•Hybrid simulations by finite element and electrical analogy.•Resistance and capacitance (RC)-network model for modelling intra-ventilation PCM. In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions. The proposed integration solutions concern the building envelope as well as the applications related to its operation. The study of the incorporation of PCM in the walls of the building was the subject of numerous works. However, the antisymmetric character of storing/recovering energy management in the walls is less controlled and do not fit the optimal conditions. In this study, a solution based on the direct integration of a stabilized PCM (gel) in an envelope including ventilation channels, was proposed to overcome this problem of antisymmetry storing/recovering and fitting with different fixed ambient conditions. The final aim is to develop the optimization strategy of a wall combining the heavy inertia offered by the PCM, intra-ventilation control and the contribution to air renewal energy demand. In this context, an experimental study of a concrete block system is conducted to test the thermal response of this configuration by the application of cyclic solicitations. The comprehension of this integrated constructive solution essentially passes by the possession of validated numerical tools. For this, two models have been developed. The first model using the electrical–thermal analogy, based on an RC equivalence, is distinguished by its relative simplicity and weak time computing demand. Each of these two factors, R and C summarise the system properties and has a direct influence on the building transient simulations over a year. The second one is based on direct numerical simulation DNS of the energy and fluid flow equations using commercial code COMSOL Multiphysics. Such DNS is time consuming and could not be used to simulate over a year but aims only to validate the first RC circuit approach. A comparison of these two models with the idealised experimental data was carried out and allowed the validation of the thermal behaviour of the solution based on the integration of the PCM with core ventilation.
AbstractList In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions. The proposed integration solutions concern the building envelope as well as the applications related to its operation. The study of the incorporation of PCM in the walls of the building was the subject of numerous works. However, the antisymmetric character of storing/recovering energy management in the walls is less controlled and do not fit the optimal conditions. In this study, a solution based on the direct integration of a stabilized PCM (gel) in an envelope including ventilation channels, was proposed to overcome this problem of antisymmetry storing/recovering and fitting with different fixed ambient conditions. The final aim is to develop the optimization strategy of a wall combining the heavy inertia offered by the PCM, intra-ventilation control and the contribution to air renewal energy demand. In this context, an experimental study of a concrete block system is conducted to test the thermal response of this configuration by the application of cyclic solicitations. The comprehension of this integrated constructive solution essentially passes by the possession of validated numerical tools. For this, two models have been developed. The first model using the electrical–thermal analogy, based on an RC equivalence, is distinguished by its relative simplicity and weak time computing demand. Each of these two factors, R and C summarise the system properties and has a direct influence on the building transient simulations over a year. The second one is based on direct numerical simulation DNS of the energy and fluid flow equations using commercial code COMSOL Multiphysics. Such DNS is time consuming and could not be used to simulate over a year but aims only to validate the first RC circuit approach. A comparison of these two models with the idealised experimental data was carried out and allowed the validation of the thermal behaviour of the solution based on the integration of the PCM with core ventilation.
•Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled with PCM.•Hybrid simulations by finite element and electrical analogy.•Resistance and capacitance (RC)-network model for modelling intra-ventilation PCM. In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions. The proposed integration solutions concern the building envelope as well as the applications related to its operation. The study of the incorporation of PCM in the walls of the building was the subject of numerous works. However, the antisymmetric character of storing/recovering energy management in the walls is less controlled and do not fit the optimal conditions. In this study, a solution based on the direct integration of a stabilized PCM (gel) in an envelope including ventilation channels, was proposed to overcome this problem of antisymmetry storing/recovering and fitting with different fixed ambient conditions. The final aim is to develop the optimization strategy of a wall combining the heavy inertia offered by the PCM, intra-ventilation control and the contribution to air renewal energy demand. In this context, an experimental study of a concrete block system is conducted to test the thermal response of this configuration by the application of cyclic solicitations. The comprehension of this integrated constructive solution essentially passes by the possession of validated numerical tools. For this, two models have been developed. The first model using the electrical–thermal analogy, based on an RC equivalence, is distinguished by its relative simplicity and weak time computing demand. Each of these two factors, R and C summarise the system properties and has a direct influence on the building transient simulations over a year. The second one is based on direct numerical simulation DNS of the energy and fluid flow equations using commercial code COMSOL Multiphysics. Such DNS is time consuming and could not be used to simulate over a year but aims only to validate the first RC circuit approach. A comparison of these two models with the idealised experimental data was carried out and allowed the validation of the thermal behaviour of the solution based on the integration of the PCM with core ventilation.
Author Laaouatni, Amine
El Ganaoui, Mohammed
Bennacer, Rachid
Lachi, Mohammed
Martaj, Nadia
El Omari, Mohamed
Author_xml – sequence: 1
  givenname: Amine
  surname: Laaouatni
  fullname: Laaouatni, Amine
  organization: EPF Campus de Troyes 2, rue F. Sastre 10430 Rosières-près-Troyes, France
– sequence: 2
  givenname: Nadia
  surname: Martaj
  fullname: Martaj, Nadia
  organization: EPF Campus de Troyes 2, rue F. Sastre 10430 Rosières-près-Troyes, France
– sequence: 3
  givenname: Rachid
  surname: Bennacer
  fullname: Bennacer, Rachid
  email: rachid.bennacer@ens-cachan.fr, rachid.bennacer@ens-paris-saclay.fr
  organization: LMT-Cachan, ENS Cachan CNRS, Université Paris Saclay, 61 avenue du Président Wilson, 94230 Cachan, France
– sequence: 4
  givenname: Mohammed
  surname: Lachi
  fullname: Lachi, Mohammed
  organization: GRESPI EA 4694, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de la Housse, 51687 Reims cedex 2, France
– sequence: 5
  givenname: Mohamed
  surname: El Omari
  fullname: El Omari, Mohamed
  organization: Laboratory of Automation, Environment and Transfer Processes LAEPT, Faculty of Sciences Semlalia, Cadi Ayyad University, P. B. 2390 Marrakesh, Morocco
– sequence: 6
  givenname: Mohammed
  surname: El Ganaoui
  fullname: El Ganaoui, Mohammed
  organization: Université de Lorraine, Laboratoire Lermab-longwy, IUT Henri Poincaré de Longwy, 186 rue de Lorraine, 54400 Longwy, Cosnes et Romain, France
BackLink https://hal.science/hal-03138346$$DView record in HAL
BookMark eNqFkE1r3DAQhkVJoJs0P6FgyCkHu_qwPkwOIYSkKSz0kkBuQpbHu9pqpY2kXei_j90NOfSS0zDD874Mzxk6CTEAQt8Jbggm4semgdDvnR8aiknXYNJg2n5BC6IkrQWR6gQtMJOqllKpr-gs5w3GWHBJFujlaQ1pa3z1r8CFVWVjKCn6ap_nzdjiDlAdIBTnTYGh6n20fyoXCqySKTOzW5sMlV2bsIJqO0HJGf8NnY7GZ7h4n-fo-eH-6e6xXv7--evudlnblstSCyHHXnIj-cChZ5JhSkdiqbJs6CgRpuvUaClrDVhCB8qE7ansOJOi61uF2Tm6Ovaujde75LYm_dXROP14u9TzDTPCFGvFgUzs5ZHdpfi6h1z0Ju5TmN7TlOJWSt62fKL4kbIp5pxg_KglWM_C9Ua_C9ezcI2JnoRPuev_ctaVydDs0zj_afrmmIZJ1sFB0tk6CBYGl8AWPUT3ScMbL2OhVA
CitedBy_id crossref_primary_10_1088_2631_8695_ab618e
crossref_primary_10_1016_j_est_2023_106913
crossref_primary_10_1016_j_cscm_2023_e02193
crossref_primary_10_1016_j_buildenv_2021_107995
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125165
crossref_primary_10_1016_j_matpr_2021_11_048
crossref_primary_10_1155_2019_5253946
crossref_primary_10_1016_j_conbuildmat_2023_131367
crossref_primary_10_1016_j_enbuild_2019_109337
crossref_primary_10_1016_j_est_2024_114713
crossref_primary_10_1016_j_buildenv_2020_107175
crossref_primary_10_1016_j_solener_2022_08_049
crossref_primary_10_1093_ijlct_ctae171
crossref_primary_10_1016_j_conbuildmat_2020_121315
crossref_primary_10_1016_j_tsep_2024_103019
crossref_primary_10_1615_HeatTransRes_2023047570
crossref_primary_10_1016_j_jobe_2020_102122
crossref_primary_10_1016_j_enconman_2020_113187
crossref_primary_10_1016_j_enbuild_2021_111010
crossref_primary_10_1177_1369433220944508
crossref_primary_10_4028_www_scientific_net_DDF_406_164
crossref_primary_10_1016_j_conbuildmat_2024_136160
crossref_primary_10_1016_j_est_2021_102710
crossref_primary_10_1080_08916152_2020_1817178
crossref_primary_10_1016_j_enconman_2019_112288
crossref_primary_10_1016_j_est_2022_104461
crossref_primary_10_1016_j_jobe_2021_103054
crossref_primary_10_3390_buildings15071047
crossref_primary_10_1007_s11837_019_03787_z
crossref_primary_10_1016_j_est_2023_110128
crossref_primary_10_3390_en12122400
crossref_primary_10_1016_j_est_2020_101913
crossref_primary_10_1016_j_rser_2022_112738
crossref_primary_10_1590_s1678_86212022000300610
crossref_primary_10_1016_j_buildenv_2024_111476
crossref_primary_10_3390_app9153091
crossref_primary_10_3390_en15031158
crossref_primary_10_1016_j_jobe_2021_102418
crossref_primary_10_1080_15435075_2021_1890082
crossref_primary_10_1016_j_jobe_2023_108315
crossref_primary_10_1016_j_jobe_2022_104656
crossref_primary_10_1080_00038628_2022_2058459
crossref_primary_10_1007_s10973_024_13098_4
crossref_primary_10_1016_j_csite_2022_102622
crossref_primary_10_1016_j_jobe_2020_101447
Cites_doi 10.1016/j.enbuild.2005.07.010
10.1016/j.rser.2013.03.004
10.1016/j.enconman.2016.04.065
10.1016/j.buildenv.2006.07.023
10.1016/S1359-4311(01)00058-8
10.1016/S0196-8904(03)00131-6
10.1016/j.enbuild.2013.11.079
10.1016/j.rser.2016.03.036
10.1016/j.enbuild.2011.09.028
10.1016/j.enbuild.2007.03.001
10.1016/j.solener.2016.03.030
10.1002/er.1082
10.1016/j.scs.2018.01.020
10.1016/j.enbuild.2010.09.017
10.1016/j.egypro.2017.11.281
10.1016/j.enbuild.2005.11.002
10.1016/j.ijheatmasstransfer.2013.08.001
10.1016/j.enbuild.2009.10.022
10.1016/j.enbuild.2013.03.042
10.1016/S0307-904X(82)80108-X
10.1016/j.enbuild.2018.06.001
10.1016/j.buildenv.2012.01.023
10.1016/S0378-7788(02)00019-1
10.1016/j.apenergy.2011.08.025
10.1016/0360-1323(83)90006-9
10.1016/j.egypro.2015.11.261
10.1016/j.rser.2010.11.018
10.1016/j.enbuild.2006.03.030
10.1016/j.enbuild.2006.09.002
10.1016/j.enbuild.2014.07.012
10.1016/j.solener.2017.07.072
10.1016/j.conbuildmat.2016.02.225
10.1016/j.cemconres.2003.10.022
10.1016/j.enbuild.2012.04.022
10.1016/j.buildenv.2004.04.005
10.1016/j.enbuild.2011.12.009
10.1016/j.rser.2012.10.034
10.1016/j.enbuild.2005.07.008
10.1016/j.enbuild.2011.12.005
10.1016/j.ijthermalsci.2003.07.001
10.1016/S0927-0248(99)00128-2
10.1016/j.applthermaleng.2007.04.016
10.1016/j.rser.2013.01.024
10.1016/j.egypro.2015.11.125
10.1016/j.enbuild.2017.06.038
10.1016/j.enbuild.2008.11.022
10.1016/j.enbuild.2011.07.018
10.1016/j.enbuild.2013.01.029
10.5370/JEET.2013.8.5.975
10.2514/2.6499
10.1088/1742-6596/745/3/032131
10.1016/j.rser.2016.03.007
10.1016/j.enconman.2018.07.015
10.1016/j.rser.2010.08.019
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV 2019
Attribution - NonCommercial
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV 2019
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
1XC
VOOES
DOI 10.1016/j.enbuild.2019.01.024
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
EndPage 63
ExternalDocumentID oai_HAL_hal_03138346v1
10_1016_j_enbuild_2019_01_024
S0378778818319819
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
1XC
VOOES
ID FETCH-LOGICAL-c457t-667fb75a75d5eb373022f1c28c3d9216a998fc234aec12d236cb27953769b4803
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Fri May 09 12:07:05 EDT 2025
Wed Aug 13 11:25:14 EDT 2025
Tue Jul 01 01:12:55 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Fri Feb 23 02:27:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase change material (PCM)
Modelling
Thermal building
Thermal inertia
Thermal modelling
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-667fb75a75d5eb373022f1c28c3d9216a998fc234aec12d236cb27953769b4803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6183-2060
0000-0002-8876-9361
OpenAccessLink https://hal.science/hal-03138346
PQID 2204775445
PQPubID 2045483
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_03138346v1
proquest_journals_2204775445
crossref_primary_10_1016_j_enbuild_2019_01_024
crossref_citationtrail_10_1016_j_enbuild_2019_01_024
elsevier_sciencedirect_doi_10_1016_j_enbuild_2019_01_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Ahmad, Bontemps, Sallée, Quenard (bib0030) 2006; 38
Fraisse, Viardot, Lafabrie, Achard (bib0040) 2002; 34
Lamberg, Lehtiniemi, Henell (bib0046) 2004; 43
Goia, Chaudhary, Fantucci (bib0058) 2018; 174
Davies (bib0038) 1982; 6
Hasse, Grenet, Bontemps, Dendievel, Sallée (bib0032) 2011; 43
Kant, Shukla, Sharma (bib0035) 2017; 155
Ansuini, Larghetti, Giretti, Lemma (bib0009) 2011; 43
Bueno, Norford, Pigeon, Britter (bib0043) 2012; 54
Guichard, Miranville, Bigot, Boyer (bib0019) 2014; 70
Khudhair, Farid (bib0002) 2004; 45
Zhang, Zhou, Lin, Zhang, Di (bib0036) 2007; 42
Ahmad, Bontemps, Sallée, Quenard (bib0049) 2006; 38
AL-Saadi, Zhai (bib0048) 2013; 21
Park, Martaj, Ruellan, Bennacer, Monmasson (bib0042) 2013; 8
Goyal, Barooah (bib0039) 2012; 47
Incropera, DeWitt (bib0051) 1990
Davies (bib0052) 1983; 18
Dermardiros, Chen, Athienitis (bib0054) 2015; 78
Waqas, Ud Din (bib0027) 2013; 18
Lee, Hawes, Banu, Feldman (bib0034) 2000; 62
Stathopoulos, El Mankibi, Issoglio, Michel, Haghighat (bib0055) 2016; 132
Kośny (bib0057) 2015
Kämpf, Robinson (bib0041) 2007; 39
Li, Wu, Liu, Zhang, Arıcı (bib0021) 2018; 172
Zhang, Li, Zhou, Wu (bib0033) 2004; 34
Zhang, Chen, Wu, Shi (bib0014) 2011; 43
Laaouatni, Martaj, Bennacer, El Omari, El Ganaoui (bib0045) 2017; 139
Zhang, Medina, King (bib0013) 2005; 29
Castell, Martorell, Medrano, Pérez, Cabeza (bib0011) 2010; 42
Goia, Perino, Serra (bib0020) 2013; 60
Akeiber, Nejat, Majid, Wahid, Jomehzadeh, Zeynali Famileh, Calautit, Hughes, Zaki (bib0029) 2016; 60
Cabeza, Castell, Barreneche, De Gracia, Fernández (bib0004) 2011; 15
Lin, Zhang, Xu, Di, Yang, Qin (bib0008) 2004; 39
Kuznik, David, Johannes, Roux (bib0003) 2011; 15
Baghban, Hovde, Gustavsen (bib0056) 2010
Alisetti, Roy (bib0053) 2000; 14
Laaouatni, Martaj, Bennacer, Elomari, El Ganaoui (bib0044) 2016; 745
Zhou, Zhao, Tian (bib0001) 2012; 92
Cabeza, Castellón, Nogués, Medrano, Leppers, Zubillaga (bib0012) 2007; 39
Wang, Yu, Li, Zhao (bib0016) 2016; 120
Komerska, Bianco, Serra, Fantucci, Rosiński (bib0025) 2015
Iten, Liu, Shukla (bib0028) 2016; 61
Dhaidan, Khodadadi, Al-Hattab, Al-Mashat (bib0047) 2013; 67
Figueiredo, Lapa, Vicente, Cardoso (bib0010) 2016; 112
Pasupathy, Athanasius, Velraj, Seeniraj (bib0017) 2008; 28
Elarga, Fantucci, Serra, Zecchin, Benini (bib0018) 2017; 150
Alawadhi (bib0007) 2008; 40
Li, Zou, Sun, Zhang (bib0022) 2018; 40
Ismail, Henriquez (bib0024) 2001; 21
Royon, Karim, Bontemps (bib0005) 2013; 63
Foucquier, Robert, Suard, Stéphan, Jay (bib0037) 2013; 23
Nagano, Takeda, Mochida, Shimakura, Nakamura (bib0026) 2006; 38
Principi, Fioretti (bib0015) 2012; 51
Royon, Karim, Bontemps (bib0006) 2014; 82
Kuznik, Virgone (bib0031) 2009; 41
Alawadhi (bib0023) 2011; 47
McAdams (bib0050) 1954
Ansuini (10.1016/j.enbuild.2019.01.024_bib0009) 2011; 43
Royon (10.1016/j.enbuild.2019.01.024_bib0005) 2013; 63
Figueiredo (10.1016/j.enbuild.2019.01.024_bib0010) 2016; 112
Dhaidan (10.1016/j.enbuild.2019.01.024_bib0047) 2013; 67
Alisetti (10.1016/j.enbuild.2019.01.024_bib0053) 2000; 14
Iten (10.1016/j.enbuild.2019.01.024_bib0028) 2016; 61
Baghban (10.1016/j.enbuild.2019.01.024_sbref0056) 2010
Cabeza (10.1016/j.enbuild.2019.01.024_bib0012) 2007; 39
Principi (10.1016/j.enbuild.2019.01.024_bib0015) 2012; 51
Nagano (10.1016/j.enbuild.2019.01.024_bib0026) 2006; 38
Lee (10.1016/j.enbuild.2019.01.024_bib0034) 2000; 62
McAdams (10.1016/j.enbuild.2019.01.024_bib0050) 1954
Cabeza (10.1016/j.enbuild.2019.01.024_bib0004) 2011; 15
Li (10.1016/j.enbuild.2019.01.024_bib0021) 2018; 172
Elarga (10.1016/j.enbuild.2019.01.024_bib0018) 2017; 150
Goia (10.1016/j.enbuild.2019.01.024_bib0020) 2013; 60
Royon (10.1016/j.enbuild.2019.01.024_bib0006) 2014; 82
Bueno (10.1016/j.enbuild.2019.01.024_bib0043) 2012; 54
Davies (10.1016/j.enbuild.2019.01.024_bib0052) 1983; 18
Kuznik (10.1016/j.enbuild.2019.01.024_bib0031) 2009; 41
Alawadhi (10.1016/j.enbuild.2019.01.024_bib0023) 2011; 47
Dermardiros (10.1016/j.enbuild.2019.01.024_bib0054) 2015; 78
Pasupathy (10.1016/j.enbuild.2019.01.024_bib0017) 2008; 28
Foucquier (10.1016/j.enbuild.2019.01.024_bib0037) 2013; 23
Zhang (10.1016/j.enbuild.2019.01.024_bib0033) 2004; 34
Fraisse (10.1016/j.enbuild.2019.01.024_bib0040) 2002; 34
Kant (10.1016/j.enbuild.2019.01.024_bib0035) 2017; 155
Lamberg (10.1016/j.enbuild.2019.01.024_bib0046) 2004; 43
Alawadhi (10.1016/j.enbuild.2019.01.024_bib0007) 2008; 40
Li (10.1016/j.enbuild.2019.01.024_bib0022) 2018; 40
Laaouatni (10.1016/j.enbuild.2019.01.024_bib0044) 2016; 745
Ahmad (10.1016/j.enbuild.2019.01.024_bib0049) 2006; 38
Castell (10.1016/j.enbuild.2019.01.024_bib0011) 2010; 42
Wang (10.1016/j.enbuild.2019.01.024_bib0016) 2016; 120
Incropera (10.1016/j.enbuild.2019.01.024_bib0051) 1990
Zhang (10.1016/j.enbuild.2019.01.024_bib0036) 2007; 42
Stathopoulos (10.1016/j.enbuild.2019.01.024_bib0055) 2016; 132
Goia (10.1016/j.enbuild.2019.01.024_bib0058) 2018; 174
Ismail (10.1016/j.enbuild.2019.01.024_bib0024) 2001; 21
Lin (10.1016/j.enbuild.2019.01.024_bib0008) 2004; 39
Zhang (10.1016/j.enbuild.2019.01.024_bib0013) 2005; 29
Akeiber (10.1016/j.enbuild.2019.01.024_bib0029) 2016; 60
Hasse (10.1016/j.enbuild.2019.01.024_bib0032) 2011; 43
Zhou (10.1016/j.enbuild.2019.01.024_bib0001) 2012; 92
Khudhair (10.1016/j.enbuild.2019.01.024_bib0002) 2004; 45
Davies (10.1016/j.enbuild.2019.01.024_bib0038) 1982; 6
AL-Saadi (10.1016/j.enbuild.2019.01.024_bib0048) 2013; 21
Waqas (10.1016/j.enbuild.2019.01.024_bib0027) 2013; 18
Kośny (10.1016/j.enbuild.2019.01.024_bib0057) 2015
Ahmad (10.1016/j.enbuild.2019.01.024_bib0030) 2006; 38
Kämpf (10.1016/j.enbuild.2019.01.024_bib0041) 2007; 39
Guichard (10.1016/j.enbuild.2019.01.024_bib0019) 2014; 70
Komerska (10.1016/j.enbuild.2019.01.024_bib0025) 2015
Zhang (10.1016/j.enbuild.2019.01.024_bib0014) 2011; 43
Goyal (10.1016/j.enbuild.2019.01.024_bib0039) 2012; 47
Park (10.1016/j.enbuild.2019.01.024_bib0042) 2013; 8
Kuznik (10.1016/j.enbuild.2019.01.024_bib0003) 2011; 15
Laaouatni (10.1016/j.enbuild.2019.01.024_bib0045) 2017; 139
References_xml – start-page: 3452
  year: 2015
  end-page: 3457
  ident: bib0025
  article-title: Experimental analysis of an external dynamic solar shading integrating PCMs: first results
  publication-title: Energy Procedia
– volume: 63
  start-page: 29
  year: 2013
  end-page: 35
  ident: bib0005
  article-title: Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings
  publication-title: Energy Build.
– volume: 23
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib0037
  article-title: State of the art in building modelling and energy performances prediction: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 54
  start-page: 116
  year: 2012
  end-page: 125
  ident: bib0043
  article-title: A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate
  publication-title: Build. Environ.
– volume: 47
  start-page: 332
  year: 2012
  end-page: 340
  ident: bib0039
  article-title: A method for model-reduction of non-linear thermal dynamics of multi-zone buildings
  publication-title: Energy Build.
– volume: 155
  start-page: 1233
  year: 2017
  end-page: 1242
  ident: bib0035
  article-title: Heat transfer studies of building brick containing phase change materials
  publication-title: Sol. Energy
– volume: 21
  start-page: 659
  year: 2013
  end-page: 673
  ident: bib0048
  article-title: Modeling phase change materials embedded in building enclosure: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 70
  start-page: 71
  year: 2014
  end-page: 80
  ident: bib0019
  article-title: A thermal model for phase change materials in a building roof for a tropical and humid climate: model description and elements of validation
  publication-title: Energy Build.
– volume: 92
  start-page: 593
  year: 2012
  end-page: 605
  ident: bib0001
  article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications
  publication-title: Appl. Energy
– volume: 38
  start-page: 673
  year: 2006
  end-page: 681
  ident: bib0049
  article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material
  publication-title: Energy Build.
– volume: 174
  start-page: 54
  year: 2018
  end-page: 67
  ident: bib0058
  article-title: Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components
  publication-title: Energy Build.
– volume: 38
  start-page: 357
  year: 2006
  end-page: 366
  ident: bib0030
  article-title: Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material
  publication-title: Energy Build.
– volume: 39
  start-page: 445
  year: 2007
  end-page: 453
  ident: bib0041
  article-title: A simplified thermal model to support analysis of urban resource flows
  publication-title: Energy Build.
– volume: 45
  start-page: 263
  year: 2004
  end-page: 275
  ident: bib0002
  article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials
  publication-title: Energy Convers. Manag.
– volume: 21
  start-page: 1909
  year: 2001
  end-page: 1923
  ident: bib0024
  article-title: Thermally effective windows with moving phase change material curtains
  publication-title: Appl. Therm. Eng.
– volume: 150
  start-page: 546
  year: 2017
  end-page: 557
  ident: bib0018
  article-title: Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space
  publication-title: Energy Build.
– volume: 132
  start-page: 453
  year: 2016
  end-page: 466
  ident: bib0055
  article-title: Air-PCM heat exchanger for peak load management: experimental and simulation
  publication-title: Sol. Energy
– volume: 29
  start-page: 795
  year: 2005
  end-page: 809
  ident: bib0013
  article-title: Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings
  publication-title: Int. J. Energy Res.
– volume: 38
  start-page: 436
  year: 2006
  end-page: 446
  ident: bib0026
  article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments
  publication-title: Energy Build.
– volume: 78
  start-page: 1690
  year: 2015
  end-page: 1695
  ident: bib0054
  article-title: Modelling of an active PCM thermal energy storage for control applications
  publication-title: Energy Procedia
– volume: 28
  start-page: 556
  year: 2008
  end-page: 565
  ident: bib0017
  article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management
  publication-title: Appl. Therm. Eng.
– volume: 51
  start-page: 131
  year: 2012
  end-page: 142
  ident: bib0015
  article-title: Thermal analysis of the application of PCM and low emissivity coating in hollow bricks
  publication-title: Energy Build.
– volume: 43
  start-page: 277
  year: 2004
  end-page: 287
  ident: bib0046
  article-title: Numerical and experimental investigation of melting and freezing processes in phase change material storage
  publication-title: Int. J. Therm. Sci.
– volume: 62
  start-page: 217
  year: 2000
  end-page: 237
  ident: bib0034
  article-title: Control aspects of latent heat storage and recovery in concrete
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 40
  start-page: 351
  year: 2008
  end-page: 357
  ident: bib0007
  article-title: Thermal analysis of a building brick containing phase change material
  publication-title: Energy Build.
– volume: 15
  start-page: 1675
  year: 2011
  end-page: 1695
  ident: bib0004
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 112
  start-page: 639
  year: 2016
  end-page: 647
  ident: bib0010
  article-title: Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs
  publication-title: Constr. Build. Mater.
– year: 1990
  ident: bib0051
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 41
  start-page: 561
  year: 2009
  end-page: 570
  ident: bib0031
  article-title: Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling
  publication-title: Energy Build.
– volume: 43
  start-page: 232
  year: 2011
  end-page: 238
  ident: bib0032
  article-title: Realization, test and modelling of honeycomb wallboards containing a Phase Change Material
  publication-title: Energy Build.
– volume: 43
  start-page: 3019
  year: 2011
  end-page: 3026
  ident: bib0009
  article-title: Radiant floors integrated with PCM for indoor temperature control
  publication-title: Energy Build.
– start-page: 1
  year: 2010
  end-page: 5
  ident: bib0056
  article-title: Numerical Simulation of a building envelope with high performance materials
  publication-title: COMSOL Conf. 2010 Paris
– volume: 40
  start-page: 266
  year: 2018
  end-page: 273
  ident: bib0022
  article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM
  publication-title: Sustain. Cities Soc.
– volume: 172
  start-page: 119
  year: 2018
  end-page: 128
  ident: bib0021
  article-title: Energy investigation of glazed windows containing Nano-PCM in different seasons
  publication-title: Energy Convers. Manag.
– volume: 6
  start-page: 403
  year: 1982
  end-page: 404
  ident: bib0038
  article-title: Optimal RC networks for walls
  publication-title: Appl. Math. Model.
– volume: 42
  start-page: 534
  year: 2010
  end-page: 540
  ident: bib0011
  article-title: Experimental study of using PCM in brick constructive solutions for passive cooling
  publication-title: Energy Build.
– volume: 47
  start-page: 421
  year: 2011
  end-page: 429
  ident: bib0023
  article-title: Using phase change materials in window shutter to reduce the solar heat gain
  publication-title: Energy Build.
– volume: 120
  start-page: 81
  year: 2016
  end-page: 89
  ident: bib0016
  article-title: Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room
  publication-title: Energy Convers. Manag.
– volume: 43
  start-page: 3514
  year: 2011
  end-page: 3520
  ident: bib0014
  article-title: Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures
  publication-title: Energy Build.
– volume: 745
  year: 2016
  ident: bib0044
  article-title: Study of improving the thermal response of a construction material containing a phase change material
  publication-title: J. Phys. Conf. Ser.
– volume: 60
  start-page: 1470
  year: 2016
  end-page: 1497
  ident: bib0029
  article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 379
  year: 2011
  end-page: 391
  ident: bib0003
  article-title: A review on phase change materials integrated in building walls
  publication-title: Renew. Sustain. Energy Rev.
– volume: 39
  start-page: 1427
  year: 2004
  end-page: 1434
  ident: bib0008
  article-title: Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates
  publication-title: Build. Environ.
– volume: 8
  start-page: 975
  year: 2013
  end-page: 983
  ident: bib0042
  article-title: Modeling of a building system and its parameter identification
  publication-title: J. Electr. Eng. Technol.
– volume: 139
  start-page: 744
  year: 2017
  end-page: 749
  ident: bib0045
  article-title: Phase change materials for improving the building thermal inertia
  publication-title: Energy Procedia
– volume: 14
  start-page: 115
  year: 2000
  end-page: 118
  ident: bib0053
  article-title: Forced convection heat transfer to phase change material slurries in circular ducts
  publication-title: J. Thermophys. Heat Transf.
– year: 2015
  ident: bib0057
  article-title: PCM-Enhanced Building Components
– volume: 18
  start-page: 607
  year: 2013
  end-page: 625
  ident: bib0027
  article-title: Phase change material (PCM) storage for free cooling of buildings – a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 34
  start-page: 1017
  year: 2002
  end-page: 1031
  ident: bib0040
  article-title: Development of a simplified and accurate building model based on electrical analogy
  publication-title: Energy Build.
– volume: 82
  start-page: 385
  year: 2014
  end-page: 390
  ident: bib0006
  article-title: Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings
  publication-title: Energy Build.
– volume: 34
  start-page: 927
  year: 2004
  end-page: 934
  ident: bib0033
  article-title: Development of thermal energy storage concrete
  publication-title: Cem. Concr. Res.
– volume: 61
  start-page: 175
  year: 2016
  end-page: 186
  ident: bib0028
  article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 60
  start-page: 442
  year: 2013
  end-page: 452
  ident: bib0020
  article-title: Improving thermal comfort conditions by means of PCM glazing systems
  publication-title: Energy Build.
– year: 1954
  ident: bib0050
  article-title: Heat Transmission
– volume: 18
  start-page: 135
  year: 1983
  end-page: 150
  ident: bib0052
  article-title: Optimal designs for star circuits for radiant exchange in a room
  publication-title: Build. Environ.
– volume: 42
  start-page: 2197
  year: 2007
  end-page: 2209
  ident: bib0036
  article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook
  publication-title: Build. Environ.
– volume: 67
  start-page: 523
  year: 2013
  end-page: 534
  ident: bib0047
  article-title: Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux
  publication-title: Int. J. Heat Mass Transf.
– volume: 39
  start-page: 113
  year: 2007
  end-page: 119
  ident: bib0012
  article-title: Use of microencapsulated PCM in concrete walls for energy savings
  publication-title: Energy Build.
– volume: 38
  start-page: 436
  year: 2006
  ident: 10.1016/j.enbuild.2019.01.024_bib0026
  article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.07.010
– volume: 23
  start-page: 272
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0037
  article-title: State of the art in building modelling and energy performances prediction: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.004
– year: 1954
  ident: 10.1016/j.enbuild.2019.01.024_bib0050
– volume: 120
  start-page: 81
  year: 2016
  ident: 10.1016/j.enbuild.2019.01.024_bib0016
  article-title: Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.04.065
– volume: 42
  start-page: 2197
  year: 2007
  ident: 10.1016/j.enbuild.2019.01.024_bib0036
  article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.023
– volume: 21
  start-page: 1909
  year: 2001
  ident: 10.1016/j.enbuild.2019.01.024_bib0024
  article-title: Thermally effective windows with moving phase change material curtains
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00058-8
– volume: 45
  start-page: 263
  year: 2004
  ident: 10.1016/j.enbuild.2019.01.024_bib0002
  article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(03)00131-6
– volume: 70
  start-page: 71
  year: 2014
  ident: 10.1016/j.enbuild.2019.01.024_bib0019
  article-title: A thermal model for phase change materials in a building roof for a tropical and humid climate: model description and elements of validation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.079
– volume: 60
  start-page: 1470
  year: 2016
  ident: 10.1016/j.enbuild.2019.01.024_bib0029
  article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.036
– volume: 43
  start-page: 3514
  year: 2011
  ident: 10.1016/j.enbuild.2019.01.024_bib0014
  article-title: Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.09.028
– volume: 40
  start-page: 351
  year: 2008
  ident: 10.1016/j.enbuild.2019.01.024_bib0007
  article-title: Thermal analysis of a building brick containing phase change material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.03.001
– volume: 132
  start-page: 453
  year: 2016
  ident: 10.1016/j.enbuild.2019.01.024_bib0055
  article-title: Air-PCM heat exchanger for peak load management: experimental and simulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.03.030
– volume: 29
  start-page: 795
  year: 2005
  ident: 10.1016/j.enbuild.2019.01.024_bib0013
  article-title: Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1082
– volume: 40
  start-page: 266
  year: 2018
  ident: 10.1016/j.enbuild.2019.01.024_bib0022
  article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.01.020
– volume: 43
  start-page: 232
  year: 2011
  ident: 10.1016/j.enbuild.2019.01.024_bib0032
  article-title: Realization, test and modelling of honeycomb wallboards containing a Phase Change Material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.09.017
– volume: 139
  start-page: 744
  year: 2017
  ident: 10.1016/j.enbuild.2019.01.024_bib0045
  article-title: Phase change materials for improving the building thermal inertia
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.11.281
– volume: 38
  start-page: 673
  year: 2006
  ident: 10.1016/j.enbuild.2019.01.024_bib0049
  article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.11.002
– volume: 67
  start-page: 523
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0047
  article-title: Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.08.001
– volume: 42
  start-page: 534
  year: 2010
  ident: 10.1016/j.enbuild.2019.01.024_bib0011
  article-title: Experimental study of using PCM in brick constructive solutions for passive cooling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.10.022
– volume: 63
  start-page: 29
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0005
  article-title: Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.03.042
– volume: 6
  start-page: 403
  year: 1982
  ident: 10.1016/j.enbuild.2019.01.024_bib0038
  article-title: Optimal RC networks for walls
  publication-title: Appl. Math. Model.
  doi: 10.1016/S0307-904X(82)80108-X
– volume: 174
  start-page: 54
  year: 2018
  ident: 10.1016/j.enbuild.2019.01.024_bib0058
  article-title: Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.06.001
– volume: 54
  start-page: 116
  year: 2012
  ident: 10.1016/j.enbuild.2019.01.024_bib0043
  article-title: A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.01.023
– volume: 34
  start-page: 1017
  year: 2002
  ident: 10.1016/j.enbuild.2019.01.024_bib0040
  article-title: Development of a simplified and accurate building model based on electrical analogy
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00019-1
– volume: 92
  start-page: 593
  year: 2012
  ident: 10.1016/j.enbuild.2019.01.024_bib0001
  article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.025
– volume: 18
  start-page: 135
  year: 1983
  ident: 10.1016/j.enbuild.2019.01.024_bib0052
  article-title: Optimal designs for star circuits for radiant exchange in a room
  publication-title: Build. Environ.
  doi: 10.1016/0360-1323(83)90006-9
– volume: 78
  start-page: 1690
  year: 2015
  ident: 10.1016/j.enbuild.2019.01.024_bib0054
  article-title: Modelling of an active PCM thermal energy storage for control applications
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.261
– volume: 15
  start-page: 1675
  year: 2011
  ident: 10.1016/j.enbuild.2019.01.024_bib0004
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.018
– volume: 39
  start-page: 113
  year: 2007
  ident: 10.1016/j.enbuild.2019.01.024_bib0012
  article-title: Use of microencapsulated PCM in concrete walls for energy savings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.030
– volume: 39
  start-page: 445
  year: 2007
  ident: 10.1016/j.enbuild.2019.01.024_bib0041
  article-title: A simplified thermal model to support analysis of urban resource flows
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.09.002
– volume: 82
  start-page: 385
  year: 2014
  ident: 10.1016/j.enbuild.2019.01.024_bib0006
  article-title: Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.07.012
– volume: 155
  start-page: 1233
  year: 2017
  ident: 10.1016/j.enbuild.2019.01.024_bib0035
  article-title: Heat transfer studies of building brick containing phase change materials
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.07.072
– volume: 112
  start-page: 639
  year: 2016
  ident: 10.1016/j.enbuild.2019.01.024_bib0010
  article-title: Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.02.225
– volume: 34
  start-page: 927
  year: 2004
  ident: 10.1016/j.enbuild.2019.01.024_bib0033
  article-title: Development of thermal energy storage concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.10.022
– volume: 51
  start-page: 131
  year: 2012
  ident: 10.1016/j.enbuild.2019.01.024_bib0015
  article-title: Thermal analysis of the application of PCM and low emissivity coating in hollow bricks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.04.022
– volume: 39
  start-page: 1427
  year: 2004
  ident: 10.1016/j.enbuild.2019.01.024_bib0008
  article-title: Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2004.04.005
– volume: 47
  start-page: 421
  year: 2011
  ident: 10.1016/j.enbuild.2019.01.024_bib0023
  article-title: Using phase change materials in window shutter to reduce the solar heat gain
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.12.009
– year: 2015
  ident: 10.1016/j.enbuild.2019.01.024_bib0057
– volume: 18
  start-page: 607
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0027
  article-title: Phase change material (PCM) storage for free cooling of buildings – a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.10.034
– volume: 38
  start-page: 357
  year: 2006
  ident: 10.1016/j.enbuild.2019.01.024_bib0030
  article-title: Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.07.008
– volume: 47
  start-page: 332
  year: 2012
  ident: 10.1016/j.enbuild.2019.01.024_bib0039
  article-title: A method for model-reduction of non-linear thermal dynamics of multi-zone buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.12.005
– volume: 43
  start-page: 277
  year: 2004
  ident: 10.1016/j.enbuild.2019.01.024_bib0046
  article-title: Numerical and experimental investigation of melting and freezing processes in phase change material storage
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2003.07.001
– volume: 62
  start-page: 217
  year: 2000
  ident: 10.1016/j.enbuild.2019.01.024_bib0034
  article-title: Control aspects of latent heat storage and recovery in concrete
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/S0927-0248(99)00128-2
– volume: 28
  start-page: 556
  year: 2008
  ident: 10.1016/j.enbuild.2019.01.024_bib0017
  article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.04.016
– volume: 21
  start-page: 659
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0048
  article-title: Modeling phase change materials embedded in building enclosure: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.01.024
– start-page: 3452
  year: 2015
  ident: 10.1016/j.enbuild.2019.01.024_bib0025
  article-title: Experimental analysis of an external dynamic solar shading integrating PCMs: first results
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.125
– volume: 150
  start-page: 546
  year: 2017
  ident: 10.1016/j.enbuild.2019.01.024_bib0018
  article-title: Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.06.038
– volume: 41
  start-page: 561
  year: 2009
  ident: 10.1016/j.enbuild.2019.01.024_bib0031
  article-title: Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.11.022
– volume: 43
  start-page: 3019
  year: 2011
  ident: 10.1016/j.enbuild.2019.01.024_bib0009
  article-title: Radiant floors integrated with PCM for indoor temperature control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.07.018
– volume: 60
  start-page: 442
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0020
  article-title: Improving thermal comfort conditions by means of PCM glazing systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.01.029
– start-page: 1
  year: 2010
  ident: 10.1016/j.enbuild.2019.01.024_sbref0056
  article-title: Numerical Simulation of a building envelope with high performance materials
– volume: 8
  start-page: 975
  year: 2013
  ident: 10.1016/j.enbuild.2019.01.024_bib0042
  article-title: Modeling of a building system and its parameter identification
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2013.8.5.975
– volume: 14
  start-page: 115
  year: 2000
  ident: 10.1016/j.enbuild.2019.01.024_bib0053
  article-title: Forced convection heat transfer to phase change material slurries in circular ducts
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/2.6499
– volume: 745
  year: 2016
  ident: 10.1016/j.enbuild.2019.01.024_bib0044
  article-title: Study of improving the thermal response of a construction material containing a phase change material
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/745/3/032131
– volume: 61
  start-page: 175
  year: 2016
  ident: 10.1016/j.enbuild.2019.01.024_bib0028
  article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.007
– volume: 172
  start-page: 119
  year: 2018
  ident: 10.1016/j.enbuild.2019.01.024_bib0021
  article-title: Energy investigation of glazed windows containing Nano-PCM in different seasons
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.07.015
– year: 1990
  ident: 10.1016/j.enbuild.2019.01.024_bib0051
– volume: 15
  start-page: 379
  year: 2011
  ident: 10.1016/j.enbuild.2019.01.024_bib0003
  article-title: A review on phase change materials integrated in building walls
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.08.019
SSID ssj0006571
Score 2.471388
Snippet •Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled...
In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions....
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Active control
Antisymmetry
Building control
Building envelopes
Computational fluid dynamics
Computer simulation
Computing time
Concrete blocks
Data processing
Direct numerical simulation
Energy demand
Energy efficiency
Energy management
Engineering Sciences
Flow equations
Fluid flow
Integration
Mathematical models
Modelling
Optimization
Phase change material (PCM)
Phase change materials
RC circuits
Reinforced concrete
Thermal building
Thermal comfort
Thermal inertia
Thermal modelling
Thermal response
Thermodynamic properties
Ventilation
Title Thermal building control using active ventilated block integrating phase change material
URI https://dx.doi.org/10.1016/j.enbuild.2019.01.024
https://www.proquest.com/docview/2204775445
https://hal.science/hal-03138346
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA4uFz2IK9aNIF6nnck2k2MplroiLtBbmMyiraUWrR797b6XyVgVRPAyw4SEDO-9vCV8-ULIkU01l7koAnikSKodBokOy6AsrIp1ZAvu9nQvLlXvTpz2ZX-OdOqzMAir9L6_8unOW_uWlpdmazIYtG5CDsaGbOgJmFHiqD-RvQ5suvk-g3ko6You7Bxg79kpntawifQCgxEShka6Yu8Uv8Wn-QcESv7w1y4IdVfJis8eabv6wTUyV4zXyfIXTsEN0gfFg7MdUesvvKYejU4R4n5PU-fgqIM5jiDRzKmFePZIa94I7DN5gNhGqzPBFFJaZ6Wb5K57fNvpBf76hCATMp4GSsWljWUay1xCyQxLmbEyyliS8VyzSKVQaZUZ4yItsojljKvMslgjv4u2Ign5FlkYP42LbUIVL7VliWSpFqLQLC1jKAy5VqVSea5tg4haaCbz3OJ4xcXI1CCyofGyNihrE0YGZN0gzc9hk4pc468BSa0R881KDASAv4YeggY_p0FW7V773GAb0lcmXKi3qEH2agUbv5ZfDGOhcDyBcuf_0--SJfxC9Fok98jC9Pm12Id0ZmoPnL0ekMV25_r8Ct8nZ73LD1VQ9Yw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BOEAPFVAqQqGsUK9O7H3Ze4wQkSlJLoCU28rrRxOI0qhN-_uZsdfhIVVIvfiw3tFaM7PfzFiz3wJ8c5kRqpBlgI-MSLXDIDFhFVSl07GJXCnqf7rjiU7v5fepmm7BZXsWhtoqPfY3mF6jtR_pe232V_N5_zYU6GzEhp6gGyVE_blD7FSyAzuD65t0sgFkreq6i-YHJPB8kKf_0COGgfmCOEMj0xB4yn-FqO0Z9Uq-gew6Dg334aNPINmg-cYD2CqXh_DhBa3gJ5ii7RFvF8z5O6-Zb0hn1OX-g2U1xrG603GBuWbBHIa0R9ZSR9Cc1QzDG2uOBTPMamtHPYL74dXdZRr4GxSCXKp4HWgdVy5WWawKhVUz7mbOqyjnSS4KwyOdYbFV5VzIrMwjXnChc8djQxQvxskkFJ-hs_y5LI-BaVEZxxPFMyNlaXhWxVgbCqMrrYvCuC7IVmk29_TidMvFwrZ9ZA_W69qSrm0YWdR1F3obsVXDr_GeQNJaxL5yFIsx4D3RC7TgZhki1k4HI0tjxGCZCKn_Rl04bQ1s_Xb-bTkPZU0VqE7-f_lz2E3vxiM7up7cfIE9ekPNbJE6hc7615_yDLObtfvqvfcJDaf2qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+building+control+using+active+ventilated+block+integrating+phase+change+material&rft.jtitle=Energy+and+buildings&rft.au=Laaouatni%2C+Amine&rft.au=Martaj%2C+Nadia&rft.au=Bennacer%2C+Rachid&rft.au=Lachi%2C+Mohammed&rft.date=2019-03-15&rft.pub=Elsevier&rft.issn=0378-7788&rft.volume=187&rft.spage=50&rft.epage=63&rft_id=info:doi/10.1016%2Fj.enbuild.2019.01.024&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03138346v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon