Thermal building control using active ventilated block integrating phase change material
•Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled with PCM.•Hybrid simulations by finite element and electrical analogy.•Resistance and capacitance (RC)-network model for modelling intra-ven...
Saved in:
Published in | Energy and buildings Vol. 187; pp. 50 - 63 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.03.2019
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0378-7788 1872-6178 |
DOI | 10.1016/j.enbuild.2019.01.024 |
Cover
Loading…
Abstract | •Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled with PCM.•Hybrid simulations by finite element and electrical analogy.•Resistance and capacitance (RC)-network model for modelling intra-ventilation PCM.
In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions. The proposed integration solutions concern the building envelope as well as the applications related to its operation. The study of the incorporation of PCM in the walls of the building was the subject of numerous works. However, the antisymmetric character of storing/recovering energy management in the walls is less controlled and do not fit the optimal conditions. In this study, a solution based on the direct integration of a stabilized PCM (gel) in an envelope including ventilation channels, was proposed to overcome this problem of antisymmetry storing/recovering and fitting with different fixed ambient conditions. The final aim is to develop the optimization strategy of a wall combining the heavy inertia offered by the PCM, intra-ventilation control and the contribution to air renewal energy demand.
In this context, an experimental study of a concrete block system is conducted to test the thermal response of this configuration by the application of cyclic solicitations. The comprehension of this integrated constructive solution essentially passes by the possession of validated numerical tools. For this, two models have been developed. The first model using the electrical–thermal analogy, based on an RC equivalence, is distinguished by its relative simplicity and weak time computing demand. Each of these two factors, R and C summarise the system properties and has a direct influence on the building transient simulations over a year. The second one is based on direct numerical simulation DNS of the energy and fluid flow equations using commercial code COMSOL Multiphysics. Such DNS is time consuming and could not be used to simulate over a year but aims only to validate the first RC circuit approach. A comparison of these two models with the idealised experimental data was carried out and allowed the validation of the thermal behaviour of the solution based on the integration of the PCM with core ventilation. |
---|---|
AbstractList | In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions. The proposed integration solutions concern the building envelope as well as the applications related to its operation. The study of the incorporation of PCM in the walls of the building was the subject of numerous works. However, the antisymmetric character of storing/recovering energy management in the walls is less controlled and do not fit the optimal conditions. In this study, a solution based on the direct integration of a stabilized PCM (gel) in an envelope including ventilation channels, was proposed to overcome this problem of antisymmetry storing/recovering and fitting with different fixed ambient conditions. The final aim is to develop the optimization strategy of a wall combining the heavy inertia offered by the PCM, intra-ventilation control and the contribution to air renewal energy demand. In this context, an experimental study of a concrete block system is conducted to test the thermal response of this configuration by the application of cyclic solicitations. The comprehension of this integrated constructive solution essentially passes by the possession of validated numerical tools. For this, two models have been developed. The first model using the electrical–thermal analogy, based on an RC equivalence, is distinguished by its relative simplicity and weak time computing demand. Each of these two factors, R and C summarise the system properties and has a direct influence on the building transient simulations over a year. The second one is based on direct numerical simulation DNS of the energy and fluid flow equations using commercial code COMSOL Multiphysics. Such DNS is time consuming and could not be used to simulate over a year but aims only to validate the first RC circuit approach. A comparison of these two models with the idealised experimental data was carried out and allowed the validation of the thermal behaviour of the solution based on the integration of the PCM with core ventilation. •Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled with PCM.•Hybrid simulations by finite element and electrical analogy.•Resistance and capacitance (RC)-network model for modelling intra-ventilation PCM. In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions. The proposed integration solutions concern the building envelope as well as the applications related to its operation. The study of the incorporation of PCM in the walls of the building was the subject of numerous works. However, the antisymmetric character of storing/recovering energy management in the walls is less controlled and do not fit the optimal conditions. In this study, a solution based on the direct integration of a stabilized PCM (gel) in an envelope including ventilation channels, was proposed to overcome this problem of antisymmetry storing/recovering and fitting with different fixed ambient conditions. The final aim is to develop the optimization strategy of a wall combining the heavy inertia offered by the PCM, intra-ventilation control and the contribution to air renewal energy demand. In this context, an experimental study of a concrete block system is conducted to test the thermal response of this configuration by the application of cyclic solicitations. The comprehension of this integrated constructive solution essentially passes by the possession of validated numerical tools. For this, two models have been developed. The first model using the electrical–thermal analogy, based on an RC equivalence, is distinguished by its relative simplicity and weak time computing demand. Each of these two factors, R and C summarise the system properties and has a direct influence on the building transient simulations over a year. The second one is based on direct numerical simulation DNS of the energy and fluid flow equations using commercial code COMSOL Multiphysics. Such DNS is time consuming and could not be used to simulate over a year but aims only to validate the first RC circuit approach. A comparison of these two models with the idealised experimental data was carried out and allowed the validation of the thermal behaviour of the solution based on the integration of the PCM with core ventilation. |
Author | Laaouatni, Amine El Ganaoui, Mohammed Bennacer, Rachid Lachi, Mohammed Martaj, Nadia El Omari, Mohamed |
Author_xml | – sequence: 1 givenname: Amine surname: Laaouatni fullname: Laaouatni, Amine organization: EPF Campus de Troyes 2, rue F. Sastre 10430 Rosières-près-Troyes, France – sequence: 2 givenname: Nadia surname: Martaj fullname: Martaj, Nadia organization: EPF Campus de Troyes 2, rue F. Sastre 10430 Rosières-près-Troyes, France – sequence: 3 givenname: Rachid surname: Bennacer fullname: Bennacer, Rachid email: rachid.bennacer@ens-cachan.fr, rachid.bennacer@ens-paris-saclay.fr organization: LMT-Cachan, ENS Cachan CNRS, Université Paris Saclay, 61 avenue du Président Wilson, 94230 Cachan, France – sequence: 4 givenname: Mohammed surname: Lachi fullname: Lachi, Mohammed organization: GRESPI EA 4694, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de la Housse, 51687 Reims cedex 2, France – sequence: 5 givenname: Mohamed surname: El Omari fullname: El Omari, Mohamed organization: Laboratory of Automation, Environment and Transfer Processes LAEPT, Faculty of Sciences Semlalia, Cadi Ayyad University, P. B. 2390 Marrakesh, Morocco – sequence: 6 givenname: Mohammed surname: El Ganaoui fullname: El Ganaoui, Mohammed organization: Université de Lorraine, Laboratoire Lermab-longwy, IUT Henri Poincaré de Longwy, 186 rue de Lorraine, 54400 Longwy, Cosnes et Romain, France |
BackLink | https://hal.science/hal-03138346$$DView record in HAL |
BookMark | eNqFkE1r3DAQhkVJoJs0P6FgyCkHu_qwPkwOIYSkKSz0kkBuQpbHu9pqpY2kXei_j90NOfSS0zDD874Mzxk6CTEAQt8Jbggm4semgdDvnR8aiknXYNJg2n5BC6IkrQWR6gQtMJOqllKpr-gs5w3GWHBJFujlaQ1pa3z1r8CFVWVjKCn6ap_nzdjiDlAdIBTnTYGh6n20fyoXCqySKTOzW5sMlV2bsIJqO0HJGf8NnY7GZ7h4n-fo-eH-6e6xXv7--evudlnblstSCyHHXnIj-cChZ5JhSkdiqbJs6CgRpuvUaClrDVhCB8qE7ansOJOi61uF2Tm6Ovaujde75LYm_dXROP14u9TzDTPCFGvFgUzs5ZHdpfi6h1z0Ju5TmN7TlOJWSt62fKL4kbIp5pxg_KglWM_C9Ua_C9ezcI2JnoRPuev_ctaVydDs0zj_afrmmIZJ1sFB0tk6CBYGl8AWPUT3ScMbL2OhVA |
CitedBy_id | crossref_primary_10_1088_2631_8695_ab618e crossref_primary_10_1016_j_est_2023_106913 crossref_primary_10_1016_j_cscm_2023_e02193 crossref_primary_10_1016_j_buildenv_2021_107995 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125165 crossref_primary_10_1016_j_matpr_2021_11_048 crossref_primary_10_1155_2019_5253946 crossref_primary_10_1016_j_conbuildmat_2023_131367 crossref_primary_10_1016_j_enbuild_2019_109337 crossref_primary_10_1016_j_est_2024_114713 crossref_primary_10_1016_j_buildenv_2020_107175 crossref_primary_10_1016_j_solener_2022_08_049 crossref_primary_10_1093_ijlct_ctae171 crossref_primary_10_1016_j_conbuildmat_2020_121315 crossref_primary_10_1016_j_tsep_2024_103019 crossref_primary_10_1615_HeatTransRes_2023047570 crossref_primary_10_1016_j_jobe_2020_102122 crossref_primary_10_1016_j_enconman_2020_113187 crossref_primary_10_1016_j_enbuild_2021_111010 crossref_primary_10_1177_1369433220944508 crossref_primary_10_4028_www_scientific_net_DDF_406_164 crossref_primary_10_1016_j_conbuildmat_2024_136160 crossref_primary_10_1016_j_est_2021_102710 crossref_primary_10_1080_08916152_2020_1817178 crossref_primary_10_1016_j_enconman_2019_112288 crossref_primary_10_1016_j_est_2022_104461 crossref_primary_10_1016_j_jobe_2021_103054 crossref_primary_10_3390_buildings15071047 crossref_primary_10_1007_s11837_019_03787_z crossref_primary_10_1016_j_est_2023_110128 crossref_primary_10_3390_en12122400 crossref_primary_10_1016_j_est_2020_101913 crossref_primary_10_1016_j_rser_2022_112738 crossref_primary_10_1590_s1678_86212022000300610 crossref_primary_10_1016_j_buildenv_2024_111476 crossref_primary_10_3390_app9153091 crossref_primary_10_3390_en15031158 crossref_primary_10_1016_j_jobe_2021_102418 crossref_primary_10_1080_15435075_2021_1890082 crossref_primary_10_1016_j_jobe_2023_108315 crossref_primary_10_1016_j_jobe_2022_104656 crossref_primary_10_1080_00038628_2022_2058459 crossref_primary_10_1007_s10973_024_13098_4 crossref_primary_10_1016_j_csite_2022_102622 crossref_primary_10_1016_j_jobe_2020_101447 |
Cites_doi | 10.1016/j.enbuild.2005.07.010 10.1016/j.rser.2013.03.004 10.1016/j.enconman.2016.04.065 10.1016/j.buildenv.2006.07.023 10.1016/S1359-4311(01)00058-8 10.1016/S0196-8904(03)00131-6 10.1016/j.enbuild.2013.11.079 10.1016/j.rser.2016.03.036 10.1016/j.enbuild.2011.09.028 10.1016/j.enbuild.2007.03.001 10.1016/j.solener.2016.03.030 10.1002/er.1082 10.1016/j.scs.2018.01.020 10.1016/j.enbuild.2010.09.017 10.1016/j.egypro.2017.11.281 10.1016/j.enbuild.2005.11.002 10.1016/j.ijheatmasstransfer.2013.08.001 10.1016/j.enbuild.2009.10.022 10.1016/j.enbuild.2013.03.042 10.1016/S0307-904X(82)80108-X 10.1016/j.enbuild.2018.06.001 10.1016/j.buildenv.2012.01.023 10.1016/S0378-7788(02)00019-1 10.1016/j.apenergy.2011.08.025 10.1016/0360-1323(83)90006-9 10.1016/j.egypro.2015.11.261 10.1016/j.rser.2010.11.018 10.1016/j.enbuild.2006.03.030 10.1016/j.enbuild.2006.09.002 10.1016/j.enbuild.2014.07.012 10.1016/j.solener.2017.07.072 10.1016/j.conbuildmat.2016.02.225 10.1016/j.cemconres.2003.10.022 10.1016/j.enbuild.2012.04.022 10.1016/j.buildenv.2004.04.005 10.1016/j.enbuild.2011.12.009 10.1016/j.rser.2012.10.034 10.1016/j.enbuild.2005.07.008 10.1016/j.enbuild.2011.12.005 10.1016/j.ijthermalsci.2003.07.001 10.1016/S0927-0248(99)00128-2 10.1016/j.applthermaleng.2007.04.016 10.1016/j.rser.2013.01.024 10.1016/j.egypro.2015.11.125 10.1016/j.enbuild.2017.06.038 10.1016/j.enbuild.2008.11.022 10.1016/j.enbuild.2011.07.018 10.1016/j.enbuild.2013.01.029 10.5370/JEET.2013.8.5.975 10.2514/2.6499 10.1088/1742-6596/745/3/032131 10.1016/j.rser.2016.03.007 10.1016/j.enconman.2018.07.015 10.1016/j.rser.2010.08.019 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV 2019 Attribution - NonCommercial |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV 2019 – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI 1XC VOOES |
DOI | 10.1016/j.enbuild.2019.01.024 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
EndPage | 63 |
ExternalDocumentID | oai_HAL_hal_03138346v1 10_1016_j_enbuild_2019_01_024 S0378778818319819 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI 1XC VOOES |
ID | FETCH-LOGICAL-c457t-667fb75a75d5eb373022f1c28c3d9216a998fc234aec12d236cb27953769b4803 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Fri May 09 12:07:05 EDT 2025 Wed Aug 13 11:25:14 EDT 2025 Tue Jul 01 01:12:55 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Fri Feb 23 02:27:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change material (PCM) Modelling Thermal building Thermal inertia Thermal modelling |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-667fb75a75d5eb373022f1c28c3d9216a998fc234aec12d236cb27953769b4803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6183-2060 0000-0002-8876-9361 |
OpenAccessLink | https://hal.science/hal-03138346 |
PQID | 2204775445 |
PQPubID | 2045483 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_03138346v1 proquest_journals_2204775445 crossref_primary_10_1016_j_enbuild_2019_01_024 crossref_citationtrail_10_1016_j_enbuild_2019_01_024 elsevier_sciencedirect_doi_10_1016_j_enbuild_2019_01_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Ahmad, Bontemps, Sallée, Quenard (bib0030) 2006; 38 Fraisse, Viardot, Lafabrie, Achard (bib0040) 2002; 34 Lamberg, Lehtiniemi, Henell (bib0046) 2004; 43 Goia, Chaudhary, Fantucci (bib0058) 2018; 174 Davies (bib0038) 1982; 6 Hasse, Grenet, Bontemps, Dendievel, Sallée (bib0032) 2011; 43 Kant, Shukla, Sharma (bib0035) 2017; 155 Ansuini, Larghetti, Giretti, Lemma (bib0009) 2011; 43 Bueno, Norford, Pigeon, Britter (bib0043) 2012; 54 Guichard, Miranville, Bigot, Boyer (bib0019) 2014; 70 Khudhair, Farid (bib0002) 2004; 45 Zhang, Zhou, Lin, Zhang, Di (bib0036) 2007; 42 Ahmad, Bontemps, Sallée, Quenard (bib0049) 2006; 38 AL-Saadi, Zhai (bib0048) 2013; 21 Park, Martaj, Ruellan, Bennacer, Monmasson (bib0042) 2013; 8 Goyal, Barooah (bib0039) 2012; 47 Incropera, DeWitt (bib0051) 1990 Davies (bib0052) 1983; 18 Dermardiros, Chen, Athienitis (bib0054) 2015; 78 Waqas, Ud Din (bib0027) 2013; 18 Lee, Hawes, Banu, Feldman (bib0034) 2000; 62 Stathopoulos, El Mankibi, Issoglio, Michel, Haghighat (bib0055) 2016; 132 Kośny (bib0057) 2015 Kämpf, Robinson (bib0041) 2007; 39 Li, Wu, Liu, Zhang, Arıcı (bib0021) 2018; 172 Zhang, Li, Zhou, Wu (bib0033) 2004; 34 Zhang, Chen, Wu, Shi (bib0014) 2011; 43 Laaouatni, Martaj, Bennacer, El Omari, El Ganaoui (bib0045) 2017; 139 Zhang, Medina, King (bib0013) 2005; 29 Castell, Martorell, Medrano, Pérez, Cabeza (bib0011) 2010; 42 Goia, Perino, Serra (bib0020) 2013; 60 Akeiber, Nejat, Majid, Wahid, Jomehzadeh, Zeynali Famileh, Calautit, Hughes, Zaki (bib0029) 2016; 60 Cabeza, Castell, Barreneche, De Gracia, Fernández (bib0004) 2011; 15 Lin, Zhang, Xu, Di, Yang, Qin (bib0008) 2004; 39 Kuznik, David, Johannes, Roux (bib0003) 2011; 15 Baghban, Hovde, Gustavsen (bib0056) 2010 Alisetti, Roy (bib0053) 2000; 14 Laaouatni, Martaj, Bennacer, Elomari, El Ganaoui (bib0044) 2016; 745 Zhou, Zhao, Tian (bib0001) 2012; 92 Cabeza, Castellón, Nogués, Medrano, Leppers, Zubillaga (bib0012) 2007; 39 Wang, Yu, Li, Zhao (bib0016) 2016; 120 Komerska, Bianco, Serra, Fantucci, Rosiński (bib0025) 2015 Iten, Liu, Shukla (bib0028) 2016; 61 Dhaidan, Khodadadi, Al-Hattab, Al-Mashat (bib0047) 2013; 67 Figueiredo, Lapa, Vicente, Cardoso (bib0010) 2016; 112 Pasupathy, Athanasius, Velraj, Seeniraj (bib0017) 2008; 28 Elarga, Fantucci, Serra, Zecchin, Benini (bib0018) 2017; 150 Alawadhi (bib0007) 2008; 40 Li, Zou, Sun, Zhang (bib0022) 2018; 40 Ismail, Henriquez (bib0024) 2001; 21 Royon, Karim, Bontemps (bib0005) 2013; 63 Foucquier, Robert, Suard, Stéphan, Jay (bib0037) 2013; 23 Nagano, Takeda, Mochida, Shimakura, Nakamura (bib0026) 2006; 38 Principi, Fioretti (bib0015) 2012; 51 Royon, Karim, Bontemps (bib0006) 2014; 82 Kuznik, Virgone (bib0031) 2009; 41 Alawadhi (bib0023) 2011; 47 McAdams (bib0050) 1954 Ansuini (10.1016/j.enbuild.2019.01.024_bib0009) 2011; 43 Royon (10.1016/j.enbuild.2019.01.024_bib0005) 2013; 63 Figueiredo (10.1016/j.enbuild.2019.01.024_bib0010) 2016; 112 Dhaidan (10.1016/j.enbuild.2019.01.024_bib0047) 2013; 67 Alisetti (10.1016/j.enbuild.2019.01.024_bib0053) 2000; 14 Iten (10.1016/j.enbuild.2019.01.024_bib0028) 2016; 61 Baghban (10.1016/j.enbuild.2019.01.024_sbref0056) 2010 Cabeza (10.1016/j.enbuild.2019.01.024_bib0012) 2007; 39 Principi (10.1016/j.enbuild.2019.01.024_bib0015) 2012; 51 Nagano (10.1016/j.enbuild.2019.01.024_bib0026) 2006; 38 Lee (10.1016/j.enbuild.2019.01.024_bib0034) 2000; 62 McAdams (10.1016/j.enbuild.2019.01.024_bib0050) 1954 Cabeza (10.1016/j.enbuild.2019.01.024_bib0004) 2011; 15 Li (10.1016/j.enbuild.2019.01.024_bib0021) 2018; 172 Elarga (10.1016/j.enbuild.2019.01.024_bib0018) 2017; 150 Goia (10.1016/j.enbuild.2019.01.024_bib0020) 2013; 60 Royon (10.1016/j.enbuild.2019.01.024_bib0006) 2014; 82 Bueno (10.1016/j.enbuild.2019.01.024_bib0043) 2012; 54 Davies (10.1016/j.enbuild.2019.01.024_bib0052) 1983; 18 Kuznik (10.1016/j.enbuild.2019.01.024_bib0031) 2009; 41 Alawadhi (10.1016/j.enbuild.2019.01.024_bib0023) 2011; 47 Dermardiros (10.1016/j.enbuild.2019.01.024_bib0054) 2015; 78 Pasupathy (10.1016/j.enbuild.2019.01.024_bib0017) 2008; 28 Foucquier (10.1016/j.enbuild.2019.01.024_bib0037) 2013; 23 Zhang (10.1016/j.enbuild.2019.01.024_bib0033) 2004; 34 Fraisse (10.1016/j.enbuild.2019.01.024_bib0040) 2002; 34 Kant (10.1016/j.enbuild.2019.01.024_bib0035) 2017; 155 Lamberg (10.1016/j.enbuild.2019.01.024_bib0046) 2004; 43 Alawadhi (10.1016/j.enbuild.2019.01.024_bib0007) 2008; 40 Li (10.1016/j.enbuild.2019.01.024_bib0022) 2018; 40 Laaouatni (10.1016/j.enbuild.2019.01.024_bib0044) 2016; 745 Ahmad (10.1016/j.enbuild.2019.01.024_bib0049) 2006; 38 Castell (10.1016/j.enbuild.2019.01.024_bib0011) 2010; 42 Wang (10.1016/j.enbuild.2019.01.024_bib0016) 2016; 120 Incropera (10.1016/j.enbuild.2019.01.024_bib0051) 1990 Zhang (10.1016/j.enbuild.2019.01.024_bib0036) 2007; 42 Stathopoulos (10.1016/j.enbuild.2019.01.024_bib0055) 2016; 132 Goia (10.1016/j.enbuild.2019.01.024_bib0058) 2018; 174 Ismail (10.1016/j.enbuild.2019.01.024_bib0024) 2001; 21 Lin (10.1016/j.enbuild.2019.01.024_bib0008) 2004; 39 Zhang (10.1016/j.enbuild.2019.01.024_bib0013) 2005; 29 Akeiber (10.1016/j.enbuild.2019.01.024_bib0029) 2016; 60 Hasse (10.1016/j.enbuild.2019.01.024_bib0032) 2011; 43 Zhou (10.1016/j.enbuild.2019.01.024_bib0001) 2012; 92 Khudhair (10.1016/j.enbuild.2019.01.024_bib0002) 2004; 45 Davies (10.1016/j.enbuild.2019.01.024_bib0038) 1982; 6 AL-Saadi (10.1016/j.enbuild.2019.01.024_bib0048) 2013; 21 Waqas (10.1016/j.enbuild.2019.01.024_bib0027) 2013; 18 Kośny (10.1016/j.enbuild.2019.01.024_bib0057) 2015 Ahmad (10.1016/j.enbuild.2019.01.024_bib0030) 2006; 38 Kämpf (10.1016/j.enbuild.2019.01.024_bib0041) 2007; 39 Guichard (10.1016/j.enbuild.2019.01.024_bib0019) 2014; 70 Komerska (10.1016/j.enbuild.2019.01.024_bib0025) 2015 Zhang (10.1016/j.enbuild.2019.01.024_bib0014) 2011; 43 Goyal (10.1016/j.enbuild.2019.01.024_bib0039) 2012; 47 Park (10.1016/j.enbuild.2019.01.024_bib0042) 2013; 8 Kuznik (10.1016/j.enbuild.2019.01.024_bib0003) 2011; 15 Laaouatni (10.1016/j.enbuild.2019.01.024_bib0045) 2017; 139 |
References_xml | – start-page: 3452 year: 2015 end-page: 3457 ident: bib0025 article-title: Experimental analysis of an external dynamic solar shading integrating PCMs: first results publication-title: Energy Procedia – volume: 63 start-page: 29 year: 2013 end-page: 35 ident: bib0005 article-title: Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings publication-title: Energy Build. – volume: 23 start-page: 272 year: 2013 end-page: 288 ident: bib0037 article-title: State of the art in building modelling and energy performances prediction: a review publication-title: Renew. Sustain. Energy Rev. – volume: 54 start-page: 116 year: 2012 end-page: 125 ident: bib0043 article-title: A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate publication-title: Build. Environ. – volume: 47 start-page: 332 year: 2012 end-page: 340 ident: bib0039 article-title: A method for model-reduction of non-linear thermal dynamics of multi-zone buildings publication-title: Energy Build. – volume: 155 start-page: 1233 year: 2017 end-page: 1242 ident: bib0035 article-title: Heat transfer studies of building brick containing phase change materials publication-title: Sol. Energy – volume: 21 start-page: 659 year: 2013 end-page: 673 ident: bib0048 article-title: Modeling phase change materials embedded in building enclosure: a review publication-title: Renew. Sustain. Energy Rev. – volume: 70 start-page: 71 year: 2014 end-page: 80 ident: bib0019 article-title: A thermal model for phase change materials in a building roof for a tropical and humid climate: model description and elements of validation publication-title: Energy Build. – volume: 92 start-page: 593 year: 2012 end-page: 605 ident: bib0001 article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications publication-title: Appl. Energy – volume: 38 start-page: 673 year: 2006 end-page: 681 ident: bib0049 article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material publication-title: Energy Build. – volume: 174 start-page: 54 year: 2018 end-page: 67 ident: bib0058 article-title: Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components publication-title: Energy Build. – volume: 38 start-page: 357 year: 2006 end-page: 366 ident: bib0030 article-title: Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material publication-title: Energy Build. – volume: 39 start-page: 445 year: 2007 end-page: 453 ident: bib0041 article-title: A simplified thermal model to support analysis of urban resource flows publication-title: Energy Build. – volume: 45 start-page: 263 year: 2004 end-page: 275 ident: bib0002 article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials publication-title: Energy Convers. Manag. – volume: 21 start-page: 1909 year: 2001 end-page: 1923 ident: bib0024 article-title: Thermally effective windows with moving phase change material curtains publication-title: Appl. Therm. Eng. – volume: 150 start-page: 546 year: 2017 end-page: 557 ident: bib0018 article-title: Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space publication-title: Energy Build. – volume: 132 start-page: 453 year: 2016 end-page: 466 ident: bib0055 article-title: Air-PCM heat exchanger for peak load management: experimental and simulation publication-title: Sol. Energy – volume: 29 start-page: 795 year: 2005 end-page: 809 ident: bib0013 article-title: Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings publication-title: Int. J. Energy Res. – volume: 38 start-page: 436 year: 2006 end-page: 446 ident: bib0026 article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments publication-title: Energy Build. – volume: 78 start-page: 1690 year: 2015 end-page: 1695 ident: bib0054 article-title: Modelling of an active PCM thermal energy storage for control applications publication-title: Energy Procedia – volume: 28 start-page: 556 year: 2008 end-page: 565 ident: bib0017 article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management publication-title: Appl. Therm. Eng. – volume: 51 start-page: 131 year: 2012 end-page: 142 ident: bib0015 article-title: Thermal analysis of the application of PCM and low emissivity coating in hollow bricks publication-title: Energy Build. – volume: 43 start-page: 277 year: 2004 end-page: 287 ident: bib0046 article-title: Numerical and experimental investigation of melting and freezing processes in phase change material storage publication-title: Int. J. Therm. Sci. – volume: 62 start-page: 217 year: 2000 end-page: 237 ident: bib0034 article-title: Control aspects of latent heat storage and recovery in concrete publication-title: Sol. Energy Mater. Sol. Cells. – volume: 40 start-page: 351 year: 2008 end-page: 357 ident: bib0007 article-title: Thermal analysis of a building brick containing phase change material publication-title: Energy Build. – volume: 15 start-page: 1675 year: 2011 end-page: 1695 ident: bib0004 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. – volume: 112 start-page: 639 year: 2016 end-page: 647 ident: bib0010 article-title: Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs publication-title: Constr. Build. Mater. – year: 1990 ident: bib0051 article-title: Fundamentals of Heat and Mass Transfer – volume: 41 start-page: 561 year: 2009 end-page: 570 ident: bib0031 article-title: Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling publication-title: Energy Build. – volume: 43 start-page: 232 year: 2011 end-page: 238 ident: bib0032 article-title: Realization, test and modelling of honeycomb wallboards containing a Phase Change Material publication-title: Energy Build. – volume: 43 start-page: 3019 year: 2011 end-page: 3026 ident: bib0009 article-title: Radiant floors integrated with PCM for indoor temperature control publication-title: Energy Build. – start-page: 1 year: 2010 end-page: 5 ident: bib0056 article-title: Numerical Simulation of a building envelope with high performance materials publication-title: COMSOL Conf. 2010 Paris – volume: 40 start-page: 266 year: 2018 end-page: 273 ident: bib0022 article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM publication-title: Sustain. Cities Soc. – volume: 172 start-page: 119 year: 2018 end-page: 128 ident: bib0021 article-title: Energy investigation of glazed windows containing Nano-PCM in different seasons publication-title: Energy Convers. Manag. – volume: 6 start-page: 403 year: 1982 end-page: 404 ident: bib0038 article-title: Optimal RC networks for walls publication-title: Appl. Math. Model. – volume: 42 start-page: 534 year: 2010 end-page: 540 ident: bib0011 article-title: Experimental study of using PCM in brick constructive solutions for passive cooling publication-title: Energy Build. – volume: 47 start-page: 421 year: 2011 end-page: 429 ident: bib0023 article-title: Using phase change materials in window shutter to reduce the solar heat gain publication-title: Energy Build. – volume: 120 start-page: 81 year: 2016 end-page: 89 ident: bib0016 article-title: Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room publication-title: Energy Convers. Manag. – volume: 43 start-page: 3514 year: 2011 end-page: 3520 ident: bib0014 article-title: Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures publication-title: Energy Build. – volume: 745 year: 2016 ident: bib0044 article-title: Study of improving the thermal response of a construction material containing a phase change material publication-title: J. Phys. Conf. Ser. – volume: 60 start-page: 1470 year: 2016 end-page: 1497 ident: bib0029 article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 379 year: 2011 end-page: 391 ident: bib0003 article-title: A review on phase change materials integrated in building walls publication-title: Renew. Sustain. Energy Rev. – volume: 39 start-page: 1427 year: 2004 end-page: 1434 ident: bib0008 article-title: Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates publication-title: Build. Environ. – volume: 8 start-page: 975 year: 2013 end-page: 983 ident: bib0042 article-title: Modeling of a building system and its parameter identification publication-title: J. Electr. Eng. Technol. – volume: 139 start-page: 744 year: 2017 end-page: 749 ident: bib0045 article-title: Phase change materials for improving the building thermal inertia publication-title: Energy Procedia – volume: 14 start-page: 115 year: 2000 end-page: 118 ident: bib0053 article-title: Forced convection heat transfer to phase change material slurries in circular ducts publication-title: J. Thermophys. Heat Transf. – year: 2015 ident: bib0057 article-title: PCM-Enhanced Building Components – volume: 18 start-page: 607 year: 2013 end-page: 625 ident: bib0027 article-title: Phase change material (PCM) storage for free cooling of buildings – a review publication-title: Renew. Sustain. Energy Rev. – volume: 34 start-page: 1017 year: 2002 end-page: 1031 ident: bib0040 article-title: Development of a simplified and accurate building model based on electrical analogy publication-title: Energy Build. – volume: 82 start-page: 385 year: 2014 end-page: 390 ident: bib0006 article-title: Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings publication-title: Energy Build. – volume: 34 start-page: 927 year: 2004 end-page: 934 ident: bib0033 article-title: Development of thermal energy storage concrete publication-title: Cem. Concr. Res. – volume: 61 start-page: 175 year: 2016 end-page: 186 ident: bib0028 article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings publication-title: Renew. Sustain. Energy Rev. – volume: 60 start-page: 442 year: 2013 end-page: 452 ident: bib0020 article-title: Improving thermal comfort conditions by means of PCM glazing systems publication-title: Energy Build. – year: 1954 ident: bib0050 article-title: Heat Transmission – volume: 18 start-page: 135 year: 1983 end-page: 150 ident: bib0052 article-title: Optimal designs for star circuits for radiant exchange in a room publication-title: Build. Environ. – volume: 42 start-page: 2197 year: 2007 end-page: 2209 ident: bib0036 article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook publication-title: Build. Environ. – volume: 67 start-page: 523 year: 2013 end-page: 534 ident: bib0047 article-title: Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux publication-title: Int. J. Heat Mass Transf. – volume: 39 start-page: 113 year: 2007 end-page: 119 ident: bib0012 article-title: Use of microencapsulated PCM in concrete walls for energy savings publication-title: Energy Build. – volume: 38 start-page: 436 year: 2006 ident: 10.1016/j.enbuild.2019.01.024_bib0026 article-title: Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.07.010 – volume: 23 start-page: 272 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0037 article-title: State of the art in building modelling and energy performances prediction: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.004 – year: 1954 ident: 10.1016/j.enbuild.2019.01.024_bib0050 – volume: 120 start-page: 81 year: 2016 ident: 10.1016/j.enbuild.2019.01.024_bib0016 article-title: Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.04.065 – volume: 42 start-page: 2197 year: 2007 ident: 10.1016/j.enbuild.2019.01.024_bib0036 article-title: Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.023 – volume: 21 start-page: 1909 year: 2001 ident: 10.1016/j.enbuild.2019.01.024_bib0024 article-title: Thermally effective windows with moving phase change material curtains publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(01)00058-8 – volume: 45 start-page: 263 year: 2004 ident: 10.1016/j.enbuild.2019.01.024_bib0002 article-title: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(03)00131-6 – volume: 70 start-page: 71 year: 2014 ident: 10.1016/j.enbuild.2019.01.024_bib0019 article-title: A thermal model for phase change materials in a building roof for a tropical and humid climate: model description and elements of validation publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.11.079 – volume: 60 start-page: 1470 year: 2016 ident: 10.1016/j.enbuild.2019.01.024_bib0029 article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.036 – volume: 43 start-page: 3514 year: 2011 ident: 10.1016/j.enbuild.2019.01.024_bib0014 article-title: Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.09.028 – volume: 40 start-page: 351 year: 2008 ident: 10.1016/j.enbuild.2019.01.024_bib0007 article-title: Thermal analysis of a building brick containing phase change material publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.03.001 – volume: 132 start-page: 453 year: 2016 ident: 10.1016/j.enbuild.2019.01.024_bib0055 article-title: Air-PCM heat exchanger for peak load management: experimental and simulation publication-title: Sol. Energy doi: 10.1016/j.solener.2016.03.030 – volume: 29 start-page: 795 year: 2005 ident: 10.1016/j.enbuild.2019.01.024_bib0013 article-title: Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings publication-title: Int. J. Energy Res. doi: 10.1002/er.1082 – volume: 40 start-page: 266 year: 2018 ident: 10.1016/j.enbuild.2019.01.024_bib0022 article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.01.020 – volume: 43 start-page: 232 year: 2011 ident: 10.1016/j.enbuild.2019.01.024_bib0032 article-title: Realization, test and modelling of honeycomb wallboards containing a Phase Change Material publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.09.017 – volume: 139 start-page: 744 year: 2017 ident: 10.1016/j.enbuild.2019.01.024_bib0045 article-title: Phase change materials for improving the building thermal inertia publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.11.281 – volume: 38 start-page: 673 year: 2006 ident: 10.1016/j.enbuild.2019.01.024_bib0049 article-title: Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.11.002 – volume: 67 start-page: 523 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0047 article-title: Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.08.001 – volume: 42 start-page: 534 year: 2010 ident: 10.1016/j.enbuild.2019.01.024_bib0011 article-title: Experimental study of using PCM in brick constructive solutions for passive cooling publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.10.022 – volume: 63 start-page: 29 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0005 article-title: Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.03.042 – volume: 6 start-page: 403 year: 1982 ident: 10.1016/j.enbuild.2019.01.024_bib0038 article-title: Optimal RC networks for walls publication-title: Appl. Math. Model. doi: 10.1016/S0307-904X(82)80108-X – volume: 174 start-page: 54 year: 2018 ident: 10.1016/j.enbuild.2019.01.024_bib0058 article-title: Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.06.001 – volume: 54 start-page: 116 year: 2012 ident: 10.1016/j.enbuild.2019.01.024_bib0043 article-title: A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.01.023 – volume: 34 start-page: 1017 year: 2002 ident: 10.1016/j.enbuild.2019.01.024_bib0040 article-title: Development of a simplified and accurate building model based on electrical analogy publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00019-1 – volume: 92 start-page: 593 year: 2012 ident: 10.1016/j.enbuild.2019.01.024_bib0001 article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.08.025 – volume: 18 start-page: 135 year: 1983 ident: 10.1016/j.enbuild.2019.01.024_bib0052 article-title: Optimal designs for star circuits for radiant exchange in a room publication-title: Build. Environ. doi: 10.1016/0360-1323(83)90006-9 – volume: 78 start-page: 1690 year: 2015 ident: 10.1016/j.enbuild.2019.01.024_bib0054 article-title: Modelling of an active PCM thermal energy storage for control applications publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.261 – volume: 15 start-page: 1675 year: 2011 ident: 10.1016/j.enbuild.2019.01.024_bib0004 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.018 – volume: 39 start-page: 113 year: 2007 ident: 10.1016/j.enbuild.2019.01.024_bib0012 article-title: Use of microencapsulated PCM in concrete walls for energy savings publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.03.030 – volume: 39 start-page: 445 year: 2007 ident: 10.1016/j.enbuild.2019.01.024_bib0041 article-title: A simplified thermal model to support analysis of urban resource flows publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.09.002 – volume: 82 start-page: 385 year: 2014 ident: 10.1016/j.enbuild.2019.01.024_bib0006 article-title: Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.07.012 – volume: 155 start-page: 1233 year: 2017 ident: 10.1016/j.enbuild.2019.01.024_bib0035 article-title: Heat transfer studies of building brick containing phase change materials publication-title: Sol. Energy doi: 10.1016/j.solener.2017.07.072 – volume: 112 start-page: 639 year: 2016 ident: 10.1016/j.enbuild.2019.01.024_bib0010 article-title: Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.02.225 – volume: 34 start-page: 927 year: 2004 ident: 10.1016/j.enbuild.2019.01.024_bib0033 article-title: Development of thermal energy storage concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.10.022 – volume: 51 start-page: 131 year: 2012 ident: 10.1016/j.enbuild.2019.01.024_bib0015 article-title: Thermal analysis of the application of PCM and low emissivity coating in hollow bricks publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.04.022 – volume: 39 start-page: 1427 year: 2004 ident: 10.1016/j.enbuild.2019.01.024_bib0008 article-title: Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates publication-title: Build. Environ. doi: 10.1016/j.buildenv.2004.04.005 – volume: 47 start-page: 421 year: 2011 ident: 10.1016/j.enbuild.2019.01.024_bib0023 article-title: Using phase change materials in window shutter to reduce the solar heat gain publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.12.009 – year: 2015 ident: 10.1016/j.enbuild.2019.01.024_bib0057 – volume: 18 start-page: 607 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0027 article-title: Phase change material (PCM) storage for free cooling of buildings – a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.10.034 – volume: 38 start-page: 357 year: 2006 ident: 10.1016/j.enbuild.2019.01.024_bib0030 article-title: Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.07.008 – volume: 47 start-page: 332 year: 2012 ident: 10.1016/j.enbuild.2019.01.024_bib0039 article-title: A method for model-reduction of non-linear thermal dynamics of multi-zone buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.12.005 – volume: 43 start-page: 277 year: 2004 ident: 10.1016/j.enbuild.2019.01.024_bib0046 article-title: Numerical and experimental investigation of melting and freezing processes in phase change material storage publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2003.07.001 – volume: 62 start-page: 217 year: 2000 ident: 10.1016/j.enbuild.2019.01.024_bib0034 article-title: Control aspects of latent heat storage and recovery in concrete publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/S0927-0248(99)00128-2 – volume: 28 start-page: 556 year: 2008 ident: 10.1016/j.enbuild.2019.01.024_bib0017 article-title: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.04.016 – volume: 21 start-page: 659 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0048 article-title: Modeling phase change materials embedded in building enclosure: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.01.024 – start-page: 3452 year: 2015 ident: 10.1016/j.enbuild.2019.01.024_bib0025 article-title: Experimental analysis of an external dynamic solar shading integrating PCMs: first results publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.125 – volume: 150 start-page: 546 year: 2017 ident: 10.1016/j.enbuild.2019.01.024_bib0018 article-title: Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.06.038 – volume: 41 start-page: 561 year: 2009 ident: 10.1016/j.enbuild.2019.01.024_bib0031 article-title: Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.11.022 – volume: 43 start-page: 3019 year: 2011 ident: 10.1016/j.enbuild.2019.01.024_bib0009 article-title: Radiant floors integrated with PCM for indoor temperature control publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.07.018 – volume: 60 start-page: 442 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0020 article-title: Improving thermal comfort conditions by means of PCM glazing systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.01.029 – start-page: 1 year: 2010 ident: 10.1016/j.enbuild.2019.01.024_sbref0056 article-title: Numerical Simulation of a building envelope with high performance materials – volume: 8 start-page: 975 year: 2013 ident: 10.1016/j.enbuild.2019.01.024_bib0042 article-title: Modeling of a building system and its parameter identification publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2013.8.5.975 – volume: 14 start-page: 115 year: 2000 ident: 10.1016/j.enbuild.2019.01.024_bib0053 article-title: Forced convection heat transfer to phase change material slurries in circular ducts publication-title: J. Thermophys. Heat Transf. doi: 10.2514/2.6499 – volume: 745 year: 2016 ident: 10.1016/j.enbuild.2019.01.024_bib0044 article-title: Study of improving the thermal response of a construction material containing a phase change material publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/745/3/032131 – volume: 61 start-page: 175 year: 2016 ident: 10.1016/j.enbuild.2019.01.024_bib0028 article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.007 – volume: 172 start-page: 119 year: 2018 ident: 10.1016/j.enbuild.2019.01.024_bib0021 article-title: Energy investigation of glazed windows containing Nano-PCM in different seasons publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.07.015 – year: 1990 ident: 10.1016/j.enbuild.2019.01.024_bib0051 – volume: 15 start-page: 379 year: 2011 ident: 10.1016/j.enbuild.2019.01.024_bib0003 article-title: A review on phase change materials integrated in building walls publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.08.019 |
SSID | ssj0006571 |
Score | 2.471388 |
Snippet | •Solution for the regulation of thermal inertia and the contribution to air renewal.•Experimental and numerical study of an active hollow concrete block filled... In the context of improving energy efficiency and thermal comfort in the building, the use of phase change materials (PCMs) is one of the suggested solutions.... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 50 |
SubjectTerms | Active control Antisymmetry Building control Building envelopes Computational fluid dynamics Computer simulation Computing time Concrete blocks Data processing Direct numerical simulation Energy demand Energy efficiency Energy management Engineering Sciences Flow equations Fluid flow Integration Mathematical models Modelling Optimization Phase change material (PCM) Phase change materials RC circuits Reinforced concrete Thermal building Thermal comfort Thermal inertia Thermal modelling Thermal response Thermodynamic properties Ventilation |
Title | Thermal building control using active ventilated block integrating phase change material |
URI | https://dx.doi.org/10.1016/j.enbuild.2019.01.024 https://www.proquest.com/docview/2204775445 https://hal.science/hal-03138346 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA4uFz2IK9aNIF6nnck2k2MplroiLtBbmMyiraUWrR797b6XyVgVRPAyw4SEDO-9vCV8-ULIkU01l7koAnikSKodBokOy6AsrIp1ZAvu9nQvLlXvTpz2ZX-OdOqzMAir9L6_8unOW_uWlpdmazIYtG5CDsaGbOgJmFHiqD-RvQ5suvk-g3ko6You7Bxg79kpntawifQCgxEShka6Yu8Uv8Wn-QcESv7w1y4IdVfJis8eabv6wTUyV4zXyfIXTsEN0gfFg7MdUesvvKYejU4R4n5PU-fgqIM5jiDRzKmFePZIa94I7DN5gNhGqzPBFFJaZ6Wb5K57fNvpBf76hCATMp4GSsWljWUay1xCyQxLmbEyyliS8VyzSKVQaZUZ4yItsojljKvMslgjv4u2Ign5FlkYP42LbUIVL7VliWSpFqLQLC1jKAy5VqVSea5tg4haaCbz3OJ4xcXI1CCyofGyNihrE0YGZN0gzc9hk4pc468BSa0R881KDASAv4YeggY_p0FW7V773GAb0lcmXKi3qEH2agUbv5ZfDGOhcDyBcuf_0--SJfxC9Fok98jC9Pm12Id0ZmoPnL0ekMV25_r8Ct8nZ73LD1VQ9Yw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BOEAPFVAqQqGsUK9O7H3Ze4wQkSlJLoCU28rrRxOI0qhN-_uZsdfhIVVIvfiw3tFaM7PfzFiz3wJ8c5kRqpBlgI-MSLXDIDFhFVSl07GJXCnqf7rjiU7v5fepmm7BZXsWhtoqPfY3mF6jtR_pe232V_N5_zYU6GzEhp6gGyVE_blD7FSyAzuD65t0sgFkreq6i-YHJPB8kKf_0COGgfmCOEMj0xB4yn-FqO0Z9Uq-gew6Dg334aNPINmg-cYD2CqXh_DhBa3gJ5ii7RFvF8z5O6-Zb0hn1OX-g2U1xrG603GBuWbBHIa0R9ZSR9Cc1QzDG2uOBTPMamtHPYL74dXdZRr4GxSCXKp4HWgdVy5WWawKhVUz7mbOqyjnSS4KwyOdYbFV5VzIrMwjXnChc8djQxQvxskkFJ-hs_y5LI-BaVEZxxPFMyNlaXhWxVgbCqMrrYvCuC7IVmk29_TidMvFwrZ9ZA_W69qSrm0YWdR1F3obsVXDr_GeQNJaxL5yFIsx4D3RC7TgZhki1k4HI0tjxGCZCKn_Rl04bQ1s_Xb-bTkPZU0VqE7-f_lz2E3vxiM7up7cfIE9ekPNbJE6hc7615_yDLObtfvqvfcJDaf2qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+building+control+using+active+ventilated+block+integrating+phase+change+material&rft.jtitle=Energy+and+buildings&rft.au=Laaouatni%2C+Amine&rft.au=Martaj%2C+Nadia&rft.au=Bennacer%2C+Rachid&rft.au=Lachi%2C+Mohammed&rft.date=2019-03-15&rft.pub=Elsevier&rft.issn=0378-7788&rft.volume=187&rft.spage=50&rft.epage=63&rft_id=info:doi/10.1016%2Fj.enbuild.2019.01.024&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03138346v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |