Impact of Crop Residue, Nutrients, and Soil Moisture on Methane Emissions from Soil under Long-Term Conservation Tillage
Greenhouse gas emissions from agricultural production systems are a major area of concern in mitigating climate change. Therefore, a study was conducted to investigate the effects of crop residue, nutrient management, and soil moisture on methane (CH4) emissions from maize, rice, soybean, and wheat...
Saved in:
Published in | Soil systems Vol. 8; no. 3; p. 88 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Greenhouse gas emissions from agricultural production systems are a major area of concern in mitigating climate change. Therefore, a study was conducted to investigate the effects of crop residue, nutrient management, and soil moisture on methane (CH4) emissions from maize, rice, soybean, and wheat production systems. In this study, incubation experiments were conducted with four residue types (maize, rice, soybean, wheat), seven nutrient management treatments {N0P0K0 (no nutrients), N0PK, N100PK, N150PK, N100PK + manure@ 5 Mg ha−1, N100PK + biochar@ 5 Mg ha−1, N150PK+ biochar@ 5 Mg ha−1}, and two soil moisture levels (80% FC, and 60% FC). The results of this study indicated that interactive effects of residue type, nutrient management, and soil moisture significantly affected methane (CH4) fluxes. After 87 days of incubation, the treatment receiving rice residue with N100PK at 60% FC had the highest cumulative CH4 mitigation of −19.4 µg C kg−1 soil, and the highest emission of CH4 was observed in wheat residue application with N0PK at 80% FC (+12.93 µg C kg−1 soil). Nutrient management had mixed effects on CH4 emissions across residue and soil moisture levels in the following order: N150PK > N0PK > N150PK + biochar > N0P0K0 > N100PK + manure > N100PK + biochar > N100PK. Decreasing soil moisture from 80% FC to 60% FC reduced methane emissions across all residue types and nutrient treatments. Wheat and maize residues exhibited the highest carbon mineralization rates, followed by rice and soybean residues. Nutrient inputs generally decreased residue carbon mineralization. The regression analysis indicated that soil moisture and residue C mineralization were the two dominant predictor variables that estimated 31% of soil methane fluxes in Vertisols. The results of this study show the complexity of methane dynamics and emphasize the importance of integrated crop, nutrient, and soil moisture (irrigation) management strategies that need to be developed to minimize methane emissions from agricultural production systems to mitigate climate change. |
---|---|
AbstractList | Greenhouse gas emissions from agricultural production systems are a major area of concern in mitigating climate change. Therefore, a study was conducted to investigate the effects of crop residue, nutrient management, and soil moisture on methane (CH₄) emissions from maize, rice, soybean, and wheat production systems. In this study, incubation experiments were conducted with four residue types (maize, rice, soybean, wheat), seven nutrient management treatments {N0P0K0 (no nutrients), N0PK, N100PK, N150PK, N100PK + manure@ 5 Mg ha⁻¹, N100PK + biochar@ 5 Mg ha⁻¹, N150PK+ biochar@ 5 Mg ha⁻¹}, and two soil moisture levels (80% FC, and 60% FC). The results of this study indicated that interactive effects of residue type, nutrient management, and soil moisture significantly affected methane (CH₄) fluxes. After 87 days of incubation, the treatment receiving rice residue with N100PK at 60% FC had the highest cumulative CH₄ mitigation of −19.4 µg C kg⁻¹ soil, and the highest emission of CH₄ was observed in wheat residue application with N0PK at 80% FC (+12.93 µg C kg⁻¹ soil). Nutrient management had mixed effects on CH₄ emissions across residue and soil moisture levels in the following order: N150PK > N0PK > N150PK + biochar > N0P0K0 > N100PK + manure > N100PK + biochar > N100PK. Decreasing soil moisture from 80% FC to 60% FC reduced methane emissions across all residue types and nutrient treatments. Wheat and maize residues exhibited the highest carbon mineralization rates, followed by rice and soybean residues. Nutrient inputs generally decreased residue carbon mineralization. The regression analysis indicated that soil moisture and residue C mineralization were the two dominant predictor variables that estimated 31% of soil methane fluxes in Vertisols. The results of this study show the complexity of methane dynamics and emphasize the importance of integrated crop, nutrient, and soil moisture (irrigation) management strategies that need to be developed to minimize methane emissions from agricultural production systems to mitigate climate change. Greenhouse gas emissions from agricultural production systems are a major area of concern in mitigating climate change. Therefore, a study was conducted to investigate the effects of crop residue, nutrient management, and soil moisture on methane (CH4) emissions from maize, rice, soybean, and wheat production systems. In this study, incubation experiments were conducted with four residue types (maize, rice, soybean, wheat), seven nutrient management treatments {N0P0K0 (no nutrients), N0PK, N100PK, N150PK, N100PK + manure@ 5 Mg ha−1, N100PK + biochar@ 5 Mg ha−1, N150PK+ biochar@ 5 Mg ha−1}, and two soil moisture levels (80% FC, and 60% FC). The results of this study indicated that interactive effects of residue type, nutrient management, and soil moisture significantly affected methane (CH4) fluxes. After 87 days of incubation, the treatment receiving rice residue with N100PK at 60% FC had the highest cumulative CH4 mitigation of −19.4 µg C kg−1 soil, and the highest emission of CH4 was observed in wheat residue application with N0PK at 80% FC (+12.93 µg C kg−1 soil). Nutrient management had mixed effects on CH4 emissions across residue and soil moisture levels in the following order: N150PK > N0PK > N150PK + biochar > N0P0K0 > N100PK + manure > N100PK + biochar > N100PK. Decreasing soil moisture from 80% FC to 60% FC reduced methane emissions across all residue types and nutrient treatments. Wheat and maize residues exhibited the highest carbon mineralization rates, followed by rice and soybean residues. Nutrient inputs generally decreased residue carbon mineralization. The regression analysis indicated that soil moisture and residue C mineralization were the two dominant predictor variables that estimated 31% of soil methane fluxes in Vertisols. The results of this study show the complexity of methane dynamics and emphasize the importance of integrated crop, nutrient, and soil moisture (irrigation) management strategies that need to be developed to minimize methane emissions from agricultural production systems to mitigate climate change. Greenhouse gas emissions from agricultural production systems are a major area of concern in mitigating climate change. Therefore, a study was conducted to investigate the effects of crop residue, nutrient management, and soil moisture on methane (CH[sub.4]) emissions from maize, rice, soybean, and wheat production systems. In this study, incubation experiments were conducted with four residue types (maize, rice, soybean, wheat), seven nutrient management treatments {N0P0K0 (no nutrients), N0PK, N100PK, N150PK, N100PK + manure@ 5 Mg ha[sup.−1], N100PK + biochar@ 5 Mg ha[sup.−1], N150PK+ biochar@ 5 Mg ha[sup.−1]}, and two soil moisture levels (80% FC, and 60% FC). The results of this study indicated that interactive effects of residue type, nutrient management, and soil moisture significantly affected methane (CH[sub.4]) fluxes. After 87 days of incubation, the treatment receiving rice residue with N100PK at 60% FC had the highest cumulative CH[sub.4] mitigation of −19.4 µg C kg[sup.−1] soil, and the highest emission of CH[sub.4] was observed in wheat residue application with N0PK at 80% FC (+12.93 µg C kg[sup.−1] soil). Nutrient management had mixed effects on CH[sub.4] emissions across residue and soil moisture levels in the following order: N150PK > N0PK > N150PK + biochar > N0P0K0 > N100PK + manure > N100PK + biochar > N100PK. Decreasing soil moisture from 80% FC to 60% FC reduced methane emissions across all residue types and nutrient treatments. Wheat and maize residues exhibited the highest carbon mineralization rates, followed by rice and soybean residues. Nutrient inputs generally decreased residue carbon mineralization. The regression analysis indicated that soil moisture and residue C mineralization were the two dominant predictor variables that estimated 31% of soil methane fluxes in Vertisols. The results of this study show the complexity of methane dynamics and emphasize the importance of integrated crop, nutrient, and soil moisture (irrigation) management strategies that need to be developed to minimize methane emissions from agricultural production systems to mitigate climate change. |
Audience | Academic |
Author | Singh, Dharmendra Adhikari, Tapan Lenka, Narendra Kumar Sarkar, Abhijit Kanwar, Rameshwar S. Saha, Madhumonti Lenka, Sangeeta Yadav, Dinesh Kumar Choudhary, Rajesh |
Author_xml | – sequence: 1 givenname: Rajesh surname: Choudhary fullname: Choudhary, Rajesh – sequence: 2 givenname: Sangeeta orcidid: 0000-0002-8933-5506 surname: Lenka fullname: Lenka, Sangeeta – sequence: 3 givenname: Dinesh Kumar surname: Yadav fullname: Yadav, Dinesh Kumar – sequence: 4 givenname: Narendra Kumar orcidid: 0000-0003-1224-7660 surname: Lenka fullname: Lenka, Narendra Kumar – sequence: 5 givenname: Rameshwar S. orcidid: 0000-0002-7834-9582 surname: Kanwar fullname: Kanwar, Rameshwar S. – sequence: 6 givenname: Abhijit surname: Sarkar fullname: Sarkar, Abhijit – sequence: 7 givenname: Madhumonti surname: Saha fullname: Saha, Madhumonti – sequence: 8 givenname: Dharmendra surname: Singh fullname: Singh, Dharmendra – sequence: 9 givenname: Tapan surname: Adhikari fullname: Adhikari, Tapan |
BookMark | eNp9UlFrFDEQXqSCtfYP-BTwxYduTXY3m-SxHFUPrgp6Poe57OTMsZucSbbYf2-uqyAVJDBJJt_3DfNlXlZnPnisqteMXretou9ScGN6SBmnJGlLqZTPqvOGC1ZLIdXZX-cX1WVKB0ppwzoquv68-rmejmAyCZasYjiSL5jcMOMV-TTn6NDndEXAD-RrqUHugkt5jkiCJ3eYv4NHcju5lFzwidgYpgU3-wEj2QS_r7cYJ7IqzxjvIRcc2bpxhD2-qp5bGBNe_t4vqm_vb7erj_Xm84f16mZTm46LXHMB0gxMWit6UaJs6MBaDqg6hmgaoEMPDTDgOyYVt5Q3lLIOFCqq1I62F9V60R0CHPQxugnigw7g9GMixL2GmJ0ZUe94w3vKux7RdjA0ihWbhFFc7srNnLTeLlrHGH7MmLIuzRss_XgMc9It463kfad4gb55Aj2EOfrSaUEx2ou2hIK6XlB7KPWdtyFHMGUNODlTftm6kr-RjAqhGD_JyoVgYkgpotXG5UdfC9GNmlF9Ggn970gUavOE-seM_5B-AWOrv2s |
CitedBy_id | crossref_primary_10_1016_j_atech_2025_100848 crossref_primary_10_3389_fenvs_2024_1489070 crossref_primary_10_3390_atmos15121404 |
Cites_doi | 10.1016/j.agee.2020.106831 10.1016/j.jclepro.2020.124019 10.5194/bg-19-2025-2022 10.1016/j.geoderma.2019.04.008 10.1016/j.scitotenv.2020.144089 10.3390/su16103997 10.1126/sciadv.aau9038 10.1016/j.soilbio.2020.108118 10.1016/j.jenvman.2019.07.013 10.1071/AR9951459 10.3389/fenvs.2022.857233 10.1016/j.pedsph.2024.05.006 10.1016/0038-0717(71)90049-6 10.1016/j.chemer.2016.04.002 10.1079/AJAA2003003 10.1890/EHS14-0015.1 10.1016/j.apgeog.2011.09.008 10.1016/0016-7061(74)90068-8 10.1016/j.soilbio.2014.09.012 10.1007/s42773-021-00096-0 10.3390/land11060846 10.1186/s13765-019-0476-7 10.1016/j.apsoil.2022.104549 10.1016/j.still.2005.09.001 10.5194/se-6-197-2015 10.1007/s00374-010-0497-1 10.1007/s11356-016-8189-5 10.1016/j.biombioe.2022.106438 10.1016/S2095-3119(15)61063-2 10.1016/j.scitotenv.2021.150035 10.1016/S1164-5563(01)01067-6 10.1111/j.1365-2486.2012.02762.x 10.1038/srep24731 10.1016/B978-0-443-15506-2.00022-5 10.1016/j.jclepro.2022.131810 10.1007/s10705-014-9658-1 10.1016/j.envpol.2021.117565 10.1016/j.atmosenv.2013.07.006 10.1016/j.scitotenv.2024.170293 10.1016/S1002-0160(20)60025-X 10.1016/j.pedobi.2011.07.005 10.1016/j.scitotenv.2020.143768 10.1016/j.atmosenv.2017.11.054 10.1016/j.jenvman.2024.120236 10.1016/j.scitotenv.2021.145902 10.1016/j.scitotenv.2021.148292 10.1016/j.still.2006.12.004 10.1002/fes3.200 10.1016/j.agwat.2023.108281 10.1016/j.apsoil.2018.02.012 10.1016/j.scitotenv.2021.150172 10.1016/j.scitotenv.2020.142225 10.1016/j.geoderma.2019.113920 10.1016/j.ejsobi.2017.08.005 10.1016/j.soilbio.2019.05.012 10.1371/journal.pone.0092531 10.2136/sssaj2000.643918x 10.1016/j.scitotenv.2020.136677 10.1016/bs.agron.2023.03.003 10.1016/j.soilbio.2003.09.012 10.1016/j.heliyon.2023.e12984 10.1111/are.14922 10.2134/agronj2016.11.0633 10.1016/j.eja.2022.126535 10.22438/jeb/41/6/SI-221 10.1007/s11629-017-4810-4 10.1016/j.scitotenv.2022.158370 10.1016/j.apsoil.2020.103531 10.3389/fmicb.2018.03035 10.1016/j.geoderma.2019.114092 10.1111/gcb.14154 10.1016/j.scitotenv.2022.158562 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.3390/soilsystems8030088 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Agricultural Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2571-8789 |
ExternalDocumentID | oai_doaj_org_article_b52560546eef4ad2912147c958bad2c0 A810779155 10_3390_soilsystems8030088 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PMFND 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c457t-57a8cd18ff7678ff820d135ae941eec2a0d6a2a1a5b1895f0520014a9e9099b03 |
IEDL.DBID | BENPR |
ISSN | 2571-8789 |
IngestDate | Wed Aug 27 01:30:01 EDT 2025 Fri Jul 11 09:57:08 EDT 2025 Mon Jun 30 11:21:44 EDT 2025 Tue Jun 10 21:02:09 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 02:33:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-57a8cd18ff7678ff820d135ae941eec2a0d6a2a1a5b1895f0520014a9e9099b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8933-5506 0000-0002-7834-9582 0000-0003-1224-7660 |
OpenAccessLink | https://www.proquest.com/docview/3110673106?pq-origsite=%requestingapplication% |
PQID | 3110673106 |
PQPubID | 5046857 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b52560546eef4ad2912147c958bad2c0 proquest_miscellaneous_3153856495 proquest_journals_3110673106 gale_infotracacademiconefile_A810779155 crossref_citationtrail_10_3390_soilsystems8030088 crossref_primary_10_3390_soilsystems8030088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Soil systems |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Junqueira (ref_70) 2020; 30 Qi (ref_40) 2020; 292 Fang (ref_60) 2018; 24 ref_13 ref_57 Zhou (ref_20) 2021; 792 Yang (ref_55) 2022; 853 Oertel (ref_25) 2016; 76 Anderson (ref_15) 2011; 54 Li (ref_46) 2024; 917 Liu (ref_58) 2018; 127 Yin (ref_65) 2021; 287 Hadas (ref_52) 2004; 36 Liang (ref_63) 2017; 82 Nottingham (ref_61) 2015; 80 Lenka (ref_4) 2022; 60 Ji (ref_62) 2022; 138 ref_66 Yue (ref_71) 2022; 804 Kong (ref_16) 2019; 347 Du (ref_35) 2024; 353 Tian (ref_1) 2015; 1 Chai (ref_74) 2020; 362 Xu (ref_73) 2021; 752 Han (ref_42) 2022; 803 Wu (ref_22) 2022; 356 Korkiakoski (ref_36) 2022; 19 Wang (ref_8) 2018; 174 Sabir (ref_31) 2015; 6 Nan (ref_44) 2021; 3 Malhi (ref_54) 2006; 90 Jin (ref_69) 2023; 9 Lenka (ref_19) 2017; 24 Ci (ref_21) 2017; 109 (ref_56) 2013; 13 Yao (ref_64) 2013; 79 Blair (ref_50) 1995; 46 Barrow (ref_41) 2012; 34 Shakoor (ref_30) 2021; 278 ref_34 Anandakumar (ref_33) 2022; 177 Trinsoutrot (ref_53) 2000; 64 Wang (ref_24) 2019; 135 Shaukat (ref_12) 2019; 248 Roger (ref_72) 2001; 37 Lenka (ref_17) 2021; 41 ref_38 Zhang (ref_26) 2023; 282 ref_37 Liu (ref_32) 2019; 355 Kempers (ref_48) 1974; 12 Islam (ref_51) 2003; 18 Banger (ref_14) 2012; 18 Jiang (ref_27) 2019; 5 Sainju (ref_7) 2021; 775 Klein (ref_49) 1971; 3 ref_45 ref_43 Wang (ref_23) 2018; 15 Sun (ref_39) 2016; 15 Raul (ref_47) 2021; 52 ref_3 ref_2 Weller (ref_11) 2015; 101 Nguyen (ref_28) 2020; 152 Muhammad (ref_59) 2011; 47 Liu (ref_75) 2021; 757 ref_9 Akiyama (ref_10) 2020; 713 Zhou (ref_18) 2021; 757 Jin (ref_29) 2020; 9 Abhishek (ref_67) 2022; 853 ref_5 Omonode (ref_68) 2007; 95 ref_6 |
References_xml | – volume: 292 start-page: 106831 year: 2020 ident: ref_40 article-title: Biochar application increased methane emission, soil carbon storage and net ecosystem carbon budget in a 2-year vegetable–rice rotation publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2020.106831 – volume: 278 start-page: 124019 year: 2021 ident: ref_30 article-title: Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124019 – volume: 19 start-page: 2025 year: 2022 ident: ref_36 article-title: Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil publication-title: Biogeosciences doi: 10.5194/bg-19-2025-2022 – volume: 347 start-page: 233 year: 2019 ident: ref_16 article-title: Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.008 – volume: 757 start-page: 144089 year: 2021 ident: ref_18 article-title: Manipulation of soil methane oxidation under drought stress publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144089 – ident: ref_6 doi: 10.3390/su16103997 – volume: 5 start-page: eaau9038 year: 2019 ident: ref_27 article-title: Acclimation of methane emissions from rice paddy fields to straw addition publication-title: Sci. Adv. doi: 10.1126/sciadv.aau9038 – ident: ref_66 doi: 10.1016/j.soilbio.2020.108118 – volume: 60 start-page: 207 year: 2022 ident: ref_4 article-title: Tillage and nutrient management influence net global warming potential and greenhouse gas intensity in soybean-wheat cropping system publication-title: Indian J. Exp. Biol. – volume: 248 start-page: 109242 year: 2019 ident: ref_12 article-title: Simultaneous effects of biochar and nitrogen fertilization on nitrous oxide and methane emissions from paddy rice publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.07.013 – volume: 46 start-page: 1459 year: 1995 ident: ref_50 article-title: Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems publication-title: Aust. J. Agric. Res. doi: 10.1071/AR9951459 – ident: ref_5 doi: 10.3389/fenvs.2022.857233 – ident: ref_37 doi: 10.1016/j.pedsph.2024.05.006 – volume: 3 start-page: 385 year: 1971 ident: ref_49 article-title: A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(71)90049-6 – volume: 76 start-page: 327 year: 2016 ident: ref_25 article-title: Greenhouse gas emissions from soils—A review publication-title: Chemie der Erde doi: 10.1016/j.chemer.2016.04.002 – volume: 18 start-page: 3 year: 2003 ident: ref_51 article-title: Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use publication-title: Am. J. Altern. Agric. doi: 10.1079/AJAA2003003 – volume: 1 start-page: 11878978 year: 2015 ident: ref_1 article-title: Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes publication-title: Ecosyst. Health Sustain. doi: 10.1890/EHS14-0015.1 – volume: 34 start-page: 21 year: 2012 ident: ref_41 article-title: Biochar: Potential for countering land degradation and for improving agriculture publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2011.09.008 – volume: 12 start-page: 201 year: 1974 ident: ref_48 article-title: Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodium nitroprusside and hypochlorite publication-title: Geoderma doi: 10.1016/0016-7061(74)90068-8 – volume: 80 start-page: 26 year: 2015 ident: ref_61 article-title: Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.09.012 – volume: 3 start-page: 125 year: 2021 ident: ref_44 article-title: Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: A review publication-title: Biochar doi: 10.1007/s42773-021-00096-0 – ident: ref_9 doi: 10.3390/land11060846 – ident: ref_13 doi: 10.1186/s13765-019-0476-7 – volume: 177 start-page: 104549 year: 2022 ident: ref_33 article-title: Impact of long-term nutrient management on sequestration and dynamics of soil organic carbon in a semi-arid tropical Alfisol of India publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2022.104549 – volume: 90 start-page: 171 year: 2006 ident: ref_54 article-title: Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2005.09.001 – volume: 6 start-page: 197 year: 2015 ident: ref_31 article-title: Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions publication-title: Solid Earth doi: 10.5194/se-6-197-2015 – volume: 47 start-page: 15 year: 2011 ident: ref_59 article-title: Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-010-0497-1 – volume: 24 start-page: 4603 year: 2017 ident: ref_19 article-title: Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean–wheat system of central India publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-8189-5 – ident: ref_34 doi: 10.1016/j.biombioe.2022.106438 – volume: 15 start-page: 440 year: 2016 ident: ref_39 article-title: The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(15)61063-2 – volume: 803 start-page: 150035 year: 2022 ident: ref_42 article-title: Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150035 – volume: 37 start-page: 25 year: 2001 ident: ref_72 article-title: Production, oxidation, emission and consumption of methane by soils: A review publication-title: Eur. J. Soil Biol. doi: 10.1016/S1164-5563(01)01067-6 – volume: 18 start-page: 3259 year: 2012 ident: ref_14 article-title: Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02762.x – ident: ref_43 doi: 10.1038/srep24731 – ident: ref_45 doi: 10.1016/B978-0-443-15506-2.00022-5 – volume: 356 start-page: 131810 year: 2022 ident: ref_22 article-title: Effects of soil warming and straw return on soil organic matter and greenhouse gas fluxes in winter wheat seasons in the North China Plain publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131810 – volume: 101 start-page: 37 year: 2015 ident: ref_11 article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-014-9658-1 – volume: 287 start-page: 117565 year: 2021 ident: ref_65 article-title: Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117565 – volume: 79 start-page: 641 year: 2013 ident: ref_64 article-title: Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.07.006 – volume: 917 start-page: 170293 year: 2024 ident: ref_46 article-title: Biochar’s dual role in greenhouse gas emissions: Nitrogen fertilization dependency and mitigation potential publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.170293 – volume: 30 start-page: 607 year: 2020 ident: ref_70 article-title: How do greenhouse gas emissions vary with biofertilizer type and soil temperature and moisture in a tropical grassland? publication-title: Pedosphere doi: 10.1016/S1002-0160(20)60025-X – volume: 54 start-page: 309 year: 2011 ident: ref_15 article-title: Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 757 start-page: 143768 year: 2021 ident: ref_75 article-title: Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143768 – volume: 174 start-page: 171 year: 2018 ident: ref_8 article-title: Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.11.054 – volume: 353 start-page: 120236 year: 2024 ident: ref_35 article-title: Novel annual nitrogen management strategy improves crop yield and reduces greenhouse gas emissions in wheat-maize rotation systems under limited irrigation publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.120236 – volume: 775 start-page: 145902 year: 2021 ident: ref_7 article-title: Soil carbon dioxide and methane emissions and carbon balance with crop rotation and nitrogen fertilization publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145902 – volume: 792 start-page: 148292 year: 2021 ident: ref_20 article-title: Soil aeration rather than methanotrophic community drives methane uptake under drought in a subtropical forest publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148292 – volume: 95 start-page: 182 year: 2007 ident: ref_68 article-title: Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations publication-title: Soil Tillage Res. doi: 10.1016/j.still.2006.12.004 – volume: 9 start-page: e200 year: 2020 ident: ref_29 article-title: Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review publication-title: Food Energy Secur. doi: 10.1002/fes3.200 – volume: 282 start-page: 108281 year: 2023 ident: ref_26 article-title: Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108281 – volume: 127 start-page: 51 year: 2018 ident: ref_58 article-title: Intensive fertilization (N, P, K, Ca, and S) decreases organic matter decomposition in paddy soil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2018.02.012 – volume: 13 start-page: 445 year: 2013 ident: ref_56 article-title: Sensitivity of soil respiration to moisture and temperature publication-title: J. Soil Sci. Plant Nutr. – volume: 804 start-page: 150172 year: 2022 ident: ref_71 article-title: Precipitation changes regulate the annual methane uptake in a temperate desert steppe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150172 – volume: 752 start-page: 142225 year: 2021 ident: ref_73 article-title: Interactions between methanotrophs and ammonia oxidizers modulate the response of in situ methane emissions to simulated climate change and its legacy in an acidic soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142225 – volume: 355 start-page: 113920 year: 2019 ident: ref_32 article-title: Soil moisture as the key factor of atmospheric CH4 uptake in forest soils under environmental change publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113920 – volume: 82 start-page: 50 year: 2017 ident: ref_63 article-title: Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2017.08.005 – volume: 135 start-page: 251 year: 2019 ident: ref_24 article-title: Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.012 – ident: ref_57 doi: 10.1371/journal.pone.0092531 – volume: 64 start-page: 918 year: 2000 ident: ref_53 article-title: Biochemical Quality of Crop Residues and Carbon and Nitrogen Mineralization Kinetics under Nonlimiting Nitrogen Conditions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.643918x – volume: 713 start-page: 136677 year: 2020 ident: ref_10 article-title: Effect of low C/N crop residue input on N2O, NO, and CH4 fluxes from Andosol and Fluvisol fields publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136677 – ident: ref_3 doi: 10.1016/bs.agron.2023.03.003 – volume: 36 start-page: 255 year: 2004 ident: ref_52 article-title: Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.09.012 – ident: ref_2 – volume: 9 start-page: e12984 year: 2023 ident: ref_69 article-title: Effects of drying-rewetting cycles on the fluxes of soil greenhouse gases publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e12984 – volume: 52 start-page: 643 year: 2021 ident: ref_47 article-title: Sugarcane bagasse biochar: Suitable amendment for inland aquaculture soils publication-title: Aquac. Res. doi: 10.1111/are.14922 – volume: 109 start-page: 2415 year: 2017 ident: ref_21 article-title: Effect of nitrogen fertilizer application on corn residue decomposition in Iowa publication-title: Agron. J. doi: 10.2134/agronj2016.11.0633 – volume: 138 start-page: 126535 year: 2022 ident: ref_62 article-title: Crop residue decomposition and nutrient release are independently affected by nitrogen fertilization, plastic film mulching, and residue type publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2022.126535 – volume: 41 start-page: 1585 year: 2021 ident: ref_17 article-title: Manure addition influences the effect of tillage on soil aggregation and aggregate associated carbon in a Vertisol of central India publication-title: J. Environ. Biol. doi: 10.22438/jeb/41/6/SI-221 – volume: 15 start-page: 1972 year: 2018 ident: ref_23 article-title: Crop residue incorporation and nitrogen fertilizer effects on greenhouse gas emissions from a subtropical rice system in Southwest China publication-title: J. Mt. Sci. doi: 10.1007/s11629-017-4810-4 – volume: 853 start-page: 158370 year: 2022 ident: ref_55 article-title: Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158370 – volume: 152 start-page: 103531 year: 2020 ident: ref_28 article-title: Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2020.103531 – ident: ref_38 doi: 10.3389/fmicb.2018.03035 – volume: 362 start-page: 114092 year: 2020 ident: ref_74 article-title: A methane sink in the Central American high elevation páramo: Topographic, soil moisture and vegetation effects publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114092 – volume: 24 start-page: 2775 year: 2018 ident: ref_60 article-title: Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils publication-title: Glob. Change Biol. doi: 10.1111/gcb.14154 – volume: 853 start-page: 158562 year: 2022 ident: ref_67 article-title: Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158562 |
SSID | ssj0002140746 |
Score | 2.3001988 |
Snippet | Greenhouse gas emissions from agricultural production systems are a major area of concern in mitigating climate change. Therefore, a study was conducted to... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 88 |
SubjectTerms | Agricultural practices Agricultural production Agriculture biochar Carbon Cellulose Charcoal Climate change Climate change mitigation Conservation tillage Corn Crop production crop residue Crop residues Crops Emissions Experiments Fertilizers Fluxes Global warming Greenhouse gases Irrigation Lignin Management Manures Methane Mineralization mitigation Moisture content Nitrogen nutrient Nutrient dynamics nutrient management Nutrients Oxidation Regression analysis residue mineralization Residues Rice Soil analysis Soil conservation Soil investigations Soil moisture Soil sciences soil water Soybean Soybeans Strategic planning (Business) Vertisols Wheat |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-ZQ-kiJ26SoUMghMbFsyY_jJiSkpZtDuoHchCyPlkKwwz6gP7_f2N5toDS99Gh7ZGR9I82MrPlGiM--yJq61Cp2qdexdmUWV4n3cZ2oslJN7kzJ2cjTm_z6Tn-9N_dPSn3xmbCBHngYuLPasFE2OicK2jVppbiyjq_wDlz5PlqHzXsSTPEaDBkupDFkyWSI68-W3Y-HgRx5WUKxk77Uym9L1BP2_21Z7m3N1SvxcnQS5WTo3GuxQ-0bsTeZL0aiDHorfn7p0xtlF-TFonuUtwS1WtOpvGF6fT4dcSpd28jv6JCcdgATzWTXyinxZjnJSwDMO2VLyRkmgxwnlC3kt66dxzOs2JKreW42beWM6xPNaV_cXV3OLq7jsYpC7LUpVrEpXOkbVYZQwDCFAJPfqMw4qrQi8qlLgEjqlDM14DGhJ2JS2lVUwXusk-yd2G27lg6EDEWG4dcJBUPauLqGAeRUekxiRC1FFQm1GVHrR4pxrnTxYBFqMAr2TxQicbJt8zgQbDwrfc5AbSWZHLu_AZWxo8rYf6lMJI4ZZstTGN3zbsxEwEcyGZadlIiJCybOj8ThRhPsOLeXNlNMuwe3OI_Ep-1jgMa_WgBgt2YZGBKTI_p8_z96_EG8SOFMDWfbDsXuarGmIzhDq_pjr_e_ADieCNQ priority: 102 providerName: Directory of Open Access Journals |
Title | Impact of Crop Residue, Nutrients, and Soil Moisture on Methane Emissions from Soil under Long-Term Conservation Tillage |
URI | https://www.proquest.com/docview/3110673106 https://www.proquest.com/docview/3153856495 https://doaj.org/article/b52560546eef4ad2912147c958bad2c0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLbGdoEDggEiMCZPQuLArMWJHTsn1E2dNkQrNDppN8txnGrSFJeklfjzeS9xuwNixyRO5OR7fr_i9z1CPjuV15UWnNnMCSaszlmZOseqlOuS14WVGquRZ_Pi6lZ8v5N3MeHWx22VW504KOo6OMyRn-Ucyc7AGSm-rX4z7BqFf1djC41n5ABUsIbg6-B8Ov95s8uyZBA_KFGM1TI5xPdnfbh_GEmSew0Cng4tVx4t0kDc_z_1PNicy1fkZXQW6WRE9zXZ8-0heTFZdpEww78hf66HMkcaGnrRhRW98SBeG39K50izj7skTqlta_oLJkRnAUCF22ho6cxj0tzTKQCNGbOeYqXJOA4Lyzr6I7RLtgDNTbGr5zZ5SxfYp2jp35Lby-ni4orFbgrMCanWTCqrXc110ygwUE0Dpr_mubS-FNx7l9kUkMkst7ICmGQzEDJxYUtfghdZpfk7st-G1r8ntFF5CX5B6hvphbRVBYYQS-phMUP0osqE8O0XNS5SjWPHiwcDIQeiYP5FISFfd_esRqKNJ0efI1C7kUiSPZwI3dLENWcqif6cFIX3jbB1BnPmQrkSxA-OXJqQLwizwaUM03M2ViTASyIplploiI0VEugn5GgrCSau8d48SmRCTnaXATT85QIAhg2OAYMiC4hCPzz9iI_keQbu0rh77Yjsr7uN_wTuzro6jjJ9PKQL_gKxCALo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE_hUmCRQByoVa-968cBobSkSmgSoZJKvS3r9TpCquzUTgT8KX4jM36kB0RvPdreXY09s_PyzjcAb00UZGksuKt9I1yh48BNPGPc1ONxwrNQy5iqkWfzcHwuvlzIix3409fC0LHKXic2ijorDeXIDwNOYGfojISfVlcudY2iv6t9C41WLE7t758YstUfJ5-Rv-98_2S0OB67XVcB1wgZrV0Z6dhkPM7zCBV1nqMJzHggtU0Et9b42kMKfc21TJFcmTfARFzoxCboTaVegOvegV0RYCgzgN2j0fzr2Tar42O8Eomwrc4JgsQ7rMsfly0ocx3jhvKaFi_XFrBpFPA_c9DYuJOH8KBzTtmwlaZHsGOLx3B_uKw6gA77BH5NmrJKVubsuCpX7MyiOG_sAZsTrD-dyjhgusjYNySIzUoUIpzGyoLNLCXpLRuhYFGGrmZU2dKOo0K2ik3LYuku0FIw6iLaJ4vZgvoiLe1TOL-V7_wMBkVZ2OfA8ihI0A_xbC6tkDpN0fBSCT8qD4yWosQB3n9RZTpoc-qwcakwxCEuqH-54MCH7ZxVC-xx4-gjYtR2JIFyNzfKaqm6Pa5SSf6jFKG1udCZjzRzEZkExR2vjOfAe2KzItWB5BndVUDgSxIIlxrGGItHBNjvwH4vCarTKbW63gEOvNk-RqbRLx5kYLmhMWjAZIhR797NS7yGu-PFbKqmk_npC7jno6vWnpzbh8G62tiX6Gqt01edfDP4fttb6i8RUD40 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFocAigThQK157148DQmmbqKFNVJVU6m1Zr9cRUmUHOxHw1_h1zPiRHhC99Wh7bY097_HONwDvTBRkaSy4q30jXKHjwE08Y9zU43HCs1DLmLqRZ_Pw-EJ8uZSXO_Cn74WhbZW9TWwMdVYaqpEPA05gZxiMhMO82xZxdjT5vPrh0gQp-tPaj9NoReTE_v6J6Vv9aXqEvH7v-5Px4vDY7SYMuEbIaO3KSMcm43GeR2i08xzdYcYDqW0iuLXG1x5S62uuZYqky7wBKeJCJzbByCr1AnzuHdiNMCvyBrB7MJ6fnW8rPD7mLpEI206dIEi8YV1-v2oBmusYlctrxr1ce8NmaMD_XEPj7yYP4UEXqLJRK1mPYMcWj-H-aFl1YB32CfyaNi2WrMzZYVWu2LlF0d7YfTYniH_aobHPdJGxr0gQm5UoUHgbKws2s1Swt2yMQkbVuppRl0u7jpraKnZaFkt3gV6D0UTRvnDMFjQjaWmfwsWtfOdnMCjKwj4HlkdBgjGJZ3NphdRpik6Y2vnRkGDmFCUO8P6LKtPBnNO0jSuF6Q5xQf3LBQc-bu9ZtSAfN64-IEZtVxJAd3OirJaq03eVSoolpQitzYXOfKSZi8gkKPp4ZDwHPhCbFZkRJM_orhsCX5IAudQoxrw8IvB-B_Z6SVCdfanVtTY48HZ7GZlGv3uQgeWG1qAzkyFmwC9ufsQbuIuqpE6n85OXcM_HqK3dRLcHg3W1sa8w6lqnrzvxZvDttjXqL68TQmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Crop+Residue%2C+Nutrients%2C+and+Soil+Moisture+on+Methane+Emissions+from+Soil+under+Long-Term+Conservation+Tillage&rft.jtitle=Soil+systems&rft.au=Choudhary%2C+Rajesh&rft.au=Lenka%2C+Sangeeta&rft.au=Yadav%2C+Dinesh+Kumar&rft.au=Lenka%2C+Narendra+Kumar&rft.date=2024-09-01&rft.issn=2571-8789&rft.eissn=2571-8789&rft.volume=8&rft.issue=3&rft_id=info:doi/10.3390%2Fsoilsystems8030088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon |