Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis
Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. This study aims to review and compare the predictive performances between logistic regressio...
Saved in:
Published in | JMIR medical informatics Vol. 8; no. 11; p. e16503 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
17.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method.
This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making.
Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ
and I
.
Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I
=86%; τ
=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I
=75%; τ
=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I
=75%; τ
=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I
=83%; τ
=0.07).
Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines.
PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106. |
---|---|
AbstractList | BackgroundPredictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. ObjectiveThis study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians’ decision making. MethodsResearch articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2. ResultsOf the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07). ConclusionsPrediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. Trial RegistrationPROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106 Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making. Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ and I . Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I =86%; τ =0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I =75%; τ =0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I =75%; τ =0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I =83%; τ =0.07). Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106. Background: Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. Objective: This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians’ decision making. Methods: Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2. Results: Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07). Conclusions: Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106 Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method.BACKGROUNDPredictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method.This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making.OBJECTIVEThis study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making.Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2.METHODSResearch articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2.Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07).RESULTSOf the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07).Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines.CONCLUSIONSPrediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines.PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106.TRIAL REGISTRATIONPROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106. |
Author | Sufriyana, Herdiantri Chen, Ya-Lin Singh, Onkar Wu, Yu-Wei Su, Emily Chia-Yu Yeh, Tso-Yang Husnayain, Atina Kuo, Chao-Yang |
AuthorAffiliation | 4 School of Pharmacy College of Pharmacy Taipei Medical University Taipei Taiwan 1 Graduate Institute of Biomedical Informatics College of Medical Science and Technology Taipei Medical University Taipei Taiwan 2 Department of Medical Physiology College of Medicine University of Nahdlatul Ulama Surabaya Surabaya Indonesia 3 Department of Biostatistics, Epidemiology, and Population Health Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada Yogyakarta Indonesia 6 Institute of Biomedical Informatics National Yang-Ming University Taipei Taiwan 7 School of Dentistry College of Oral Medicine Taipei Medical University Taipei Taiwan 5 Bioinformatics Program, Taiwan International Graduate Program Institute of Information Science Academia Sinica Taipei Taiwan 8 Clinical Big Data Research Center Taipei Medical University Hospital Taipei Taiwan |
AuthorAffiliation_xml | – name: 3 Department of Biostatistics, Epidemiology, and Population Health Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada Yogyakarta Indonesia – name: 8 Clinical Big Data Research Center Taipei Medical University Hospital Taipei Taiwan – name: 4 School of Pharmacy College of Pharmacy Taipei Medical University Taipei Taiwan – name: 7 School of Dentistry College of Oral Medicine Taipei Medical University Taipei Taiwan – name: 2 Department of Medical Physiology College of Medicine University of Nahdlatul Ulama Surabaya Surabaya Indonesia – name: 6 Institute of Biomedical Informatics National Yang-Ming University Taipei Taiwan – name: 5 Bioinformatics Program, Taiwan International Graduate Program Institute of Information Science Academia Sinica Taipei Taiwan – name: 1 Graduate Institute of Biomedical Informatics College of Medical Science and Technology Taipei Medical University Taipei Taiwan |
Author_xml | – sequence: 1 givenname: Herdiantri orcidid: 0000-0001-9178-0222 surname: Sufriyana fullname: Sufriyana, Herdiantri – sequence: 2 givenname: Atina orcidid: 0000-0003-3002-8728 surname: Husnayain fullname: Husnayain, Atina – sequence: 3 givenname: Ya-Lin orcidid: 0000-0002-7046-827X surname: Chen fullname: Chen, Ya-Lin – sequence: 4 givenname: Chao-Yang orcidid: 0000-0001-8867-5683 surname: Kuo fullname: Kuo, Chao-Yang – sequence: 5 givenname: Onkar orcidid: 0000-0002-4745-1584 surname: Singh fullname: Singh, Onkar – sequence: 6 givenname: Tso-Yang orcidid: 0000-0003-0798-800X surname: Yeh fullname: Yeh, Tso-Yang – sequence: 7 givenname: Yu-Wei orcidid: 0000-0002-5603-1194 surname: Wu fullname: Wu, Yu-Wei – sequence: 8 givenname: Emily Chia-Yu orcidid: 0000-0003-4801-5159 surname: Su fullname: Su, Emily Chia-Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33200995$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkttqGzEQhpeS0qSpX6EISqFQ3OqwK1m9KBjTQ8AhoWmvF600u5bZlVxJ6-KX6jNWttOQ-Gqk0Tf_jKT_ZXHmvIOimBD8gRLJPxJeYfasuKBUkqnksjx7tD4vJjGuMcakJJxz8aI4Z4xiLGV1Ufxd-GGjgo3eId-i67FPdpv3qukBLX1nY7Ia_YAuQIw2Q8oZdJNWENC10ivrMgUqOOs6NO87H2xaDRG1PqDb4DvnD_W3AYzVaV9_l0ZjISLr9tnOKad3aKECfEJ3u5hgUMeGWwt_Ds2uIanp3Kl-F218VTxvVR9hch8vi19fv_xcfJ8ub75dLebLqS4rkaYVN1yQSouybGlLm8YIQg0zOVRSQdmaRmqhWs4wBqaUAFky2TYwo5wZqtllcXXUNV6t602wgwq72itbHxI-dLUKedAeaiYkx1VDTCVoqQxtNNOtqbThMOO4NVnr81FrMzYDGA0uBdU_EX164uyq7vy2FgLP8ExmgXf3AsH_HiGmerBRQ98rB36MNS05YXImsMjomxN07ceQHy9TFSFSlFSQTL1-PNHDKP9tkYG3R0AHH2OA9gEhuN47rj44LnPvTzhtk9r_c76I7U_ofz5R2TY |
CitedBy_id | crossref_primary_10_1186_s12911_024_02627_8 crossref_primary_10_1186_s40001_024_01988_0 crossref_primary_10_3348_jksr_2022_0111 crossref_primary_10_1016_j_cpr_2022_102193 crossref_primary_10_1111_jerd_13079 crossref_primary_10_3389_fendo_2023_1130139 crossref_primary_10_3390_metabo11100697 crossref_primary_10_1371_journal_pone_0280330 crossref_primary_10_1053_j_semvascsurg_2021_10_005 crossref_primary_10_1016_j_ipm_2024_103934 crossref_primary_10_1097_MD_0000000000034285 crossref_primary_10_3389_fpubh_2024_1378041 crossref_primary_10_2196_26634 crossref_primary_10_1038_s41598_024_83781_x crossref_primary_10_1016_j_acra_2023_10_040 crossref_primary_10_1111_aogs_14757 crossref_primary_10_1371_journal_pone_0319460 crossref_primary_10_1145_3687267 crossref_primary_10_1016_j_ijmedinf_2023_105228 crossref_primary_10_3389_frai_2024_1365777 crossref_primary_10_1111_jan_15549 crossref_primary_10_7717_peerj_18213 crossref_primary_10_1016_j_jfo_2022_05_019 crossref_primary_10_3390_jcm12020418 crossref_primary_10_1371_journal_pone_0279540 crossref_primary_10_1016_j_ijantimicag_2022_106684 crossref_primary_10_1002_ijgo_70055 crossref_primary_10_1016_j_ifacol_2024_07_120 crossref_primary_10_1186_s12920_021_00923_0 crossref_primary_10_1186_s41512_022_00126_w crossref_primary_10_3389_fbioe_2021_780389 crossref_primary_10_2196_35293 crossref_primary_10_1016_j_jclinepi_2023_04_012 crossref_primary_10_2147_RMHP_S319405 crossref_primary_10_1111_cdev_13910 crossref_primary_10_1038_s41598_022_20907_z crossref_primary_10_12998_wjcc_v12_i1_51 crossref_primary_10_1186_s12874_023_02078_1 crossref_primary_10_1038_s41467_023_44595_z crossref_primary_10_1016_j_neunet_2023_02_020 crossref_primary_10_1016_j_jdent_2024_104921 crossref_primary_10_3389_fped_2022_899954 crossref_primary_10_2196_33875 crossref_primary_10_7189_jogh_14_04214 crossref_primary_10_3390_diagnostics11091718 crossref_primary_10_1016_j_clp_2024_02_003 crossref_primary_10_1016_j_gloepi_2024_100168 crossref_primary_10_3389_fonc_2024_1342317 crossref_primary_10_1016_j_gerinurse_2024_06_012 crossref_primary_10_3390_diagnostics13020287 crossref_primary_10_1002_ijgo_13888 crossref_primary_10_1016_j_ijmedinf_2022_104855 crossref_primary_10_1186_s12888_022_03986_0 crossref_primary_10_1371_journal_pone_0274276 crossref_primary_10_1016_j_clbc_2023_07_002 crossref_primary_10_1371_journal_pone_0316452 |
Cites_doi | 10.1007/s11062-019-09821-9 10.1016/j.cmpb.2007.11.018 10.1007/s11517-008-0350-y 10.1109/EMBC.2015.7318771 10.5555/2986459.2986743 10.1093/humrep/dew146 10.3346/jkms.2019.34.e128 10.1093/humrep/des219 10.1016/j.ajog.2015.05.044 10.1016/j.lfs.2019.03.012 10.1002/uog.17513 10.1016/j.siny.2017.02.006 10.1111/aogs.12344 10.1186/s12884-018-1908-9 10.1016/j.artmed.2008.12.003 10.1016/j.aller.2011.05.002 10.2196/17366 10.1016/j.jad.2018.08.073 10.1038/sdata.2015.17 10.3109/14767058.2014.991709 10.1111/aogs.13783 10.1097/AOG.0b013e31829f8ced 10.1016/j.ejogrb.2016.02.008 10.1111/j.1756-185X.2012.01712.x 10.1371/journal.pone.0171938 10.1371/journal.pmed.1001744 10.1161/CIRCULATIONAHA.115.001593 10.1155/2017/7949507 10.1016/j.fertnstert.2018.10.030 10.1016/j.fertnstert.2018.11.036 10.18637/jss.v036.i03 10.1002/uog.21878 10.1155/2016/3013567 10.1002/jrsm.1230 10.1186/1755-8794-3-42 10.1186/s12884-019-2374-8 10.1016/j.preghy.2015.08.006 10.1111/ajo.12053 10.1023/A:1010933404324 10.1159/000357757 10.1186/s13054-019-2564-9 10.1016/j.jclinepi.2015.05.009 10.1002/pd.4519 10.1186/s12916-017-0956-8 10.3109/19396368.2011.558607 10.1016/j.ijoa.2018.04.010 10.1002/uog.14714 10.1016/s1472-6483(10)60840-1 10.7326/M14-0697 10.3389/fnbot.2013.00021 10.1111/aogs.12779 10.1016/j.advms.2017.02.001 10.1016/j.ajog.2016.05.039 10.1111/jog.14011 10.1007/s00592-019-01469-5 10.1007/s12553-017-0201-7 10.1186/s12871-018-0638-x 10.1080/21642583.2014.956265 10.1155/2019/6916251 10.1093/humrep/deaa013 10.1016/S2214-109X(14)70227-X 10.1371/journal.pone.0153562 10.1016/j.rbmo.2010.02.014 10.1016/j.ejogrb.2013.07.042 10.1016/j.neucom.2015.01.107 10.1016/j.jclinepi.2019.02.004 10.3389/fphys.2019.00246 10.1038/s41746-019-0096-y 10.1016/j.ejogrb.2015.02.031 10.1111/aogs.13228 10.1093/humrep/deu090 10.1371/journal.pone.0221202 10.1111/aogs.13051 10.1155/2019/5373810 10.24171/j.phrp.2017.8.3.06 10.1515/jpm-2014-0007 10.1186/s12884-015-0722-x 10.1002/bdra.22883 10.1371/journal.pone.0070917 10.1016/j.ajog.2010.09.030 10.1186/1471-2393-14-16 10.1177/0962280216651098 10.1371/journal.pone.0214712 10.1097/MD.0000000000006090 10.2478/slgr-2013-0033 10.1515/cclm-2015-0537 10.1109/JBHI.2016.2546312 10.1016/j.ijmedinf.2016.10.018 10.1111/ajo.12395 10.1186/s12884-018-1971-2 10.1016/j.ejogrb.2010.12.042 10.1038/jp.2015.216 10.12891/ceog3309.2017 10.1371/journal.pone.0225716 10.1111/aogs.13368 10.1007/978-3-642-11745-9_17 10.1111/1471-0528.12892 10.1371/journal.pone.0131013 10.1007/s10916-017-0847-8 10.1016/j.cmpb.2019.105015 10.3349/ymj.2020.61.2.154 10.1016/j.ebiom.2020.102710 10.1002/9780470712184.ch9 10.1002/ijgo.12197 10.1093/humrep/dez064 10.1111/cts.12603 10.1161/CIRCOUTCOMES.116.003039 10.1016/j.ajog.2016.02.041 10.3171/2018.8.FOCUS18325 10.1067/mob.2000.108891 10.2196/jmir.5870 10.1177/1753495X17754149 10.1097/AOG.0000000000003196 10.1067/mob.2001.109386 10.1136/bmj.d549 10.1016/j.compbiomed.2018.06.003 10.22034/APJCP.2018.19.7.1747 10.1038/jhh.2016.50 10.1007/s10815-019-01498-7 10.1007/s10815-012-9877-9 10.1007/s10995-016-2100-3 10.1016/j.jbi.2019.103334 10.1145/3308558.3313512 10.1109/EMBC.2019.8857837 10.1002/uog.7706 10.1111/j.1447-0756.2011.01607.x 10.1007/s10815-018-1132-6 10.1016/j.cmpb.2017.03.018 10.1080/14767058.2019.1611764 10.1097/AOG.0000000000003574 10.1007/s13755-020-00105-9 10.1186/s12884-019-2712-x 10.1016/j.rbmo.2012.09.015 10.1186/s12938-017-0378-z 10.1371/journal.pone.0169311 10.1016/s0167-9473(01)00065-2 10.1371/journal.pmed.1000097 10.1016/j.annepidem.2018.08.008 10.1109/EMBC.2018.8513625 10.1109/access.2019.2933368 10.1177/0272989X14535984 10.1111/aogs.13358 10.1016/j.reprotox.2020.03.009 10.3389/fmed.2019.00289 10.1007/s11306-018-1370-8 10.1109/EMBC.2015.7318861 10.1097/MD.0000000000005515 10.1007/s00404-012-2397-0 10.1186/s12884-017-1264-1 10.1515/CCLM.2001.132 10.1002/uog.20377 10.1109/TCBB.2018.2868667 10.1126/science.aaa8415 10.1111/jog.12988 10.1016/j.ejogrb.2005.06.034 10.7759/cureus.7124 10.1093/humrep/det094 10.7326/M18-1377 10.1111/jog.12528 10.1111/ajo.12046 10.1007/s00404-010-1469-2 10.1093/humrep/dey236 10.1038/s41591-019-0724-8 10.1016/j.ejogrb.2014.02.003 10.1016/j.cmpb.2016.09.013 10.7326/M18-1376 10.1186/s12967-019-2062-5 10.1111/1471-0528.12195 10.1037/1082-989X.11.2.193 10.1145/2939672.2939785 10.1186/1471-2288-14-137 10.1016/j.compbiolchem.2018.05.011 10.1109/SISY.2018.8524818 10.1109/ACCESS.2018.2879115 10.1371/journal.pone.0077154 10.1126/science.1251816 10.1016/j.ajog.2019.01.227 10.1016/j.ejogrb.2018.04.008 10.1016/j.ejogrb.2015.05.004 10.1016/j.artmed.2014.10.001 10.1038/s41598-017-16665-y 10.1109/EMBC.2013.6609532 10.1097/AOG.0b013e31825503e5 10.1016/j.ejogrb.2015.05.009 10.1055/s-0030-1262909 10.1186/s12874-018-0613-8 10.1093/humrep/deu077 10.1002/advs.201901819 10.1097/MD.0000000000015462 10.1002/jrsm.1164 10.1093/humrep/dez258 |
ContentType | Journal Article |
Copyright | Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. 2020 |
Copyright_xml | – notice: Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.2196/16503 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Healthcare Administration Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Health Management ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Health Management (Alumni Edition) ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2291-9694 |
ExternalDocumentID | oai_doaj_org_article_379605b1d5724ad2bc3cfd5cd6e860fd PMC7708089 33200995 10_2196_16503 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c457t-56d6715c744f2f2bbd712d3dd7159ae4fdb9c7af6300e3aa7e9439fbe8263d2c3 |
IEDL.DBID | M48 |
ISSN | 2291-9694 |
IngestDate | Wed Aug 27 01:30:40 EDT 2025 Thu Aug 21 18:33:28 EDT 2025 Mon Jul 21 11:48:38 EDT 2025 Sat Jul 26 00:03:52 EDT 2025 Thu Apr 03 06:57:31 EDT 2025 Tue Jul 01 04:31:19 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | meta-analysis pregnancy complications machine learning systematic review prognosis clinical prediction rule |
Language | English |
License | Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-56d6715c744f2f2bbd712d3dd7159ae4fdb9c7af6300e3aa7e9439fbe8263d2c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5603-1194 0000-0003-4801-5159 0000-0003-3002-8728 0000-0002-4745-1584 0000-0002-7046-827X 0000-0001-8867-5683 0000-0001-9178-0222 0000-0003-0798-800X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/16503 |
PMID | 33200995 |
PQID | 2511974271 |
PQPubID | 4997117 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_379605b1d5724ad2bc3cfd5cd6e860fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708089 proquest_miscellaneous_2461398707 proquest_journals_2511974271 pubmed_primary_33200995 crossref_primary_10_2196_16503 crossref_citationtrail_10_2196_16503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201117 |
PublicationDateYYYYMMDD | 2020-11-17 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201117 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
PublicationTitle | JMIR medical informatics |
PublicationTitleAlternate | JMIR Med Inform |
PublicationYear | 2020 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Maroufizadeh, S (ref166) 2018; 47 Mitchell, TM (ref22) 1997 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 Fiset, S (ref121) 2019; 96 ref25 ref20 ref21 Deeks, J (ref172) 2008 ref28 ref27 ref29 ref200 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 Higgins, JP (ref3) 2002; 75 ref64 ref115 Kennady, G (ref198) 2017; 44 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref179 ref180 ref188 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 Edwards, HM (ref8) 2018; 65 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Haake, KW (ref189) 1997; 119 Fernandez-Delgado, M (ref181) 2014; 15 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref195 ref196 ref193 ref194 |
References_xml | – ident: ref125 doi: 10.1007/s11062-019-09821-9 – ident: ref135 doi: 10.1016/j.cmpb.2007.11.018 – ident: ref174 doi: 10.1007/s11517-008-0350-y – ident: ref128 doi: 10.1109/EMBC.2015.7318771 – ident: ref23 doi: 10.5555/2986459.2986743 – ident: ref61 doi: 10.1093/humrep/dew146 – ident: ref163 doi: 10.3346/jkms.2019.34.e128 – ident: ref191 doi: 10.1093/humrep/des219 – ident: ref46 doi: 10.1016/j.ajog.2015.05.044 – ident: ref99 doi: 10.1016/j.lfs.2019.03.012 – ident: ref79 doi: 10.1002/uog.17513 – ident: ref6 doi: 10.1016/j.siny.2017.02.006 – ident: ref63 doi: 10.1111/aogs.12344 – ident: ref65 doi: 10.1186/s12884-018-1908-9 – ident: ref88 doi: 10.1016/j.artmed.2008.12.003 – ident: ref1 doi: 10.1016/j.aller.2011.05.002 – ident: ref98 doi: 10.2196/17366 – ident: ref12 doi: 10.1016/j.jad.2018.08.073 – ident: ref196 doi: 10.1038/sdata.2015.17 – ident: ref39 doi: 10.3109/14767058.2014.991709 – ident: ref36 doi: 10.1111/aogs.13783 – ident: ref64 doi: 10.1097/AOG.0b013e31829f8ced – ident: ref91 doi: 10.1016/j.ejogrb.2016.02.008 – ident: ref25 doi: 10.1111/j.1756-185X.2012.01712.x – ident: ref70 doi: 10.1371/journal.pone.0171938 – ident: ref19 doi: 10.1371/journal.pmed.1001744 – ident: ref2 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: ref111 doi: 10.1155/2017/7949507 – ident: ref158 doi: 10.1016/j.fertnstert.2018.10.030 – ident: ref193 doi: 10.1016/j.fertnstert.2018.11.036 – ident: ref27 doi: 10.18637/jss.v036.i03 – ident: ref86 doi: 10.1002/uog.21878 – ident: ref94 doi: 10.1155/2016/3013567 – ident: ref173 doi: 10.1002/jrsm.1230 – ident: ref114 doi: 10.1186/1755-8794-3-42 – ident: ref104 doi: 10.1186/s12884-019-2374-8 – ident: ref68 doi: 10.1016/j.preghy.2015.08.006 – ident: ref37 doi: 10.1111/ajo.12053 – ident: ref182 doi: 10.1023/A:1010933404324 – ident: ref83 doi: 10.1159/000357757 – ident: ref179 doi: 10.1186/s13054-019-2564-9 – ident: ref24 doi: 10.1016/j.jclinepi.2015.05.009 – ident: ref43 doi: 10.1002/pd.4519 – ident: ref92 doi: 10.1186/s12916-017-0956-8 – ident: ref188 doi: 10.3109/19396368.2011.558607 – ident: ref7 doi: 10.1016/j.ijoa.2018.04.010 – ident: ref120 doi: 10.1002/uog.14714 – ident: ref170 doi: 10.1016/s1472-6483(10)60840-1 – ident: ref20 doi: 10.7326/M14-0697 – ident: ref185 doi: 10.3389/fnbot.2013.00021 – ident: ref72 doi: 10.1111/aogs.12779 – ident: ref132 doi: 10.1016/j.advms.2017.02.001 – ident: ref57 doi: 10.1016/j.ajog.2016.05.039 – ident: ref103 doi: 10.1111/jog.14011 – ident: ref33 doi: 10.1007/s00592-019-01469-5 – ident: ref124 doi: 10.1007/s12553-017-0201-7 – ident: ref56 doi: 10.1186/s12871-018-0638-x – ident: ref183 doi: 10.1080/21642583.2014.956265 – ident: ref109 doi: 10.1155/2019/6916251 – ident: ref153 doi: 10.1093/humrep/deaa013 – ident: ref5 doi: 10.1016/S2214-109X(14)70227-X – ident: ref110 doi: 10.1371/journal.pone.0153562 – ident: ref69 doi: 10.1016/j.rbmo.2010.02.014 – ident: ref75 doi: 10.1016/j.ejogrb.2013.07.042 – ident: ref118 doi: 10.1016/j.neucom.2015.01.107 – ident: ref13 doi: 10.1016/j.jclinepi.2019.02.004 – ident: ref142 doi: 10.3389/fphys.2019.00246 – ident: ref192 doi: 10.1038/s41746-019-0096-y – ident: ref47 doi: 10.1016/j.ejogrb.2015.02.031 – ident: ref82 doi: 10.1111/aogs.13228 – ident: ref35 doi: 10.1093/humrep/deu090 – ident: ref127 doi: 10.1371/journal.pone.0221202 – ident: ref105 doi: 10.1111/aogs.13051 – volume: 47 start-page: 1913 issue: 12 year: 2018 ident: ref166 publication-title: Iran J Public Health – ident: ref130 doi: 10.1155/2019/5373810 – ident: ref156 doi: 10.24171/j.phrp.2017.8.3.06 – ident: ref100 doi: 10.1515/jpm-2014-0007 – ident: ref34 doi: 10.1186/s12884-015-0722-x – ident: ref168 doi: 10.1002/bdra.22883 – ident: ref59 doi: 10.1371/journal.pone.0070917 – ident: ref29 doi: 10.1016/j.ajog.2010.09.030 – ident: ref175 doi: 10.1186/1471-2393-14-16 – ident: ref126 doi: 10.1177/0962280216651098 – ident: ref112 doi: 10.1371/journal.pone.0214712 – ident: ref129 doi: 10.1097/MD.0000000000006090 – ident: ref133 doi: 10.2478/slgr-2013-0033 – ident: ref84 doi: 10.1515/cclm-2015-0537 – ident: ref146 doi: 10.1109/JBHI.2016.2546312 – ident: ref136 doi: 10.1016/j.ijmedinf.2016.10.018 – ident: ref80 doi: 10.1111/ajo.12395 – ident: ref161 doi: 10.1186/s12884-018-1971-2 – ident: ref195 doi: 10.1016/j.ejogrb.2010.12.042 – ident: ref4 – ident: ref49 doi: 10.1038/jp.2015.216 – volume: 44 start-page: 110 issue: 1 year: 2017 ident: ref198 publication-title: Clin Exp Obstet Gynecol doi: 10.12891/ceog3309.2017 – ident: ref76 doi: 10.1371/journal.pone.0225716 – ident: ref40 doi: 10.1111/aogs.13368 – ident: ref151 doi: 10.1007/978-3-642-11745-9_17 – ident: ref178 doi: 10.1111/1471-0528.12892 – volume: 15 start-page: 3133 issue: 90 year: 2014 ident: ref181 publication-title: J Mach Learn Res – ident: ref123 doi: 10.1371/journal.pone.0131013 – ident: ref141 doi: 10.1007/s10916-017-0847-8 – ident: ref144 doi: 10.1016/j.cmpb.2019.105015 – ident: ref51 doi: 10.3349/ymj.2020.61.2.154 – ident: ref147 doi: 10.1016/j.ebiom.2020.102710 – start-page: 243 year: 2008 ident: ref172 publication-title: Cochrane Handbook for Systematic Reviews of Interventions doi: 10.1002/9780470712184.ch9 – ident: ref30 doi: 10.1002/ijgo.12197 – ident: ref148 doi: 10.1093/humrep/dez064 – ident: ref97 doi: 10.1111/cts.12603 – ident: ref180 doi: 10.1161/CIRCOUTCOMES.116.003039 – ident: ref62 doi: 10.1016/j.ajog.2016.02.041 – ident: ref16 doi: 10.3171/2018.8.FOCUS18325 – ident: ref167 doi: 10.1067/mob.2000.108891 – ident: ref186 – ident: ref15 doi: 10.2196/jmir.5870 – ident: ref108 doi: 10.1177/1753495X17754149 – ident: ref159 doi: 10.1097/AOG.0000000000003196 – ident: ref165 doi: 10.1067/mob.2001.109386 – ident: ref26 doi: 10.1136/bmj.d549 – ident: ref113 doi: 10.1016/j.compbiomed.2018.06.003 – ident: ref11 doi: 10.22034/APJCP.2018.19.7.1747 – ident: ref81 doi: 10.1038/jhh.2016.50 – ident: ref154 doi: 10.1007/s10815-019-01498-7 – ident: ref73 doi: 10.1007/s10815-012-9877-9 – ident: ref60 doi: 10.1007/s10995-016-2100-3 – ident: ref122 doi: 10.1016/j.jbi.2019.103334 – ident: ref164 doi: 10.1145/3308558.3313512 – ident: ref143 doi: 10.1109/EMBC.2019.8857837 – ident: ref85 doi: 10.1002/uog.7706 – ident: ref50 doi: 10.1111/j.1447-0756.2011.01607.x – ident: ref102 doi: 10.1007/s10815-018-1132-6 – ident: ref107 doi: 10.1016/j.cmpb.2017.03.018 – ident: ref55 doi: 10.1080/14767058.2019.1611764 – year: 1997 ident: ref22 publication-title: Machine Learning – ident: ref52 doi: 10.1097/AOG.0000000000003574 – ident: ref160 doi: 10.1007/s13755-020-00105-9 – ident: ref31 doi: 10.1186/s12884-019-2712-x – ident: ref190 doi: 10.1016/j.rbmo.2012.09.015 – ident: ref117 doi: 10.1186/s12938-017-0378-z – ident: ref58 doi: 10.1371/journal.pone.0169311 – ident: ref184 doi: 10.1016/s0167-9473(01)00065-2 – ident: ref18 doi: 10.1371/journal.pmed.1000097 – ident: ref96 doi: 10.1016/j.annepidem.2018.08.008 – ident: ref137 doi: 10.1109/EMBC.2018.8513625 – ident: ref138 doi: 10.1109/access.2019.2933368 – ident: ref150 doi: 10.1177/0272989X14535984 – ident: ref200 doi: 10.1111/aogs.13358 – ident: ref162 doi: 10.1016/j.reprotox.2020.03.009 – ident: ref101 doi: 10.3389/fmed.2019.00289 – ident: ref149 doi: 10.1007/s11306-018-1370-8 – volume: 119 start-page: 23 issue: Suppl 1 year: 1997 ident: ref189 publication-title: Zentralbl Gynakol – ident: ref145 doi: 10.1109/EMBC.2015.7318861 – ident: ref93 doi: 10.1097/MD.0000000000005515 – ident: ref44 doi: 10.1007/s00404-012-2397-0 – ident: ref177 doi: 10.1186/s12884-017-1264-1 – ident: ref131 doi: 10.1515/CCLM.2001.132 – ident: ref53 doi: 10.1002/uog.20377 – ident: ref119 doi: 10.1109/TCBB.2018.2868667 – ident: ref197 doi: 10.1126/science.aaa8415 – ident: ref95 doi: 10.1111/jog.12988 – ident: ref152 doi: 10.1016/j.ejogrb.2005.06.034 – ident: ref176 doi: 10.7759/cureus.7124 – volume: 75 start-page: 247 issue: 5-6 year: 2002 ident: ref3 publication-title: Yale J Biol Med – ident: ref78 doi: 10.1093/humrep/det094 – ident: ref21 doi: 10.7326/M18-1377 – ident: ref42 doi: 10.1111/jog.12528 – ident: ref67 doi: 10.1111/ajo.12046 – ident: ref116 doi: 10.1007/s00404-010-1469-2 – volume: 96 start-page: 6 issue: 1 year: 2019 ident: ref121 publication-title: Univ Tor Med J – ident: ref77 doi: 10.1093/humrep/dey236 – volume: 65 start-page: - issue: 3 year: 2018 ident: ref8 publication-title: Dan Med J – ident: ref157 doi: 10.1038/s41591-019-0724-8 – ident: ref89 doi: 10.1016/j.ejogrb.2014.02.003 – ident: ref134 doi: 10.1016/j.cmpb.2016.09.013 – ident: ref17 doi: 10.7326/M18-1376 – ident: ref140 doi: 10.1186/s12967-019-2062-5 – ident: ref66 doi: 10.1111/1471-0528.12195 – ident: ref171 doi: 10.1037/1082-989X.11.2.193 – ident: ref187 doi: 10.1145/2939672.2939785 – ident: ref199 doi: 10.1186/1471-2288-14-137 – ident: ref9 doi: 10.1016/j.compbiolchem.2018.05.011 – ident: ref115 doi: 10.1109/SISY.2018.8524818 – ident: ref106 doi: 10.1109/ACCESS.2018.2879115 – ident: ref169 doi: 10.1371/journal.pone.0077154 – ident: ref10 doi: 10.1126/science.1251816 – ident: ref41 doi: 10.1016/j.ajog.2019.01.227 – ident: ref71 doi: 10.1016/j.ejogrb.2018.04.008 – ident: ref87 doi: 10.1016/j.ejogrb.2015.05.004 – ident: ref38 doi: 10.1016/j.artmed.2014.10.001 – ident: ref139 doi: 10.1038/s41598-017-16665-y – ident: ref155 doi: 10.1109/EMBC.2013.6609532 – ident: ref32 doi: 10.1097/AOG.0b013e31825503e5 – ident: ref90 doi: 10.1016/j.ejogrb.2015.05.009 – ident: ref54 doi: 10.1055/s-0030-1262909 – ident: ref14 doi: 10.1186/s12874-018-0613-8 – ident: ref45 doi: 10.1093/humrep/deu077 – ident: ref48 doi: 10.1002/advs.201901819 – ident: ref74 doi: 10.1097/MD.0000000000015462 – ident: ref28 doi: 10.1002/jrsm.1164 – ident: ref194 doi: 10.1093/humrep/dez258 |
SSID | ssj0001416667 |
Score | 2.4025035 |
SecondaryResourceType | review_article |
Snippet | Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single... Background: Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a... BackgroundPredictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e16503 |
SubjectTerms | Algorithms Bias Biomedical research Decision making Fetuses Hemorrhage Hypertension Machine learning Meta-analysis Optimization Preeclampsia Pregnancy Regression analysis Review Sepsis Systematic review Womens health |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kD0UQ8dtoLSv0NfSS_ZjEt1osRTwtaqFvYT-vB20i11Twn_JvdGaTC3dF8MWnkN0N2WRmd3-7M_Mbxg5wU4XrtPN5KKzNZXAyr2QlchlNNJUsXNAUKDz_rE_P5ccLdbGR6ot8wgZ64OHHHQpAjK1s4RWU0vjSOuGiV87rUOlZ9DT74pq3sZlKpyuSzGGwyx6QrzNq2WGBUERsLT6Jo_9vwPKuf-TGgnPyiD0ckSI_Gnr4mN0L7RO2Ox9t4U_Z7-MphSDvIk-RtD_xnmKh-KcU2LN0_GtYDJ6uLTet518I7_F58qDEVuO5CD-6WnSrZX95fcMRxPKzVUf-d_T82YpeSNLjo8shX7ZUuiCmjl-c4pfe8W8THzQfjA3pZfPQm3zNevKMnZ98-H58mo_ZF3InFfS50l5DoRxIGctYWuuhKL3weFG1CTJ6WzswkTi7gjAGQo3gJtqAGxbhSyees522a8NLxkHPJEDwlAxU-pkyutIS5Rqdrn2hq4wdrMXSuJGanDJkXDW4RSHpNUl6Gdufmv0YuDjuNnhPMp0qiTo7FaBCNaNCNf9SqIztrTWiGcfzTVMmc6ssocjY26kaRyKZV0wbultsIxEa1Tj_QcZeDAo09UQIskLVKmOwpVpbXd2uaZeXie0bAEF9Vb_6H9_2mt0v6byA3Bhhj-30q9vwBkFVb_fT-PkD-Zgl6A priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD5ohSKIeDdaywh9Dd1kJjOJL1KLpYirRS3sW5jMZbtQk3Y3Lfin_I2eM5lN3SI-hc1MmFnOmZlvzuU7AHt4qcJz2tjUZU2TCmdEWoqSp8Jrr0uRGScpUXj6RR6fik-zYhYNbqsYVrneE8NGbTtDNvL9PDi8RK6y9xeXKVWNIu9qLKFxF-4RdRmFdKmZurGxCHKKqW14QBHPqGv7GQISvnEEBab-f8HL21GSfx07R4_gYcSL7GAQ8GO449onsD2NHvGn8PtwLCTIOs9CPu01_qaMKPY5pPcsDPvm5kO8a8t0a9lXQn1sGuIosVe0jrCD8zn-4_7s54ohlGUny46i8Oj7kyUNSDJkMfCQLVp6Oye-jl-Mspjese8jKzQbXA5hsKnrdbrmPnkGp0cffxwep7EGQ2pEofq0kFaqrDBKCJ_7vGmsynLLLT6KSjvhbVMZpT0xdzmutXIVQhzfOLy2cJsb_hy22q51L4EpORFKOUslQYWdFFqWUqhKeiMrm8kygb21WGoTCcqpTsZ5jRcVkl4dpJfA7tjtYmDkuN3hA8l0bCQC7fCiW87ruB5rjgNPiibD2eRC27wx3HhbGCtdKSfeJrCz1og6rupVfaODCbwdm3E9kpNFt667wj4CAVKFu6BK4MWgQONMOCdfVFUkoDZUa2Oqmy3t4ixwfiuF0L6sXv1_Wq_hfk72AApTVDuw1S-v3BsETX2zG1bGH3CUHI0 priority: 102 providerName: ProQuest |
Title | Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33200995 https://www.proquest.com/docview/2511974271 https://www.proquest.com/docview/2461398707 https://pubmed.ncbi.nlm.nih.gov/PMC7708089 https://doaj.org/article/379605b1d5724ad2bc3cfd5cd6e860fd |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3batwwEB2aBEKhlN7rNl1UyKvbtSxLVqGUJCSE0k2XtAt5M7Ium4WtnTib0vxUv7Ea2WvikIc-GVsyEp4Z60gzcwZg12-q_DqtTWyTsoyZ1SzOWZ7GzCmncpZoyzFReHLCj2fs61l2K5qw-4BX927tsJ7UrFl--HN588Ub_GcMY_YK9DHxKCPdgC2_GAm0zUmH8MMxC0O_GCZNUyqTWHLJtuHR4M3BihSI--9Dm3eDJm-tQkdP4HEHH8leK--n8MBWz2B70jnIn8Pfg76uIKkdCem1v_09JkiRbyHbZ6HJqZ234a8VUZUh3xEEkkkIq_S9usMSsrec181idf7rinhkS6ZNjUF5-P60wQFRpKSLQySLCp_Okb7jhmBS0yfyoyeJJq0HIgw2sSsVr6lQXsDs6PDnwXHclWSINcvEKs644SLJtGDMUUfL0oiEmtT4SyaVZc6UUgvlkMjLpkoJKz3icaX1u5jUUJ2-hM2qruxrIIKPmRDWYIVQZsaZ4jlnQnKnuTQJzyPYXYul0B1fOZbNWBZ-34LSK4L0Ihj13S5ago67HfZRpn0j8mmHB3UzLzrzLFI_8DgrEz8bypShpU61M5k23OZ87EwEO2uNKNY6WtDgg2VUJBG875u9eaLPRVW2vvZ9mMdL0v8URQSvWgXqZ5Km6JqSWQRioFqDqQ5bqsV5oAAXwiP9XL75j3HfwkOKZwQYuih2YHPVXNt3HkityhFsiDMxgq39w5Pp6SgcR4yC-fwDgG8kUw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9sw8MSKxJCmad9kY8yT2GNE4zh2MmmagIHKaLuKgcRbSGynVGIJa8sm_hS_cXf5YkXT3niKEjvxKXc-3_cBbKJShee0Nq710tQVVgs3FKHviizJklB42kpKFB4MZe9EfD0NTpfgpsmFobDKhieWjNoUmmzkW7x0eAmuvM-XP13qGkXe1aaFRkUWh_b6N6pss08HXxC_Hzjf3zve7bl1VwFXi0DN3UAaqbxAKyEynvE0Ncrjxjd4CaLEisykkVZJRrWorJ8kykZ4aGepRUHcN1z7-N0HsCx8VGU6sLyzNxwd3Vp1BLnh1Ao8ohhrpO4tD0Ugf-HQK3sD_EugvRuX-ddBt_8EHtcSKtuuSOopLNn8GawMah_8c7jZbVsXsiJjZQbvL7ynHCzWLxOKJpod2XEVYZuzJDfsG8mZbFBGbuKs2h7Dti_G-I_n5z9mDIVnNpoWFPdH74-mtCBRDatDHdkkp6djqhByzShv6iP73tahZpWTo1xsYOeJ21RbeQEn94Kfl9DJi9yuAVOyK5SyhpqQCtMNEhlKoSKZaRkZT4YObDZoiXVdEp06c1zEqBoR9uISew5stNMuqxogdyfsEE7bQSrZXT4opuO45gCxjwt3g9RDaLhIDE-1rzMTaCNtKLuZcWC9oYi45iOz-JbqHXjfDiMHILdOktviCucIFMki5LvKgVcVAbWQ-D55v6LAAbVAWgugLo7kk_OyyrhSqEyE0ev_g_UOHvaOB_24fzA8fAOrnKwRFCSp1qEzn17ZtyiyzdONep8wOLvvrfkHtShbyA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkCokhHgnMIaRxseoje3YCRJCY6Pa2DoqYFK_BccvXaWRjLYD7U_xA_h13OVtdEJ826cosRNbufP5zvfcHSFbYFTBPm1s6KI8D4UzIkxEwkPhtdeJiIyTGCg8OpJ7x-LDJJ6skd9tLAzCKluZWAlqWxo8I--zyuElmIr6voFFjHeHb8--h1hBCj2tbTmNmkUO3MVPMN8Wb_Z3gdavGBu-_7KzFzYVBkIjYrUMY2mlimKjhPDMszy3KmKWW7jEqXbC2zw1SnvMS-W41sqlsIH73IFSzi0zHL57g9xUPI5wjamJujzfEeiQUz1yG9HWwOf9CJQhvrL9VVUC_qXaXkVo_rXlDe-SO42uSrdr5rpH1lxxn_RGjTf-Afm10xUxpKWnVSzvD7jHaCx6WIUWzQz95KY11ragurD0I2qcdFRhOKFXczJDt0-n8IeXJ98WFNRoOp6XiADE98dzHBD5hzagRzor8OkUc4VcUIygek0_dxmpae3uqAYbuaUO27wrD8nxtVDnEVkvysI9IVTJgVDKWSxHKuwg1jKRQqXSG5naSCYB2WrJkpkmOTrW6DjNwEhC6mUV9QKy2XU7q7OBXO3wDmnaNWLy7upBOZ9mjSzIOAw8iPMIZsOEtiw33HgbGytdIgfeBmSj5YiskSiL7JL_A_KyawZZgA4eXbjyHPoIUM5SkMAqII9rBupmwjn6wdI4IGqFtVamutpSzE6qfONKgVmRpE__P60XpAcLMjvcPzp4Rm4xPJZAtKTaIOvL-bl7DrrbMt-sFgklX697Vf4BqjxemA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Multivariable+Logistic+Regression+and+Other+Machine+Learning+Algorithms+for+Prognostic+Prediction+Studies+in+Pregnancy+Care%3A+Systematic+Review+and+Meta-Analysis&rft.jtitle=JMIR+medical+informatics&rft.au=Sufriyana%2C+Herdiantri&rft.au=Husnayain%2C+Atina&rft.au=Chen%2C+Ya-Lin&rft.au=Kuo%2C+Chao-Yang&rft.date=2020-11-17&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=8&rft.issue=11&rft.spage=e16503&rft_id=info:doi/10.2196%2F16503&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |