Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis

Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. This study aims to review and compare the predictive performances between logistic regressio...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 8; no. 11; p. e16503
Main Authors Sufriyana, Herdiantri, Husnayain, Atina, Chen, Ya-Lin, Kuo, Chao-Yang, Singh, Onkar, Yeh, Tso-Yang, Wu, Yu-Wei, Su, Emily Chia-Yu
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 17.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making. Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ and I . Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I =86%; τ =0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I =75%; τ =0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I =75%; τ =0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I =83%; τ =0.07). Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106.
AbstractList BackgroundPredictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. ObjectiveThis study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians’ decision making. MethodsResearch articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2. ResultsOf the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07). ConclusionsPrediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. Trial RegistrationPROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106
Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making. Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ and I . Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I =86%; τ =0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I =75%; τ =0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I =75%; τ =0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I =83%; τ =0.07). Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106.
Background: Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method. Objective: This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians’ decision making. Methods: Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2. Results: Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07). Conclusions: Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines. Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106
Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method.BACKGROUNDPredictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single predictor using only one algorithm or modeling method.This study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making.OBJECTIVEThis study aims to review and compare the predictive performances between logistic regression (LR) and other machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to inform clinicians' decision making.Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2.METHODSResearch articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS (population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification to inform clinicians' decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods (predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses (time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using τ2 and I2.Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07).RESULTSOf the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only 16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37; I2=83%; τ2=0.07).Prediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines.CONCLUSIONSPrediction models with the best performances across studies were not necessarily those that used LR but also used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several pregnancy outcomes by comparing them with those algorithms that apply standard guidelines.PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106.TRIAL REGISTRATIONPROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106.
Author Sufriyana, Herdiantri
Chen, Ya-Lin
Singh, Onkar
Wu, Yu-Wei
Su, Emily Chia-Yu
Yeh, Tso-Yang
Husnayain, Atina
Kuo, Chao-Yang
AuthorAffiliation 4 School of Pharmacy College of Pharmacy Taipei Medical University Taipei Taiwan
1 Graduate Institute of Biomedical Informatics College of Medical Science and Technology Taipei Medical University Taipei Taiwan
2 Department of Medical Physiology College of Medicine University of Nahdlatul Ulama Surabaya Surabaya Indonesia
3 Department of Biostatistics, Epidemiology, and Population Health Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada Yogyakarta Indonesia
6 Institute of Biomedical Informatics National Yang-Ming University Taipei Taiwan
7 School of Dentistry College of Oral Medicine Taipei Medical University Taipei Taiwan
5 Bioinformatics Program, Taiwan International Graduate Program Institute of Information Science Academia Sinica Taipei Taiwan
8 Clinical Big Data Research Center Taipei Medical University Hospital Taipei Taiwan
AuthorAffiliation_xml – name: 3 Department of Biostatistics, Epidemiology, and Population Health Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada Yogyakarta Indonesia
– name: 8 Clinical Big Data Research Center Taipei Medical University Hospital Taipei Taiwan
– name: 4 School of Pharmacy College of Pharmacy Taipei Medical University Taipei Taiwan
– name: 7 School of Dentistry College of Oral Medicine Taipei Medical University Taipei Taiwan
– name: 2 Department of Medical Physiology College of Medicine University of Nahdlatul Ulama Surabaya Surabaya Indonesia
– name: 6 Institute of Biomedical Informatics National Yang-Ming University Taipei Taiwan
– name: 5 Bioinformatics Program, Taiwan International Graduate Program Institute of Information Science Academia Sinica Taipei Taiwan
– name: 1 Graduate Institute of Biomedical Informatics College of Medical Science and Technology Taipei Medical University Taipei Taiwan
Author_xml – sequence: 1
  givenname: Herdiantri
  orcidid: 0000-0001-9178-0222
  surname: Sufriyana
  fullname: Sufriyana, Herdiantri
– sequence: 2
  givenname: Atina
  orcidid: 0000-0003-3002-8728
  surname: Husnayain
  fullname: Husnayain, Atina
– sequence: 3
  givenname: Ya-Lin
  orcidid: 0000-0002-7046-827X
  surname: Chen
  fullname: Chen, Ya-Lin
– sequence: 4
  givenname: Chao-Yang
  orcidid: 0000-0001-8867-5683
  surname: Kuo
  fullname: Kuo, Chao-Yang
– sequence: 5
  givenname: Onkar
  orcidid: 0000-0002-4745-1584
  surname: Singh
  fullname: Singh, Onkar
– sequence: 6
  givenname: Tso-Yang
  orcidid: 0000-0003-0798-800X
  surname: Yeh
  fullname: Yeh, Tso-Yang
– sequence: 7
  givenname: Yu-Wei
  orcidid: 0000-0002-5603-1194
  surname: Wu
  fullname: Wu, Yu-Wei
– sequence: 8
  givenname: Emily Chia-Yu
  orcidid: 0000-0003-4801-5159
  surname: Su
  fullname: Su, Emily Chia-Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33200995$$D View this record in MEDLINE/PubMed
BookMark eNpdkttqGzEQhpeS0qSpX6EISqFQ3OqwK1m9KBjTQ8AhoWmvF600u5bZlVxJ6-KX6jNWttOQ-Gqk0Tf_jKT_ZXHmvIOimBD8gRLJPxJeYfasuKBUkqnksjx7tD4vJjGuMcakJJxz8aI4Z4xiLGV1Ufxd-GGjgo3eId-i67FPdpv3qukBLX1nY7Ia_YAuQIw2Q8oZdJNWENC10ivrMgUqOOs6NO87H2xaDRG1PqDb4DvnD_W3AYzVaV9_l0ZjISLr9tnOKad3aKECfEJ3u5hgUMeGWwt_Ds2uIanp3Kl-F218VTxvVR9hch8vi19fv_xcfJ8ub75dLebLqS4rkaYVN1yQSouybGlLm8YIQg0zOVRSQdmaRmqhWs4wBqaUAFky2TYwo5wZqtllcXXUNV6t602wgwq72itbHxI-dLUKedAeaiYkx1VDTCVoqQxtNNOtqbThMOO4NVnr81FrMzYDGA0uBdU_EX164uyq7vy2FgLP8ExmgXf3AsH_HiGmerBRQ98rB36MNS05YXImsMjomxN07ceQHy9TFSFSlFSQTL1-PNHDKP9tkYG3R0AHH2OA9gEhuN47rj44LnPvTzhtk9r_c76I7U_ofz5R2TY
CitedBy_id crossref_primary_10_1186_s12911_024_02627_8
crossref_primary_10_1186_s40001_024_01988_0
crossref_primary_10_3348_jksr_2022_0111
crossref_primary_10_1016_j_cpr_2022_102193
crossref_primary_10_1111_jerd_13079
crossref_primary_10_3389_fendo_2023_1130139
crossref_primary_10_3390_metabo11100697
crossref_primary_10_1371_journal_pone_0280330
crossref_primary_10_1053_j_semvascsurg_2021_10_005
crossref_primary_10_1016_j_ipm_2024_103934
crossref_primary_10_1097_MD_0000000000034285
crossref_primary_10_3389_fpubh_2024_1378041
crossref_primary_10_2196_26634
crossref_primary_10_1038_s41598_024_83781_x
crossref_primary_10_1016_j_acra_2023_10_040
crossref_primary_10_1111_aogs_14757
crossref_primary_10_1371_journal_pone_0319460
crossref_primary_10_1145_3687267
crossref_primary_10_1016_j_ijmedinf_2023_105228
crossref_primary_10_3389_frai_2024_1365777
crossref_primary_10_1111_jan_15549
crossref_primary_10_7717_peerj_18213
crossref_primary_10_1016_j_jfo_2022_05_019
crossref_primary_10_3390_jcm12020418
crossref_primary_10_1371_journal_pone_0279540
crossref_primary_10_1016_j_ijantimicag_2022_106684
crossref_primary_10_1002_ijgo_70055
crossref_primary_10_1016_j_ifacol_2024_07_120
crossref_primary_10_1186_s12920_021_00923_0
crossref_primary_10_1186_s41512_022_00126_w
crossref_primary_10_3389_fbioe_2021_780389
crossref_primary_10_2196_35293
crossref_primary_10_1016_j_jclinepi_2023_04_012
crossref_primary_10_2147_RMHP_S319405
crossref_primary_10_1111_cdev_13910
crossref_primary_10_1038_s41598_022_20907_z
crossref_primary_10_12998_wjcc_v12_i1_51
crossref_primary_10_1186_s12874_023_02078_1
crossref_primary_10_1038_s41467_023_44595_z
crossref_primary_10_1016_j_neunet_2023_02_020
crossref_primary_10_1016_j_jdent_2024_104921
crossref_primary_10_3389_fped_2022_899954
crossref_primary_10_2196_33875
crossref_primary_10_7189_jogh_14_04214
crossref_primary_10_3390_diagnostics11091718
crossref_primary_10_1016_j_clp_2024_02_003
crossref_primary_10_1016_j_gloepi_2024_100168
crossref_primary_10_3389_fonc_2024_1342317
crossref_primary_10_1016_j_gerinurse_2024_06_012
crossref_primary_10_3390_diagnostics13020287
crossref_primary_10_1002_ijgo_13888
crossref_primary_10_1016_j_ijmedinf_2022_104855
crossref_primary_10_1186_s12888_022_03986_0
crossref_primary_10_1371_journal_pone_0274276
crossref_primary_10_1016_j_clbc_2023_07_002
crossref_primary_10_1371_journal_pone_0316452
Cites_doi 10.1007/s11062-019-09821-9
10.1016/j.cmpb.2007.11.018
10.1007/s11517-008-0350-y
10.1109/EMBC.2015.7318771
10.5555/2986459.2986743
10.1093/humrep/dew146
10.3346/jkms.2019.34.e128
10.1093/humrep/des219
10.1016/j.ajog.2015.05.044
10.1016/j.lfs.2019.03.012
10.1002/uog.17513
10.1016/j.siny.2017.02.006
10.1111/aogs.12344
10.1186/s12884-018-1908-9
10.1016/j.artmed.2008.12.003
10.1016/j.aller.2011.05.002
10.2196/17366
10.1016/j.jad.2018.08.073
10.1038/sdata.2015.17
10.3109/14767058.2014.991709
10.1111/aogs.13783
10.1097/AOG.0b013e31829f8ced
10.1016/j.ejogrb.2016.02.008
10.1111/j.1756-185X.2012.01712.x
10.1371/journal.pone.0171938
10.1371/journal.pmed.1001744
10.1161/CIRCULATIONAHA.115.001593
10.1155/2017/7949507
10.1016/j.fertnstert.2018.10.030
10.1016/j.fertnstert.2018.11.036
10.18637/jss.v036.i03
10.1002/uog.21878
10.1155/2016/3013567
10.1002/jrsm.1230
10.1186/1755-8794-3-42
10.1186/s12884-019-2374-8
10.1016/j.preghy.2015.08.006
10.1111/ajo.12053
10.1023/A:1010933404324
10.1159/000357757
10.1186/s13054-019-2564-9
10.1016/j.jclinepi.2015.05.009
10.1002/pd.4519
10.1186/s12916-017-0956-8
10.3109/19396368.2011.558607
10.1016/j.ijoa.2018.04.010
10.1002/uog.14714
10.1016/s1472-6483(10)60840-1
10.7326/M14-0697
10.3389/fnbot.2013.00021
10.1111/aogs.12779
10.1016/j.advms.2017.02.001
10.1016/j.ajog.2016.05.039
10.1111/jog.14011
10.1007/s00592-019-01469-5
10.1007/s12553-017-0201-7
10.1186/s12871-018-0638-x
10.1080/21642583.2014.956265
10.1155/2019/6916251
10.1093/humrep/deaa013
10.1016/S2214-109X(14)70227-X
10.1371/journal.pone.0153562
10.1016/j.rbmo.2010.02.014
10.1016/j.ejogrb.2013.07.042
10.1016/j.neucom.2015.01.107
10.1016/j.jclinepi.2019.02.004
10.3389/fphys.2019.00246
10.1038/s41746-019-0096-y
10.1016/j.ejogrb.2015.02.031
10.1111/aogs.13228
10.1093/humrep/deu090
10.1371/journal.pone.0221202
10.1111/aogs.13051
10.1155/2019/5373810
10.24171/j.phrp.2017.8.3.06
10.1515/jpm-2014-0007
10.1186/s12884-015-0722-x
10.1002/bdra.22883
10.1371/journal.pone.0070917
10.1016/j.ajog.2010.09.030
10.1186/1471-2393-14-16
10.1177/0962280216651098
10.1371/journal.pone.0214712
10.1097/MD.0000000000006090
10.2478/slgr-2013-0033
10.1515/cclm-2015-0537
10.1109/JBHI.2016.2546312
10.1016/j.ijmedinf.2016.10.018
10.1111/ajo.12395
10.1186/s12884-018-1971-2
10.1016/j.ejogrb.2010.12.042
10.1038/jp.2015.216
10.12891/ceog3309.2017
10.1371/journal.pone.0225716
10.1111/aogs.13368
10.1007/978-3-642-11745-9_17
10.1111/1471-0528.12892
10.1371/journal.pone.0131013
10.1007/s10916-017-0847-8
10.1016/j.cmpb.2019.105015
10.3349/ymj.2020.61.2.154
10.1016/j.ebiom.2020.102710
10.1002/9780470712184.ch9
10.1002/ijgo.12197
10.1093/humrep/dez064
10.1111/cts.12603
10.1161/CIRCOUTCOMES.116.003039
10.1016/j.ajog.2016.02.041
10.3171/2018.8.FOCUS18325
10.1067/mob.2000.108891
10.2196/jmir.5870
10.1177/1753495X17754149
10.1097/AOG.0000000000003196
10.1067/mob.2001.109386
10.1136/bmj.d549
10.1016/j.compbiomed.2018.06.003
10.22034/APJCP.2018.19.7.1747
10.1038/jhh.2016.50
10.1007/s10815-019-01498-7
10.1007/s10815-012-9877-9
10.1007/s10995-016-2100-3
10.1016/j.jbi.2019.103334
10.1145/3308558.3313512
10.1109/EMBC.2019.8857837
10.1002/uog.7706
10.1111/j.1447-0756.2011.01607.x
10.1007/s10815-018-1132-6
10.1016/j.cmpb.2017.03.018
10.1080/14767058.2019.1611764
10.1097/AOG.0000000000003574
10.1007/s13755-020-00105-9
10.1186/s12884-019-2712-x
10.1016/j.rbmo.2012.09.015
10.1186/s12938-017-0378-z
10.1371/journal.pone.0169311
10.1016/s0167-9473(01)00065-2
10.1371/journal.pmed.1000097
10.1016/j.annepidem.2018.08.008
10.1109/EMBC.2018.8513625
10.1109/access.2019.2933368
10.1177/0272989X14535984
10.1111/aogs.13358
10.1016/j.reprotox.2020.03.009
10.3389/fmed.2019.00289
10.1007/s11306-018-1370-8
10.1109/EMBC.2015.7318861
10.1097/MD.0000000000005515
10.1007/s00404-012-2397-0
10.1186/s12884-017-1264-1
10.1515/CCLM.2001.132
10.1002/uog.20377
10.1109/TCBB.2018.2868667
10.1126/science.aaa8415
10.1111/jog.12988
10.1016/j.ejogrb.2005.06.034
10.7759/cureus.7124
10.1093/humrep/det094
10.7326/M18-1377
10.1111/jog.12528
10.1111/ajo.12046
10.1007/s00404-010-1469-2
10.1093/humrep/dey236
10.1038/s41591-019-0724-8
10.1016/j.ejogrb.2014.02.003
10.1016/j.cmpb.2016.09.013
10.7326/M18-1376
10.1186/s12967-019-2062-5
10.1111/1471-0528.12195
10.1037/1082-989X.11.2.193
10.1145/2939672.2939785
10.1186/1471-2288-14-137
10.1016/j.compbiolchem.2018.05.011
10.1109/SISY.2018.8524818
10.1109/ACCESS.2018.2879115
10.1371/journal.pone.0077154
10.1126/science.1251816
10.1016/j.ajog.2019.01.227
10.1016/j.ejogrb.2018.04.008
10.1016/j.ejogrb.2015.05.004
10.1016/j.artmed.2014.10.001
10.1038/s41598-017-16665-y
10.1109/EMBC.2013.6609532
10.1097/AOG.0b013e31825503e5
10.1016/j.ejogrb.2015.05.009
10.1055/s-0030-1262909
10.1186/s12874-018-0613-8
10.1093/humrep/deu077
10.1002/advs.201901819
10.1097/MD.0000000000015462
10.1002/jrsm.1164
10.1093/humrep/dez258
ContentType Journal Article
Copyright Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020.
2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. 2020
Copyright_xml – notice: Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020.
– notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.2196/16503
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Health Management
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Health Management (Alumni Edition)
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_379605b1d5724ad2bc3cfd5cd6e860fd
PMC7708089
33200995
10_2196_16503
Genre Journal Article
Review
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c457t-56d6715c744f2f2bbd712d3dd7159ae4fdb9c7af6300e3aa7e9439fbe8263d2c3
IEDL.DBID M48
ISSN 2291-9694
IngestDate Wed Aug 27 01:30:40 EDT 2025
Thu Aug 21 18:33:28 EDT 2025
Mon Jul 21 11:48:38 EDT 2025
Sat Jul 26 00:03:52 EDT 2025
Thu Apr 03 06:57:31 EDT 2025
Tue Jul 01 04:31:19 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords meta-analysis
pregnancy complications
machine learning
systematic review
prognosis
clinical prediction rule
Language English
License Herdiantri Sufriyana, Atina Husnayain, Ya-Lin Chen, Chao-Yang Kuo, Onkar Singh, Tso-Yang Yeh, Yu-Wei Wu, Emily Chia-Yu Su. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.11.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-56d6715c744f2f2bbd712d3dd7159ae4fdb9c7af6300e3aa7e9439fbe8263d2c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5603-1194
0000-0003-4801-5159
0000-0003-3002-8728
0000-0002-4745-1584
0000-0002-7046-827X
0000-0001-8867-5683
0000-0001-9178-0222
0000-0003-0798-800X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/16503
PMID 33200995
PQID 2511974271
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_379605b1d5724ad2bc3cfd5cd6e860fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708089
proquest_miscellaneous_2461398707
proquest_journals_2511974271
pubmed_primary_33200995
crossref_primary_10_2196_16503
crossref_citationtrail_10_2196_16503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201117
PublicationDateYYYYMMDD 2020-11-17
PublicationDate_xml – month: 11
  year: 2020
  text: 20201117
  day: 17
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2020
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Maroufizadeh, S (ref166) 2018; 47
Mitchell, TM (ref22) 1997
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
Fiset, S (ref121) 2019; 96
ref25
ref20
ref21
Deeks, J (ref172) 2008
ref28
ref27
ref29
ref200
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
Higgins, JP (ref3) 2002; 75
ref64
ref115
Kennady, G (ref198) 2017; 44
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref168
ref169
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref179
ref180
ref188
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
Edwards, HM (ref8) 2018; 65
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Haake, KW (ref189) 1997; 119
Fernandez-Delgado, M (ref181) 2014; 15
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref195
ref196
ref193
ref194
References_xml – ident: ref125
  doi: 10.1007/s11062-019-09821-9
– ident: ref135
  doi: 10.1016/j.cmpb.2007.11.018
– ident: ref174
  doi: 10.1007/s11517-008-0350-y
– ident: ref128
  doi: 10.1109/EMBC.2015.7318771
– ident: ref23
  doi: 10.5555/2986459.2986743
– ident: ref61
  doi: 10.1093/humrep/dew146
– ident: ref163
  doi: 10.3346/jkms.2019.34.e128
– ident: ref191
  doi: 10.1093/humrep/des219
– ident: ref46
  doi: 10.1016/j.ajog.2015.05.044
– ident: ref99
  doi: 10.1016/j.lfs.2019.03.012
– ident: ref79
  doi: 10.1002/uog.17513
– ident: ref6
  doi: 10.1016/j.siny.2017.02.006
– ident: ref63
  doi: 10.1111/aogs.12344
– ident: ref65
  doi: 10.1186/s12884-018-1908-9
– ident: ref88
  doi: 10.1016/j.artmed.2008.12.003
– ident: ref1
  doi: 10.1016/j.aller.2011.05.002
– ident: ref98
  doi: 10.2196/17366
– ident: ref12
  doi: 10.1016/j.jad.2018.08.073
– ident: ref196
  doi: 10.1038/sdata.2015.17
– ident: ref39
  doi: 10.3109/14767058.2014.991709
– ident: ref36
  doi: 10.1111/aogs.13783
– ident: ref64
  doi: 10.1097/AOG.0b013e31829f8ced
– ident: ref91
  doi: 10.1016/j.ejogrb.2016.02.008
– ident: ref25
  doi: 10.1111/j.1756-185X.2012.01712.x
– ident: ref70
  doi: 10.1371/journal.pone.0171938
– ident: ref19
  doi: 10.1371/journal.pmed.1001744
– ident: ref2
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: ref111
  doi: 10.1155/2017/7949507
– ident: ref158
  doi: 10.1016/j.fertnstert.2018.10.030
– ident: ref193
  doi: 10.1016/j.fertnstert.2018.11.036
– ident: ref27
  doi: 10.18637/jss.v036.i03
– ident: ref86
  doi: 10.1002/uog.21878
– ident: ref94
  doi: 10.1155/2016/3013567
– ident: ref173
  doi: 10.1002/jrsm.1230
– ident: ref114
  doi: 10.1186/1755-8794-3-42
– ident: ref104
  doi: 10.1186/s12884-019-2374-8
– ident: ref68
  doi: 10.1016/j.preghy.2015.08.006
– ident: ref37
  doi: 10.1111/ajo.12053
– ident: ref182
  doi: 10.1023/A:1010933404324
– ident: ref83
  doi: 10.1159/000357757
– ident: ref179
  doi: 10.1186/s13054-019-2564-9
– ident: ref24
  doi: 10.1016/j.jclinepi.2015.05.009
– ident: ref43
  doi: 10.1002/pd.4519
– ident: ref92
  doi: 10.1186/s12916-017-0956-8
– ident: ref188
  doi: 10.3109/19396368.2011.558607
– ident: ref7
  doi: 10.1016/j.ijoa.2018.04.010
– ident: ref120
  doi: 10.1002/uog.14714
– ident: ref170
  doi: 10.1016/s1472-6483(10)60840-1
– ident: ref20
  doi: 10.7326/M14-0697
– ident: ref185
  doi: 10.3389/fnbot.2013.00021
– ident: ref72
  doi: 10.1111/aogs.12779
– ident: ref132
  doi: 10.1016/j.advms.2017.02.001
– ident: ref57
  doi: 10.1016/j.ajog.2016.05.039
– ident: ref103
  doi: 10.1111/jog.14011
– ident: ref33
  doi: 10.1007/s00592-019-01469-5
– ident: ref124
  doi: 10.1007/s12553-017-0201-7
– ident: ref56
  doi: 10.1186/s12871-018-0638-x
– ident: ref183
  doi: 10.1080/21642583.2014.956265
– ident: ref109
  doi: 10.1155/2019/6916251
– ident: ref153
  doi: 10.1093/humrep/deaa013
– ident: ref5
  doi: 10.1016/S2214-109X(14)70227-X
– ident: ref110
  doi: 10.1371/journal.pone.0153562
– ident: ref69
  doi: 10.1016/j.rbmo.2010.02.014
– ident: ref75
  doi: 10.1016/j.ejogrb.2013.07.042
– ident: ref118
  doi: 10.1016/j.neucom.2015.01.107
– ident: ref13
  doi: 10.1016/j.jclinepi.2019.02.004
– ident: ref142
  doi: 10.3389/fphys.2019.00246
– ident: ref192
  doi: 10.1038/s41746-019-0096-y
– ident: ref47
  doi: 10.1016/j.ejogrb.2015.02.031
– ident: ref82
  doi: 10.1111/aogs.13228
– ident: ref35
  doi: 10.1093/humrep/deu090
– ident: ref127
  doi: 10.1371/journal.pone.0221202
– ident: ref105
  doi: 10.1111/aogs.13051
– volume: 47
  start-page: 1913
  issue: 12
  year: 2018
  ident: ref166
  publication-title: Iran J Public Health
– ident: ref130
  doi: 10.1155/2019/5373810
– ident: ref156
  doi: 10.24171/j.phrp.2017.8.3.06
– ident: ref100
  doi: 10.1515/jpm-2014-0007
– ident: ref34
  doi: 10.1186/s12884-015-0722-x
– ident: ref168
  doi: 10.1002/bdra.22883
– ident: ref59
  doi: 10.1371/journal.pone.0070917
– ident: ref29
  doi: 10.1016/j.ajog.2010.09.030
– ident: ref175
  doi: 10.1186/1471-2393-14-16
– ident: ref126
  doi: 10.1177/0962280216651098
– ident: ref112
  doi: 10.1371/journal.pone.0214712
– ident: ref129
  doi: 10.1097/MD.0000000000006090
– ident: ref133
  doi: 10.2478/slgr-2013-0033
– ident: ref84
  doi: 10.1515/cclm-2015-0537
– ident: ref146
  doi: 10.1109/JBHI.2016.2546312
– ident: ref136
  doi: 10.1016/j.ijmedinf.2016.10.018
– ident: ref80
  doi: 10.1111/ajo.12395
– ident: ref161
  doi: 10.1186/s12884-018-1971-2
– ident: ref195
  doi: 10.1016/j.ejogrb.2010.12.042
– ident: ref4
– ident: ref49
  doi: 10.1038/jp.2015.216
– volume: 44
  start-page: 110
  issue: 1
  year: 2017
  ident: ref198
  publication-title: Clin Exp Obstet Gynecol
  doi: 10.12891/ceog3309.2017
– ident: ref76
  doi: 10.1371/journal.pone.0225716
– ident: ref40
  doi: 10.1111/aogs.13368
– ident: ref151
  doi: 10.1007/978-3-642-11745-9_17
– ident: ref178
  doi: 10.1111/1471-0528.12892
– volume: 15
  start-page: 3133
  issue: 90
  year: 2014
  ident: ref181
  publication-title: J Mach Learn Res
– ident: ref123
  doi: 10.1371/journal.pone.0131013
– ident: ref141
  doi: 10.1007/s10916-017-0847-8
– ident: ref144
  doi: 10.1016/j.cmpb.2019.105015
– ident: ref51
  doi: 10.3349/ymj.2020.61.2.154
– ident: ref147
  doi: 10.1016/j.ebiom.2020.102710
– start-page: 243
  year: 2008
  ident: ref172
  publication-title: Cochrane Handbook for Systematic Reviews of Interventions
  doi: 10.1002/9780470712184.ch9
– ident: ref30
  doi: 10.1002/ijgo.12197
– ident: ref148
  doi: 10.1093/humrep/dez064
– ident: ref97
  doi: 10.1111/cts.12603
– ident: ref180
  doi: 10.1161/CIRCOUTCOMES.116.003039
– ident: ref62
  doi: 10.1016/j.ajog.2016.02.041
– ident: ref16
  doi: 10.3171/2018.8.FOCUS18325
– ident: ref167
  doi: 10.1067/mob.2000.108891
– ident: ref186
– ident: ref15
  doi: 10.2196/jmir.5870
– ident: ref108
  doi: 10.1177/1753495X17754149
– ident: ref159
  doi: 10.1097/AOG.0000000000003196
– ident: ref165
  doi: 10.1067/mob.2001.109386
– ident: ref26
  doi: 10.1136/bmj.d549
– ident: ref113
  doi: 10.1016/j.compbiomed.2018.06.003
– ident: ref11
  doi: 10.22034/APJCP.2018.19.7.1747
– ident: ref81
  doi: 10.1038/jhh.2016.50
– ident: ref154
  doi: 10.1007/s10815-019-01498-7
– ident: ref73
  doi: 10.1007/s10815-012-9877-9
– ident: ref60
  doi: 10.1007/s10995-016-2100-3
– ident: ref122
  doi: 10.1016/j.jbi.2019.103334
– ident: ref164
  doi: 10.1145/3308558.3313512
– ident: ref143
  doi: 10.1109/EMBC.2019.8857837
– ident: ref85
  doi: 10.1002/uog.7706
– ident: ref50
  doi: 10.1111/j.1447-0756.2011.01607.x
– ident: ref102
  doi: 10.1007/s10815-018-1132-6
– ident: ref107
  doi: 10.1016/j.cmpb.2017.03.018
– ident: ref55
  doi: 10.1080/14767058.2019.1611764
– year: 1997
  ident: ref22
  publication-title: Machine Learning
– ident: ref52
  doi: 10.1097/AOG.0000000000003574
– ident: ref160
  doi: 10.1007/s13755-020-00105-9
– ident: ref31
  doi: 10.1186/s12884-019-2712-x
– ident: ref190
  doi: 10.1016/j.rbmo.2012.09.015
– ident: ref117
  doi: 10.1186/s12938-017-0378-z
– ident: ref58
  doi: 10.1371/journal.pone.0169311
– ident: ref184
  doi: 10.1016/s0167-9473(01)00065-2
– ident: ref18
  doi: 10.1371/journal.pmed.1000097
– ident: ref96
  doi: 10.1016/j.annepidem.2018.08.008
– ident: ref137
  doi: 10.1109/EMBC.2018.8513625
– ident: ref138
  doi: 10.1109/access.2019.2933368
– ident: ref150
  doi: 10.1177/0272989X14535984
– ident: ref200
  doi: 10.1111/aogs.13358
– ident: ref162
  doi: 10.1016/j.reprotox.2020.03.009
– ident: ref101
  doi: 10.3389/fmed.2019.00289
– ident: ref149
  doi: 10.1007/s11306-018-1370-8
– volume: 119
  start-page: 23
  issue: Suppl 1
  year: 1997
  ident: ref189
  publication-title: Zentralbl Gynakol
– ident: ref145
  doi: 10.1109/EMBC.2015.7318861
– ident: ref93
  doi: 10.1097/MD.0000000000005515
– ident: ref44
  doi: 10.1007/s00404-012-2397-0
– ident: ref177
  doi: 10.1186/s12884-017-1264-1
– ident: ref131
  doi: 10.1515/CCLM.2001.132
– ident: ref53
  doi: 10.1002/uog.20377
– ident: ref119
  doi: 10.1109/TCBB.2018.2868667
– ident: ref197
  doi: 10.1126/science.aaa8415
– ident: ref95
  doi: 10.1111/jog.12988
– ident: ref152
  doi: 10.1016/j.ejogrb.2005.06.034
– ident: ref176
  doi: 10.7759/cureus.7124
– volume: 75
  start-page: 247
  issue: 5-6
  year: 2002
  ident: ref3
  publication-title: Yale J Biol Med
– ident: ref78
  doi: 10.1093/humrep/det094
– ident: ref21
  doi: 10.7326/M18-1377
– ident: ref42
  doi: 10.1111/jog.12528
– ident: ref67
  doi: 10.1111/ajo.12046
– ident: ref116
  doi: 10.1007/s00404-010-1469-2
– volume: 96
  start-page: 6
  issue: 1
  year: 2019
  ident: ref121
  publication-title: Univ Tor Med J
– ident: ref77
  doi: 10.1093/humrep/dey236
– volume: 65
  start-page: -
  issue: 3
  year: 2018
  ident: ref8
  publication-title: Dan Med J
– ident: ref157
  doi: 10.1038/s41591-019-0724-8
– ident: ref89
  doi: 10.1016/j.ejogrb.2014.02.003
– ident: ref134
  doi: 10.1016/j.cmpb.2016.09.013
– ident: ref17
  doi: 10.7326/M18-1376
– ident: ref140
  doi: 10.1186/s12967-019-2062-5
– ident: ref66
  doi: 10.1111/1471-0528.12195
– ident: ref171
  doi: 10.1037/1082-989X.11.2.193
– ident: ref187
  doi: 10.1145/2939672.2939785
– ident: ref199
  doi: 10.1186/1471-2288-14-137
– ident: ref9
  doi: 10.1016/j.compbiolchem.2018.05.011
– ident: ref115
  doi: 10.1109/SISY.2018.8524818
– ident: ref106
  doi: 10.1109/ACCESS.2018.2879115
– ident: ref169
  doi: 10.1371/journal.pone.0077154
– ident: ref10
  doi: 10.1126/science.1251816
– ident: ref41
  doi: 10.1016/j.ajog.2019.01.227
– ident: ref71
  doi: 10.1016/j.ejogrb.2018.04.008
– ident: ref87
  doi: 10.1016/j.ejogrb.2015.05.004
– ident: ref38
  doi: 10.1016/j.artmed.2014.10.001
– ident: ref139
  doi: 10.1038/s41598-017-16665-y
– ident: ref155
  doi: 10.1109/EMBC.2013.6609532
– ident: ref32
  doi: 10.1097/AOG.0b013e31825503e5
– ident: ref90
  doi: 10.1016/j.ejogrb.2015.05.009
– ident: ref54
  doi: 10.1055/s-0030-1262909
– ident: ref14
  doi: 10.1186/s12874-018-0613-8
– ident: ref45
  doi: 10.1093/humrep/deu077
– ident: ref48
  doi: 10.1002/advs.201901819
– ident: ref74
  doi: 10.1097/MD.0000000000015462
– ident: ref28
  doi: 10.1002/jrsm.1164
– ident: ref194
  doi: 10.1093/humrep/dez258
SSID ssj0001416667
Score 2.4025035
SecondaryResourceType review_article
Snippet Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a single...
Background: Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a...
BackgroundPredictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy outcomes are not easily predicted by a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e16503
SubjectTerms Algorithms
Bias
Biomedical research
Decision making
Fetuses
Hemorrhage
Hypertension
Machine learning
Meta-analysis
Optimization
Preeclampsia
Pregnancy
Regression analysis
Review
Sepsis
Systematic review
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kD0UQ8dtoLSv0NfSS_ZjEt1osRTwtaqFvYT-vB20i11Twn_JvdGaTC3dF8MWnkN0N2WRmd3-7M_Mbxg5wU4XrtPN5KKzNZXAyr2QlchlNNJUsXNAUKDz_rE_P5ccLdbGR6ot8wgZ64OHHHQpAjK1s4RWU0vjSOuGiV87rUOlZ9DT74pq3sZlKpyuSzGGwyx6QrzNq2WGBUERsLT6Jo_9vwPKuf-TGgnPyiD0ckSI_Gnr4mN0L7RO2Ox9t4U_Z7-MphSDvIk-RtD_xnmKh-KcU2LN0_GtYDJ6uLTet518I7_F58qDEVuO5CD-6WnSrZX95fcMRxPKzVUf-d_T82YpeSNLjo8shX7ZUuiCmjl-c4pfe8W8THzQfjA3pZfPQm3zNevKMnZ98-H58mo_ZF3InFfS50l5DoRxIGctYWuuhKL3weFG1CTJ6WzswkTi7gjAGQo3gJtqAGxbhSyees522a8NLxkHPJEDwlAxU-pkyutIS5Rqdrn2hq4wdrMXSuJGanDJkXDW4RSHpNUl6Gdufmv0YuDjuNnhPMp0qiTo7FaBCNaNCNf9SqIztrTWiGcfzTVMmc6ssocjY26kaRyKZV0wbultsIxEa1Tj_QcZeDAo09UQIskLVKmOwpVpbXd2uaZeXie0bAEF9Vb_6H9_2mt0v6byA3Bhhj-30q9vwBkFVb_fT-PkD-Zgl6A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD5ohSKIeDdaywh9Dd1kJjOJL1KLpYirRS3sW5jMZbtQk3Y3Lfin_I2eM5lN3SI-hc1MmFnOmZlvzuU7AHt4qcJz2tjUZU2TCmdEWoqSp8Jrr0uRGScpUXj6RR6fik-zYhYNbqsYVrneE8NGbTtDNvL9PDi8RK6y9xeXKVWNIu9qLKFxF-4RdRmFdKmZurGxCHKKqW14QBHPqGv7GQISvnEEBab-f8HL21GSfx07R4_gYcSL7GAQ8GO449onsD2NHvGn8PtwLCTIOs9CPu01_qaMKPY5pPcsDPvm5kO8a8t0a9lXQn1sGuIosVe0jrCD8zn-4_7s54ohlGUny46i8Oj7kyUNSDJkMfCQLVp6Oye-jl-Mspjese8jKzQbXA5hsKnrdbrmPnkGp0cffxwep7EGQ2pEofq0kFaqrDBKCJ_7vGmsynLLLT6KSjvhbVMZpT0xdzmutXIVQhzfOLy2cJsb_hy22q51L4EpORFKOUslQYWdFFqWUqhKeiMrm8kygb21WGoTCcqpTsZ5jRcVkl4dpJfA7tjtYmDkuN3hA8l0bCQC7fCiW87ruB5rjgNPiibD2eRC27wx3HhbGCtdKSfeJrCz1og6rupVfaODCbwdm3E9kpNFt667wj4CAVKFu6BK4MWgQONMOCdfVFUkoDZUa2Oqmy3t4ixwfiuF0L6sXv1_Wq_hfk72AApTVDuw1S-v3BsETX2zG1bGH3CUHI0
  priority: 102
  providerName: ProQuest
Title Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/33200995
https://www.proquest.com/docview/2511974271
https://www.proquest.com/docview/2461398707
https://pubmed.ncbi.nlm.nih.gov/PMC7708089
https://doaj.org/article/379605b1d5724ad2bc3cfd5cd6e860fd
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3batwwEB2aBEKhlN7rNl1UyKvbtSxLVqGUJCSE0k2XtAt5M7Ium4WtnTib0vxUv7Ea2WvikIc-GVsyEp4Z60gzcwZg12-q_DqtTWyTsoyZ1SzOWZ7GzCmncpZoyzFReHLCj2fs61l2K5qw-4BX927tsJ7UrFl--HN588Ub_GcMY_YK9DHxKCPdgC2_GAm0zUmH8MMxC0O_GCZNUyqTWHLJtuHR4M3BihSI--9Dm3eDJm-tQkdP4HEHH8leK--n8MBWz2B70jnIn8Pfg76uIKkdCem1v_09JkiRbyHbZ6HJqZ234a8VUZUh3xEEkkkIq_S9usMSsrec181idf7rinhkS6ZNjUF5-P60wQFRpKSLQySLCp_Okb7jhmBS0yfyoyeJJq0HIgw2sSsVr6lQXsDs6PDnwXHclWSINcvEKs644SLJtGDMUUfL0oiEmtT4SyaVZc6UUgvlkMjLpkoJKz3icaX1u5jUUJ2-hM2qruxrIIKPmRDWYIVQZsaZ4jlnQnKnuTQJzyPYXYul0B1fOZbNWBZ-34LSK4L0Ihj13S5ago67HfZRpn0j8mmHB3UzLzrzLFI_8DgrEz8bypShpU61M5k23OZ87EwEO2uNKNY6WtDgg2VUJBG875u9eaLPRVW2vvZ9mMdL0v8URQSvWgXqZ5Km6JqSWQRioFqDqQ5bqsV5oAAXwiP9XL75j3HfwkOKZwQYuih2YHPVXNt3HkityhFsiDMxgq39w5Pp6SgcR4yC-fwDgG8kUw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9sw8MSKxJCmad9kY8yT2GNE4zh2MmmagIHKaLuKgcRbSGynVGIJa8sm_hS_cXf5YkXT3niKEjvxKXc-3_cBbKJShee0Nq710tQVVgs3FKHviizJklB42kpKFB4MZe9EfD0NTpfgpsmFobDKhieWjNoUmmzkW7x0eAmuvM-XP13qGkXe1aaFRkUWh_b6N6pss08HXxC_Hzjf3zve7bl1VwFXi0DN3UAaqbxAKyEynvE0Ncrjxjd4CaLEisykkVZJRrWorJ8kykZ4aGepRUHcN1z7-N0HsCx8VGU6sLyzNxwd3Vp1BLnh1Ao8ohhrpO4tD0Ugf-HQK3sD_EugvRuX-ddBt_8EHtcSKtuuSOopLNn8GawMah_8c7jZbVsXsiJjZQbvL7ynHCzWLxOKJpod2XEVYZuzJDfsG8mZbFBGbuKs2h7Dti_G-I_n5z9mDIVnNpoWFPdH74-mtCBRDatDHdkkp6djqhByzShv6iP73tahZpWTo1xsYOeJ21RbeQEn94Kfl9DJi9yuAVOyK5SyhpqQCtMNEhlKoSKZaRkZT4YObDZoiXVdEp06c1zEqBoR9uISew5stNMuqxogdyfsEE7bQSrZXT4opuO45gCxjwt3g9RDaLhIDE-1rzMTaCNtKLuZcWC9oYi45iOz-JbqHXjfDiMHILdOktviCucIFMki5LvKgVcVAbWQ-D55v6LAAbVAWgugLo7kk_OyyrhSqEyE0ev_g_UOHvaOB_24fzA8fAOrnKwRFCSp1qEzn17ZtyiyzdONep8wOLvvrfkHtShbyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkCokhHgnMIaRxseoje3YCRJCY6Pa2DoqYFK_BccvXaWRjLYD7U_xA_h13OVtdEJ826cosRNbufP5zvfcHSFbYFTBPm1s6KI8D4UzIkxEwkPhtdeJiIyTGCg8OpJ7x-LDJJ6skd9tLAzCKluZWAlqWxo8I--zyuElmIr6voFFjHeHb8--h1hBCj2tbTmNmkUO3MVPMN8Wb_Z3gdavGBu-_7KzFzYVBkIjYrUMY2mlimKjhPDMszy3KmKWW7jEqXbC2zw1SnvMS-W41sqlsIH73IFSzi0zHL57g9xUPI5wjamJujzfEeiQUz1yG9HWwOf9CJQhvrL9VVUC_qXaXkVo_rXlDe-SO42uSrdr5rpH1lxxn_RGjTf-Afm10xUxpKWnVSzvD7jHaCx6WIUWzQz95KY11ragurD0I2qcdFRhOKFXczJDt0-n8IeXJ98WFNRoOp6XiADE98dzHBD5hzagRzor8OkUc4VcUIygek0_dxmpae3uqAYbuaUO27wrD8nxtVDnEVkvysI9IVTJgVDKWSxHKuwg1jKRQqXSG5naSCYB2WrJkpkmOTrW6DjNwEhC6mUV9QKy2XU7q7OBXO3wDmnaNWLy7upBOZ9mjSzIOAw8iPMIZsOEtiw33HgbGytdIgfeBmSj5YiskSiL7JL_A_KyawZZgA4eXbjyHPoIUM5SkMAqII9rBupmwjn6wdI4IGqFtVamutpSzE6qfONKgVmRpE__P60XpAcLMjvcPzp4Rm4xPJZAtKTaIOvL-bl7DrrbMt-sFgklX697Vf4BqjxemA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Multivariable+Logistic+Regression+and+Other+Machine+Learning+Algorithms+for+Prognostic+Prediction+Studies+in+Pregnancy+Care%3A+Systematic+Review+and+Meta-Analysis&rft.jtitle=JMIR+medical+informatics&rft.au=Sufriyana%2C+Herdiantri&rft.au=Husnayain%2C+Atina&rft.au=Chen%2C+Ya-Lin&rft.au=Kuo%2C+Chao-Yang&rft.date=2020-11-17&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=8&rft.issue=11&rft.spage=e16503&rft_id=info:doi/10.2196%2F16503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon