Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review
SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a...
Saved in:
Published in | JMIR medical informatics Vol. 9; no. 1; p. e23811 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
11.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic.
The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.
A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI.
The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme.
In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research. |
---|---|
AbstractList | SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic.
The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.
A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI.
The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme.
In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research. SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic.BACKGROUNDSARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic.The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.OBJECTIVEThe objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI.METHODSA systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI.The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme.RESULTSThe search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme.In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.CONCLUSIONSIn this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research. BackgroundSARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)–based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. ObjectiveThe objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. MethodsA systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. ResultsThe search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients’ radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. ConclusionsIn this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research. Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)–based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. Objective: The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. Methods: A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. Results: The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients’ radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. Conclusions: In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research. |
Author | Syed, Farhanuddin Begum, Salma Syed, Mahanazuddin Syeda, Hafsa Bareen Sexton, Kevin Wayne Prior, Fred Yu Jr, Feliciano Syed, Shorabuddin |
AuthorAffiliation | 7 Department of Radiology University of Arkansas for Medical Sciences Little Rock, AR United States 6 College of Medicine Shadan Institute of Medical Sciences Hyderabad India 4 Department of Health Policy and Management University of Arkansas for Medical Sciences Little Rock, AR United States 2 Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock, AR United States 1 Department of Neurology University of Arkansas for Medical Sciences Little Rock, AR United States 3 Department of Surgery University of Arkansas for Medical Sciences Little Rock, AR United States 5 Department of Information Technology University of Arkansas for Medical Sciences Little Rock, AR United States |
AuthorAffiliation_xml | – name: 6 College of Medicine Shadan Institute of Medical Sciences Hyderabad India – name: 2 Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock, AR United States – name: 3 Department of Surgery University of Arkansas for Medical Sciences Little Rock, AR United States – name: 1 Department of Neurology University of Arkansas for Medical Sciences Little Rock, AR United States – name: 4 Department of Health Policy and Management University of Arkansas for Medical Sciences Little Rock, AR United States – name: 7 Department of Radiology University of Arkansas for Medical Sciences Little Rock, AR United States – name: 5 Department of Information Technology University of Arkansas for Medical Sciences Little Rock, AR United States |
Author_xml | – sequence: 1 givenname: Hafsa Bareen orcidid: 0000-0001-9752-4983 surname: Syeda fullname: Syeda, Hafsa Bareen – sequence: 2 givenname: Mahanazuddin orcidid: 0000-0002-8978-1565 surname: Syed fullname: Syed, Mahanazuddin – sequence: 3 givenname: Kevin Wayne orcidid: 0000-0002-1460-9867 surname: Sexton fullname: Sexton, Kevin Wayne – sequence: 4 givenname: Shorabuddin orcidid: 0000-0002-4761-5972 surname: Syed fullname: Syed, Shorabuddin – sequence: 5 givenname: Salma orcidid: 0000-0003-4942-1466 surname: Begum fullname: Begum, Salma – sequence: 6 givenname: Farhanuddin orcidid: 0000-0002-9550-6519 surname: Syed fullname: Syed, Farhanuddin – sequence: 7 givenname: Fred orcidid: 0000-0002-6314-5683 surname: Prior fullname: Prior, Fred – sequence: 8 givenname: Feliciano orcidid: 0000-0003-4451-9368 surname: Yu Jr fullname: Yu Jr, Feliciano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33326405$$D View this record in MEDLINE/PubMed |
BookMark | eNpdku1rUzEUxoNM3Kz9FyQggiDVvOfGDwOpb4XKYFa_hiQ3t029TWZyO9l_b-66ybpPCef8eJ6Hc85zcBJT9ABMMXpHsBLvCW0wfgLOCFF4poRiJw_-p2BayhYhhBkWQshn4JRSSgRD_AysLlPvYergd-M2IXq49CbHENdw5d0mhj97X-CQ4Mq43xUcNh7OL34tPs2wgvMcSigf4I-bMvidGYKDl_46-L8vwNPO9MVP794J-Pnl82r-bba8-LqYf1zOHONymHFBHG8It8yZznprhTXKUkPa1nAhseywR5yYrpUOW8oxtc6h2nKUYWsVnYDFQbdNZquvctiZfKOTCfq2kPJam1xj9V4z2hnhHKXVj0nUmE4hbKVHyLSO1foEnB-0rvZ251vn45BNfyR63Ilho9fpWssGCSJ5FXhzJ5DTOLVB70Jxvu9N9GlfNBltVYPR6PXqEbpN-xzrqDThGCvJcDNSLx8m-h_lfnkVeHsAXE6lZN9pF4a6hjQGDL3GSI_XoW-vo9KvH9H3gsfcP2IftZw |
CitedBy_id | crossref_primary_10_3390_electronics10141626 crossref_primary_10_1155_2022_1644910 crossref_primary_10_18502_dmj_v7i3_17732 crossref_primary_10_3390_life12091456 crossref_primary_10_1016_j_jksuci_2021_07_010 crossref_primary_10_3390_jcm11072054 crossref_primary_10_1016_j_cois_2022_100969 crossref_primary_10_1016_j_matpr_2021_11_388 crossref_primary_10_3390_ijerph19138058 crossref_primary_10_3390_v15112184 crossref_primary_10_1103_PhysRevE_109_014212 crossref_primary_10_1371_journal_pone_0292888 crossref_primary_10_1007_s44230_023_00042_2 crossref_primary_10_1136_bmj_n304 crossref_primary_10_3390_s21165486 crossref_primary_10_3389_fcvm_2023_1308668 crossref_primary_10_1016_j_asoc_2023_110511 crossref_primary_10_3389_fpubh_2021_770946 crossref_primary_10_3390_math11041051 crossref_primary_10_36306_konjes_877805 crossref_primary_10_1109_ACCESS_2025_3538518 crossref_primary_10_1007_s42770_023_00923_5 crossref_primary_10_52831_kjhs_1117894 crossref_primary_10_3390_ai4040044 crossref_primary_10_1109_MCI_2021_3129960 crossref_primary_10_32604_cmc_2022_029385 crossref_primary_10_17352_2455_5282_000191 crossref_primary_10_1093_gigascience_giab076 crossref_primary_10_3390_jcdd10020039 crossref_primary_10_1093_jamia_ocac083 crossref_primary_10_1007_s00500_021_05810_5 crossref_primary_10_1371_journal_pone_0274569 crossref_primary_10_7759_cureus_38373 crossref_primary_10_1016_j_ijmedinf_2022_104913 crossref_primary_10_1590_0103_1104202213518 crossref_primary_10_51483_IJPAMR_2_2_2022_1_9 crossref_primary_10_1016_j_ijmedinf_2025_105786 crossref_primary_10_1080_07391102_2023_2257333 crossref_primary_10_2196_54705 crossref_primary_10_1007_s11517_022_02519_x crossref_primary_10_7717_peerj_cs_2517 crossref_primary_10_1371_journal_pone_0287755 crossref_primary_10_35234_fumbd_1535830 crossref_primary_10_2196_27992 crossref_primary_10_3390_jcm13071837 crossref_primary_10_3390_v15071522 crossref_primary_10_1186_s12911_023_02237_w crossref_primary_10_1038_s41598_022_24356_6 crossref_primary_10_1016_j_epidem_2022_100599 crossref_primary_10_1016_j_chemolab_2024_105248 crossref_primary_10_1038_s41598_024_61380_0 crossref_primary_10_3390_bios13020204 crossref_primary_10_3390_data9010003 crossref_primary_10_1055_s_0041_1726491 crossref_primary_10_3390_sym14010016 crossref_primary_10_1007_s11517_022_02549_5 crossref_primary_10_1136_jim_2021_002278 crossref_primary_10_24171_j_phrp_2023_0287 crossref_primary_10_1007_s40846_023_00781_4 crossref_primary_10_1016_j_compbiomed_2023_106817 crossref_primary_10_3390_app11136119 crossref_primary_10_1016_j_susoc_2022_03_001 crossref_primary_10_1155_2022_6272480 crossref_primary_10_1016_j_acra_2022_12_045 crossref_primary_10_1016_j_aiopen_2025_01_003 crossref_primary_10_1016_j_patter_2021_100269 crossref_primary_10_1155_2022_7377502 crossref_primary_10_1186_s12859_023_05593_6 crossref_primary_10_3390_vaccines10030366 crossref_primary_10_3389_fdgth_2023_1260602 crossref_primary_10_1155_2023_8921220 crossref_primary_10_2196_32949 crossref_primary_10_1007_s11517_021_02479_8 crossref_primary_10_1038_s41467_024_55461_x crossref_primary_10_1136_bmjhci_2021_100385 crossref_primary_10_3390_children11020166 crossref_primary_10_1007_s11276_024_03764_8 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_1177_15501329221105159 crossref_primary_10_1007_s13721_022_00384_0 crossref_primary_10_1371_journal_pone_0278397 crossref_primary_10_1088_1742_6596_2071_1_012003 crossref_primary_10_1109_TNNLS_2021_3111745 crossref_primary_10_1016_j_neucom_2022_09_005 crossref_primary_10_1109_TCSS_2022_3221811 crossref_primary_10_1097_CIN_0000000000001100 crossref_primary_10_3390_jcm11164729 crossref_primary_10_1080_13678868_2024_2375934 crossref_primary_10_35191_medsoft_2021_1_33_11_13 |
Cites_doi | 10.4258/hir.2020.26.3.193 10.1007/s12098-020-03263-6 10.1016/j.ijantimicag.2020.106080 10.1016/j.ijid.2020.06.058 10.1177/109019818401100101 10.3390/v12070769 10.3390/healthcare8020181 10.1101/2020.05.27.117184 10.1016/S0140-6736(20)30845-X 10.1021/acs.analchem.0c01394 10.7717/peerj.9369 10.3390/ijerph17082788 10.1016/j.cmpb.2020.105581 10.9781/ijimai.2020.04.003 10.1016/j.psep.2020.05.029 10.2139/ssrn.3572889 10.1038/s41586-020-2223-y 10.1093/bioinformatics/btg005 10.1148/radiol.2020200642 10.1155/2020/6152041 10.1101/2020.05.16.088989 10.2196/20493 10.1021/acs.jpclett.0c01579 10.2196/19866 10.1007/s00477-020-01827-8 10.1109/access.2020.2993967 10.1016/j.chaos.2020.109864 10.1016/j.ijantimicag.2020.105955 10.1101/2020.06.08.20124990 10.1097/RTI.0000000000000532 10.7326/m20-1565 10.1016/j.puhe.2020.04.016 10.1007/s00330-020-06976-6 10.1101/2020.05.19.20103036 10.3390/su12062427 10.1371/journal.pone.0235187 10.1016/j.asoc.2020.106282 10.1016/j.compbiomed.2020.103805 10.1183/13993003.00775-2020 10.3390/v12060588 10.3390/ijerph17103730 10.1101/2020.05.09.20096560 10.1007/s40846-020-00529-4 10.1186/s12938-020-00809-9 10.1038/s41431-020-0637-5 10.1016/j.cell.2020.04.045 10.5152/dir.2015.15221 10.1101/2020.03.20.000141 10.32604/cmc.2020.010691 10.1016/j.chaos.2020.110059 10.3390/ijerph17103437 10.1109/TMI.2020.2994459 10.21037/atm.2020.03.132 10.1093/jamia/ocaa196 10.1016/j.chaos.2020.110017 10.1007/s00259-020-04929-1 10.7189/jogh.08.020303 10.1016/j.cell.2020.05.032 10.1016/j.imu.2020.100360 10.1016/S0140-6736(20)30746-7 10.2196/19569 10.3390/s20123543 10.2196/19276 10.1148/radiol.2020201874 10.1109/tcyb.2020.2990162 10.1038/s41591-020-0931-3 10.1101/2020.05.04.20090803 10.1136/bmj.m1328 10.1136/bmj.b2700 10.1186/s13059-017-1319-7 10.1101/2020.05.05.20083436 10.1007/s13246-020-00888-x 10.1155/2020/5714714 10.1109/RBME.2020.2987975 10.1016/j.jrid.2020.04.004 10.1186/s12967-020-02364-2 10.1016/j.ejrad.2020.108961 10.3390/jcm9061668 10.1016/j.diabres.2020.108294 10.21037/jtd.2020.02.64 10.3390/ijerph17062032 10.18502/ijph.v49is1.3675 10.1007/s00330-020-06934-2 10.1007/s00264-020-04653-3 10.1002/minf.202000028 10.1038/d41573-020-00016-0 10.1016/j.bmcl.2020.127377 10.1007/s10096-020-03901-z 10.1016/j.dsx.2020.05.035 10.2196/19862 10.1016/j.jacr.2004.09.013 10.1101/2020.03.25.008904 10.1101/2020.05.16.20103408 10.31478/202003b 10.1093/jamia/ocaa105 10.1101/2020.02.05.936013 10.1016/j.dsx.2020.06.068 10.9781/ijimai.2020.02.002 10.12688/wellcomeopenres.15819.3 10.21037/qims-20-531 10.1101/2020.04.19.20069948 10.2196/19421 10.1177/1535370220938315 10.1101/2020.04.28.065201 10.1016/j.chaos.2020.109853 10.1101/2020.06.15.20130344 10.1101/2020.05.10.20096073 10.1007/s00330-020-06956-w 10.21037/atm-20-3554 10.1017/dmp.2020.149 10.1016/j.chaos.2020.109917 10.1148/radiol.2020200847 10.1007/s00264-020-04609-7 10.1016/j.idm.2020.06.002 10.1148/radiol.2020201491 10.2196/18828 10.1097/rti.0000000000000512 10.1016/j.bj.2020.05.001 10.1016/S1473-3099(20)30120-1 10.1007/s10654-020-00649-w 10.1093/pcmedi/pbaa016 10.1016/j.compbiomed.2020.103792 10.1101/2020.05.04.20090944 10.1101/2020.03.03.972133 10.1016/j.lfs.2020.117883 10.1097/RTI.0000000000000544 10.1016/j.chaos.2020.110018 10.1016/j.xinn.2020.100027 10.1038/s41746-019-0122-0 10.1007/s13246-020-00865-4 10.1016/j.cnsns.2020.105303 10.3390/s20113089 10.1016/j.scitotenv.2020.138762 10.1101/2020.04.24.20078204 10.1080/07391102.2020.1767212 10.1148/radiol.2020200905 10.2196/19509 10.1073/pnas.2008176117 10.1101/2020.01.30.927889 10.1007/s10278-013-9622-7 10.1101/2020.05.20.20108159 10.1016/j.csbj.2019.12.006 10.1017/dmp.2020.115 10.1101/2020.03.13.20035238 10.1016/j.chaos.2020.109944 10.1183/13993003.01234-2020 10.1007/s12539-020-00376-6 10.1016/j.mehy.2020.109761 10.3390/ijerph17124204 10.1109/TMI.2020.2993291 10.1186/s41256-020-00145-4 10.1007/s11427-020-1717-9 10.1155/2020/2683286 10.1371/journal.pone.0232391 10.1007/s00779-020-01419-x 10.1186/s12967-020-02430-9 10.1101/2020.05.30.20118109 10.1016/j.dsx.2020.04.012 10.1101/2020.05.18.20105171 10.1109/access.2020.2994762 10.1016/j.jcv.2020.104502 10.1016/j.csbj.2020.03.025 10.1016/j.ejrad.2020.109041 10.1186/s40249-020-00649-8 10.1109/TMI.2020.2992546 10.1039/d0lc00373e 10.14744/nci.2020.90277 10.1101/2020.05.03.20089813 10.1016/j.chemolab.2020.104054 10.26355/eurrev_202003_20709 10.1016/j.compbiomed.2020.103795 10.1016/j.chaos.2020.110015 |
ContentType | Journal Article |
Copyright | Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. 2021 |
Copyright_xml | – notice: Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.2196/23811 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Healthcare Administration Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Health Management Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2291-9694 |
ExternalDocumentID | oai_doaj_org_article_43fa6cc338254708af901b7e00adc4c3 PMC7806275 33326405 10_2196_23811 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR003107 |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA GROUPED_DOAJ HMCUK HYE KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c457t-562c5825b4cafbebb6ba9b3a2dda56717f1e052afd7c1b3513bcc0a56c341bb93 |
IEDL.DBID | M48 |
ISSN | 2291-9694 |
IngestDate | Wed Aug 27 01:21:50 EDT 2025 Thu Aug 21 18:11:26 EDT 2025 Fri Jul 11 07:25:43 EDT 2025 Fri Jul 25 06:40:19 EDT 2025 Thu Jan 02 22:56:52 EST 2025 Tue Jul 01 04:31:19 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COVID-19 deep learning epidemiology SARS-CoV-2 coronavirus machine learning pandemic systematic review neural network artificial intelligence |
Language | English |
License | Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-562c5825b4cafbebb6ba9b3a2dda56717f1e052afd7c1b3513bcc0a56c341bb93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9550-6519 0000-0003-4451-9368 0000-0002-1460-9867 0000-0002-6314-5683 0000-0002-8978-1565 0000-0003-4942-1466 0000-0001-9752-4983 0000-0002-4761-5972 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/23811 |
PMID | 33326405 |
PQID | 2511974183 |
PQPubID | 4997117 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43fa6cc338254708af901b7e00adc4c3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7806275 proquest_miscellaneous_2470898103 proquest_journals_2511974183 pubmed_primary_33326405 crossref_citationtrail_10_2196_23811 crossref_primary_10_2196_23811 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210111 |
PublicationDateYYYYMMDD | 2021-01-11 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210111 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
PublicationTitle | JMIR medical informatics |
PublicationTitleAlternate | JMIR Med Inform |
PublicationYear | 2021 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref168 ref54 ref169 Zhao, K (ref156) 2017 ref170 ref177 ref178 ref51 ref175 ref50 ref176 ref173 ref174 ref171 ref172 ref46 ref45 ref48 Mahmud, I (ref7) 2020; 14 ref47 ref42 ref41 ref44 ref179 ref43 ref49 ref8 ref180 ref181 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref182 ref183 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref38 Xie, W (ref109) 2020 ref155 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 Devlin, J (ref163) 2019 ref166 ref167 ref164 ref165 ref162 ref160 ref161 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref127 ref11 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref131 ref94 ref132 ref130 ref91 ref90 Peng, Y (ref66) 2020 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 Liu, D (ref39) 2020 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 Benbrahim, H (ref95) 2020; 23 ref115 ref63 ref116 ref113 ref65 ref114 Chaganti, S (ref96) 2020 ref60 ref122 ref123 ref62 ref120 ref61 ref121 Singh, K (ref99) 2020; 23 |
References_xml | – ident: ref19 doi: 10.4258/hir.2020.26.3.193 – ident: ref3 doi: 10.1007/s12098-020-03263-6 – ident: ref149 doi: 10.1016/j.ijantimicag.2020.106080 – ident: ref47 doi: 10.1016/j.ijid.2020.06.058 – ident: ref162 doi: 10.1177/109019818401100101 – ident: ref2 doi: 10.3390/v12070769 – ident: ref43 doi: 10.3390/healthcare8020181 – ident: ref79 doi: 10.1101/2020.05.27.117184 – ident: ref10 doi: 10.1016/S0140-6736(20)30845-X – ident: ref85 doi: 10.1021/acs.analchem.0c01394 – ident: ref70 doi: 10.7717/peerj.9369 – ident: ref90 doi: 10.3390/ijerph17082788 – ident: ref117 doi: 10.1016/j.cmpb.2020.105581 – ident: ref129 doi: 10.9781/ijimai.2020.04.003 – ident: ref51 doi: 10.1016/j.psep.2020.05.029 – ident: ref132 doi: 10.2139/ssrn.3572889 – ident: ref153 doi: 10.1038/s41586-020-2223-y – year: 2020 ident: ref66 publication-title: arXiv. – ident: ref158 doi: 10.1093/bioinformatics/btg005 – ident: ref171 doi: 10.1148/radiol.2020200642 – ident: ref62 doi: 10.1155/2020/6152041 – ident: ref77 doi: 10.1101/2020.05.16.088989 – ident: ref18 doi: 10.2196/20493 – ident: ref72 doi: 10.1021/acs.jpclett.0c01579 – ident: ref15 doi: 10.2196/19866 – ident: ref54 doi: 10.1007/s00477-020-01827-8 – year: 2019 ident: ref163 publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) – ident: ref14 doi: 10.1109/access.2020.2993967 – ident: ref28 doi: 10.1016/j.chaos.2020.109864 – ident: ref170 doi: 10.1016/j.ijantimicag.2020.105955 – ident: ref58 doi: 10.1101/2020.06.08.20124990 – ident: ref112 doi: 10.1097/RTI.0000000000000532 – ident: ref168 doi: 10.7326/m20-1565 – ident: ref30 doi: 10.1016/j.puhe.2020.04.016 – ident: ref144 doi: 10.1007/s00330-020-06976-6 – ident: ref146 doi: 10.1101/2020.05.19.20103036 – ident: ref46 doi: 10.3390/su12062427 – ident: ref6 – ident: ref113 doi: 10.1371/journal.pone.0235187 – ident: ref33 doi: 10.1016/j.asoc.2020.106282 – ident: ref101 doi: 10.1016/j.compbiomed.2020.103805 – ident: ref145 doi: 10.1183/13993003.00775-2020 – ident: ref34 doi: 10.3390/v12060588 – ident: ref36 doi: 10.3390/ijerph17103730 – ident: ref118 doi: 10.1101/2020.05.09.20096560 – ident: ref92 doi: 10.1007/s40846-020-00529-4 – ident: ref180 doi: 10.1186/s12938-020-00809-9 – year: 2020 ident: ref39 publication-title: arXiv – ident: ref181 doi: 10.1038/s41431-020-0637-5 – ident: ref147 doi: 10.1016/j.cell.2020.04.045 – ident: ref173 doi: 10.5152/dir.2015.15221 – ident: ref81 doi: 10.1101/2020.03.20.000141 – volume: 23 start-page: 91 issue: 657 year: 2020 ident: ref99 publication-title: Romanian Journal of Information Science and Technology – ident: ref138 doi: 10.32604/cmc.2020.010691 – ident: ref12 doi: 10.1016/j.chaos.2020.110059 – ident: ref53 doi: 10.3390/ijerph17103437 – ident: ref128 doi: 10.1109/TMI.2020.2994459 – ident: ref111 doi: 10.21037/atm.2020.03.132 – ident: ref160 doi: 10.1093/jamia/ocaa196 – ident: ref23 doi: 10.1016/j.chaos.2020.110017 – ident: ref100 doi: 10.1007/s00259-020-04929-1 – ident: ref11 doi: 10.7189/jogh.08.020303 – ident: ref142 doi: 10.1016/j.cell.2020.05.032 – ident: ref126 doi: 10.1016/j.imu.2020.100360 – ident: ref8 doi: 10.1016/S0140-6736(20)30746-7 – ident: ref119 doi: 10.2196/19569 – ident: ref67 doi: 10.3390/s20123543 – ident: ref68 doi: 10.2196/19276 – ident: ref122 doi: 10.1148/radiol.2020201874 – ident: ref60 doi: 10.1109/tcyb.2020.2990162 – ident: ref121 doi: 10.1038/s41591-020-0931-3 – ident: ref127 doi: 10.1101/2020.05.04.20090803 – ident: ref13 doi: 10.1136/bmj.m1328 – ident: ref22 doi: 10.1136/bmj.b2700 – ident: ref157 doi: 10.1186/s13059-017-1319-7 – ident: ref35 doi: 10.1101/2020.05.05.20083436 – ident: ref97 doi: 10.1007/s13246-020-00888-x – ident: ref25 doi: 10.1155/2020/5714714 – ident: ref21 doi: 10.1109/RBME.2020.2987975 – ident: ref134 doi: 10.1016/j.jrid.2020.04.004 – ident: ref159 doi: 10.1186/s12967-020-02364-2 – ident: ref169 doi: 10.1016/j.ejrad.2020.108961 – ident: ref135 doi: 10.3390/jcm9061668 – ident: ref4 doi: 10.1016/j.diabres.2020.108294 – volume: 14 start-page: 1 issue: 3 year: 2020 ident: ref7 publication-title: Int J Health Sci – ident: ref59 doi: 10.21037/jtd.2020.02.64 – ident: ref63 doi: 10.3390/ijerph17062032 – ident: ref44 doi: 10.18502/ijph.v49is1.3675 – ident: ref172 doi: 10.1007/s00330-020-06934-2 – ident: ref57 doi: 10.1007/s00264-020-04653-3 – ident: ref87 doi: 10.1002/minf.202000028 – ident: ref154 doi: 10.1038/d41573-020-00016-0 – ident: ref155 doi: 10.1016/j.bmcl.2020.127377 – ident: ref130 doi: 10.1007/s10096-020-03901-z – ident: ref161 doi: 10.1016/j.dsx.2020.05.035 – ident: ref31 doi: 10.2196/19862 – ident: ref174 doi: 10.1016/j.jacr.2004.09.013 – ident: ref74 doi: 10.1101/2020.03.25.008904 – ident: ref107 doi: 10.1101/2020.05.16.20103408 – ident: ref164 – ident: ref179 doi: 10.31478/202003b – ident: ref65 doi: 10.1093/jamia/ocaa105 – ident: ref80 doi: 10.1101/2020.02.05.936013 – ident: ref150 doi: 10.1016/j.dsx.2020.06.068 – year: 2020 ident: ref109 publication-title: ArXiv – ident: ref32 doi: 10.9781/ijimai.2020.02.002 – ident: ref26 doi: 10.12688/wellcomeopenres.15819.3 – ident: ref136 doi: 10.21037/qims-20-531 – ident: ref38 doi: 10.1101/2020.04.19.20069948 – ident: ref52 doi: 10.2196/19421 – ident: ref175 doi: 10.1177/1535370220938315 – ident: ref88 doi: 10.1101/2020.04.28.065201 – ident: ref50 doi: 10.1016/j.chaos.2020.109853 – ident: ref176 doi: 10.1101/2020.06.15.20130344 – ident: ref110 doi: 10.1101/2020.05.10.20096073 – ident: ref125 doi: 10.1007/s00330-020-06956-w – ident: ref143 doi: 10.21037/atm-20-3554 – ident: ref9 doi: 10.1017/dmp.2020.149 – ident: ref42 doi: 10.1016/j.chaos.2020.109917 – ident: ref177 doi: 10.1148/radiol.2020200847 – ident: ref105 doi: 10.1007/s00264-020-04609-7 – ident: ref167 doi: 10.1016/j.idm.2020.06.002 – ident: ref94 doi: 10.1148/radiol.2020201491 – ident: ref24 doi: 10.2196/18828 – ident: ref114 doi: 10.1097/rti.0000000000000512 – ident: ref75 doi: 10.1016/j.bj.2020.05.001 – ident: ref1 doi: 10.1016/S1473-3099(20)30120-1 – ident: ref29 doi: 10.1007/s10654-020-00649-w – ident: ref166 doi: 10.1093/pcmedi/pbaa016 – ident: ref102 doi: 10.1016/j.compbiomed.2020.103792 – ident: ref133 doi: 10.1101/2020.05.04.20090944 – ident: ref86 doi: 10.1101/2020.03.03.972133 – ident: ref151 doi: 10.1016/j.lfs.2020.117883 – ident: ref17 doi: 10.1097/RTI.0000000000000544 – ident: ref82 doi: 10.1016/j.chaos.2020.110018 – ident: ref178 doi: 10.1016/j.xinn.2020.100027 – ident: ref182 doi: 10.1038/s41746-019-0122-0 – ident: ref91 doi: 10.1007/s13246-020-00865-4 – ident: ref165 doi: 10.1016/j.cnsns.2020.105303 – ident: ref27 doi: 10.3390/s20113089 – ident: ref56 doi: 10.1016/j.scitotenv.2020.138762 – ident: ref49 doi: 10.1101/2020.04.24.20078204 – ident: ref98 doi: 10.1080/07391102.2020.1767212 – ident: ref120 doi: 10.1148/radiol.2020200905 – ident: ref41 doi: 10.2196/19509 – ident: ref73 doi: 10.1073/pnas.2008176117 – year: 2020 ident: ref96 publication-title: ArXiv – ident: ref71 doi: 10.1101/2020.01.30.927889 – ident: ref183 doi: 10.1007/s10278-013-9622-7 – ident: ref139 doi: 10.1101/2020.05.20.20108159 – ident: ref152 doi: 10.1016/j.csbj.2019.12.006 – ident: ref55 doi: 10.1017/dmp.2020.115 – ident: ref48 doi: 10.1101/2020.03.13.20035238 – volume: 23 start-page: 000537095200010 year: 2020 ident: ref95 publication-title: Romanian Journal of Information Science and Technology – ident: ref124 doi: 10.1016/j.chaos.2020.109944 – ident: ref137 doi: 10.1183/13993003.01234-2020 – ident: ref89 doi: 10.1007/s12539-020-00376-6 – ident: ref104 doi: 10.1016/j.mehy.2020.109761 – ident: ref45 doi: 10.3390/ijerph17124204 – ident: ref123 doi: 10.1109/TMI.2020.2993291 – ident: ref40 doi: 10.1186/s41256-020-00145-4 – ident: ref61 doi: 10.1007/s11427-020-1717-9 – ident: ref69 doi: 10.1155/2020/2683286 – ident: ref84 doi: 10.1371/journal.pone.0232391 – ident: ref64 doi: 10.1007/s00779-020-01419-x – ident: ref76 doi: 10.1186/s12967-020-02430-9 – ident: ref141 doi: 10.1101/2020.05.30.20118109 – year: 2017 ident: ref156 publication-title: arXiv. – ident: ref20 doi: 10.1016/j.dsx.2020.04.012 – ident: ref78 doi: 10.1101/2020.05.18.20105171 – ident: ref106 doi: 10.1109/access.2020.2994762 – ident: ref115 doi: 10.1016/j.jcv.2020.104502 – ident: ref16 doi: 10.1016/j.csbj.2020.03.025 – ident: ref108 doi: 10.1016/j.ejrad.2020.109041 – ident: ref83 doi: 10.1186/s40249-020-00649-8 – ident: ref116 doi: 10.1109/TMI.2020.2992546 – ident: ref140 doi: 10.1039/d0lc00373e – ident: ref5 doi: 10.14744/nci.2020.90277 – ident: ref148 doi: 10.1101/2020.05.03.20089813 – ident: ref103 doi: 10.1016/j.chemolab.2020.104054 – ident: ref131 doi: 10.26355/eurrev_202003_20709 – ident: ref93 doi: 10.1016/j.compbiomed.2020.103795 – ident: ref37 doi: 10.1016/j.chaos.2020.110015 |
SSID | ssj0001416667 |
Score | 2.5029156 |
SecondaryResourceType | review_article |
Snippet | SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed... Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that... BackgroundSARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e23811 |
SubjectTerms | Artificial intelligence Coronaviruses COVID-19 Epidemiology Machine learning Review Systematic review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5KH0JhjK5dN69dUSGvJpYlWXbftmylLaSDLSl9M_rlLRDssST_f0-yY5Iw6EtffYeR706-73znTwBDp3OdWk8-yNPKFyhFnJuKx0ojkrNWO0H9v8OTh-x2xu-fxNPWUV9-JqylB24NN-KsUpkxWElhKSOTXFWYwbR0SaKs4SbwfGLO2yqmwtcV7tthcgBv_KwzRtnIpya6k3wCR___gOX-fORWwrk5hrcdUiRf2hW-gwNXn8Bg0vXCT2H6s1k40lRkEuYhHemoUn-T6YaXdUlWDZkq370lCPTI-Mfj3beYFmSMW3u-vCa_eh5n0jYJ3sPs5vt0fBt3ZyTEhgu5ihG-GIGm0dyoSjutM60KzVRqrRIZ1moVdYlIVWWloZoJyrQxCYoMpi-tC3YGh3VTu49AMpeJQpkitSnjTKlCKsEd1nOUucxyGcFwY7zSdATi_hyLRYmFhLdxGWwcwWWv9rdlzNhX-Oot3ws9wXW4gG4vO7eXL7k9gouN38pu1y3LNDRFOb6lIrjqxbhffBNE1a5Zo46_W5HTBHU-tG7uV8IYgllEsBHInQDYWequpJ7_CZzcMg98z59e49nO4Sj1kzMJjSm9gMPVv7X7jNBnpS9DlD8DxwQBzw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0QhFE6ne0lhX6GprN7mYTX0SvLVU4Bb3KvYX9SlsoSe1d_39n9vbSXhFfM0tYZmcyv9mZ_AZgP9jalp7IB2XZUYLS5LXrZG4sIjnvbVCc_h2efq9OTuW3uZqnC7dFaqtcfxPjh9oPju7ID8pY8JJogZ-u_uQ0NYqqq2mExkN4RNRlZNV6rm_vWCQVxfQ2PKGOZ7S1AwpQfCMERab-f8HL-12Sd8LO8Q48TXiRfV4d8DN4EPrnsD1NFfEXMPs5XAY2dGwauyIDS4SpZ2y2ZmddsOXAZoZquAzhHpv8-P31MOcNm6CDXyw-sl8jmzNblQpewunx0WxykqdJCbmTSi9zBDFOYa5npTOdDdZW1jRWmNJ7oyrM2DoeClWazmvHrVBcWOcKFDkMYtY24hVs9UMf3gCrQqUa45rSl0IKYxptlAyY1XERKi91Bvtr5bUu0YjTNIvLFtMJ0nEbdZzB3rjsasWbcX_BF9L8KCSa6_hguD5rk9e0UnSmcg7TaMxjdVGbDuGL1aEojHfSiQx21-fWJt9btLeWksGHUYxeQ6UQ04fhBtfQ25qaF7jm9eqYx50IgZAWcWwGesMANra6KekvziMzt64j6_Pb_2_rHTwuqTOm4Dnnu7C1vL4J7xHaLO1etN-_YeP5SA priority: 102 providerName: ProQuest |
Title | Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33326405 https://www.proquest.com/docview/2511974183 https://www.proquest.com/docview/2470898103 https://pubmed.ncbi.nlm.nih.gov/PMC7806275 https://doaj.org/article/43fa6cc338254708af901b7e00adc4c3 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9swED62FsqglL123lqjQb96s15sWYMx1rSlG6QbXTL6zUiy3BWC3SUpdP9-J8UxdSnsqyUb-3TyPY_u9AjgwJnCsMqLDwpWe4KiksLWItEGkVxVGZdRv3d4fJafTsW3i-xONWFnwMWD1M6fJzWdz97f_vn7GSf8J1_GjA70wUcdJECbGIykP8Rg3CH8sMwifF7Mb5pmTNFE5UpswfbgzkFECsL9D6HN-0WTd6LQyVPY6eAj-bIa72fwyDXPYWvcJchfwOS8nTnS1mQciiQd6fRTL8lkLda6IMuWTLRP6RJEf2T0_dfXo4QqMsL5frX4SH724s5klTl4CdOT48noNOkOTkisyOQyQUxjM6R-RlhdG2dMbrQyXLOq0lmOBK6mLs2YritpqeEZ5cbaFJssxjRjFH8FG03buNdAcpdnSlvFKsYF11pJnQmHJI9yl1dCRnCwNl5pO1Vxf7jFrER24W1cBhtHEPfdrlcyGvc7HHrL941e9TpcaOeXZTeJSsFrnVuLrBpprUwLXSOaMdKlqa6ssDyCvfW4lWtPKlnIlAr8dUXwrm_GSeQzI7px7Q328U9TBU2xz-5qmPs34RwRLsLaCOTAAQavOmxprn4HoW5ZBBHoN__7-LfwhPlSmZQmlO7BxnJ-4_YR6yxNDI_lhYxh8_D47Md5HFYM4uDh_wDiEP9c |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB5KhSqI-G601hXqx9DsS7KJIKJXy53tVdCr3Le4u9nUQklq74r4p_yNzuStXhG_9Wt2Ccvs7Mw8O7PPAGx7m1pREPmgEiUBlCxMXalCYzGSKwrrY05vh6eHyfhIfZzH8zX43b-FobLK3iY2hrqoHd2R74gm4aVQA9-e_QipaxRlV_sWGq1a7PtfPxGyLd5MdnF_Xwmx92E2GoddV4HQqVgvQ3T4LkZcZJUzpfXWJtZkVhpRFCZOEN2U3EexMGWhHbcy5tI6F-GQQ4NvLZEvocm_gY43IrCn5_ryTkdREk5vwG2qsEbd3iGHyFdcXtMZ4F_h7NWqzL_c3N5duNPFp-xdq1D3YM1X92Fj2mXgH8Dsc33qWV2yaVOF6VlH0HrMZj0b7IItazYzlDNmGF6y0aevk92QZ2yEBuVk8Zp9GdijWZuaeAhH1yLDR7Be1ZV_AizxSZwZl4lCSCWNybSJlUcUyaVPCqUD2O6Fl7uOtpy6Z5zmCF9Ixnkj4wC2hmlnLU_H1QnvSfLDINFqNx_q8-O8O6W5kqVJnEPYjrhZR6kpMVyy2keRKZxyMoDNft_y7qwv8kvNDODlMIynlFIvpvL1Bc6hv2Upj3DO43abh5VIiSE0xs0B6BUFWFnq6kh18r1hAtdpwzL99P_LegE3x7PpQX4wOdx_BrcEVeVEPOR8E9aX5xf-OYZVS7vV6DKDb9d9eP4Al6838g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7KFQ5BxHejta5QP4bLviSbCCL2rkfPemepV-m3uG-phZLU3hXxr_nrnM3L1Svit37NLmGZnZmdZ2f2GYAdp1PNrCcfFKzwACULU1OIUGmM5KzVLqb-7fB0luwfi48n8ckG_O7ewviyys4n1o7aVsbfkQ9YnfASqIGDoi2LOByN31_8CH0HKZ9p7dppNCpy4H79RPi2eDcZ4V6_YWy8Nx_uh22HgdCIWC5DPPxNjBhJC6MK7bROtMo0V8xaFSeIdArqopipwkpDNY8p18ZEOGTQ-WvtiZjQ_W9Kj4p6sLm7Nzs8ur7hET4lJ_tw19dbo6YP_PFI1w7Auk_Av4LbmzWafx164_twr41WyYdGvR7AhisfQn_a5uMfwfyoOnekKsi0rsl0pKVrPSXzjht2QZYVmSufQSYYbJLh56-TUUgzMkT3crZ4S76suKRJk6h4DMe3IsUn0Cur0j0DkrgkzpTJmGVccKUyqWLhEFNS7hIrZAA7nfBy05KY-14a5zmCGS_jvJZxANuraRcNa8fNCbte8qtBT7Jdf6guT_PWZnPBC5UYgyAeUbSMUlVg8KSliyJljTA8gK1u3_LW8hf5tZ4G8Ho1jDbrEzGqdNUVzvF_y1Ia4ZynzTavVsI5BtQYRQcg1xRgbanrI-XZ95oXXKY15_Tz_y_rFfTRcPJPk9nBC7jDfIlORENKt6C3vLxyLzHGWurtVpkJfLtt-_kDN-k9jQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Machine+Learning+Techniques+to+Tackle+the+COVID-19+Crisis%3A+Systematic+Review&rft.jtitle=JMIR+medical+informatics&rft.au=Syeda%2C+Hafsa+Bareen&rft.au=Syed%2C+Mahanazuddin&rft.au=Sexton%2C+Kevin+Wayne&rft.au=Syed%2C+Shorabuddin&rft.date=2021-01-11&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=9&rft.issue=1&rft.spage=e23811&rft_id=info:doi/10.2196%2F23811&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_23811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon |