Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review

SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 9; no. 1; p. e23811
Main Authors Syeda, Hafsa Bareen, Syed, Mahanazuddin, Sexton, Kevin Wayne, Syed, Shorabuddin, Begum, Salma, Syed, Farhanuddin, Prior, Fred, Yu Jr, Feliciano
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 11.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
AbstractList SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic.BACKGROUNDSARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic.The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.OBJECTIVEThe objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI.METHODSA systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI.The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme.RESULTSThe search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme.In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.CONCLUSIONSIn this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
BackgroundSARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)–based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. ObjectiveThe objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. MethodsA systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. ResultsThe search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients’ radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. ConclusionsIn this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)–based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. Objective: The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. Methods: A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. Results: The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients’ radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. Conclusions: In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
Author Syed, Farhanuddin
Begum, Salma
Syed, Mahanazuddin
Syeda, Hafsa Bareen
Sexton, Kevin Wayne
Prior, Fred
Yu Jr, Feliciano
Syed, Shorabuddin
AuthorAffiliation 7 Department of Radiology University of Arkansas for Medical Sciences Little Rock, AR United States
6 College of Medicine Shadan Institute of Medical Sciences Hyderabad India
4 Department of Health Policy and Management University of Arkansas for Medical Sciences Little Rock, AR United States
2 Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock, AR United States
1 Department of Neurology University of Arkansas for Medical Sciences Little Rock, AR United States
3 Department of Surgery University of Arkansas for Medical Sciences Little Rock, AR United States
5 Department of Information Technology University of Arkansas for Medical Sciences Little Rock, AR United States
AuthorAffiliation_xml – name: 6 College of Medicine Shadan Institute of Medical Sciences Hyderabad India
– name: 2 Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock, AR United States
– name: 3 Department of Surgery University of Arkansas for Medical Sciences Little Rock, AR United States
– name: 1 Department of Neurology University of Arkansas for Medical Sciences Little Rock, AR United States
– name: 4 Department of Health Policy and Management University of Arkansas for Medical Sciences Little Rock, AR United States
– name: 7 Department of Radiology University of Arkansas for Medical Sciences Little Rock, AR United States
– name: 5 Department of Information Technology University of Arkansas for Medical Sciences Little Rock, AR United States
Author_xml – sequence: 1
  givenname: Hafsa Bareen
  orcidid: 0000-0001-9752-4983
  surname: Syeda
  fullname: Syeda, Hafsa Bareen
– sequence: 2
  givenname: Mahanazuddin
  orcidid: 0000-0002-8978-1565
  surname: Syed
  fullname: Syed, Mahanazuddin
– sequence: 3
  givenname: Kevin Wayne
  orcidid: 0000-0002-1460-9867
  surname: Sexton
  fullname: Sexton, Kevin Wayne
– sequence: 4
  givenname: Shorabuddin
  orcidid: 0000-0002-4761-5972
  surname: Syed
  fullname: Syed, Shorabuddin
– sequence: 5
  givenname: Salma
  orcidid: 0000-0003-4942-1466
  surname: Begum
  fullname: Begum, Salma
– sequence: 6
  givenname: Farhanuddin
  orcidid: 0000-0002-9550-6519
  surname: Syed
  fullname: Syed, Farhanuddin
– sequence: 7
  givenname: Fred
  orcidid: 0000-0002-6314-5683
  surname: Prior
  fullname: Prior, Fred
– sequence: 8
  givenname: Feliciano
  orcidid: 0000-0003-4451-9368
  surname: Yu Jr
  fullname: Yu Jr, Feliciano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33326405$$D View this record in MEDLINE/PubMed
BookMark eNpdku1rUzEUxoNM3Kz9FyQggiDVvOfGDwOpb4XKYFa_hiQ3t029TWZyO9l_b-66ybpPCef8eJ6Hc85zcBJT9ABMMXpHsBLvCW0wfgLOCFF4poRiJw_-p2BayhYhhBkWQshn4JRSSgRD_AysLlPvYergd-M2IXq49CbHENdw5d0mhj97X-CQ4Mq43xUcNh7OL34tPs2wgvMcSigf4I-bMvidGYKDl_46-L8vwNPO9MVP794J-Pnl82r-bba8-LqYf1zOHONymHFBHG8It8yZznprhTXKUkPa1nAhseywR5yYrpUOW8oxtc6h2nKUYWsVnYDFQbdNZquvctiZfKOTCfq2kPJam1xj9V4z2hnhHKXVj0nUmE4hbKVHyLSO1foEnB-0rvZ251vn45BNfyR63Ilho9fpWssGCSJ5FXhzJ5DTOLVB70Jxvu9N9GlfNBltVYPR6PXqEbpN-xzrqDThGCvJcDNSLx8m-h_lfnkVeHsAXE6lZN9pF4a6hjQGDL3GSI_XoW-vo9KvH9H3gsfcP2IftZw
CitedBy_id crossref_primary_10_3390_electronics10141626
crossref_primary_10_1155_2022_1644910
crossref_primary_10_18502_dmj_v7i3_17732
crossref_primary_10_3390_life12091456
crossref_primary_10_1016_j_jksuci_2021_07_010
crossref_primary_10_3390_jcm11072054
crossref_primary_10_1016_j_cois_2022_100969
crossref_primary_10_1016_j_matpr_2021_11_388
crossref_primary_10_3390_ijerph19138058
crossref_primary_10_3390_v15112184
crossref_primary_10_1103_PhysRevE_109_014212
crossref_primary_10_1371_journal_pone_0292888
crossref_primary_10_1007_s44230_023_00042_2
crossref_primary_10_1136_bmj_n304
crossref_primary_10_3390_s21165486
crossref_primary_10_3389_fcvm_2023_1308668
crossref_primary_10_1016_j_asoc_2023_110511
crossref_primary_10_3389_fpubh_2021_770946
crossref_primary_10_3390_math11041051
crossref_primary_10_36306_konjes_877805
crossref_primary_10_1109_ACCESS_2025_3538518
crossref_primary_10_1007_s42770_023_00923_5
crossref_primary_10_52831_kjhs_1117894
crossref_primary_10_3390_ai4040044
crossref_primary_10_1109_MCI_2021_3129960
crossref_primary_10_32604_cmc_2022_029385
crossref_primary_10_17352_2455_5282_000191
crossref_primary_10_1093_gigascience_giab076
crossref_primary_10_3390_jcdd10020039
crossref_primary_10_1093_jamia_ocac083
crossref_primary_10_1007_s00500_021_05810_5
crossref_primary_10_1371_journal_pone_0274569
crossref_primary_10_7759_cureus_38373
crossref_primary_10_1016_j_ijmedinf_2022_104913
crossref_primary_10_1590_0103_1104202213518
crossref_primary_10_51483_IJPAMR_2_2_2022_1_9
crossref_primary_10_1016_j_ijmedinf_2025_105786
crossref_primary_10_1080_07391102_2023_2257333
crossref_primary_10_2196_54705
crossref_primary_10_1007_s11517_022_02519_x
crossref_primary_10_7717_peerj_cs_2517
crossref_primary_10_1371_journal_pone_0287755
crossref_primary_10_35234_fumbd_1535830
crossref_primary_10_2196_27992
crossref_primary_10_3390_jcm13071837
crossref_primary_10_3390_v15071522
crossref_primary_10_1186_s12911_023_02237_w
crossref_primary_10_1038_s41598_022_24356_6
crossref_primary_10_1016_j_epidem_2022_100599
crossref_primary_10_1016_j_chemolab_2024_105248
crossref_primary_10_1038_s41598_024_61380_0
crossref_primary_10_3390_bios13020204
crossref_primary_10_3390_data9010003
crossref_primary_10_1055_s_0041_1726491
crossref_primary_10_3390_sym14010016
crossref_primary_10_1007_s11517_022_02549_5
crossref_primary_10_1136_jim_2021_002278
crossref_primary_10_24171_j_phrp_2023_0287
crossref_primary_10_1007_s40846_023_00781_4
crossref_primary_10_1016_j_compbiomed_2023_106817
crossref_primary_10_3390_app11136119
crossref_primary_10_1016_j_susoc_2022_03_001
crossref_primary_10_1155_2022_6272480
crossref_primary_10_1016_j_acra_2022_12_045
crossref_primary_10_1016_j_aiopen_2025_01_003
crossref_primary_10_1016_j_patter_2021_100269
crossref_primary_10_1155_2022_7377502
crossref_primary_10_1186_s12859_023_05593_6
crossref_primary_10_3390_vaccines10030366
crossref_primary_10_3389_fdgth_2023_1260602
crossref_primary_10_1155_2023_8921220
crossref_primary_10_2196_32949
crossref_primary_10_1007_s11517_021_02479_8
crossref_primary_10_1038_s41467_024_55461_x
crossref_primary_10_1136_bmjhci_2021_100385
crossref_primary_10_3390_children11020166
crossref_primary_10_1007_s11276_024_03764_8
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1177_15501329221105159
crossref_primary_10_1007_s13721_022_00384_0
crossref_primary_10_1371_journal_pone_0278397
crossref_primary_10_1088_1742_6596_2071_1_012003
crossref_primary_10_1109_TNNLS_2021_3111745
crossref_primary_10_1016_j_neucom_2022_09_005
crossref_primary_10_1109_TCSS_2022_3221811
crossref_primary_10_1097_CIN_0000000000001100
crossref_primary_10_3390_jcm11164729
crossref_primary_10_1080_13678868_2024_2375934
crossref_primary_10_35191_medsoft_2021_1_33_11_13
Cites_doi 10.4258/hir.2020.26.3.193
10.1007/s12098-020-03263-6
10.1016/j.ijantimicag.2020.106080
10.1016/j.ijid.2020.06.058
10.1177/109019818401100101
10.3390/v12070769
10.3390/healthcare8020181
10.1101/2020.05.27.117184
10.1016/S0140-6736(20)30845-X
10.1021/acs.analchem.0c01394
10.7717/peerj.9369
10.3390/ijerph17082788
10.1016/j.cmpb.2020.105581
10.9781/ijimai.2020.04.003
10.1016/j.psep.2020.05.029
10.2139/ssrn.3572889
10.1038/s41586-020-2223-y
10.1093/bioinformatics/btg005
10.1148/radiol.2020200642
10.1155/2020/6152041
10.1101/2020.05.16.088989
10.2196/20493
10.1021/acs.jpclett.0c01579
10.2196/19866
10.1007/s00477-020-01827-8
10.1109/access.2020.2993967
10.1016/j.chaos.2020.109864
10.1016/j.ijantimicag.2020.105955
10.1101/2020.06.08.20124990
10.1097/RTI.0000000000000532
10.7326/m20-1565
10.1016/j.puhe.2020.04.016
10.1007/s00330-020-06976-6
10.1101/2020.05.19.20103036
10.3390/su12062427
10.1371/journal.pone.0235187
10.1016/j.asoc.2020.106282
10.1016/j.compbiomed.2020.103805
10.1183/13993003.00775-2020
10.3390/v12060588
10.3390/ijerph17103730
10.1101/2020.05.09.20096560
10.1007/s40846-020-00529-4
10.1186/s12938-020-00809-9
10.1038/s41431-020-0637-5
10.1016/j.cell.2020.04.045
10.5152/dir.2015.15221
10.1101/2020.03.20.000141
10.32604/cmc.2020.010691
10.1016/j.chaos.2020.110059
10.3390/ijerph17103437
10.1109/TMI.2020.2994459
10.21037/atm.2020.03.132
10.1093/jamia/ocaa196
10.1016/j.chaos.2020.110017
10.1007/s00259-020-04929-1
10.7189/jogh.08.020303
10.1016/j.cell.2020.05.032
10.1016/j.imu.2020.100360
10.1016/S0140-6736(20)30746-7
10.2196/19569
10.3390/s20123543
10.2196/19276
10.1148/radiol.2020201874
10.1109/tcyb.2020.2990162
10.1038/s41591-020-0931-3
10.1101/2020.05.04.20090803
10.1136/bmj.m1328
10.1136/bmj.b2700
10.1186/s13059-017-1319-7
10.1101/2020.05.05.20083436
10.1007/s13246-020-00888-x
10.1155/2020/5714714
10.1109/RBME.2020.2987975
10.1016/j.jrid.2020.04.004
10.1186/s12967-020-02364-2
10.1016/j.ejrad.2020.108961
10.3390/jcm9061668
10.1016/j.diabres.2020.108294
10.21037/jtd.2020.02.64
10.3390/ijerph17062032
10.18502/ijph.v49is1.3675
10.1007/s00330-020-06934-2
10.1007/s00264-020-04653-3
10.1002/minf.202000028
10.1038/d41573-020-00016-0
10.1016/j.bmcl.2020.127377
10.1007/s10096-020-03901-z
10.1016/j.dsx.2020.05.035
10.2196/19862
10.1016/j.jacr.2004.09.013
10.1101/2020.03.25.008904
10.1101/2020.05.16.20103408
10.31478/202003b
10.1093/jamia/ocaa105
10.1101/2020.02.05.936013
10.1016/j.dsx.2020.06.068
10.9781/ijimai.2020.02.002
10.12688/wellcomeopenres.15819.3
10.21037/qims-20-531
10.1101/2020.04.19.20069948
10.2196/19421
10.1177/1535370220938315
10.1101/2020.04.28.065201
10.1016/j.chaos.2020.109853
10.1101/2020.06.15.20130344
10.1101/2020.05.10.20096073
10.1007/s00330-020-06956-w
10.21037/atm-20-3554
10.1017/dmp.2020.149
10.1016/j.chaos.2020.109917
10.1148/radiol.2020200847
10.1007/s00264-020-04609-7
10.1016/j.idm.2020.06.002
10.1148/radiol.2020201491
10.2196/18828
10.1097/rti.0000000000000512
10.1016/j.bj.2020.05.001
10.1016/S1473-3099(20)30120-1
10.1007/s10654-020-00649-w
10.1093/pcmedi/pbaa016
10.1016/j.compbiomed.2020.103792
10.1101/2020.05.04.20090944
10.1101/2020.03.03.972133
10.1016/j.lfs.2020.117883
10.1097/RTI.0000000000000544
10.1016/j.chaos.2020.110018
10.1016/j.xinn.2020.100027
10.1038/s41746-019-0122-0
10.1007/s13246-020-00865-4
10.1016/j.cnsns.2020.105303
10.3390/s20113089
10.1016/j.scitotenv.2020.138762
10.1101/2020.04.24.20078204
10.1080/07391102.2020.1767212
10.1148/radiol.2020200905
10.2196/19509
10.1073/pnas.2008176117
10.1101/2020.01.30.927889
10.1007/s10278-013-9622-7
10.1101/2020.05.20.20108159
10.1016/j.csbj.2019.12.006
10.1017/dmp.2020.115
10.1101/2020.03.13.20035238
10.1016/j.chaos.2020.109944
10.1183/13993003.01234-2020
10.1007/s12539-020-00376-6
10.1016/j.mehy.2020.109761
10.3390/ijerph17124204
10.1109/TMI.2020.2993291
10.1186/s41256-020-00145-4
10.1007/s11427-020-1717-9
10.1155/2020/2683286
10.1371/journal.pone.0232391
10.1007/s00779-020-01419-x
10.1186/s12967-020-02430-9
10.1101/2020.05.30.20118109
10.1016/j.dsx.2020.04.012
10.1101/2020.05.18.20105171
10.1109/access.2020.2994762
10.1016/j.jcv.2020.104502
10.1016/j.csbj.2020.03.025
10.1016/j.ejrad.2020.109041
10.1186/s40249-020-00649-8
10.1109/TMI.2020.2992546
10.1039/d0lc00373e
10.14744/nci.2020.90277
10.1101/2020.05.03.20089813
10.1016/j.chemolab.2020.104054
10.26355/eurrev_202003_20709
10.1016/j.compbiomed.2020.103795
10.1016/j.chaos.2020.110015
ContentType Journal Article
Copyright Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021.
2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. 2021
Copyright_xml – notice: Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021.
– notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.2196/23811
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_43fa6cc338254708af901b7e00adc4c3
PMC7806275
33326405
10_2196_23811
Genre Journal Article
Review
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR003107
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c457t-562c5825b4cafbebb6ba9b3a2dda56717f1e052afd7c1b3513bcc0a56c341bb93
IEDL.DBID M48
ISSN 2291-9694
IngestDate Wed Aug 27 01:21:50 EDT 2025
Thu Aug 21 18:11:26 EDT 2025
Fri Jul 11 07:25:43 EDT 2025
Fri Jul 25 06:40:19 EDT 2025
Thu Jan 02 22:56:52 EST 2025
Tue Jul 01 04:31:19 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
deep learning
epidemiology
SARS-CoV-2
coronavirus
machine learning
pandemic
systematic review
neural network
artificial intelligence
Language English
License Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.01.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-562c5825b4cafbebb6ba9b3a2dda56717f1e052afd7c1b3513bcc0a56c341bb93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9550-6519
0000-0003-4451-9368
0000-0002-1460-9867
0000-0002-6314-5683
0000-0002-8978-1565
0000-0003-4942-1466
0000-0001-9752-4983
0000-0002-4761-5972
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/23811
PMID 33326405
PQID 2511974183
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_43fa6cc338254708af901b7e00adc4c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7806275
proquest_miscellaneous_2470898103
proquest_journals_2511974183
pubmed_primary_33326405
crossref_citationtrail_10_2196_23811
crossref_primary_10_2196_23811
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210111
PublicationDateYYYYMMDD 2021-01-11
PublicationDate_xml – month: 1
  year: 2021
  text: 20210111
  day: 11
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2021
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref168
ref54
ref169
Zhao, K (ref156) 2017
ref170
ref177
ref178
ref51
ref175
ref50
ref176
ref173
ref174
ref171
ref172
ref46
ref45
ref48
Mahmud, I (ref7) 2020; 14
ref47
ref42
ref41
ref44
ref179
ref43
ref49
ref8
ref180
ref181
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref182
ref183
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref38
Xie, W (ref109) 2020
ref155
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
Devlin, J (ref163) 2019
ref166
ref167
ref164
ref165
ref162
ref160
ref161
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref127
ref11
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref131
ref94
ref132
ref130
ref91
ref90
Peng, Y (ref66) 2020
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
Liu, D (ref39) 2020
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
Benbrahim, H (ref95) 2020; 23
ref115
ref63
ref116
ref113
ref65
ref114
Chaganti, S (ref96) 2020
ref60
ref122
ref123
ref62
ref120
ref61
ref121
Singh, K (ref99) 2020; 23
References_xml – ident: ref19
  doi: 10.4258/hir.2020.26.3.193
– ident: ref3
  doi: 10.1007/s12098-020-03263-6
– ident: ref149
  doi: 10.1016/j.ijantimicag.2020.106080
– ident: ref47
  doi: 10.1016/j.ijid.2020.06.058
– ident: ref162
  doi: 10.1177/109019818401100101
– ident: ref2
  doi: 10.3390/v12070769
– ident: ref43
  doi: 10.3390/healthcare8020181
– ident: ref79
  doi: 10.1101/2020.05.27.117184
– ident: ref10
  doi: 10.1016/S0140-6736(20)30845-X
– ident: ref85
  doi: 10.1021/acs.analchem.0c01394
– ident: ref70
  doi: 10.7717/peerj.9369
– ident: ref90
  doi: 10.3390/ijerph17082788
– ident: ref117
  doi: 10.1016/j.cmpb.2020.105581
– ident: ref129
  doi: 10.9781/ijimai.2020.04.003
– ident: ref51
  doi: 10.1016/j.psep.2020.05.029
– ident: ref132
  doi: 10.2139/ssrn.3572889
– ident: ref153
  doi: 10.1038/s41586-020-2223-y
– year: 2020
  ident: ref66
  publication-title: arXiv.
– ident: ref158
  doi: 10.1093/bioinformatics/btg005
– ident: ref171
  doi: 10.1148/radiol.2020200642
– ident: ref62
  doi: 10.1155/2020/6152041
– ident: ref77
  doi: 10.1101/2020.05.16.088989
– ident: ref18
  doi: 10.2196/20493
– ident: ref72
  doi: 10.1021/acs.jpclett.0c01579
– ident: ref15
  doi: 10.2196/19866
– ident: ref54
  doi: 10.1007/s00477-020-01827-8
– year: 2019
  ident: ref163
  publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
– ident: ref14
  doi: 10.1109/access.2020.2993967
– ident: ref28
  doi: 10.1016/j.chaos.2020.109864
– ident: ref170
  doi: 10.1016/j.ijantimicag.2020.105955
– ident: ref58
  doi: 10.1101/2020.06.08.20124990
– ident: ref112
  doi: 10.1097/RTI.0000000000000532
– ident: ref168
  doi: 10.7326/m20-1565
– ident: ref30
  doi: 10.1016/j.puhe.2020.04.016
– ident: ref144
  doi: 10.1007/s00330-020-06976-6
– ident: ref146
  doi: 10.1101/2020.05.19.20103036
– ident: ref46
  doi: 10.3390/su12062427
– ident: ref6
– ident: ref113
  doi: 10.1371/journal.pone.0235187
– ident: ref33
  doi: 10.1016/j.asoc.2020.106282
– ident: ref101
  doi: 10.1016/j.compbiomed.2020.103805
– ident: ref145
  doi: 10.1183/13993003.00775-2020
– ident: ref34
  doi: 10.3390/v12060588
– ident: ref36
  doi: 10.3390/ijerph17103730
– ident: ref118
  doi: 10.1101/2020.05.09.20096560
– ident: ref92
  doi: 10.1007/s40846-020-00529-4
– ident: ref180
  doi: 10.1186/s12938-020-00809-9
– year: 2020
  ident: ref39
  publication-title: arXiv
– ident: ref181
  doi: 10.1038/s41431-020-0637-5
– ident: ref147
  doi: 10.1016/j.cell.2020.04.045
– ident: ref173
  doi: 10.5152/dir.2015.15221
– ident: ref81
  doi: 10.1101/2020.03.20.000141
– volume: 23
  start-page: 91
  issue: 657
  year: 2020
  ident: ref99
  publication-title: Romanian Journal of Information Science and Technology
– ident: ref138
  doi: 10.32604/cmc.2020.010691
– ident: ref12
  doi: 10.1016/j.chaos.2020.110059
– ident: ref53
  doi: 10.3390/ijerph17103437
– ident: ref128
  doi: 10.1109/TMI.2020.2994459
– ident: ref111
  doi: 10.21037/atm.2020.03.132
– ident: ref160
  doi: 10.1093/jamia/ocaa196
– ident: ref23
  doi: 10.1016/j.chaos.2020.110017
– ident: ref100
  doi: 10.1007/s00259-020-04929-1
– ident: ref11
  doi: 10.7189/jogh.08.020303
– ident: ref142
  doi: 10.1016/j.cell.2020.05.032
– ident: ref126
  doi: 10.1016/j.imu.2020.100360
– ident: ref8
  doi: 10.1016/S0140-6736(20)30746-7
– ident: ref119
  doi: 10.2196/19569
– ident: ref67
  doi: 10.3390/s20123543
– ident: ref68
  doi: 10.2196/19276
– ident: ref122
  doi: 10.1148/radiol.2020201874
– ident: ref60
  doi: 10.1109/tcyb.2020.2990162
– ident: ref121
  doi: 10.1038/s41591-020-0931-3
– ident: ref127
  doi: 10.1101/2020.05.04.20090803
– ident: ref13
  doi: 10.1136/bmj.m1328
– ident: ref22
  doi: 10.1136/bmj.b2700
– ident: ref157
  doi: 10.1186/s13059-017-1319-7
– ident: ref35
  doi: 10.1101/2020.05.05.20083436
– ident: ref97
  doi: 10.1007/s13246-020-00888-x
– ident: ref25
  doi: 10.1155/2020/5714714
– ident: ref21
  doi: 10.1109/RBME.2020.2987975
– ident: ref134
  doi: 10.1016/j.jrid.2020.04.004
– ident: ref159
  doi: 10.1186/s12967-020-02364-2
– ident: ref169
  doi: 10.1016/j.ejrad.2020.108961
– ident: ref135
  doi: 10.3390/jcm9061668
– ident: ref4
  doi: 10.1016/j.diabres.2020.108294
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  ident: ref7
  publication-title: Int J Health Sci
– ident: ref59
  doi: 10.21037/jtd.2020.02.64
– ident: ref63
  doi: 10.3390/ijerph17062032
– ident: ref44
  doi: 10.18502/ijph.v49is1.3675
– ident: ref172
  doi: 10.1007/s00330-020-06934-2
– ident: ref57
  doi: 10.1007/s00264-020-04653-3
– ident: ref87
  doi: 10.1002/minf.202000028
– ident: ref154
  doi: 10.1038/d41573-020-00016-0
– ident: ref155
  doi: 10.1016/j.bmcl.2020.127377
– ident: ref130
  doi: 10.1007/s10096-020-03901-z
– ident: ref161
  doi: 10.1016/j.dsx.2020.05.035
– ident: ref31
  doi: 10.2196/19862
– ident: ref174
  doi: 10.1016/j.jacr.2004.09.013
– ident: ref74
  doi: 10.1101/2020.03.25.008904
– ident: ref107
  doi: 10.1101/2020.05.16.20103408
– ident: ref164
– ident: ref179
  doi: 10.31478/202003b
– ident: ref65
  doi: 10.1093/jamia/ocaa105
– ident: ref80
  doi: 10.1101/2020.02.05.936013
– ident: ref150
  doi: 10.1016/j.dsx.2020.06.068
– year: 2020
  ident: ref109
  publication-title: ArXiv
– ident: ref32
  doi: 10.9781/ijimai.2020.02.002
– ident: ref26
  doi: 10.12688/wellcomeopenres.15819.3
– ident: ref136
  doi: 10.21037/qims-20-531
– ident: ref38
  doi: 10.1101/2020.04.19.20069948
– ident: ref52
  doi: 10.2196/19421
– ident: ref175
  doi: 10.1177/1535370220938315
– ident: ref88
  doi: 10.1101/2020.04.28.065201
– ident: ref50
  doi: 10.1016/j.chaos.2020.109853
– ident: ref176
  doi: 10.1101/2020.06.15.20130344
– ident: ref110
  doi: 10.1101/2020.05.10.20096073
– ident: ref125
  doi: 10.1007/s00330-020-06956-w
– ident: ref143
  doi: 10.21037/atm-20-3554
– ident: ref9
  doi: 10.1017/dmp.2020.149
– ident: ref42
  doi: 10.1016/j.chaos.2020.109917
– ident: ref177
  doi: 10.1148/radiol.2020200847
– ident: ref105
  doi: 10.1007/s00264-020-04609-7
– ident: ref167
  doi: 10.1016/j.idm.2020.06.002
– ident: ref94
  doi: 10.1148/radiol.2020201491
– ident: ref24
  doi: 10.2196/18828
– ident: ref114
  doi: 10.1097/rti.0000000000000512
– ident: ref75
  doi: 10.1016/j.bj.2020.05.001
– ident: ref1
  doi: 10.1016/S1473-3099(20)30120-1
– ident: ref29
  doi: 10.1007/s10654-020-00649-w
– ident: ref166
  doi: 10.1093/pcmedi/pbaa016
– ident: ref102
  doi: 10.1016/j.compbiomed.2020.103792
– ident: ref133
  doi: 10.1101/2020.05.04.20090944
– ident: ref86
  doi: 10.1101/2020.03.03.972133
– ident: ref151
  doi: 10.1016/j.lfs.2020.117883
– ident: ref17
  doi: 10.1097/RTI.0000000000000544
– ident: ref82
  doi: 10.1016/j.chaos.2020.110018
– ident: ref178
  doi: 10.1016/j.xinn.2020.100027
– ident: ref182
  doi: 10.1038/s41746-019-0122-0
– ident: ref91
  doi: 10.1007/s13246-020-00865-4
– ident: ref165
  doi: 10.1016/j.cnsns.2020.105303
– ident: ref27
  doi: 10.3390/s20113089
– ident: ref56
  doi: 10.1016/j.scitotenv.2020.138762
– ident: ref49
  doi: 10.1101/2020.04.24.20078204
– ident: ref98
  doi: 10.1080/07391102.2020.1767212
– ident: ref120
  doi: 10.1148/radiol.2020200905
– ident: ref41
  doi: 10.2196/19509
– ident: ref73
  doi: 10.1073/pnas.2008176117
– year: 2020
  ident: ref96
  publication-title: ArXiv
– ident: ref71
  doi: 10.1101/2020.01.30.927889
– ident: ref183
  doi: 10.1007/s10278-013-9622-7
– ident: ref139
  doi: 10.1101/2020.05.20.20108159
– ident: ref152
  doi: 10.1016/j.csbj.2019.12.006
– ident: ref55
  doi: 10.1017/dmp.2020.115
– ident: ref48
  doi: 10.1101/2020.03.13.20035238
– volume: 23
  start-page: 000537095200010
  year: 2020
  ident: ref95
  publication-title: Romanian Journal of Information Science and Technology
– ident: ref124
  doi: 10.1016/j.chaos.2020.109944
– ident: ref137
  doi: 10.1183/13993003.01234-2020
– ident: ref89
  doi: 10.1007/s12539-020-00376-6
– ident: ref104
  doi: 10.1016/j.mehy.2020.109761
– ident: ref45
  doi: 10.3390/ijerph17124204
– ident: ref123
  doi: 10.1109/TMI.2020.2993291
– ident: ref40
  doi: 10.1186/s41256-020-00145-4
– ident: ref61
  doi: 10.1007/s11427-020-1717-9
– ident: ref69
  doi: 10.1155/2020/2683286
– ident: ref84
  doi: 10.1371/journal.pone.0232391
– ident: ref64
  doi: 10.1007/s00779-020-01419-x
– ident: ref76
  doi: 10.1186/s12967-020-02430-9
– ident: ref141
  doi: 10.1101/2020.05.30.20118109
– year: 2017
  ident: ref156
  publication-title: arXiv.
– ident: ref20
  doi: 10.1016/j.dsx.2020.04.012
– ident: ref78
  doi: 10.1101/2020.05.18.20105171
– ident: ref106
  doi: 10.1109/access.2020.2994762
– ident: ref115
  doi: 10.1016/j.jcv.2020.104502
– ident: ref16
  doi: 10.1016/j.csbj.2020.03.025
– ident: ref108
  doi: 10.1016/j.ejrad.2020.109041
– ident: ref83
  doi: 10.1186/s40249-020-00649-8
– ident: ref116
  doi: 10.1109/TMI.2020.2992546
– ident: ref140
  doi: 10.1039/d0lc00373e
– ident: ref5
  doi: 10.14744/nci.2020.90277
– ident: ref148
  doi: 10.1101/2020.05.03.20089813
– ident: ref103
  doi: 10.1016/j.chemolab.2020.104054
– ident: ref131
  doi: 10.26355/eurrev_202003_20709
– ident: ref93
  doi: 10.1016/j.compbiomed.2020.103795
– ident: ref37
  doi: 10.1016/j.chaos.2020.110015
SSID ssj0001416667
Score 2.5029156
SecondaryResourceType review_article
Snippet SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed...
Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that...
BackgroundSARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e23811
SubjectTerms Artificial intelligence
Coronaviruses
COVID-19
Epidemiology
Machine learning
Review
Systematic review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5KH0JhjK5dN69dUSGvJpYlWXbftmylLaSDLSl9M_rlLRDssST_f0-yY5Iw6EtffYeR706-73znTwBDp3OdWk8-yNPKFyhFnJuKx0ojkrNWO0H9v8OTh-x2xu-fxNPWUV9-JqylB24NN-KsUpkxWElhKSOTXFWYwbR0SaKs4SbwfGLO2yqmwtcV7tthcgBv_KwzRtnIpya6k3wCR___gOX-fORWwrk5hrcdUiRf2hW-gwNXn8Bg0vXCT2H6s1k40lRkEuYhHemoUn-T6YaXdUlWDZkq370lCPTI-Mfj3beYFmSMW3u-vCa_eh5n0jYJ3sPs5vt0fBt3ZyTEhgu5ihG-GIGm0dyoSjutM60KzVRqrRIZ1moVdYlIVWWloZoJyrQxCYoMpi-tC3YGh3VTu49AMpeJQpkitSnjTKlCKsEd1nOUucxyGcFwY7zSdATi_hyLRYmFhLdxGWwcwWWv9rdlzNhX-Oot3ws9wXW4gG4vO7eXL7k9gouN38pu1y3LNDRFOb6lIrjqxbhffBNE1a5Zo46_W5HTBHU-tG7uV8IYgllEsBHInQDYWequpJ7_CZzcMg98z59e49nO4Sj1kzMJjSm9gMPVv7X7jNBnpS9DlD8DxwQBzw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0QhFE6ne0lhX6GprN7mYTX0SvLVU4Bb3KvYX9SlsoSe1d_39n9vbSXhFfM0tYZmcyv9mZ_AZgP9jalp7IB2XZUYLS5LXrZG4sIjnvbVCc_h2efq9OTuW3uZqnC7dFaqtcfxPjh9oPju7ID8pY8JJogZ-u_uQ0NYqqq2mExkN4RNRlZNV6rm_vWCQVxfQ2PKGOZ7S1AwpQfCMERab-f8HL-12Sd8LO8Q48TXiRfV4d8DN4EPrnsD1NFfEXMPs5XAY2dGwauyIDS4SpZ2y2ZmddsOXAZoZquAzhHpv8-P31MOcNm6CDXyw-sl8jmzNblQpewunx0WxykqdJCbmTSi9zBDFOYa5npTOdDdZW1jRWmNJ7oyrM2DoeClWazmvHrVBcWOcKFDkMYtY24hVs9UMf3gCrQqUa45rSl0IKYxptlAyY1XERKi91Bvtr5bUu0YjTNIvLFtMJ0nEbdZzB3rjsasWbcX_BF9L8KCSa6_hguD5rk9e0UnSmcg7TaMxjdVGbDuGL1aEojHfSiQx21-fWJt9btLeWksGHUYxeQ6UQ04fhBtfQ25qaF7jm9eqYx50IgZAWcWwGesMANra6KekvziMzt64j6_Pb_2_rHTwuqTOm4Dnnu7C1vL4J7xHaLO1etN-_YeP5SA
  priority: 102
  providerName: ProQuest
Title Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/33326405
https://www.proquest.com/docview/2511974183
https://www.proquest.com/docview/2470898103
https://pubmed.ncbi.nlm.nih.gov/PMC7806275
https://doaj.org/article/43fa6cc338254708af901b7e00adc4c3
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9swED62FsqglL123lqjQb96s15sWYMx1rSlG6QbXTL6zUiy3BWC3SUpdP9-J8UxdSnsqyUb-3TyPY_u9AjgwJnCsMqLDwpWe4KiksLWItEGkVxVGZdRv3d4fJafTsW3i-xONWFnwMWD1M6fJzWdz97f_vn7GSf8J1_GjA70wUcdJECbGIykP8Rg3CH8sMwifF7Mb5pmTNFE5UpswfbgzkFECsL9D6HN-0WTd6LQyVPY6eAj-bIa72fwyDXPYWvcJchfwOS8nTnS1mQciiQd6fRTL8lkLda6IMuWTLRP6RJEf2T0_dfXo4QqMsL5frX4SH724s5klTl4CdOT48noNOkOTkisyOQyQUxjM6R-RlhdG2dMbrQyXLOq0lmOBK6mLs2YritpqeEZ5cbaFJssxjRjFH8FG03buNdAcpdnSlvFKsYF11pJnQmHJI9yl1dCRnCwNl5pO1Vxf7jFrER24W1cBhtHEPfdrlcyGvc7HHrL941e9TpcaOeXZTeJSsFrnVuLrBpprUwLXSOaMdKlqa6ssDyCvfW4lWtPKlnIlAr8dUXwrm_GSeQzI7px7Q328U9TBU2xz-5qmPs34RwRLsLaCOTAAQavOmxprn4HoW5ZBBHoN__7-LfwhPlSmZQmlO7BxnJ-4_YR6yxNDI_lhYxh8_D47Md5HFYM4uDh_wDiEP9c
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB5KhSqI-G601hXqx9DsS7KJIKJXy53tVdCr3Le4u9nUQklq74r4p_yNzuStXhG_9Wt2Ccvs7Mw8O7PPAGx7m1pREPmgEiUBlCxMXalCYzGSKwrrY05vh6eHyfhIfZzH8zX43b-FobLK3iY2hrqoHd2R74gm4aVQA9-e_QipaxRlV_sWGq1a7PtfPxGyLd5MdnF_Xwmx92E2GoddV4HQqVgvQ3T4LkZcZJUzpfXWJtZkVhpRFCZOEN2U3EexMGWhHbcy5tI6F-GQQ4NvLZEvocm_gY43IrCn5_ryTkdREk5vwG2qsEbd3iGHyFdcXtMZ4F_h7NWqzL_c3N5duNPFp-xdq1D3YM1X92Fj2mXgH8Dsc33qWV2yaVOF6VlH0HrMZj0b7IItazYzlDNmGF6y0aevk92QZ2yEBuVk8Zp9GdijWZuaeAhH1yLDR7Be1ZV_AizxSZwZl4lCSCWNybSJlUcUyaVPCqUD2O6Fl7uOtpy6Z5zmCF9Ixnkj4wC2hmlnLU_H1QnvSfLDINFqNx_q8-O8O6W5kqVJnEPYjrhZR6kpMVyy2keRKZxyMoDNft_y7qwv8kvNDODlMIynlFIvpvL1Bc6hv2Upj3DO43abh5VIiSE0xs0B6BUFWFnq6kh18r1hAtdpwzL99P_LegE3x7PpQX4wOdx_BrcEVeVEPOR8E9aX5xf-OYZVS7vV6DKDb9d9eP4Al6838g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7KFQ5BxHejta5QP4bLviSbCCL2rkfPemepV-m3uG-phZLU3hXxr_nrnM3L1Svit37NLmGZnZmdZ2f2GYAdp1PNrCcfFKzwACULU1OIUGmM5KzVLqb-7fB0luwfi48n8ckG_O7ewviyys4n1o7aVsbfkQ9YnfASqIGDoi2LOByN31_8CH0HKZ9p7dppNCpy4H79RPi2eDcZ4V6_YWy8Nx_uh22HgdCIWC5DPPxNjBhJC6MK7bROtMo0V8xaFSeIdArqopipwkpDNY8p18ZEOGTQ-WvtiZjQ_W9Kj4p6sLm7Nzs8ur7hET4lJ_tw19dbo6YP_PFI1w7Auk_Av4LbmzWafx164_twr41WyYdGvR7AhisfQn_a5uMfwfyoOnekKsi0rsl0pKVrPSXzjht2QZYVmSufQSYYbJLh56-TUUgzMkT3crZ4S76suKRJk6h4DMe3IsUn0Cur0j0DkrgkzpTJmGVccKUyqWLhEFNS7hIrZAA7nfBy05KY-14a5zmCGS_jvJZxANuraRcNa8fNCbte8qtBT7Jdf6guT_PWZnPBC5UYgyAeUbSMUlVg8KSliyJljTA8gK1u3_LW8hf5tZ4G8Ho1jDbrEzGqdNUVzvF_y1Ia4ZynzTavVsI5BtQYRQcg1xRgbanrI-XZ95oXXKY15_Tz_y_rFfTRcPJPk9nBC7jDfIlORENKt6C3vLxyLzHGWurtVpkJfLtt-_kDN-k9jQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Machine+Learning+Techniques+to+Tackle+the+COVID-19+Crisis%3A+Systematic+Review&rft.jtitle=JMIR+medical+informatics&rft.au=Syeda%2C+Hafsa+Bareen&rft.au=Syed%2C+Mahanazuddin&rft.au=Sexton%2C+Kevin+Wayne&rft.au=Syed%2C+Shorabuddin&rft.date=2021-01-11&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=9&rft.issue=1&rft.spage=e23811&rft_id=info:doi/10.2196%2F23811&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_23811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon