Nitrous oxide emissions associated with nitrogen fixation by grain legumes

Nitrous oxide (N 2O) emissions and biological nitrogen (N 2) fixation by grain legumes are two major processes of N transformation in agroecosystems. However, the relationship between these two processes is not well understood. The objective of this study was to quantify N 2O emissions associated wi...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 41; no. 11; pp. 2283 - 2291
Main Authors Zhong, Zhaozhan, Lemke, Reynald L., Nelson, Louise M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.11.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrous oxide (N 2O) emissions and biological nitrogen (N 2) fixation by grain legumes are two major processes of N transformation in agroecosystems. However, the relationship between these two processes is not well understood. The objective of this study was to quantify N 2O emissions associated with N 2 fixation by grain legumes under controlled conditions. The denitrifying capability of two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, was tested in pure culture in the presence of nitrate and in symbiosis with lentil ( Lens esculenta Moench) and pea ( Pisum sativum L.), respectively, in sterile Leonard jars. Lentil and pea, either inoculated or N-fertilized, were grown in soil boxes under controlled conditions. Profile N 2O concentration and surface N 2O emissions were measured from soil–crop systems, and were compared with that of a cereal – spring wheat ( Triticum aestivum L. ac. Barrie). Results indicated that: 1) neither R. leguminosarum strain, 99A1 or RGP2 was capable of denitrification in pure culture, nor in symbiosis with lentil and pea in sterile Leonard jars, suggesting that introducing these Rhizobium into soils through rhizobial inoculation onto lentil and pea will not increase denitrification or N 2O emissions; 2) soil-emitted N 2O from well-nodulated lentil and pea crops grown under controlled conditions was not significantly different than that from the check treatments, indicating that biological N 2 fixation by lentil and pea was not a direct source of N 2O emissions.
AbstractList Nitrous oxide (N sub(2)O) emissions and biological nitrogen (N sub(2)) fixation by grain legumes are two major processes of N transformation in agroecosystems. However, the relationship between these two processes is not well understood. The objective of this study was to quantify N sub(2)O emissions associated with N sub(2) fixation by grain legumes under controlled conditions. The denitrifying capability of two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, was tested in pure culture in the presence of nitrate and in symbiosis with lentil (Lens esculenta Moench) and pea (Pisum sativum L.), respectively, in sterile Leonard jars. Lentil and pea, either inoculated or N-fertilized, were grown in soil boxes under controlled conditions. Profile N sub(2)O concentration and surface N sub(2)O emissions were measured from soil-crop systems, and were compared with that of a cereal - spring wheat (Triticum aestivum L. ac. Barrie). Results indicated that: 1) neither R. leguminosarum strain, 99A1 or RGP2 was capable of denitrification in pure culture, nor in symbiosis with lentil and pea in sterile Leonard jars, suggesting that introducing these Rhizobium into soils through rhizobial inoculation onto lentil and pea will not increase denitrification or N sub(2)O emissions; 2) soil-emitted N sub(2)O from well-nodulated lentil and pea crops grown under controlled conditions was not significantly different than that from the check treatments, indicating that biological N sub(2) fixation by lentil and pea was not a direct source of N sub(2)O emissions.
Nitrous oxide (N 2O) emissions and biological nitrogen (N 2) fixation by grain legumes are two major processes of N transformation in agroecosystems. However, the relationship between these two processes is not well understood. The objective of this study was to quantify N 2O emissions associated with N 2 fixation by grain legumes under controlled conditions. The denitrifying capability of two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, was tested in pure culture in the presence of nitrate and in symbiosis with lentil ( Lens esculenta Moench) and pea ( Pisum sativum L.), respectively, in sterile Leonard jars. Lentil and pea, either inoculated or N-fertilized, were grown in soil boxes under controlled conditions. Profile N 2O concentration and surface N 2O emissions were measured from soil–crop systems, and were compared with that of a cereal – spring wheat ( Triticum aestivum L. ac. Barrie). Results indicated that: 1) neither R. leguminosarum strain, 99A1 or RGP2 was capable of denitrification in pure culture, nor in symbiosis with lentil and pea in sterile Leonard jars, suggesting that introducing these Rhizobium into soils through rhizobial inoculation onto lentil and pea will not increase denitrification or N 2O emissions; 2) soil-emitted N 2O from well-nodulated lentil and pea crops grown under controlled conditions was not significantly different than that from the check treatments, indicating that biological N 2 fixation by lentil and pea was not a direct source of N 2O emissions.
Nitrous oxide (N sub(2O) emissions and biological nitrogen (N) sub(2)) fixation by grain legumes are two major processes of N transformation in agroecosystems. However, the relationship between these two processes is not well understood. The objective of this study was to quantify N sub(2O emissions associated with N) sub(2) fixation by grain legumes under controlled conditions. The denitrifying capability of two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, was tested in pure culture in the presence of nitrate and in symbiosis with lentil (Lens esculenta Moench) and pea (Pisum sativum L.), respectively, in sterile Leonard jars. Lentil and pea, either inoculated or N-fertilized, were grown in soil boxes under controlled conditions. Profile N sub(2O concentration and surface N) sub(2)O emissions were measured from soil-crop systems, and were compared with that of a cereal - spring wheat (Triticum aestivum L. ac. Barrie). Results indicated that: 1) neither R. leguminosarum strain, 99A1 or RGP2 was capable of denitrification in pure culture, nor in symbiosis with lentil and pea in sterile Leonard jars, suggesting that introducing these Rhizobium into soils through rhizobial inoculation onto lentil and pea will not increase denitrification or N sub(2O emissions; 2) soil-emitted N) sub(2)O from well-nodulated lentil and pea crops grown under controlled conditions was not significantly different than that from the check treatments, indicating that biological N sub(2 fixation by lentil and pea was not a direct source of N) sub(2)O emissions.
Nitrous oxide (N2O) emissions and biological nitrogen (N2) fixation by grain legumes are two major processes of N transformation in agroecosystems. However, the relationship between these two processes is not well understood. The objective of this study was to quantify N2O emissions associated with N2 fixation by grain legumes under controlled conditions. The denitrifying capability of two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, was tested in pure culture in the presence of nitrate and in symbiosis with lentil (Lens esculenta Moench) and pea (Pisum sativum L.), respectively, in sterile Leonard jars. Lentil and pea, either inoculated or N-fertilized, were grown in soil boxes under controlled conditions. Profile N2O concentration and surface N2O emissions were measured from soil–crop systems, and were compared with that of a cereal – spring wheat (Triticum aestivum L. ac. Barrie). Results indicated that: 1) neither R. leguminosarum strain, 99A1 or RGP2 was capable of denitrification in pure culture, nor in symbiosis with lentil and pea in sterile Leonard jars, suggesting that introducing these Rhizobium into soils through rhizobial inoculation onto lentil and pea will not increase denitrification or N2O emissions; 2) soil-emitted N2O from well-nodulated lentil and pea crops grown under controlled conditions was not significantly different than that from the check treatments, indicating that biological N2 fixation by lentil and pea was not a direct source of N2O emissions.
Author Zhong, Zhaozhan
Nelson, Louise M.
Lemke, Reynald L.
Author_xml – sequence: 1
  givenname: Zhaozhan
  surname: Zhong
  fullname: Zhong, Zhaozhan
  organization: Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
– sequence: 2
  givenname: Reynald L.
  surname: Lemke
  fullname: Lemke, Reynald L.
  organization: Saskatoon Research Centre, Agriculture and Agri-Food Canada, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
– sequence: 3
  givenname: Louise M.
  surname: Nelson
  fullname: Nelson, Louise M.
  email: louise.nelson@ubc.ca
  organization: Biology and Physical Geography, University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22058632$$DView record in Pascal Francis
BookMark eNqFkU9v1DAUxC1UJLaFj4DIBXpK-mwntiMOCFX8qyo4QM_WW-dl8SobF9tL22-Pt7tcOLCnufzGbzxzyk7mMBNjLzk0HLi6WDcp-GnpQyMA-gZMU-QJW3Cj-1q2wpywBYA0NWiun7HTlNYAIDouF-zqq88xbFMV7v1AFW18Sj7MqcKUgvOYaajufP5ZzTtuRXM1-nvMBamWD9Uqop-riVbbDaXn7OmIU6IXBz1jNx8__Lj8XF9_-_Tl8v117dpO57pTIIaWlBYtR0G9c-0AQAYGrQGN4n07jnLUKJWUxAc56A6pFYiES9Akz9j5_t3bGH5tKWVbQjuaJpyp_MQaI0GWJlQh3_yXbFWrFXB9FBRccKU0FPD1AcTkcBojzs4nexv9BuODFQI6o6Qo3Ns952JIKdJonc-PteVS2WQ52N10dm0P09nddBaMLVLc3T_uvweO-V7tfSMGi6tYkt18F8BlsfRSPuZ_tyeoDPTbU7TJeZodDT6Sy3YI_siNP84zwdc
CODEN SBIOAH
CitedBy_id crossref_primary_10_1016_j_jenvman_2013_06_026
crossref_primary_10_1016_j_scitotenv_2023_166292
crossref_primary_10_5194_bg_10_1787_2013
crossref_primary_10_1016_j_scienta_2019_108902
crossref_primary_10_1016_j_scitotenv_2019_03_142
crossref_primary_10_3390_su14094907
crossref_primary_10_1016_j_rhisph_2020_100202
crossref_primary_10_1016_j_scitotenv_2024_171364
crossref_primary_10_1016_j_agee_2023_108645
crossref_primary_10_1007_s10705_015_9670_0
crossref_primary_10_1016_j_agsy_2024_104151
crossref_primary_10_15212_ijafr_2023_0116
crossref_primary_10_1016_j_envpol_2022_120272
crossref_primary_10_1016_j_jenvman_2023_119274
crossref_primary_10_1016_j_pedobi_2021_150744
crossref_primary_10_1016_j_still_2017_12_016
crossref_primary_10_1016_j_agee_2011_02_017
crossref_primary_10_1016_j_scienta_2014_12_012
crossref_primary_10_1016_j_agee_2015_01_017
crossref_primary_10_4081_ija_2016_728
crossref_primary_10_3390_agriculture13122174
crossref_primary_10_1016_j_agee_2018_08_003
crossref_primary_10_1002_jeq2_20168
crossref_primary_10_5194_bg_16_207_2019
crossref_primary_10_1016_j_agee_2011_11_001
crossref_primary_10_1111_gcb_15863
crossref_primary_10_1016_j_eja_2022_126684
crossref_primary_10_2134_jeq2016_01_0036
crossref_primary_10_1016_j_agee_2016_03_028
crossref_primary_10_1021_ef901432g
crossref_primary_10_3389_fenvs_2022_914851
crossref_primary_10_3390_plants11223011
crossref_primary_10_1007_s13593_011_0056_7
crossref_primary_10_1155_2014_685168
crossref_primary_10_36961_si16953
crossref_primary_10_1007_s11104_019_04187_7
crossref_primary_10_21926_aeer_2302029
crossref_primary_10_1007_s00374_011_0575_z
crossref_primary_10_1111_jam_14233
crossref_primary_10_1016_S1001_0742_12_60005_9
Cites_doi 10.1016/j.soilbio.2005.05.005
10.1111/j.1399-3054.1987.tb04335.x
10.1016/S0269-7491(98)80010-9
10.1111/j.1574-6941.1991.tb01736.x
10.2134/agronj2006.0313s
10.1264/jsme2.20.208
10.1016/j.soilbio.2004.02.009
10.1016/S0378-4290(01)00132-0
10.1016/S0176-1617(11)82024-9
10.1099/00221287-77-1-137
10.2136/sssaj1994.03615995005800010016x
10.1093/jxb/34.5.641
10.1046/j.1365-2389.2003.00531.x
10.1007/s10482-005-9046-6
10.1073/pnas.96.22.12275
10.1007/BF00011003
10.1007/BF00276477
10.1128/AEM.72.4.2526-2532.2006
10.1099/00221287-111-2-445
10.5194/acpd-7-11191-2007
10.1007/BF00010761
10.1007/s10705-005-0357-9
10.1104/pp.87.2.296
10.1111/j.0031-9317.2004.0211.x
10.1128/AEM.49.3.517-521.1985
10.1016/0038-0717(73)90093-X
10.1042/BST0330141
10.1023/A:1004777115628
10.1007/BF00394873
10.1016/j.soilbio.2005.03.007
10.1016/0038-0717(84)90047-6
10.1016/0038-0717(85)90082-3
10.1111/j.1399-3054.1992.tb04701.x
10.1016/j.soilbio.2004.08.027
10.1128/AEM.57.11.3255-3263.1991
10.1016/0038-0717(94)90199-6
10.1007/BF00951463
10.1007/BF00009490
10.1139/w01-047
10.1111/j.1574-6941.1998.tb00460.x
10.1007/s11274-008-9828-x
10.1093/jxb/37.10.1581
10.1111/j.1475-2743.2000.tb00179.x
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7QL
7SN
C1K
7S9
L.6
7UA
F1W
H95
L.G
DOI 10.1016/j.soilbio.2009.08.009
DatabaseName AGRIS
CrossRef
Pascal-Francis
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Ecology Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
DatabaseTitleList Ecology Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 2291
ExternalDocumentID 22058632
10_1016_j_soilbio_2009_08_009
US201301693370
S0038071709003009
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QL
7SN
C1K
7S9
L.6
7UA
F1W
H95
L.G
ID FETCH-LOGICAL-c457t-5602d4e67241a2e9cc4d00e80d770a86194ff3f7a3633e1d3d75ae42aaeab07e3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Tue Aug 05 11:23:30 EDT 2025
Mon Jul 21 11:21:47 EDT 2025
Thu Jul 10 19:09:00 EDT 2025
Mon Jul 21 09:11:53 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 03:19:41 EDT 2025
Wed Dec 27 19:05:24 EST 2023
Fri Feb 23 02:27:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Denitrification
N 2O emissions
Rhizobium
Grain legumes
Biological nitrogen fixation
Gas emission
O emissions
Symbiont
N
Grain legume
Biological fixation
Nitrogen fixation
Bacteria
Soil science
Rhizobiaceae
Nitrogen protoxide
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-5602d4e67241a2e9cc4d00e80d770a86194ff3f7a3633e1d3d75ae42aaeab07e3
Notes http://dx.doi.org/10.1016/j.soilbio.2009.08.009
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 21216670
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_883032006
proquest_miscellaneous_46476017
proquest_miscellaneous_21216670
pascalfrancis_primary_22058632
crossref_citationtrail_10_1016_j_soilbio_2009_08_009
crossref_primary_10_1016_j_soilbio_2009_08_009
fao_agris_US201301693370
elsevier_sciencedirect_doi_10_1016_j_soilbio_2009_08_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Soil biology & biochemistry
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Monza, Irisarri, Díaz, Delgado, Mesa, Bedmar (bib33) 2006; 89
Meng, Ding, Cai (bib29) 2005; 37
Giannakis, Nicholas, Wallace (bib17) 1988; 174
Mosier, Syers, Freney (bib34) 2004
IPCC (bib23) 2006; vol. 4
Rigaud, Bergersen, Turner, Daniel (bib41) 1973; 77
Tiedje (bib47) 1994; vol. 5
Engelaar, Bodelier, Laanbroek, Blom (bib11) 1991; 86
Verhagen, Laanbroek (bib49) 1991; 57
Vessey (bib50) 1994; 158
Maljanen, Liikanen, Silvola, Martikainen (bib28) 2003; 54
Rolston (bib43) 1986
O'Hara, Daniel, Steele, Bonish (bib38) 1984; 16
Laanbroek, Bodelier, Gerards (bib26) 1994; 161
Sameshima-Saito, Chiba, Hirayama, Itakura, Mitsui, Eda, Minamisawa (bib45) 2006; 72
Hardy, Burns, Holsten (bib18) 1973; 5
IPCC (bib24) 2001
Myshkina, Bonartseva (bib35) 1990; 59
Bhandari, Nicholas (bib5) 1984; 161
Minchin, Sheehy, Witty (bib31) 1986; 37
Mesa, de Dios Alché, Bedmar, Delgado (bib30) 2004; 120
Rochette, Janzen (bib42) 2005; 73
Hassan, Zablotowicz, Focht (bib19) 1985; 49
García-Plazaola, Arrese-Igor, González, Aparicio-Tejo, Becerril (bib14) 1996; 182
Huang, Zou, Zheng, Wang, Xu (bib21) 2004; 36
Hynes, Jans, Bremer, Lupwayi, Rice, Clayton, Collins (bib22) 2001; 47
Bodelier, Duyts, Blom, Laanbroek (bib6) 1998; 25
O'Hara, Daniel (bib37) 1985; 17
Okada, Nomura, Nakajima-Kambe, Uchiyama (bib39) 2005; 20
Baggs, Rees, Smith, Vinten (bib2) 2000; 16
Burton, Beauchamp (bib7) 1994; 58
Garcia-Plazaola, Becerril, Arrese-Igor, Hernandez, Gonzalez-Murua, Aparicio-Tejo (bib16) 1993; 149
Ruser, Flessa, Russow, Schmidt, Buegger, Munch (bib44) 2006; 38
Becana, Sprent (bib3) 1987; 70
Galloway (bib13) 1998; 102
Hoagland, Arnon (bib20) 1950
Lupwayi, Kennedy (bib27) 2007; 99
Bedmar, Robles, Delgado (bib4) 2005; 33
Schmidt, Belser (bib46) 1994; vol. 5
Crutzen, Mosier, Smith, Winiwarter (bib9) 2007; 7
Norris, Read, Varma (bib36) 1991
Phillips, Joseph, Yang, Martinez-Romero, Sanborn, Volpin (bib40) 1999; vol. 96
Verhagen, Hageman, Woldendorp, Laanbroek (bib48) 1994; 26
Garcia-Plazaola, Arrese-Igor, Langara, Aparicio-Tejo, Becerril (bib15) 1995; 146
Zablotowicz, Focht (bib52) 1979; 111
King, Hunt, Weagle, Walsh, Pottier, Canvin, Layzell (bib25) 1988; 87
Yang, Cai (bib51) 2005; 37
Catroux, Hartmann, Revellin (bib8) 2001; 230
Díaz-Ambrona, Mínguez (bib10) 2001; 70
Minchin, Witty, Sheehy, Müller (bib32) 1983; 34
Fernández, Perotti, Sagardoy, Gómez (bib12) 2008; 24
Arrese-Igor, Royuela, Aparicio-Tejo (bib1) 1992; 84
Hynes (10.1016/j.soilbio.2009.08.009_bib22) 2001; 47
Norris (10.1016/j.soilbio.2009.08.009_bib36) 1991
Engelaar (10.1016/j.soilbio.2009.08.009_bib11) 1991; 86
Hardy (10.1016/j.soilbio.2009.08.009_bib18) 1973; 5
Lupwayi (10.1016/j.soilbio.2009.08.009_bib27) 2007; 99
Schmidt (10.1016/j.soilbio.2009.08.009_bib46) 1994; vol. 5
Catroux (10.1016/j.soilbio.2009.08.009_bib8) 2001; 230
Bodelier (10.1016/j.soilbio.2009.08.009_bib6) 1998; 25
Bedmar (10.1016/j.soilbio.2009.08.009_bib4) 2005; 33
Sameshima-Saito (10.1016/j.soilbio.2009.08.009_bib45) 2006; 72
Tiedje (10.1016/j.soilbio.2009.08.009_bib47) 1994; vol. 5
O'Hara (10.1016/j.soilbio.2009.08.009_bib38) 1984; 16
Vessey (10.1016/j.soilbio.2009.08.009_bib50) 1994; 158
Phillips (10.1016/j.soilbio.2009.08.009_bib40) 1999; vol. 96
O'Hara (10.1016/j.soilbio.2009.08.009_bib37) 1985; 17
Becana (10.1016/j.soilbio.2009.08.009_bib3) 1987; 70
Arrese-Igor (10.1016/j.soilbio.2009.08.009_bib1) 1992; 84
Burton (10.1016/j.soilbio.2009.08.009_bib7) 1994; 58
Rochette (10.1016/j.soilbio.2009.08.009_bib42) 2005; 73
Monza (10.1016/j.soilbio.2009.08.009_bib33) 2006; 89
Rigaud (10.1016/j.soilbio.2009.08.009_bib41) 1973; 77
IPCC (10.1016/j.soilbio.2009.08.009_bib24) 2001
Crutzen (10.1016/j.soilbio.2009.08.009_bib9) 2007; 7
Mesa (10.1016/j.soilbio.2009.08.009_bib30) 2004; 120
Baggs (10.1016/j.soilbio.2009.08.009_bib2) 2000; 16
Galloway (10.1016/j.soilbio.2009.08.009_bib13) 1998; 102
Bhandari (10.1016/j.soilbio.2009.08.009_bib5) 1984; 161
King (10.1016/j.soilbio.2009.08.009_bib25) 1988; 87
Mosier (10.1016/j.soilbio.2009.08.009_bib34) 2004
Verhagen (10.1016/j.soilbio.2009.08.009_bib49) 1991; 57
Huang (10.1016/j.soilbio.2009.08.009_bib21) 2004; 36
Díaz-Ambrona (10.1016/j.soilbio.2009.08.009_bib10) 2001; 70
Okada (10.1016/j.soilbio.2009.08.009_bib39) 2005; 20
Hassan (10.1016/j.soilbio.2009.08.009_bib19) 1985; 49
Ruser (10.1016/j.soilbio.2009.08.009_bib44) 2006; 38
Myshkina (10.1016/j.soilbio.2009.08.009_bib35) 1990; 59
Minchin (10.1016/j.soilbio.2009.08.009_bib32) 1983; 34
Verhagen (10.1016/j.soilbio.2009.08.009_bib48) 1994; 26
Garcia-Plazaola (10.1016/j.soilbio.2009.08.009_bib16) 1993; 149
Giannakis (10.1016/j.soilbio.2009.08.009_bib17) 1988; 174
Yang (10.1016/j.soilbio.2009.08.009_bib51) 2005; 37
Hoagland (10.1016/j.soilbio.2009.08.009_bib20) 1950
Laanbroek (10.1016/j.soilbio.2009.08.009_bib26) 1994; 161
Garcia-Plazaola (10.1016/j.soilbio.2009.08.009_bib15) 1995; 146
Rolston (10.1016/j.soilbio.2009.08.009_bib43) 1986
IPCC (10.1016/j.soilbio.2009.08.009_bib23) 2006; vol. 4
Zablotowicz (10.1016/j.soilbio.2009.08.009_bib52) 1979; 111
García-Plazaola (10.1016/j.soilbio.2009.08.009_bib14) 1996; 182
Meng (10.1016/j.soilbio.2009.08.009_bib29) 2005; 37
Minchin (10.1016/j.soilbio.2009.08.009_bib31) 1986; 37
Fernández (10.1016/j.soilbio.2009.08.009_bib12) 2008; 24
Maljanen (10.1016/j.soilbio.2009.08.009_bib28) 2003; 54
References_xml – start-page: 881
  year: 2001
  ident: bib24
  article-title: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change
– volume: 161
  start-page: 156
  year: 1994
  end-page: 162
  ident: bib26
  article-title: Oxygen consumption kinetics of
  publication-title: Archives of Microbiology
– volume: 174
  start-page: 51
  year: 1988
  end-page: 58
  ident: bib17
  article-title: Utilization of nitrate by bacteroids of
  publication-title: Planta
– volume: 33
  start-page: 141
  year: 2005
  end-page: 144
  ident: bib4
  article-title: The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium
  publication-title: Biochemical Society Transactions
– volume: vol. 96
  start-page: 12275
  year: 1999
  end-page: 12280
  ident: bib40
  article-title: Identification of lumichrome as a
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 37
  start-page: 1205
  year: 2005
  end-page: 1209
  ident: bib51
  article-title: The effect of growing soybean (
  publication-title: Soil Biology & Biochemistry
– volume: vol. 5
  start-page: 59
  year: 1994
  end-page: 79
  ident: bib46
  article-title: Autotrophic nitrifying bacteria
  publication-title: Method of Soil Analysis, Part 2
– volume: 37
  start-page: 1581
  year: 1986
  end-page: 1591
  ident: bib31
  article-title: Further errors in the acetylene reduction assay: effects of plant disturbance
  publication-title: Journal of Experimental Botany
– volume: 89
  start-page: 479
  year: 2006
  end-page: 484
  ident: bib33
  article-title: Denitrification ability of rhizobial strains isolated from
  publication-title: Antonie Van Leeuwenhoek
– volume: 230
  start-page: 21
  year: 2001
  end-page: 30
  ident: bib8
  article-title: Trends in rhizobial inoculant production and use
  publication-title: Plant and Soil
– volume: 59
  start-page: 26
  year: 1990
  end-page: 28
  ident: bib35
  article-title: Testing of a group of rapidly growing
  publication-title: Microbiology
– volume: 149
  start-page: 43
  year: 1993
  end-page: 50
  ident: bib16
  article-title: Denitrifying ability of thirteen
  publication-title: Plant and Soil
– volume: 36
  start-page: 973
  year: 2004
  end-page: 981
  ident: bib21
  article-title: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios
  publication-title: Soil Biology & Biochemistry
– volume: 70
  start-page: 757
  year: 1987
  end-page: 765
  ident: bib3
  article-title: Nitrogen fixation and nitrate reduction in the root of nodules of legumes
  publication-title: Physiologia Plantarum
– volume: 182
  start-page: 149
  year: 1996
  end-page: 155
  ident: bib14
  article-title: Denitrification in lucerne nodules is not involved in nitrite detoxification
  publication-title: Plant and Soil
– volume: 5
  start-page: 47
  year: 1973
  end-page: 81
  ident: bib18
  article-title: Application of the acetylene–ethylene assay for measurement of nitrogen fixation
  publication-title: Soil Biology & Biochemistry
– volume: vol. 5
  start-page: 245
  year: 1994
  end-page: 267
  ident: bib47
  article-title: Denitrifiers
  publication-title: Method of Soil Analysis, Part 2
– volume: 58
  start-page: 115
  year: 1994
  end-page: 122
  ident: bib7
  article-title: Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing
  publication-title: Soil Science Society of America Journal
– volume: 24
  start-page: 2577
  year: 2008
  end-page: 2585
  ident: bib12
  article-title: Denitrification activity of
  publication-title: World Journal of Microbiology and Biotechnology
– volume: 158
  start-page: 151
  year: 1994
  end-page: 162
  ident: bib50
  article-title: Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay
  publication-title: Plant and Soil
– volume: 70
  start-page: 139
  year: 2001
  end-page: 151
  ident: bib10
  article-title: Cereal–legume rotations in a Mediterranean environment: biomass and yield production
  publication-title: Field Crops Research
– year: 2004
  ident: bib34
  article-title: Agriculture and the Nitrogen Cycle
– volume: 37
  start-page: 2037
  year: 2005
  end-page: 2045
  ident: bib29
  article-title: Long-term application of organic manure and nitrogen fertilizer on N
  publication-title: Soil Biology & Biochemistry
– volume: 146
  start-page: 563
  year: 1995
  end-page: 565
  ident: bib15
  article-title: Denitrification in intact lucerne plants
  publication-title: Journal of Plant Physiology
– volume: 77
  start-page: 137
  year: 1973
  end-page: 144
  ident: bib41
  article-title: Nitrate-dependent anaerobic acetylene-reduction and nitrogen-fixation by soybean bacteroids
  publication-title: Journal of General Microbiology
– volume: 26
  start-page: 89
  year: 1994
  end-page: 96
  ident: bib48
  article-title: Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization
  publication-title: Soil Biology & Biochemistry
– volume: vol. 4
  year: 2006
  ident: bib23
  article-title: 2006 IPCC guidelines for national greenhouse gas inventories
  publication-title: Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme
– volume: 16
  start-page: 429
  year: 1984
  end-page: 431
  ident: bib38
  article-title: Nitrogen losses from soils caused by
  publication-title: Soil Biology & Biochemistry
– volume: 38
  start-page: 263
  year: 2006
  end-page: 274
  ident: bib44
  article-title: Emission of N
  publication-title: Soil Biology & Biochemistry
– volume: 34
  start-page: 641
  year: 1983
  end-page: 649
  ident: bib32
  article-title: A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions
  publication-title: Journal of Experimental Botany
– volume: 16
  start-page: 82
  year: 2000
  end-page: 87
  ident: bib2
  article-title: Nitrous oxide emission from soils after incorporating crop residues
  publication-title: Soil Use and Management
– volume: 99
  start-page: 1700
  year: 2007
  end-page: 1709
  ident: bib27
  article-title: Grain legumes in northern Great Plains: impacts on selected biological soil processes
  publication-title: Agronomy Journal
– volume: 7
  start-page: 11191
  year: 2007
  end-page: 11205
  ident: bib9
  article-title: N
  publication-title: Atmospheric Chemistry and Physics Discussions
– volume: 120
  start-page: 205
  year: 2004
  end-page: 211
  ident: bib30
  article-title: Expression of
  publication-title: Physiologia Plantarum
– volume: 87
  start-page: 296
  year: 1988
  end-page: 299
  ident: bib25
  article-title: Regulation of O
  publication-title: Plant Physiology
– volume: 102
  start-page: 15
  year: 1998
  end-page: 24
  ident: bib13
  article-title: The global nitrogen cycle: changes and consequences
  publication-title: Environmental Pollution
– volume: 17
  start-page: 1
  year: 1985
  end-page: 9
  ident: bib37
  article-title: Rhizobial denitrification: a review
  publication-title: Soil Biology & Biochemistry
– volume: 25
  start-page: 63
  year: 1998
  end-page: 78
  ident: bib6
  article-title: Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte
  publication-title: FEMS Microbiology Ecology
– year: 1991
  ident: bib36
  article-title: Methods in Microbiology
– volume: 49
  start-page: 517
  year: 1985
  end-page: 521
  ident: bib19
  article-title: Kinetics of denitrifying growth by fast-growing cowpea rhizobia
  publication-title: Applied and Environmental Microbiology
– volume: 54
  start-page: 625
  year: 2003
  end-page: 631
  ident: bib28
  article-title: Measuring N
  publication-title: European Journal of Soil Science
– volume: 20
  start-page: 208
  year: 2005
  end-page: 215
  ident: bib39
  article-title: Characterization of the aerobic denitrification in
  publication-title: Microbes and Environments
– year: 1950
  ident: bib20
  article-title: The water culture method for growing plants without soil
  publication-title: California Agricultural Experimental Station
– volume: 161
  start-page: 81
  year: 1984
  end-page: 85
  ident: bib5
  article-title: Denitrification of nitrate to nitrogen gas by washed cells of
  publication-title: Planta
– volume: 72
  start-page: 2526
  year: 2006
  end-page: 2532
  ident: bib45
  article-title: Symbiotic
  publication-title: Applied and Environmental Microbiology
– volume: 111
  start-page: 445
  year: 1979
  end-page: 448
  ident: bib52
  article-title: Denitrification and anaerobic, nitrate-dependent acetylene reduction in cowpea
  publication-title: Journal of General Microbiology
– volume: 86
  start-page: 33
  year: 1991
  end-page: 42
  ident: bib11
  article-title: Nitrification in the rhizosphere of a flooding-resistant and a flooding-non-resistant
  publication-title: FEMS Microbiology Ecology
– volume: 47
  start-page: 595
  year: 2001
  end-page: 600
  ident: bib22
  publication-title: Canadian Journal of Microbiology
– volume: 73
  start-page: 171
  year: 2005
  end-page: 179
  ident: bib42
  article-title: Towards a revised coefficient for estimating N
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 57
  start-page: 3255
  year: 1991
  end-page: 3263
  ident: bib49
  article-title: Competition for limiting amounts of ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats
  publication-title: Applied and Environmental Microbiology
– year: 1986
  ident: bib43
  article-title: Gas flux
  publication-title: Method of Soil Analysis Part 1 – Physical and Mineralogical Methods
– volume: 84
  start-page: 531
  year: 1992
  end-page: 536
  ident: bib1
  article-title: Denitrification in lucerne nodules and bacteroids supplied with nitrate
  publication-title: Physiologia Plantarum
– volume: 38
  start-page: 263
  year: 2006
  ident: 10.1016/j.soilbio.2009.08.009_bib44
  article-title: Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2005.05.005
– volume: vol. 5
  start-page: 245
  year: 1994
  ident: 10.1016/j.soilbio.2009.08.009_bib47
  article-title: Denitrifiers
– volume: 70
  start-page: 757
  year: 1987
  ident: 10.1016/j.soilbio.2009.08.009_bib3
  article-title: Nitrogen fixation and nitrate reduction in the root of nodules of legumes
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1987.tb04335.x
– volume: 102
  start-page: 15
  year: 1998
  ident: 10.1016/j.soilbio.2009.08.009_bib13
  article-title: The global nitrogen cycle: changes and consequences
  publication-title: Environmental Pollution
  doi: 10.1016/S0269-7491(98)80010-9
– volume: 86
  start-page: 33
  year: 1991
  ident: 10.1016/j.soilbio.2009.08.009_bib11
  article-title: Nitrification in the rhizosphere of a flooding-resistant and a flooding-non-resistant Rumex species under drained and waterlogged conditions
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.1991.tb01736.x
– volume: 99
  start-page: 1700
  year: 2007
  ident: 10.1016/j.soilbio.2009.08.009_bib27
  article-title: Grain legumes in northern Great Plains: impacts on selected biological soil processes
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2006.0313s
– volume: 20
  start-page: 208
  year: 2005
  ident: 10.1016/j.soilbio.2009.08.009_bib39
  article-title: Characterization of the aerobic denitrification in Mesorhizobium sp. strain NH-14 in comparison with that in related rhizobia
  publication-title: Microbes and Environments
  doi: 10.1264/jsme2.20.208
– volume: 36
  start-page: 973
  year: 2004
  ident: 10.1016/j.soilbio.2009.08.009_bib21
  article-title: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2004.02.009
– volume: 70
  start-page: 139
  year: 2001
  ident: 10.1016/j.soilbio.2009.08.009_bib10
  article-title: Cereal–legume rotations in a Mediterranean environment: biomass and yield production
  publication-title: Field Crops Research
  doi: 10.1016/S0378-4290(01)00132-0
– volume: 146
  start-page: 563
  year: 1995
  ident: 10.1016/j.soilbio.2009.08.009_bib15
  article-title: Denitrification in intact lucerne plants
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(11)82024-9
– volume: 77
  start-page: 137
  year: 1973
  ident: 10.1016/j.soilbio.2009.08.009_bib41
  article-title: Nitrate-dependent anaerobic acetylene-reduction and nitrogen-fixation by soybean bacteroids
  publication-title: Journal of General Microbiology
  doi: 10.1099/00221287-77-1-137
– volume: 58
  start-page: 115
  year: 1994
  ident: 10.1016/j.soilbio.2009.08.009_bib7
  article-title: Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1994.03615995005800010016x
– year: 1986
  ident: 10.1016/j.soilbio.2009.08.009_bib43
  article-title: Gas flux
– year: 2004
  ident: 10.1016/j.soilbio.2009.08.009_bib34
– start-page: 881
  year: 2001
  ident: 10.1016/j.soilbio.2009.08.009_bib24
  article-title: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change
– volume: 34
  start-page: 641
  year: 1983
  ident: 10.1016/j.soilbio.2009.08.009_bib32
  article-title: A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/34.5.641
– volume: 54
  start-page: 625
  year: 2003
  ident: 10.1016/j.soilbio.2009.08.009_bib28
  article-title: Measuring N2O emissions from organic soils by closed chamber or soil/snow N2O gradient methods
  publication-title: European Journal of Soil Science
  doi: 10.1046/j.1365-2389.2003.00531.x
– volume: 89
  start-page: 479
  year: 2006
  ident: 10.1016/j.soilbio.2009.08.009_bib33
  article-title: Denitrification ability of rhizobial strains isolated from Lotus sp
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-005-9046-6
– volume: vol. 96
  start-page: 12275
  year: 1999
  ident: 10.1016/j.soilbio.2009.08.009_bib40
  article-title: Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.96.22.12275
– volume: 182
  start-page: 149
  year: 1996
  ident: 10.1016/j.soilbio.2009.08.009_bib14
  article-title: Denitrification in lucerne nodules is not involved in nitrite detoxification
  publication-title: Plant and Soil
  doi: 10.1007/BF00011003
– volume: 161
  start-page: 156
  year: 1994
  ident: 10.1016/j.soilbio.2009.08.009_bib26
  article-title: Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations
  publication-title: Archives of Microbiology
  doi: 10.1007/BF00276477
– volume: 72
  start-page: 2526
  year: 2006
  ident: 10.1016/j.soilbio.2009.08.009_bib45
  article-title: Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.72.4.2526-2532.2006
– volume: vol. 5
  start-page: 59
  year: 1994
  ident: 10.1016/j.soilbio.2009.08.009_bib46
  article-title: Autotrophic nitrifying bacteria
– volume: 111
  start-page: 445
  year: 1979
  ident: 10.1016/j.soilbio.2009.08.009_bib52
  article-title: Denitrification and anaerobic, nitrate-dependent acetylene reduction in cowpea Rhizobium
  publication-title: Journal of General Microbiology
  doi: 10.1099/00221287-111-2-445
– volume: vol. 4
  year: 2006
  ident: 10.1016/j.soilbio.2009.08.009_bib23
  article-title: 2006 IPCC guidelines for national greenhouse gas inventories
– volume: 7
  start-page: 11191
  year: 2007
  ident: 10.1016/j.soilbio.2009.08.009_bib9
  article-title: N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels
  publication-title: Atmospheric Chemistry and Physics Discussions
  doi: 10.5194/acpd-7-11191-2007
– year: 1950
  ident: 10.1016/j.soilbio.2009.08.009_bib20
  article-title: The water culture method for growing plants without soil
  publication-title: California Agricultural Experimental Station
– volume: 149
  start-page: 43
  year: 1993
  ident: 10.1016/j.soilbio.2009.08.009_bib16
  article-title: Denitrifying ability of thirteen Rhizobium meliloti strains
  publication-title: Plant and Soil
  doi: 10.1007/BF00010761
– volume: 73
  start-page: 171
  year: 2005
  ident: 10.1016/j.soilbio.2009.08.009_bib42
  article-title: Towards a revised coefficient for estimating N2O emissions from legumes
  publication-title: Nutrient Cycling in Agroecosystems
  doi: 10.1007/s10705-005-0357-9
– volume: 87
  start-page: 296
  year: 1988
  ident: 10.1016/j.soilbio.2009.08.009_bib25
  article-title: Regulation of O2 concentration in soybean nodules observed by in situ spectroscopy measurement of leghemoglobin oxygenation
  publication-title: Plant Physiology
  doi: 10.1104/pp.87.2.296
– volume: 120
  start-page: 205
  year: 2004
  ident: 10.1016/j.soilbio.2009.08.009_bib30
  article-title: Expression of nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.0031-9317.2004.0211.x
– volume: 49
  start-page: 517
  year: 1985
  ident: 10.1016/j.soilbio.2009.08.009_bib19
  article-title: Kinetics of denitrifying growth by fast-growing cowpea rhizobia
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.49.3.517-521.1985
– volume: 5
  start-page: 47
  year: 1973
  ident: 10.1016/j.soilbio.2009.08.009_bib18
  article-title: Application of the acetylene–ethylene assay for measurement of nitrogen fixation
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(73)90093-X
– volume: 33
  start-page: 141
  year: 2005
  ident: 10.1016/j.soilbio.2009.08.009_bib4
  article-title: The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST0330141
– volume: 230
  start-page: 21
  year: 2001
  ident: 10.1016/j.soilbio.2009.08.009_bib8
  article-title: Trends in rhizobial inoculant production and use
  publication-title: Plant and Soil
  doi: 10.1023/A:1004777115628
– volume: 59
  start-page: 26
  year: 1990
  ident: 10.1016/j.soilbio.2009.08.009_bib35
  article-title: Testing of a group of rapidly growing Rhizobium cultures for the ability to reduce nitrate and acetylene
  publication-title: Microbiology
– volume: 174
  start-page: 51
  year: 1988
  ident: 10.1016/j.soilbio.2009.08.009_bib17
  article-title: Utilization of nitrate by bacteroids of Bradyrhizobium japonicum in the soybean root nodule
  publication-title: Planta
  doi: 10.1007/BF00394873
– volume: 37
  start-page: 2037
  year: 2005
  ident: 10.1016/j.soilbio.2009.08.009_bib29
  article-title: Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2005.03.007
– volume: 16
  start-page: 429
  year: 1984
  ident: 10.1016/j.soilbio.2009.08.009_bib38
  article-title: Nitrogen losses from soils caused by Rhizobium-dependent denitrification
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(84)90047-6
– volume: 17
  start-page: 1
  year: 1985
  ident: 10.1016/j.soilbio.2009.08.009_bib37
  article-title: Rhizobial denitrification: a review
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(85)90082-3
– volume: 84
  start-page: 531
  year: 1992
  ident: 10.1016/j.soilbio.2009.08.009_bib1
  article-title: Denitrification in lucerne nodules and bacteroids supplied with nitrate
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1992.tb04701.x
– volume: 37
  start-page: 1205
  year: 2005
  ident: 10.1016/j.soilbio.2009.08.009_bib51
  article-title: The effect of growing soybean (Glycine max. L.) on N2O emission from soil
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/j.soilbio.2004.08.027
– volume: 57
  start-page: 3255
  year: 1991
  ident: 10.1016/j.soilbio.2009.08.009_bib49
  article-title: Competition for limiting amounts of ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.57.11.3255-3263.1991
– volume: 26
  start-page: 89
  year: 1994
  ident: 10.1016/j.soilbio.2009.08.009_bib48
  article-title: Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization
  publication-title: Soil Biology & Biochemistry
  doi: 10.1016/0038-0717(94)90199-6
– volume: 161
  start-page: 81
  year: 1984
  ident: 10.1016/j.soilbio.2009.08.009_bib5
  article-title: Denitrification of nitrate to nitrogen gas by washed cells of Rhizobium japonicum and by bacteroids from Glycine max
  publication-title: Planta
  doi: 10.1007/BF00951463
– year: 1991
  ident: 10.1016/j.soilbio.2009.08.009_bib36
– volume: 158
  start-page: 151
  year: 1994
  ident: 10.1016/j.soilbio.2009.08.009_bib50
  article-title: Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay
  publication-title: Plant and Soil
  doi: 10.1007/BF00009490
– volume: 47
  start-page: 595
  year: 2001
  ident: 10.1016/j.soilbio.2009.08.009_bib22
  article-title: Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations
  publication-title: Canadian Journal of Microbiology
  doi: 10.1139/w01-047
– volume: 25
  start-page: 63
  year: 1998
  ident: 10.1016/j.soilbio.2009.08.009_bib6
  article-title: Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte Glyceria maxima
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.1998.tb00460.x
– volume: 24
  start-page: 2577
  year: 2008
  ident: 10.1016/j.soilbio.2009.08.009_bib12
  article-title: Denitrification activity of Bradyrhizobium sp. isolated from Argentine soybean cultivated soils
  publication-title: World Journal of Microbiology and Biotechnology
  doi: 10.1007/s11274-008-9828-x
– volume: 37
  start-page: 1581
  year: 1986
  ident: 10.1016/j.soilbio.2009.08.009_bib31
  article-title: Further errors in the acetylene reduction assay: effects of plant disturbance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/37.10.1581
– volume: 16
  start-page: 82
  year: 2000
  ident: 10.1016/j.soilbio.2009.08.009_bib2
  article-title: Nitrous oxide emission from soils after incorporating crop residues
  publication-title: Soil Use and Management
  doi: 10.1111/j.1475-2743.2000.tb00179.x
SSID ssj0002513
Score 2.15972
Snippet Nitrous oxide (N 2O) emissions and biological nitrogen (N 2) fixation by grain legumes are two major processes of N transformation in agroecosystems. However,...
Nitrous oxide (N2O) emissions and biological nitrogen (N2) fixation by grain legumes are two major processes of N transformation in agroecosystems. However,...
Nitrous oxide (N sub(2)O) emissions and biological nitrogen (N sub(2)) fixation by grain legumes are two major processes of N transformation in agroecosystems....
Nitrous oxide (N sub(2O) emissions and biological nitrogen (N) sub(2)) fixation by grain legumes are two major processes of N transformation in agroecosystems....
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2283
SubjectTerms agroecosystems
Agronomy. Soil science and plant productions
Biochemistry and biology
Biological and medical sciences
Biological nitrogen fixation
Chemical, physicochemical, biochemical and biological properties
Denitrification
Fundamental and applied biological sciences. Psychology
gas emissions
Grain legumes
interspecific variation
Lens culinaris
Lens esculenta
lentils
N 2O emissions
nitrate nitrogen
nitrogen fixation
nitrogen transformation
nitrogen-fixing bacteria
nitrous oxide
peas
Physics, chemistry, biochemistry and biology of agricultural and forest soils
Pisum sativum
Rhizobium
Rhizobium leguminosarum
soil inoculation
Soil science
species differences
spring wheat
strain differences
symbiosis
Triticum aestivum
Title Nitrous oxide emissions associated with nitrogen fixation by grain legumes
URI https://dx.doi.org/10.1016/j.soilbio.2009.08.009
https://www.proquest.com/docview/21216670
https://www.proquest.com/docview/46476017
https://www.proquest.com/docview/883032006
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZd97D1YXTdRtNtmR726kaxZEl-DGEl7SAvW6BvQrbOwSU4Jcmge-lv750tt5QRCns1kpHvO92dpbv7GPtuSgOyDONE51YnKvMqsbaCBMZaWyt9haESZVvM9Wyhrq6z6wM27WthKK0y2v7OprfWOj4ZRWmObuuaanypWfrYCDqM64r4lDKk5ef3T2ke6L9j411LxTrmqYpndEP9cldFvY5tKymrMt_nn15Vfk2Jk36Lsqs60ot_7HfrlC6O2bsYTfJJt-D37ACaE3Y0WW5iRw04YW-mPaXbB3Y1r3cb_NXn67s6AKfndFi25T6CBIHTwSxvaByqFq_quxY6XvzlS2KT4CtYojnbfmSLix-_p7MkkikkpcrMLsHIJg0KtEGX7VPIy1IFIcCKYIzwlg4zqkpWxkstJYyDDCbzoFLvwRcCAf3EDpt1A6eMp4KiKCULXaCDN6rwmSmzUGgwUvvKDJjqRejK2GmcCC9Wrk8pu3FR8sSCmTsiwhT5gJ0_TrvtWm28NMH2-LhnOuPQHbw09RTxdB7x2LrFr5Tub6ktjTRiwIbPQH5cC5UkWy3TAfvWo-4QJ7pg8Q0geA7DAFRxesW-EUorSkJCEfE9I3CDEKe90Gf__3Wf2dv20qstmfzCDnebP_AVY6ddMWw3x5C9nlz-nM0fAFsvGEs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPVAOVUtbsX2AD-0xrDd2bO-hB0SLlkf3Ulbi5jqJswpaJWizqHDpn-of7EzWAaFqhVSJq2Vb8Xzzij0PgE86015k-SBSQ6MimTgZGVP4yA-UMka4Al0lirYYq9FEnlwkF2vwp8uFobDKoPuXOr3V1mGkH6jZvypLyvGlYukDzekyDl2FEFl56m9_4X9b8-X4K4L8OY6Pvp0fjqLQWiDKZKIXEdr5OJdeaTRgLvbDLJM5597wXGvuDP3aF4UotBNKCD_IRa4T52XsnHcpx-PhvuvwTKK6oLYJ-7_v40rQYQiVfg1lB-n7tKH-JRXonaVlHepkUhjncJVBXC9cTZGarkGwimWXjX8MRmsFj17Ci-C-soMlhV7Bmq-2YetgOg8lPPw2bB52PeRew8m4XMzr64bVN2XuGY3T7VzDXOAKnzO6CWYVzUNeZkV50_IKS2_ZlNpXsJmfov5s3sDkSUj8FjaquvI7wGJObpsUqUrRo9AydYnOkjxVXgvlCt0D2ZHQZqG0OXXYmNkuhu3SBspT282hpc6bfNiD_btlV8vaHo8tMB0-9gGTWrQ_jy3dQTytQzwaO_kR04Mx1cERmvdg9wHId99COdBGibgHex3qFnGiFx1XeQTPot-BMkVbrJohlaSoJyQRWzEDJZILulh69_-n24PN0fn3M3t2PD59D8_bF7c2X_MDbCzm1_4jOm6LdLcVFAY_n1oy_wJDnlP3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrous+oxide+emissions+associated+with+nitrogen+fixation+by+grain+legumes&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Zhong%2C+Zhaozhan&rft.au=Lemke%2C+Reynald+L.&rft.au=Nelson%2C+Louise+M.&rft.date=2009-11-01&rft.issn=0038-0717&rft.volume=41&rft.issue=11&rft.spage=2283&rft.epage=2291&rft_id=info:doi/10.1016%2Fj.soilbio.2009.08.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2009_08_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon