Incentive alignment in anchored MaxDiff yields superior predictive validity

Abstract Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevent...

Full description

Saved in:
Bibliographic Details
Published inMarketing letters Vol. 36; no. 1; pp. 1 - 16
Main Authors Schramm, Joshua Benjamin, Lichters, Marcel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment ( n  = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.
AbstractList Abstract Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment ( n  = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment (n = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment ( n  = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field.
Author Lichters, Marcel
Schramm, Joshua Benjamin
Author_xml – sequence: 1
  givenname: Joshua Benjamin
  surname: Schramm
  fullname: Schramm, Joshua Benjamin
– sequence: 2
  givenname: Marcel
  surname: Lichters
  fullname: Lichters, Marcel
BookMark eNp9kE1LAzEQhoNUsK3-AUFY8Lyaj93N7lHqV7HiRcFbyGZna8o2qUla7L837QqKh57eeZl5ZoZ3hAbGGkDonOArgjG_9iQKTTFlKa44yVJ6hIYk59Hm1fvgT32CRt4vMMZlgckQPU2NAhP0BhLZ6blZRpNok0ijPqyDJnmWX7e6bZOthq7xiV-vwGnrklVsarUHN5FsdNieouNWdh7OfnSM3u7vXieP6ezlYTq5maUqy3lIc9ZWTdM2dU5kgcu6Lqs8pwXleTSMcF7UWcULCgxqRUsFkNUUQ80hk7iQLRujy37vytnPNfggFnbtTDwpGInLeEkzEqdoP6Wc9d5BK1ZOL6XbCoLFLjTRhyZiaGIfmqARKv9BSgcZtDXBSd0dRlmP-njHzMH9fnWQuugpUNZoL3big3WCUcZ4wb4BxEuNdQ
CitedBy_id crossref_primary_10_21105_joss_06708
crossref_primary_10_1073_pnas_2319016121
Cites_doi 10.1509/jmkr.42.1.67.56890
10.1016/j.foodqual.2012.01.002
10.1016/j.jretconser.2021.102681
10.1177/0022243718817004
10.1007/s11747-023-00997-5
10.1007/978-1-4842-9268-6_10
10.1111/jpim.12077
10.1111/j.1467-8276.2007.01119.x
10.1509/jmkr.48.1.172
10.1007/s13162-015-0066-8
10.1016/j.ijresmar.2012.10.002
10.1016/j.ijresmar.2009.09.004
10.1186/s13561-015-0079-x
10.1177/002224379503200402
10.1016/j.ijresmar.2020.04.006
10.1201/b16018
10.1016/j.jocm.2019.01.002
10.1177/074391569201100202
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Mar 2025
DBID OT2
C6C
AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1007/s11002-023-09714-2
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Freely Accessible)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1573-059X
EndPage 16
ExternalDocumentID 10_1007_s11002_023_09714_2
323376
GrantInformation_xml – fundername: Technische Universität Chemnitz
  funderid: http://dx.doi.org/10.13039/100009117
– fundername: Otto-von-Guericke-Universität Magdeburg (3121)
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4R4
5GY
5QI
5VS
61N
67Z
6NX
78A
7WY
8AO
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATGJ
AATNV
AATVU
AAUYE
AAVDF
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABKVW
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSGB
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ABYYQ
ACAOD
ACBXY
ACDEK
ACDTI
ACGFO
ACGFS
ACHQT
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACXJH
ACYUM
ACYUN
ACZOJ
ADAAO
ADGDI
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEOZU
AEPYU
AESKC
AETLH
AEULS
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDYV
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAJD
AHAVH
AHBYD
AHIZY
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBCO
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APTMU
ARMRJ
ASMEE
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BIPZW
BPHCQ
BSONS
CAG
CBXGM
CCPQU
CMDUG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBO
EBS
EBU
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IPSME
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
JST
JZLTJ
K1G
K60
K6~
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
NB0
NB9
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
OAM
OT2
OVD
P19
P2P
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PUEGO
Q2X
QOK
QOS
QWB
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SA0
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZL0
ZMTXR
ZY4
ZYFGU
~8M
~EX
AAYOK
ABTAH
C6C
RIG
AAYXX
ACMFV
CITATION
8BJ
FQK
JBE
ID FETCH-LOGICAL-c457t-53f9ddfdb51a608bb89552627508b31776b49762e3ebc28cee4b20eb7e4a06af3
IEDL.DBID U2A
ISSN 1573-059X
0923-0645
IngestDate Sat Aug 16 19:51:10 EDT 2025
Sun Jul 06 05:06:02 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
Mon Apr 14 02:03:31 EDT 2025
Fri Aug 29 12:25:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Best-worst scaling (BWS)
Market research methods
Anchored maximum difference scaling (MaxDiff)
Predictive validity
Preference measurement
Incentive alignment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-53f9ddfdb51a608bb89552627508b31776b49762e3ebc28cee4b20eb7e4a06af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3710-2292
0000-0001-5602-4632
OpenAccessLink https://link.springer.com/10.1007/s11002-023-09714-2
PQID 3189578241
PQPubID 29932
PageCount 16
ParticipantIDs proquest_journals_3189578241
crossref_primary_10_1007_s11002_023_09714_2
crossref_citationtrail_10_1007_s11002_023_09714_2
springer_journals_10_1007_s11002_023_09714_2
econis_econstor_323376
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle A Journal of Research in Marketing
PublicationTitle Marketing letters
PublicationTitleAbbrev Mark Lett
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References C Chapman (9714_CR2) 2023
TM Rausch (9714_CR23) 2021; 63
TN Flynn (9714_CR8) 2014
AC Mühlbacher (9714_CR19) 2016; 6
JJ Louviere (9714_CR15) 2013; 30
9714_CR13
K Chrzan (9714_CR4) 2019; 30
S Dong (9714_CR6) 2010; 27
K Chrzan (9714_CR3) 2019
GM Allenby (9714_CR1) 1995; 32
KM Miller (9714_CR18) 2011; 48
M Lichters (9714_CR14) 2015; 5
R Hofstetter (9714_CR11) 2021; 38
M Ding (9714_CR5) 2005; 42
Sawtooth Software Inc (9714_CR25) 2022
A Gelman (9714_CR9) 2013
9714_CR22
9714_CR21
9714_CR24
LC Yang (9714_CR27) 2018; 55
9714_CR20
JL Lusk (9714_CR16) 2008; 90
G Miaoulis (9714_CR17) 1990; 2
9714_CR26
CJ Lagerkvist (9714_CR12) 2012; 25
A Finn (9714_CR7) 1992; 11
JR Hauser (9714_CR10) 2014; 31
References_xml – volume: 42
  start-page: 67
  year: 2005
  ident: 9714_CR5
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.42.1.67.56890
– volume: 25
  start-page: 29
  year: 2012
  ident: 9714_CR12
  publication-title: Food Quality and Preference
  doi: 10.1016/j.foodqual.2012.01.002
– ident: 9714_CR21
– volume: 63
  start-page: 102681
  year: 2021
  ident: 9714_CR23
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2021.102681
– volume: 55
  start-page: 783
  year: 2018
  ident: 9714_CR27
  publication-title: Journal of Marketing Research
  doi: 10.1177/0022243718817004
– volume-title: Applied MaxDiff: A practitioner's guide to best-worst scaling
  year: 2019
  ident: 9714_CR3
– ident: 9714_CR24
  doi: 10.1007/s11747-023-00997-5
– start-page: 185
  volume-title: Quantitative user experience research: Informing product decisions by understanding users at scale
  year: 2023
  ident: 9714_CR2
  doi: 10.1007/978-1-4842-9268-6_10
– ident: 9714_CR20
– volume: 31
  start-page: 17
  year: 2014
  ident: 9714_CR10
  publication-title: Journal of Product Innovation Management
  doi: 10.1111/jpim.12077
– volume: 90
  start-page: 487
  year: 2008
  ident: 9714_CR16
  publication-title: American Journal of Agricultural Economics
  doi: 10.1111/j.1467-8276.2007.01119.x
– ident: 9714_CR26
– start-page: 178
  volume-title: Handbook of choice modelling
  year: 2014
  ident: 9714_CR8
– ident: 9714_CR22
– volume: 48
  start-page: 172
  year: 2011
  ident: 9714_CR18
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.48.1.172
– volume: 5
  start-page: 1
  year: 2015
  ident: 9714_CR14
  publication-title: AMS Review
  doi: 10.1007/s13162-015-0066-8
– volume: 30
  start-page: 292
  year: 2013
  ident: 9714_CR15
  publication-title: International Journal of Research in Marketing
  doi: 10.1016/j.ijresmar.2012.10.002
– volume: 27
  start-page: 25
  year: 2010
  ident: 9714_CR6
  publication-title: International Journal of Research in Marketing
  doi: 10.1016/j.ijresmar.2009.09.004
– volume: 6
  start-page: 2
  year: 2016
  ident: 9714_CR19
  publication-title: Health Economics Review
  doi: 10.1186/s13561-015-0079-x
– volume: 32
  start-page: 392
  year: 1995
  ident: 9714_CR1
  publication-title: Journal of Marketing Research
  doi: 10.1177/002224379503200402
– ident: 9714_CR13
– volume: 38
  start-page: 70
  year: 2021
  ident: 9714_CR11
  publication-title: International Journal of Research in Marketing
  doi: 10.1016/j.ijresmar.2020.04.006
– volume-title: Bayesian data analysis
  year: 2013
  ident: 9714_CR9
  doi: 10.1201/b16018
– volume: 2
  start-page: 28
  issue: 1
  year: 1990
  ident: 9714_CR17
  publication-title: Marketing Research
– volume: 30
  start-page: 61
  year: 2019
  ident: 9714_CR4
  publication-title: Journal of Choice Modelling
  doi: 10.1016/j.jocm.2019.01.002
– volume: 11
  start-page: 12
  year: 1992
  ident: 9714_CR7
  publication-title: Journal of Public Policy & Marketing
  doi: 10.1177/074391569201100202
– volume-title: Lighthouse studio 9
  year: 2022
  ident: 9714_CR25
SSID ssj0008601
Score 2.4067645
Snippet Abstract Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product...
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand....
SourceID proquest
crossref
springer
econis
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anchored maximum difference scaling (MaxDiff)
Anchoring
Best-worst scaling (BWS)
Business and Management
Conjoint analysis
Consumers
Incentive alignment
Incentives
Limitations
Market research methods
Marketing
Predictive validity
Preference measurement
Purchase intention
Usefulness
Variants
Title Incentive alignment in anchored MaxDiff yields superior predictive validity
URI https://www.econstor.eu/handle/10419/323376
https://link.springer.com/article/10.1007/s11002-023-09714-2
https://www.proquest.com/docview/3189578241
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8QnwRP3F-jDz4poE2TbLucU6nKPrkQJ9C0yY6kE3WKfrfe5e1DkUFn0Jp0sJdcvcLd_c7gEMvHDpdi-fbpRGXKnY8kzriQiHWRzTndSikvb7RF315eafuqqKwss52r0OSwVLPit2ILZSjj-HEeyQ5Gt5FRXd33MV90fm0v6kOTY-jNs3UUlWlMj9_44s7WqI76KD8Aja_xUeD2-mtwWqFF1lnquB1mHPDDViu09U34QoPOCX8vDqGiPohxPbZYMhQmY-jsSvYdfZ2OvCevVOqWsnKF6I2Ho3Z85hCNGEhbrZBgWh8C_q9s9vuBa8aJPBcqtaEq8S3i8IXVsWZjlJr07ZSgniH8QGBQUtbFLgWLnE2Fyn6Q2lF5GzLySzSmU-2YWE4GrodYGmUZ7GNdcvbTOaJSAuXp1YJb4tCR9Y3IK7lZPKKPZyaWDyZGe8xydagbE2QrRENOPpc8zzlzvhz9vZU_IYGSg01iUjQ_jVgv1aHqQ5YadAUtYmJX8YNOK5VNHv9-292_zd9D1YEdfwNWWf7sDAZv7gDhCET24TFTu_k5IbG8_ursybMd3W3GfbiB9zQ1Sw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8MGvXF-EVEUfvgmzZuXVvGo0EJyscTJLw169YqiQHCwOh_790YEIia-LQ0a7fkrr37NXf3O0JuHLfgdA2cbxt6TEjfskgoj3EJWB_QnFNZIW27oxo98dKX_ZwmB2thNuL39ylSmnEGnoUh25FgYG63BdyUMX2vpmpLqxuqrNWxV8WZSsi8QObnb6w5oR28eQ7SNYi5ERXNnE39kBzkKJE-zNV6RLbs8JjsLpLUT0gTjjWm-XxYCjj6NYvo08GQggrfRhOb0Hb0-Thwjn5hglpK0xkSGo8mdDzBwEy2ELbYIAEMfkp69adurcHytggsFrIyZTJw1SRxiZF-pLzQmLAqJUe2YRgAHKgoA2JW3AbWxDwELygM96ypWBF5KnJBkRSGo6E9IzT04sg3vqo4E4k44GFi49BI7kySKM-4EvEXctJxzhmOrSve9YrtGGWrQbY6k63mJXK7XDOeM2b8Obs4F7_GByaE6oAHYPVKpLxQh86PVarBAFWRf1_4JXK3UNHq9e-_Of_f9Guy1-i2W7r13GlekH2OPX-zvLMyKUwnM3sJQGRqrrId-A0S6dAR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iMnwRv4bVqXnwTcPaNMm6R5mO-TV8cLC30DSJDqQb-xD9771krXOigk8lNGnhLrn7hbv7HUKnlhpwugrOt0lCwnhkSMpESCgHrA9ozgpfSHvfFZ0eu-nz_pcqfp_tXoYk5zUNjqUpn9ZH2tYXhW-OOZSAvyGOA4kRMMJrcFPxgdqWaH3a4kT4Bshh080UjBdlMz9_Y8k1rbv76GCyBDy_xUq9C2pvoc0CO-KLubK30YrJd1ClTF3fRbdw2F3yz6vBgK6ffJwfD3IMin0ejo3G9-nb5cBa_O7S1iZ4MnM0x8MxHo1duMYvhI030IDM91CvffXY6pCiWQLJGG9MCY9tU2urFY9SESZKJU3OqeMghgGAhIZQIHxBTWxURhPwjUzR0KiGYWkoUhtX0Wo-zM0-wkmYpZGKRMOqlGUxTbTJEsWpVVqLUNkARaWcZFYwibuGFi9ywYHsZCtBttLLVtIAnX2uGc15NP6cXZ2LX7qHSxOVMY3BFgaoVqpDFodtIsEsNR0rP4sCdF6qaPH6998c_G_6Cao8XLbl3XX39hBtUNcI2Cej1dDqdDwzR4BOpurYb8API5PYWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incentive+alignment+in+anchored+MaxDiff+yields+superior+predictive+validity&rft.jtitle=Marketing+letters&rft.au=Schramm%2C+Joshua+Benjamin&rft.au=Lichters%2C+Marcel&rft.date=2025-03-01&rft.pub=Springer+US&rft.issn=1573-059X&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs11002-023-09714-2&rft.externalDBID=OT2&rft.externalDocID=323376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-059X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-059X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-059X&client=summon