Incentive alignment in anchored MaxDiff yields superior predictive validity
Abstract Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevent...
Saved in:
Published in | Marketing letters Vol. 36; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment ( n = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field. |
---|---|
AbstractList | Abstract
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment ( n = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field. Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment (n = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field. Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand. However, the usefulness of traditional MaxDiff studies suffers from two limitations. First, it measures relative preferences, which prevents predicting how many consumers would actually buy a product and impedes comparing results across respondents. Second, market researchers apply MaxDiff in hypothetical settings that might not reveal valid preferences due to hypothetical bias. The first limitation has been addressed by implementing anchored MaxDiff variants. In contrast, the latter limitation has only been targeted in other preference measurement procedures such as conjoint analysis by applying incentive alignment. By integrating anchored MaxDiff (i.e., direct vs. indirect anchoring) with incentive alignment (present vs. absent) in a 2 × 2 between-subjects preregistered online experiment ( n = 448), the current study is the first to address both threats. The results show that incentive-aligning MaxDiff increases the predictive validity regarding consequential product choices—importantly—independently of the anchoring method. In contrast, hypothetical MaxDiff variants overestimate general product demand. The article concludes by showcasing how the managerial implications drawn from anchored MaxDiff differ depending on the four tested variants. In addition, we provide the first incentive-aligned MaxDiff benchmark dataset in the field. |
Author | Lichters, Marcel Schramm, Joshua Benjamin |
Author_xml | – sequence: 1 givenname: Joshua Benjamin surname: Schramm fullname: Schramm, Joshua Benjamin – sequence: 2 givenname: Marcel surname: Lichters fullname: Lichters, Marcel |
BookMark | eNp9kE1LAzEQhoNUsK3-AUFY8Lyaj93N7lHqV7HiRcFbyGZna8o2qUla7L837QqKh57eeZl5ZoZ3hAbGGkDonOArgjG_9iQKTTFlKa44yVJ6hIYk59Hm1fvgT32CRt4vMMZlgckQPU2NAhP0BhLZ6blZRpNok0ijPqyDJnmWX7e6bZOthq7xiV-vwGnrklVsarUHN5FsdNieouNWdh7OfnSM3u7vXieP6ezlYTq5maUqy3lIc9ZWTdM2dU5kgcu6Lqs8pwXleTSMcF7UWcULCgxqRUsFkNUUQ80hk7iQLRujy37vytnPNfggFnbtTDwpGInLeEkzEqdoP6Wc9d5BK1ZOL6XbCoLFLjTRhyZiaGIfmqARKv9BSgcZtDXBSd0dRlmP-njHzMH9fnWQuugpUNZoL3big3WCUcZ4wb4BxEuNdQ |
CitedBy_id | crossref_primary_10_21105_joss_06708 crossref_primary_10_1073_pnas_2319016121 |
Cites_doi | 10.1509/jmkr.42.1.67.56890 10.1016/j.foodqual.2012.01.002 10.1016/j.jretconser.2021.102681 10.1177/0022243718817004 10.1007/s11747-023-00997-5 10.1007/978-1-4842-9268-6_10 10.1111/jpim.12077 10.1111/j.1467-8276.2007.01119.x 10.1509/jmkr.48.1.172 10.1007/s13162-015-0066-8 10.1016/j.ijresmar.2012.10.002 10.1016/j.ijresmar.2009.09.004 10.1186/s13561-015-0079-x 10.1177/002224379503200402 10.1016/j.ijresmar.2020.04.006 10.1201/b16018 10.1016/j.jocm.2019.01.002 10.1177/074391569201100202 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | OT2 C6C AAYXX CITATION 8BJ FQK JBE |
DOI | 10.1007/s11002-023-09714-2 |
DatabaseName | EconStor Springer Nature OA Free Journals CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Freely Accessible) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1573-059X |
EndPage | 16 |
ExternalDocumentID | 10_1007_s11002_023_09714_2 323376 |
GrantInformation_xml | – fundername: Technische Universität Chemnitz funderid: http://dx.doi.org/10.13039/100009117 – fundername: Otto-von-Guericke-Universität Magdeburg (3121) |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4R4 5GY 5QI 5VS 61N 67Z 6NX 78A 7WY 8AO 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATGJ AATNV AATVU AAUYE AAVDF AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABKVW ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSGB ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ABYYQ ACAOD ACBXY ACDEK ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSTC ACXJH ACYUM ACYUN ACZOJ ADAAO ADGDI ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEOZU AEPYU AESKC AETLH AEULS AEUPB AEVLU AEXYK AEZWR AFBBN AFDYV AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAJD AHAVH AHBYD AHIZY AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBCO AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APTMU ARMRJ ASMEE ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGNMA BIPZW BPHCQ BSONS CAG CBXGM CCPQU CMDUG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBO EBS EBU EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IPSME ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU JST JZLTJ K1G K60 K6~ KDC KOV KOW LAK LLZTM M0C M4Y MA- N2Q NB0 NB9 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I OAM OT2 OVD P19 P2P P9M PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PUEGO Q2X QOK QOS QWB R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SA0 SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZL0 ZMTXR ZY4 ZYFGU ~8M ~EX AAYOK ABTAH C6C RIG AAYXX ACMFV CITATION 8BJ FQK JBE |
ID | FETCH-LOGICAL-c457t-53f9ddfdb51a608bb89552627508b31776b49762e3ebc28cee4b20eb7e4a06af3 |
IEDL.DBID | U2A |
ISSN | 1573-059X 0923-0645 |
IngestDate | Sat Aug 16 19:51:10 EDT 2025 Sun Jul 06 05:06:02 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 Mon Apr 14 02:03:31 EDT 2025 Fri Aug 29 12:25:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Best-worst scaling (BWS) Market research methods Anchored maximum difference scaling (MaxDiff) Predictive validity Preference measurement Incentive alignment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-53f9ddfdb51a608bb89552627508b31776b49762e3ebc28cee4b20eb7e4a06af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3710-2292 0000-0001-5602-4632 |
OpenAccessLink | https://link.springer.com/10.1007/s11002-023-09714-2 |
PQID | 3189578241 |
PQPubID | 29932 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3189578241 crossref_primary_10_1007_s11002_023_09714_2 crossref_citationtrail_10_1007_s11002_023_09714_2 springer_journals_10_1007_s11002_023_09714_2 econis_econstor_323376 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | A Journal of Research in Marketing |
PublicationTitle | Marketing letters |
PublicationTitleAbbrev | Mark Lett |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | C Chapman (9714_CR2) 2023 TM Rausch (9714_CR23) 2021; 63 TN Flynn (9714_CR8) 2014 AC Mühlbacher (9714_CR19) 2016; 6 JJ Louviere (9714_CR15) 2013; 30 9714_CR13 K Chrzan (9714_CR4) 2019; 30 S Dong (9714_CR6) 2010; 27 K Chrzan (9714_CR3) 2019 GM Allenby (9714_CR1) 1995; 32 KM Miller (9714_CR18) 2011; 48 M Lichters (9714_CR14) 2015; 5 R Hofstetter (9714_CR11) 2021; 38 M Ding (9714_CR5) 2005; 42 Sawtooth Software Inc (9714_CR25) 2022 A Gelman (9714_CR9) 2013 9714_CR22 9714_CR21 9714_CR24 LC Yang (9714_CR27) 2018; 55 9714_CR20 JL Lusk (9714_CR16) 2008; 90 G Miaoulis (9714_CR17) 1990; 2 9714_CR26 CJ Lagerkvist (9714_CR12) 2012; 25 A Finn (9714_CR7) 1992; 11 JR Hauser (9714_CR10) 2014; 31 |
References_xml | – volume: 42 start-page: 67 year: 2005 ident: 9714_CR5 publication-title: Journal of Marketing Research doi: 10.1509/jmkr.42.1.67.56890 – volume: 25 start-page: 29 year: 2012 ident: 9714_CR12 publication-title: Food Quality and Preference doi: 10.1016/j.foodqual.2012.01.002 – ident: 9714_CR21 – volume: 63 start-page: 102681 year: 2021 ident: 9714_CR23 publication-title: Journal of Retailing and Consumer Services doi: 10.1016/j.jretconser.2021.102681 – volume: 55 start-page: 783 year: 2018 ident: 9714_CR27 publication-title: Journal of Marketing Research doi: 10.1177/0022243718817004 – volume-title: Applied MaxDiff: A practitioner's guide to best-worst scaling year: 2019 ident: 9714_CR3 – ident: 9714_CR24 doi: 10.1007/s11747-023-00997-5 – start-page: 185 volume-title: Quantitative user experience research: Informing product decisions by understanding users at scale year: 2023 ident: 9714_CR2 doi: 10.1007/978-1-4842-9268-6_10 – ident: 9714_CR20 – volume: 31 start-page: 17 year: 2014 ident: 9714_CR10 publication-title: Journal of Product Innovation Management doi: 10.1111/jpim.12077 – volume: 90 start-page: 487 year: 2008 ident: 9714_CR16 publication-title: American Journal of Agricultural Economics doi: 10.1111/j.1467-8276.2007.01119.x – ident: 9714_CR26 – start-page: 178 volume-title: Handbook of choice modelling year: 2014 ident: 9714_CR8 – ident: 9714_CR22 – volume: 48 start-page: 172 year: 2011 ident: 9714_CR18 publication-title: Journal of Marketing Research doi: 10.1509/jmkr.48.1.172 – volume: 5 start-page: 1 year: 2015 ident: 9714_CR14 publication-title: AMS Review doi: 10.1007/s13162-015-0066-8 – volume: 30 start-page: 292 year: 2013 ident: 9714_CR15 publication-title: International Journal of Research in Marketing doi: 10.1016/j.ijresmar.2012.10.002 – volume: 27 start-page: 25 year: 2010 ident: 9714_CR6 publication-title: International Journal of Research in Marketing doi: 10.1016/j.ijresmar.2009.09.004 – volume: 6 start-page: 2 year: 2016 ident: 9714_CR19 publication-title: Health Economics Review doi: 10.1186/s13561-015-0079-x – volume: 32 start-page: 392 year: 1995 ident: 9714_CR1 publication-title: Journal of Marketing Research doi: 10.1177/002224379503200402 – ident: 9714_CR13 – volume: 38 start-page: 70 year: 2021 ident: 9714_CR11 publication-title: International Journal of Research in Marketing doi: 10.1016/j.ijresmar.2020.04.006 – volume-title: Bayesian data analysis year: 2013 ident: 9714_CR9 doi: 10.1201/b16018 – volume: 2 start-page: 28 issue: 1 year: 1990 ident: 9714_CR17 publication-title: Marketing Research – volume: 30 start-page: 61 year: 2019 ident: 9714_CR4 publication-title: Journal of Choice Modelling doi: 10.1016/j.jocm.2019.01.002 – volume: 11 start-page: 12 year: 1992 ident: 9714_CR7 publication-title: Journal of Public Policy & Marketing doi: 10.1177/074391569201100202 – volume-title: Lighthouse studio 9 year: 2022 ident: 9714_CR25 |
SSID | ssj0008601 |
Score | 2.4067645 |
Snippet | Abstract
Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product... Maximum Difference Scaling (MaxDiff) is an essential method in marketing concerning forecasting consumer purchase decisions and general product demand.... |
SourceID | proquest crossref springer econis |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Anchored maximum difference scaling (MaxDiff) Anchoring Best-worst scaling (BWS) Business and Management Conjoint analysis Consumers Incentive alignment Incentives Limitations Market research methods Marketing Predictive validity Preference measurement Purchase intention Usefulness Variants |
Title | Incentive alignment in anchored MaxDiff yields superior predictive validity |
URI | https://www.econstor.eu/handle/10419/323376 https://link.springer.com/article/10.1007/s11002-023-09714-2 https://www.proquest.com/docview/3189578241 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8QnwRP3F-jDz4poE2TbLucU6nKPrkQJ9C0yY6kE3WKfrfe5e1DkUFn0Jp0sJdcvcLd_c7gEMvHDpdi-fbpRGXKnY8kzriQiHWRzTndSikvb7RF315eafuqqKwss52r0OSwVLPit2ILZSjj-HEeyQ5Gt5FRXd33MV90fm0v6kOTY-jNs3UUlWlMj9_44s7WqI76KD8Aja_xUeD2-mtwWqFF1lnquB1mHPDDViu09U34QoPOCX8vDqGiPohxPbZYMhQmY-jsSvYdfZ2OvCevVOqWsnKF6I2Ho3Z85hCNGEhbrZBgWh8C_q9s9vuBa8aJPBcqtaEq8S3i8IXVsWZjlJr07ZSgniH8QGBQUtbFLgWLnE2Fyn6Q2lF5GzLySzSmU-2YWE4GrodYGmUZ7GNdcvbTOaJSAuXp1YJb4tCR9Y3IK7lZPKKPZyaWDyZGe8xydagbE2QrRENOPpc8zzlzvhz9vZU_IYGSg01iUjQ_jVgv1aHqQ5YadAUtYmJX8YNOK5VNHv9-292_zd9D1YEdfwNWWf7sDAZv7gDhCET24TFTu_k5IbG8_ursybMd3W3GfbiB9zQ1Sw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8MGvXF-EVEUfvgmzZuXVvGo0EJyscTJLw169YqiQHCwOh_790YEIia-LQ0a7fkrr37NXf3O0JuHLfgdA2cbxt6TEjfskgoj3EJWB_QnFNZIW27oxo98dKX_ZwmB2thNuL39ylSmnEGnoUh25FgYG63BdyUMX2vpmpLqxuqrNWxV8WZSsi8QObnb6w5oR28eQ7SNYi5ERXNnE39kBzkKJE-zNV6RLbs8JjsLpLUT0gTjjWm-XxYCjj6NYvo08GQggrfRhOb0Hb0-Thwjn5hglpK0xkSGo8mdDzBwEy2ELbYIAEMfkp69adurcHytggsFrIyZTJw1SRxiZF-pLzQmLAqJUe2YRgAHKgoA2JW3AbWxDwELygM96ypWBF5KnJBkRSGo6E9IzT04sg3vqo4E4k44GFi49BI7kySKM-4EvEXctJxzhmOrSve9YrtGGWrQbY6k63mJXK7XDOeM2b8Obs4F7_GByaE6oAHYPVKpLxQh86PVarBAFWRf1_4JXK3UNHq9e-_Of_f9Guy1-i2W7r13GlekH2OPX-zvLMyKUwnM3sJQGRqrrId-A0S6dAR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iMnwRv4bVqXnwTcPaNMm6R5mO-TV8cLC30DSJDqQb-xD9771krXOigk8lNGnhLrn7hbv7HUKnlhpwugrOt0lCwnhkSMpESCgHrA9ozgpfSHvfFZ0eu-nz_pcqfp_tXoYk5zUNjqUpn9ZH2tYXhW-OOZSAvyGOA4kRMMJrcFPxgdqWaH3a4kT4Bshh080UjBdlMz9_Y8k1rbv76GCyBDy_xUq9C2pvoc0CO-KLubK30YrJd1ClTF3fRbdw2F3yz6vBgK6ffJwfD3IMin0ejo3G9-nb5cBa_O7S1iZ4MnM0x8MxHo1duMYvhI030IDM91CvffXY6pCiWQLJGG9MCY9tU2urFY9SESZKJU3OqeMghgGAhIZQIHxBTWxURhPwjUzR0KiGYWkoUhtX0Wo-zM0-wkmYpZGKRMOqlGUxTbTJEsWpVVqLUNkARaWcZFYwibuGFi9ywYHsZCtBttLLVtIAnX2uGc15NP6cXZ2LX7qHSxOVMY3BFgaoVqpDFodtIsEsNR0rP4sCdF6qaPH6998c_G_6Cao8XLbl3XX39hBtUNcI2Cej1dDqdDwzR4BOpurYb8API5PYWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incentive+alignment+in+anchored+MaxDiff+yields+superior+predictive+validity&rft.jtitle=Marketing+letters&rft.au=Schramm%2C+Joshua+Benjamin&rft.au=Lichters%2C+Marcel&rft.date=2025-03-01&rft.pub=Springer+US&rft.issn=1573-059X&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1007%2Fs11002-023-09714-2&rft.externalDBID=OT2&rft.externalDocID=323376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-059X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-059X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-059X&client=summon |