Pathology of callosal damage in ALS: An ex-vivo, 7 T diffusion tensor MRI study

AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. MethodsDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 15; pp. 200 - 208
Main Authors Cardenas, Agustin M, Sarlls, Joelle E, Kwan, Justin Y, Bageac, Devin, Gala, Zachary S, Danielian, Laura E, Ray-Chaudhury, Abhik, Wang, Hao-Wei, Miller, Karla L, Foxley, Sean, Jbabdi, Saad, Welsh, Robert C, Floeter, Mary Kay
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.01.2017
Subjects
Online AccessGet full text
ISSN2213-1582
2213-1582
DOI10.1016/j.nicl.2017.04.024

Cover

Loading…
Abstract AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. MethodsDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. ResultsThe FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum. ConclusionReduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.
AbstractList • Diffusion-weighted SSFP and histology were carried out on 4 ALS and 2 control brains. • The FA of the splenium, an unaffected region, was a control for differences in PMI. • The FA body/FA splenium was reduced in ALS compared to controls. • The body of the callosum had increased CD68 + activated microglia and astrogliosis.
The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. Diffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. The FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with mutations, and increased reactive astrocytes throughout the callosum. Reduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.
AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. MethodsDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. ResultsThe FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum. ConclusionReduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.
The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients.OBJECTIVESThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients.Diffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters.METHODSDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters.The FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum.RESULTSThe FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum.Reduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.CONCLUSIONReduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.
Author Welsh, Robert C
Wang, Hao-Wei
Floeter, Mary Kay
Gala, Zachary S
Jbabdi, Saad
Cardenas, Agustin M
Sarlls, Joelle E
Kwan, Justin Y
Foxley, Sean
Bageac, Devin
Danielian, Laura E
Miller, Karla L
Ray-Chaudhury, Abhik
AuthorAffiliation b Department of Neurology, University of Maryland, Baltimore, MD, United States
e Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
d FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
c National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
a National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
AuthorAffiliation_xml – name: b Department of Neurology, University of Maryland, Baltimore, MD, United States
– name: a National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
– name: c National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
– name: d FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
– name: e Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
Author_xml – sequence: 1
  fullname: Cardenas, Agustin M
– sequence: 2
  fullname: Sarlls, Joelle E
– sequence: 3
  fullname: Kwan, Justin Y
– sequence: 4
  fullname: Bageac, Devin
– sequence: 5
  fullname: Gala, Zachary S
– sequence: 6
  fullname: Danielian, Laura E
– sequence: 7
  fullname: Ray-Chaudhury, Abhik
– sequence: 8
  fullname: Wang, Hao-Wei
– sequence: 9
  fullname: Miller, Karla L
– sequence: 10
  fullname: Foxley, Sean
– sequence: 11
  fullname: Jbabdi, Saad
– sequence: 12
  fullname: Welsh, Robert C
– sequence: 13
  fullname: Floeter, Mary Kay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28529876$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVAr-qA_wAJ5yYKktvOwwwJpVFGoNFURLesrx7mZevDYJU5GzN_jqFNUWNQbX8nnIZ9zT8iBDx4JectZzhmvz9e5t8blgnGZszJnonxFjoXgRcYrJQ6ezUfkLMY1S0cxJuv6NTkSqhKNkvUxufmmx_vgwmpHQ0-Ndi5E7WinN3qF1Hq6WN5-pAtP8Xe2tdvwgUp6Rzvb91O0wdMRfQwDvf5-ReM4dbs35LDXLuLZ_j4lPy4_3118zZY3X64uFsvMlJUcs6ooGSrdCmxRGKFrJuq2FYXuTcelLFCWFSpseV-2XZqlUE1VN5Vs2qJP2OKUfHrUfZjaDXYG_ThoBw-D3ehhB0Fb-PfF23tYhS1UpWhEOQu83wsM4deEcYSNjQad0x7DFIE3jBecKTVD3z33-mvylGICqEeAGUKMA_Zg7KjHlE-ytg44g7kzWMPcGcydASshdZao4j_qk_qLpP3nMSW8tTiAcTahtPuJO4zrMA0-hQ8cogAGt_MqzJvAZcGSpir-AKVbrto
CitedBy_id crossref_primary_10_1136_jnnp_2019_321938
crossref_primary_10_1002_hbm_26121
crossref_primary_10_1177_15459683241249115
crossref_primary_10_1080_21678421_2019_1639195
crossref_primary_10_1111_ene_15136
crossref_primary_10_1016_j_msard_2021_102810
crossref_primary_10_1093_schbul_sbad114
crossref_primary_10_3389_fnins_2019_00486
crossref_primary_10_1016_j_nicl_2022_103138
crossref_primary_10_1016_j_nicl_2018_01_033
crossref_primary_10_1080_21678421_2020_1733020
crossref_primary_10_1016_j_jneumeth_2018_10_010
crossref_primary_10_1016_j_jns_2020_117039
crossref_primary_10_1016_j_nicl_2022_103061
crossref_primary_10_1080_21678421_2017_1407795
crossref_primary_10_1038_s41583_020_0315_1
crossref_primary_10_3390_cells10020249
crossref_primary_10_1097_WCO_0000000000000569
crossref_primary_10_2463_mrms_mp_2023_0138
crossref_primary_10_1186_s13024_022_00525_z
crossref_primary_10_1038_s41598_025_87377_x
crossref_primary_10_1136_jnnp_2017_317245
crossref_primary_10_7554_eLife_73153
crossref_primary_10_1002_brb3_3102
crossref_primary_10_1007_s00415_024_12190_x
crossref_primary_10_3390_cells14060421
crossref_primary_10_1002_path_6008
crossref_primary_10_1038_s41598_024_68374_y
crossref_primary_10_1080_14737175_2018_1463160
crossref_primary_10_1002_mrm_30436
crossref_primary_10_1177_20406223211002969
crossref_primary_10_1016_j_neurobiolaging_2019_07_019
crossref_primary_10_3389_fncel_2021_707861
crossref_primary_10_4103_NRR_NRR_D_23_01359
crossref_primary_10_3389_fneur_2019_00229
crossref_primary_10_3389_fncel_2023_1179796
crossref_primary_10_1016_j_neuroimage_2020_117113
crossref_primary_10_1155_2018_2635202
crossref_primary_10_1080_21678421_2020_1752253
crossref_primary_10_1016_j_neuroimage_2020_117313
crossref_primary_10_3389_fnins_2021_675444
crossref_primary_10_2174_1573405614666181115113400
crossref_primary_10_1002_hbm_25738
crossref_primary_10_3389_fnins_2020_611696
crossref_primary_10_1007_s11682_020_00429_w
Cites_doi 10.1063/1.1695690
10.1002/nbm.1940080707
10.1007/s11481-009-9171-5
10.1002/mrm.20488
10.1002/mrm.20578
10.1016/j.neuroimage.2003.11.024
10.1177/1352458509353649
10.1212/WNL.0b013e3181fb84d1
10.1016/j.neuroimage.2009.01.008
10.1523/JNEUROSCI.2320-07.2007
10.1002/mrm.1910360612
10.1007/s13311-014-0329-3
10.1016/j.neuroimage.2006.05.044
10.1002/nbm.814
10.1126/science.aaf1064
10.1212/WNL.53.5.1051
10.1016/j.neuroimage.2004.07.051
10.1001/archneurol.2012.1122
10.1016/j.nbd.2003.12.012
10.1016/j.neuroimage.2011.03.070
10.1038/nn2047
10.1002/nbm.3405
10.1073/pnas.1520639112
10.1016/0006-8993(92)90178-C
10.1080/146608200300079536
10.1002/mrm.1910290212
10.1111/neup.12027
10.1002/nbm.2920
10.1002/mrm.21668
10.1016/j.neuroimage.2003.07.005
10.1016/j.neuroimage.2008.10.055
10.1093/brain/112.3.799
10.1371/journal.pone.0039216
10.1016/j.neuron.2011.09.010
10.1016/j.nicl.2015.01.009
10.1016/j.neuroimage.2007.02.039
10.1148/radiology.201.3.8939209
10.1016/j.acra.2013.03.017
10.1016/j.neuroimage.2011.09.054
10.1093/brain/awr178
10.1016/j.neuroimage.2014.08.014
10.1016/j.neuroimage.2006.12.028
10.1002/hbm.20527
10.1111/j.1468-1331.2009.02560.x
10.1002/nbm.2992
10.1016/j.jneumeth.2007.05.024
10.1111/j.1460-9568.2010.07445.x
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.nicl.2017.04.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 208
ExternalDocumentID PMC5429246
28529876
10_1016_j_nicl_2017_04_024
1_s2_0_S2213158217301018
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K02213X/1
– fundername: Intramural NIH HHS
  grantid: Z01 NS002976
– fundername: Medical Research Council
  grantid: MR/L009013/1
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFCTW
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c457t-5340e8ab2ebe2c2a6026bb23afcd1773e745e8eb1f4bd7457289569579b3f0263
IEDL.DBID M48
ISSN 2213-1582
IngestDate Thu Aug 21 18:16:01 EDT 2025
Thu Sep 04 19:13:26 EDT 2025
Mon Jul 21 05:50:26 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 01:09:18 EDT 2025
Wed Jun 18 06:48:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords magnetic resonance imaging
Diffusion Weighted Steady State Free Precession
MRI
Motor neuron disease
ALS
volume of interest
diffusion weighted imaging
7 T MRI
scan interval (death to scan)
SNR
DWI
MD
DW-SSFP
axial diffusivity
mean diffusivity
AD
radial diffusivity
PSI
Amyotrophic lateral sclerosis
PMI
GFAP
Microglia
VOI
Pathology
Steady-state free precession
RD
DTI
diffusion tensor imaging
fractional anisotropy
FA
glial fibrillary acidic protein
signal to noise ratio
post mortem interval
7 T MRI
FA, fractional anisotropy
GFAP, glial fibrillary acidic protein
PSI, scan interval (death to scan)
DWI, diffusion weighted imaging
ALS, Amyotrophic lateral sclerosis
PMI, post mortem interval
RD, radial diffusivity
MRI, magnetic resonance imaging
DW-SSFP, Diffusion Weighted Steady State Free Precession
MD, mean diffusivity
AD, axial diffusivity
SNR, signal to noise ratio
DTI, diffusion tensor imaging
VOI, volume of interest
Language English
License This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-5340e8ab2ebe2c2a6026bb23afcd1773e745e8eb1f4bd7457289569579b3f0263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2017.04.024
PMID 28529876
PQID 1901310886
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5429246
proquest_miscellaneous_1901310886
pubmed_primary_28529876
crossref_citationtrail_10_1016_j_nicl_2017_04_024
crossref_primary_10_1016_j_nicl_2017_04_024
elsevier_clinicalkeyesjournals_1_s2_0_S2213158217301018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2017
Publisher Elsevier
Publisher_xml – name: Elsevier
References Pfefferbaum (10.1016/j.nicl.2017.04.024_bb0150) 2004; 21
Zurcher (10.1016/j.nicl.2017.04.024_bb0245) 2015; 7
Guilfoyle (10.1016/j.nicl.2017.04.024_bb0080) 2003; 16
Ellis (10.1016/j.nicl.2017.04.024_bb0060) 1999; 53
Wahl (10.1016/j.nicl.2017.04.024_bb0220) 2007; 27
McNab (10.1016/j.nicl.2017.04.024_bb0120) 2009; 46
Yong-Hing (10.1016/j.nicl.2017.04.024_bb0240) 2005; 54
Duan (10.1016/j.nicl.2017.04.024_bb0055) 2013; 26
Witelson (10.1016/j.nicl.2017.04.024_bb0225) 1989; 112
Henkel (10.1016/j.nicl.2017.04.024_bb0085) 2009; 4
Sun (10.1016/j.nicl.2017.04.024_bb0205) 2015; 112
Hofer (10.1016/j.nicl.2017.04.024_bb0090) 2006; 32
Miller (10.1016/j.nicl.2017.04.024_bb0135) 2012; 59
Smith (10.1016/j.nicl.2017.04.024_bb0180) 2004; 23
Brettschneider (10.1016/j.nicl.2017.04.024_bb0025) 2012; 7
Filippini (10.1016/j.nicl.2017.04.024_bb0065) 2010; 75
Ozturk (10.1016/j.nicl.2017.04.024_bb0145) 2010; 16
Stejskal (10.1016/j.nicl.2017.04.024_bb0190) 1965; 42
Aboitiz (10.1016/j.nicl.2017.04.024_bb0005) 1992; 598
Menke (10.1016/j.nicl.2017.04.024_bb0125) 2012; 69
Woolrich (10.1016/j.nicl.2017.04.024_bb0230) 2009; 45
Song (10.1016/j.nicl.2017.04.024_bb0185) 2003; 20
McNab (10.1016/j.nicl.2017.04.024_bb0115) 2008; 60
Sun (10.1016/j.nicl.2017.04.024_bb0200) 2005; 53
Bazin (10.1016/j.nicl.2017.04.024_bb0020) 2007; 165
O'Rourke (10.1016/j.nicl.2017.04.024_bb0140) 2016; 351
Renton (10.1016/j.nicl.2017.04.024_bb0170) 2011; 72
D'Arceuil (10.1016/j.nicl.2017.04.024_bb0050) 2007; 35
D'Arceuil (10.1016/j.nicl.2017.04.024_bb0045) 2007; 36
Skinner (10.1016/j.nicl.2017.04.024_bb0175) 2015; 28
Kuhle (10.1016/j.nicl.2017.04.024_bb0105) 2009; 16
Pierpaoli (10.1016/j.nicl.2017.04.024_bb0160) 1996; 201
Brooks (10.1016/j.nicl.2017.04.024_bb0030) 2000; 1
Iwata (10.1016/j.nicl.2017.04.024_bb0100) 2011; 134
Hooten (10.1016/j.nicl.2017.04.024_bb0095) 2015; 12
Pierpaoli (10.1016/j.nicl.2017.04.024_bb0155) 1996; 36
Ciccarelli (10.1016/j.nicl.2017.04.024_bb0040) 2009; 30
Foerster (10.1016/j.nicl.2017.04.024_bb0070) 2013; 20
Miller (10.1016/j.nicl.2017.04.024_bb0130) 2011; 57
Turner (10.1016/j.nicl.2017.04.024_bb0215) 2004; 15
Basser (10.1016/j.nicl.2017.04.024_bb0015) 1995; 8
Thiessen (10.1016/j.nicl.2017.04.024_bb0210) 2013; 26
Kwan (10.1016/j.nicl.2017.04.024_bb0110) 2012; 2
Agosta (10.1016/j.nicl.2017.04.024_bb0010) 2010; 32
Buxton (10.1016/j.nicl.2017.04.024_bb0035) 1993; 29
Foxley (10.1016/j.nicl.2017.04.024_bb0075) 2014; 102
Yamanaka (10.1016/j.nicl.2017.04.024_bb0235) 2008; 11
Sugiyama (10.1016/j.nicl.2017.04.024_bb0195) 2013; 33
Pierpaoli (10.1016/j.nicl.2017.04.024_bb0165) 2010
References_xml – volume: 42
  start-page: 5
  year: 1965
  ident: 10.1016/j.nicl.2017.04.024_bb0190
  article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1695690
– volume: 8
  start-page: 333
  year: 1995
  ident: 10.1016/j.nicl.2017.04.024_bb0015
  article-title: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1940080707
– volume: 4
  start-page: 389
  year: 2009
  ident: 10.1016/j.nicl.2017.04.024_bb0085
  article-title: Microglia in ALS: the good, the bad, and the resting
  publication-title: J. NeuroImmune Pharmacol.
  doi: 10.1007/s11481-009-9171-5
– volume: 53
  start-page: 1447
  year: 2005
  ident: 10.1016/j.nicl.2017.04.024_bb0200
  article-title: Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infarcted brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20488
– volume: 54
  start-page: 324
  year: 2005
  ident: 10.1016/j.nicl.2017.04.024_bb0240
  article-title: Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20578
– volume: 21
  start-page: 1585
  year: 2004
  ident: 10.1016/j.nicl.2017.04.024_bb0150
  article-title: Postmortem MR imaging of formalin-fixed human brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.024
– volume: 16
  start-page: 166
  year: 2010
  ident: 10.1016/j.nicl.2017.04.024_bb0145
  article-title: MRI of the corpus callosum in multiple sclerosis: association with disability
  publication-title: Mult. Scler. (Houndmills, Basingstoke, England)
  doi: 10.1177/1352458509353649
– volume: 75
  start-page: 1645
  year: 2010
  ident: 10.1016/j.nicl.2017.04.024_bb0065
  article-title: Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181fb84d1
– volume: 46
  start-page: 775
  year: 2009
  ident: 10.1016/j.nicl.2017.04.024_bb0120
  article-title: High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.008
– volume: 27
  start-page: 12132
  year: 2007
  ident: 10.1016/j.nicl.2017.04.024_bb0220
  article-title: Human motor corpus callosum: topography, somatotopy, and link between microstructure and function
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2320-07.2007
– year: 2010
  ident: 10.1016/j.nicl.2017.04.024_bb0165
  article-title: Tortoise: an integrated software package for processing of diffusion MRI data
– volume: 36
  start-page: 893
  year: 1996
  ident: 10.1016/j.nicl.2017.04.024_bb0155
  article-title: Toward a quantitative assessment of diffusion anisotropy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360612
– volume: 12
  start-page: 364
  year: 2015
  ident: 10.1016/j.nicl.2017.04.024_bb0095
  article-title: Protective and toxic neuroinflammation in amyotrophic lateral sclerosis
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-014-0329-3
– volume: 32
  start-page: 989
  year: 2006
  ident: 10.1016/j.nicl.2017.04.024_bb0090
  article-title: Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.044
– volume: 16
  start-page: 77
  year: 2003
  ident: 10.1016/j.nicl.2017.04.024_bb0080
  article-title: Diffusion tensor imaging in fixed brain tissue at 7.0T
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.814
– volume: 351
  start-page: 1324
  year: 2016
  ident: 10.1016/j.nicl.2017.04.024_bb0140
  article-title: C9orf72 is required for proper macrophage and microglial function in mice
  publication-title: Science
  doi: 10.1126/science.aaf1064
– volume: 53
  start-page: 1051
  year: 1999
  ident: 10.1016/j.nicl.2017.04.024_bb0060
  article-title: Diffusion tensor MRI assesses corticospinal tract damage in ALS
  publication-title: Neurology
  doi: 10.1212/WNL.53.5.1051
– volume: 23
  start-page: S208
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.nicl.2017.04.024_bb0180
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 69
  start-page: 1493
  year: 2012
  ident: 10.1016/j.nicl.2017.04.024_bb0125
  article-title: Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2012.1122
– volume: 15
  start-page: 601
  year: 2004
  ident: 10.1016/j.nicl.2017.04.024_bb0215
  article-title: Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2003.12.012
– volume: 57
  start-page: 167
  year: 2011
  ident: 10.1016/j.nicl.2017.04.024_bb0130
  article-title: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.070
– volume: 11
  start-page: 251
  year: 2008
  ident: 10.1016/j.nicl.2017.04.024_bb0235
  article-title: Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2047
– volume: 28
  start-page: 1489
  year: 2015
  ident: 10.1016/j.nicl.2017.04.024_bb0175
  article-title: Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3405
– volume: 112
  start-page: E6993
  year: 2015
  ident: 10.1016/j.nicl.2017.04.024_bb0205
  article-title: Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1520639112
– volume: 598
  start-page: 143
  year: 1992
  ident: 10.1016/j.nicl.2017.04.024_bb0005
  article-title: Fiber composition of the human corpus callosum
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(92)90178-C
– volume: 1
  start-page: 293
  year: 2000
  ident: 10.1016/j.nicl.2017.04.024_bb0030
  article-title: El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis
  publication-title: Amyotroph. Lateral Scler. Other Motor Neuron Disord.
  doi: 10.1080/146608200300079536
– volume: 29
  start-page: 235
  year: 1993
  ident: 10.1016/j.nicl.2017.04.024_bb0035
  article-title: The diffusion sensitivity of fast steady-state free precession imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910290212
– volume: 33
  start-page: 591
  year: 2013
  ident: 10.1016/j.nicl.2017.04.024_bb0195
  article-title: Increased number of astrocytes and macrophages/microglial cells in the corpus callosum in amyotrophic lateral sclerosis
  publication-title: Neuropathology
  doi: 10.1111/neup.12027
– volume: 26
  start-page: 1070
  year: 2013
  ident: 10.1016/j.nicl.2017.04.024_bb0055
  article-title: Improved Bloch-Siegert based B1 mapping by reducing off-resonance shift
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2920
– volume: 2
  start-page: 151
  year: 2012
  ident: 10.1016/j.nicl.2017.04.024_bb0110
  article-title: Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis
  publication-title: Neuroimage (Amst)
– volume: 60
  start-page: 405
  year: 2008
  ident: 10.1016/j.nicl.2017.04.024_bb0115
  article-title: Sensitivity of diffusion weighted steady state free precession to anisotropic diffusion
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21668
– volume: 20
  start-page: 1714
  year: 2003
  ident: 10.1016/j.nicl.2017.04.024_bb0185
  article-title: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.07.005
– volume: 45
  start-page: S173
  year: 2009
  ident: 10.1016/j.nicl.2017.04.024_bb0230
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.055
– volume: 112
  start-page: 799
  issue: Pt 3
  year: 1989
  ident: 10.1016/j.nicl.2017.04.024_bb0225
  article-title: Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study
  publication-title: Brain
  doi: 10.1093/brain/112.3.799
– volume: 7
  year: 2012
  ident: 10.1016/j.nicl.2017.04.024_bb0025
  article-title: Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039216
– volume: 72
  start-page: 257
  year: 2011
  ident: 10.1016/j.nicl.2017.04.024_bb0170
  article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.010
– volume: 7
  start-page: 409
  year: 2015
  ident: 10.1016/j.nicl.2017.04.024_bb0245
  article-title: Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2015.01.009
– volume: 36
  start-page: 64
  year: 2007
  ident: 10.1016/j.nicl.2017.04.024_bb0045
  article-title: The effects of brain tissue decomposition on diffusion tensor imaging and tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.039
– volume: 201
  start-page: 637
  year: 1996
  ident: 10.1016/j.nicl.2017.04.024_bb0160
  article-title: Diffusion tensor MR imaging of the human brain
  publication-title: Radiology
  doi: 10.1148/radiology.201.3.8939209
– volume: 20
  start-page: 1099
  year: 2013
  ident: 10.1016/j.nicl.2017.04.024_bb0070
  article-title: Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.03.017
– volume: 59
  start-page: 2284
  year: 2012
  ident: 10.1016/j.nicl.2017.04.024_bb0135
  article-title: Diffusion tractography of post-mortem human brains: optimization and comparison of spin echo and steady-state free precession techniques
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.054
– volume: 134
  start-page: 2642
  year: 2011
  ident: 10.1016/j.nicl.2017.04.024_bb0100
  article-title: White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awr178
– volume: 102
  start-page: 579
  issue: Pt 2
  year: 2014
  ident: 10.1016/j.nicl.2017.04.024_bb0075
  article-title: Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.08.014
– volume: 35
  start-page: 553
  year: 2007
  ident: 10.1016/j.nicl.2017.04.024_bb0050
  article-title: An approach to high resolution diffusion tensor imaging in fixed primate brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.12.028
– volume: 30
  start-page: 615
  year: 2009
  ident: 10.1016/j.nicl.2017.04.024_bb0040
  article-title: Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20527
– volume: 16
  start-page: 771
  year: 2009
  ident: 10.1016/j.nicl.2017.04.024_bb0105
  article-title: Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis
  publication-title: Eur. J. Neurol.
  doi: 10.1111/j.1468-1331.2009.02560.x
– volume: 26
  start-page: 1562
  year: 2013
  ident: 10.1016/j.nicl.2017.04.024_bb0210
  article-title: Quantitative MRI and ultrastructural examination of the cuprizone mouse model of demyelination
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2992
– volume: 165
  start-page: 111
  year: 2007
  ident: 10.1016/j.nicl.2017.04.024_bb0020
  article-title: Volumetric neuroimage analysis extensions for the MIPAV software package
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.05.024
– volume: 32
  start-page: 1490
  year: 2010
  ident: 10.1016/j.nicl.2017.04.024_bb0010
  article-title: MRI predictors of long-term evolution in amyotrophic lateral sclerosis
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2010.07445.x
SSID ssj0000800766
Score 2.3136399
Snippet AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS...
The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. Diffusion...
The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients.OBJECTIVESThe...
• Diffusion-weighted SSFP and histology were carried out on 4 ALS and 2 control brains. • The FA of the splenium, an unaffected region, was a control for...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 200
SubjectTerms Adult
Aged
Amyotrophic Lateral Sclerosis - diagnostic imaging
Amyotrophic Lateral Sclerosis - pathology
Corpus Callosum - diagnostic imaging
Corpus Callosum - pathology
Diffusion Tensor Imaging - methods
Female
Humans
Male
Middle Aged
Radiology
Regular
Title Pathology of callosal damage in ALS: An ex-vivo, 7 T diffusion tensor MRI study
URI https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217301018
https://www.ncbi.nlm.nih.gov/pubmed/28529876
https://www.proquest.com/docview/1901310886
https://pubmed.ncbi.nlm.nih.gov/PMC5429246
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-QwEB88heNeDk9PXb2TCL55lTZtklY4ZBFFxRVRF3wLaZviitfq_hH9Nn4WP5kz2Xbv9PQe7i3QDG1nJpNJMvn9ANaFtH5gBPekMkRhJq1nRJJ5RsYpuleqEgcp1DmW-93o8EJcTEFDd1QrcPDm0o74pLr9683724dtHPA_f9dqEYgslWkpB1vKow8wgzOTJC_v1On-VZ0dKSnruzNvixI6cCw4LsXle1PV36no64rKP6aovVn4XOeWrD12hi8wZcs5-NipT8_n4eTEDF2we2BVwTI6ch9g_9z8wqDCeiVrH51tsXbJ7L1317urfjD19HjOiENlRJtqjKrdqz7rnB4wB0v7Fbp7u-c7-17NqOBlkVBDT4SRb2OTcjQdz7gh_qk05aEpsjxQKrQqEjbG8F1EaY5thcsxIekkLw0L7BsuwHRZlXYJWGHpDqrM4xwbjrLcT8IktrwoAhzKWQuCRnk6q-HGifXiWjd1ZVeadK9J99qPNOq-BRsTmZsx2MY_e6vGJrq5RoqBzw4aJ9KBHnDt6zPOgzCgG8EUzvwgbsFaY0KNo4mOSExpqxFKJIQ_hJFXtmBxbNLJlzRuge99YexJB0Lqfvmk7F06xG5HChbJ5f-WXIFP9OfjvZ9vMD3sj-x3zIaG6arbRVh1jv4M0xwI8A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathology+of+callosal+damage+in+ALS%3A+An+ex-vivo%2C+7%C2%A0T+diffusion+tensor+MRI+study&rft.jtitle=NeuroImage+clinical&rft.au=Cardenas%2C+Agustin+M.&rft.au=Sarlls%2C+Joelle+E.&rft.au=Kwan%2C+Justin+Y.&rft.au=Bageac%2C+Devin&rft.date=2017-01-01&rft.pub=Elsevier&rft.eissn=2213-1582&rft.volume=15&rft.spage=200&rft.epage=208&rft_id=info:doi/10.1016%2Fj.nicl.2017.04.024&rft_id=info%3Apmid%2F28529876&rft.externalDocID=PMC5429246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1582&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1582&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1582&client=summon