Pathology of callosal damage in ALS: An ex-vivo, 7 T diffusion tensor MRI study
AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. MethodsDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on...
Saved in:
Published in | NeuroImage clinical Vol. 15; pp. 200 - 208 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2213-1582 2213-1582 |
DOI | 10.1016/j.nicl.2017.04.024 |
Cover
Loading…
Abstract | AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. MethodsDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. ResultsThe FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum. ConclusionReduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role. |
---|---|
AbstractList | •
Diffusion-weighted SSFP and histology were carried out on 4 ALS and 2 control brains.
•
The FA of the splenium, an unaffected region, was a control for differences in PMI.
•
The FA body/FA splenium was reduced in ALS compared to controls.
•
The body of the callosum had increased CD68 + activated microglia and astrogliosis. The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. Diffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. The FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with mutations, and increased reactive astrocytes throughout the callosum. Reduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role. AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. MethodsDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. ResultsThe FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum. ConclusionReduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role. The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients.OBJECTIVESThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients.Diffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters.METHODSDiffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters.The FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum.RESULTSThe FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum.Reduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.CONCLUSIONReduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role. |
Author | Welsh, Robert C Wang, Hao-Wei Floeter, Mary Kay Gala, Zachary S Jbabdi, Saad Cardenas, Agustin M Sarlls, Joelle E Kwan, Justin Y Foxley, Sean Bageac, Devin Danielian, Laura E Miller, Karla L Ray-Chaudhury, Abhik |
AuthorAffiliation | b Department of Neurology, University of Maryland, Baltimore, MD, United States e Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States d FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK c National Cancer Institute, National Institutes of Health, Bethesda, MD, United States a National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States |
AuthorAffiliation_xml | – name: b Department of Neurology, University of Maryland, Baltimore, MD, United States – name: a National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States – name: c National Cancer Institute, National Institutes of Health, Bethesda, MD, United States – name: d FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK – name: e Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States |
Author_xml | – sequence: 1 fullname: Cardenas, Agustin M – sequence: 2 fullname: Sarlls, Joelle E – sequence: 3 fullname: Kwan, Justin Y – sequence: 4 fullname: Bageac, Devin – sequence: 5 fullname: Gala, Zachary S – sequence: 6 fullname: Danielian, Laura E – sequence: 7 fullname: Ray-Chaudhury, Abhik – sequence: 8 fullname: Wang, Hao-Wei – sequence: 9 fullname: Miller, Karla L – sequence: 10 fullname: Foxley, Sean – sequence: 11 fullname: Jbabdi, Saad – sequence: 12 fullname: Welsh, Robert C – sequence: 13 fullname: Floeter, Mary Kay |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28529876$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVAr-qA_wAJ5yYKktvOwwwJpVFGoNFURLesrx7mZevDYJU5GzN_jqFNUWNQbX8nnIZ9zT8iBDx4JectZzhmvz9e5t8blgnGZszJnonxFjoXgRcYrJQ6ezUfkLMY1S0cxJuv6NTkSqhKNkvUxufmmx_vgwmpHQ0-Ndi5E7WinN3qF1Hq6WN5-pAtP8Xe2tdvwgUp6Rzvb91O0wdMRfQwDvf5-ReM4dbs35LDXLuLZ_j4lPy4_3118zZY3X64uFsvMlJUcs6ooGSrdCmxRGKFrJuq2FYXuTcelLFCWFSpseV-2XZqlUE1VN5Vs2qJP2OKUfHrUfZjaDXYG_ThoBw-D3ehhB0Fb-PfF23tYhS1UpWhEOQu83wsM4deEcYSNjQad0x7DFIE3jBecKTVD3z33-mvylGICqEeAGUKMA_Zg7KjHlE-ytg44g7kzWMPcGcydASshdZao4j_qk_qLpP3nMSW8tTiAcTahtPuJO4zrMA0-hQ8cogAGt_MqzJvAZcGSpir-AKVbrto |
CitedBy_id | crossref_primary_10_1136_jnnp_2019_321938 crossref_primary_10_1002_hbm_26121 crossref_primary_10_1177_15459683241249115 crossref_primary_10_1080_21678421_2019_1639195 crossref_primary_10_1111_ene_15136 crossref_primary_10_1016_j_msard_2021_102810 crossref_primary_10_1093_schbul_sbad114 crossref_primary_10_3389_fnins_2019_00486 crossref_primary_10_1016_j_nicl_2022_103138 crossref_primary_10_1016_j_nicl_2018_01_033 crossref_primary_10_1080_21678421_2020_1733020 crossref_primary_10_1016_j_jneumeth_2018_10_010 crossref_primary_10_1016_j_jns_2020_117039 crossref_primary_10_1016_j_nicl_2022_103061 crossref_primary_10_1080_21678421_2017_1407795 crossref_primary_10_1038_s41583_020_0315_1 crossref_primary_10_3390_cells10020249 crossref_primary_10_1097_WCO_0000000000000569 crossref_primary_10_2463_mrms_mp_2023_0138 crossref_primary_10_1186_s13024_022_00525_z crossref_primary_10_1038_s41598_025_87377_x crossref_primary_10_1136_jnnp_2017_317245 crossref_primary_10_7554_eLife_73153 crossref_primary_10_1002_brb3_3102 crossref_primary_10_1007_s00415_024_12190_x crossref_primary_10_3390_cells14060421 crossref_primary_10_1002_path_6008 crossref_primary_10_1038_s41598_024_68374_y crossref_primary_10_1080_14737175_2018_1463160 crossref_primary_10_1002_mrm_30436 crossref_primary_10_1177_20406223211002969 crossref_primary_10_1016_j_neurobiolaging_2019_07_019 crossref_primary_10_3389_fncel_2021_707861 crossref_primary_10_4103_NRR_NRR_D_23_01359 crossref_primary_10_3389_fneur_2019_00229 crossref_primary_10_3389_fncel_2023_1179796 crossref_primary_10_1016_j_neuroimage_2020_117113 crossref_primary_10_1155_2018_2635202 crossref_primary_10_1080_21678421_2020_1752253 crossref_primary_10_1016_j_neuroimage_2020_117313 crossref_primary_10_3389_fnins_2021_675444 crossref_primary_10_2174_1573405614666181115113400 crossref_primary_10_1002_hbm_25738 crossref_primary_10_3389_fnins_2020_611696 crossref_primary_10_1007_s11682_020_00429_w |
Cites_doi | 10.1063/1.1695690 10.1002/nbm.1940080707 10.1007/s11481-009-9171-5 10.1002/mrm.20488 10.1002/mrm.20578 10.1016/j.neuroimage.2003.11.024 10.1177/1352458509353649 10.1212/WNL.0b013e3181fb84d1 10.1016/j.neuroimage.2009.01.008 10.1523/JNEUROSCI.2320-07.2007 10.1002/mrm.1910360612 10.1007/s13311-014-0329-3 10.1016/j.neuroimage.2006.05.044 10.1002/nbm.814 10.1126/science.aaf1064 10.1212/WNL.53.5.1051 10.1016/j.neuroimage.2004.07.051 10.1001/archneurol.2012.1122 10.1016/j.nbd.2003.12.012 10.1016/j.neuroimage.2011.03.070 10.1038/nn2047 10.1002/nbm.3405 10.1073/pnas.1520639112 10.1016/0006-8993(92)90178-C 10.1080/146608200300079536 10.1002/mrm.1910290212 10.1111/neup.12027 10.1002/nbm.2920 10.1002/mrm.21668 10.1016/j.neuroimage.2003.07.005 10.1016/j.neuroimage.2008.10.055 10.1093/brain/112.3.799 10.1371/journal.pone.0039216 10.1016/j.neuron.2011.09.010 10.1016/j.nicl.2015.01.009 10.1016/j.neuroimage.2007.02.039 10.1148/radiology.201.3.8939209 10.1016/j.acra.2013.03.017 10.1016/j.neuroimage.2011.09.054 10.1093/brain/awr178 10.1016/j.neuroimage.2014.08.014 10.1016/j.neuroimage.2006.12.028 10.1002/hbm.20527 10.1111/j.1468-1331.2009.02560.x 10.1002/nbm.2992 10.1016/j.jneumeth.2007.05.024 10.1111/j.1460-9568.2010.07445.x |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.nicl.2017.04.024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 208 |
ExternalDocumentID | PMC5429246 28529876 10_1016_j_nicl_2017_04_024 1_s2_0_S2213158217301018 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/K02213X/1 – fundername: Intramural NIH HHS grantid: Z01 NS002976 – fundername: Medical Research Council grantid: MR/L009013/1 |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFCTW AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c457t-5340e8ab2ebe2c2a6026bb23afcd1773e745e8eb1f4bd7457289569579b3f0263 |
IEDL.DBID | M48 |
ISSN | 2213-1582 |
IngestDate | Thu Aug 21 18:16:01 EDT 2025 Thu Sep 04 19:13:26 EDT 2025 Mon Jul 21 05:50:26 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 01:09:18 EDT 2025 Wed Jun 18 06:48:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | magnetic resonance imaging Diffusion Weighted Steady State Free Precession MRI Motor neuron disease ALS volume of interest diffusion weighted imaging 7 T MRI scan interval (death to scan) SNR DWI MD DW-SSFP axial diffusivity mean diffusivity AD radial diffusivity PSI Amyotrophic lateral sclerosis PMI GFAP Microglia VOI Pathology Steady-state free precession RD DTI diffusion tensor imaging fractional anisotropy FA glial fibrillary acidic protein signal to noise ratio post mortem interval 7 T MRI FA, fractional anisotropy GFAP, glial fibrillary acidic protein PSI, scan interval (death to scan) DWI, diffusion weighted imaging ALS, Amyotrophic lateral sclerosis PMI, post mortem interval RD, radial diffusivity MRI, magnetic resonance imaging DW-SSFP, Diffusion Weighted Steady State Free Precession MD, mean diffusivity AD, axial diffusivity SNR, signal to noise ratio DTI, diffusion tensor imaging VOI, volume of interest |
Language | English |
License | This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-5340e8ab2ebe2c2a6026bb23afcd1773e745e8eb1f4bd7457289569579b3f0263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2017.04.024 |
PMID | 28529876 |
PQID | 1901310886 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5429246 proquest_miscellaneous_1901310886 pubmed_primary_28529876 crossref_citationtrail_10_1016_j_nicl_2017_04_024 crossref_primary_10_1016_j_nicl_2017_04_024 elsevier_clinicalkeyesjournals_1_s2_0_S2213158217301018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2017 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Pfefferbaum (10.1016/j.nicl.2017.04.024_bb0150) 2004; 21 Zurcher (10.1016/j.nicl.2017.04.024_bb0245) 2015; 7 Guilfoyle (10.1016/j.nicl.2017.04.024_bb0080) 2003; 16 Ellis (10.1016/j.nicl.2017.04.024_bb0060) 1999; 53 Wahl (10.1016/j.nicl.2017.04.024_bb0220) 2007; 27 McNab (10.1016/j.nicl.2017.04.024_bb0120) 2009; 46 Yong-Hing (10.1016/j.nicl.2017.04.024_bb0240) 2005; 54 Duan (10.1016/j.nicl.2017.04.024_bb0055) 2013; 26 Witelson (10.1016/j.nicl.2017.04.024_bb0225) 1989; 112 Henkel (10.1016/j.nicl.2017.04.024_bb0085) 2009; 4 Sun (10.1016/j.nicl.2017.04.024_bb0205) 2015; 112 Hofer (10.1016/j.nicl.2017.04.024_bb0090) 2006; 32 Miller (10.1016/j.nicl.2017.04.024_bb0135) 2012; 59 Smith (10.1016/j.nicl.2017.04.024_bb0180) 2004; 23 Brettschneider (10.1016/j.nicl.2017.04.024_bb0025) 2012; 7 Filippini (10.1016/j.nicl.2017.04.024_bb0065) 2010; 75 Ozturk (10.1016/j.nicl.2017.04.024_bb0145) 2010; 16 Stejskal (10.1016/j.nicl.2017.04.024_bb0190) 1965; 42 Aboitiz (10.1016/j.nicl.2017.04.024_bb0005) 1992; 598 Menke (10.1016/j.nicl.2017.04.024_bb0125) 2012; 69 Woolrich (10.1016/j.nicl.2017.04.024_bb0230) 2009; 45 Song (10.1016/j.nicl.2017.04.024_bb0185) 2003; 20 McNab (10.1016/j.nicl.2017.04.024_bb0115) 2008; 60 Sun (10.1016/j.nicl.2017.04.024_bb0200) 2005; 53 Bazin (10.1016/j.nicl.2017.04.024_bb0020) 2007; 165 O'Rourke (10.1016/j.nicl.2017.04.024_bb0140) 2016; 351 Renton (10.1016/j.nicl.2017.04.024_bb0170) 2011; 72 D'Arceuil (10.1016/j.nicl.2017.04.024_bb0050) 2007; 35 D'Arceuil (10.1016/j.nicl.2017.04.024_bb0045) 2007; 36 Skinner (10.1016/j.nicl.2017.04.024_bb0175) 2015; 28 Kuhle (10.1016/j.nicl.2017.04.024_bb0105) 2009; 16 Pierpaoli (10.1016/j.nicl.2017.04.024_bb0160) 1996; 201 Brooks (10.1016/j.nicl.2017.04.024_bb0030) 2000; 1 Iwata (10.1016/j.nicl.2017.04.024_bb0100) 2011; 134 Hooten (10.1016/j.nicl.2017.04.024_bb0095) 2015; 12 Pierpaoli (10.1016/j.nicl.2017.04.024_bb0155) 1996; 36 Ciccarelli (10.1016/j.nicl.2017.04.024_bb0040) 2009; 30 Foerster (10.1016/j.nicl.2017.04.024_bb0070) 2013; 20 Miller (10.1016/j.nicl.2017.04.024_bb0130) 2011; 57 Turner (10.1016/j.nicl.2017.04.024_bb0215) 2004; 15 Basser (10.1016/j.nicl.2017.04.024_bb0015) 1995; 8 Thiessen (10.1016/j.nicl.2017.04.024_bb0210) 2013; 26 Kwan (10.1016/j.nicl.2017.04.024_bb0110) 2012; 2 Agosta (10.1016/j.nicl.2017.04.024_bb0010) 2010; 32 Buxton (10.1016/j.nicl.2017.04.024_bb0035) 1993; 29 Foxley (10.1016/j.nicl.2017.04.024_bb0075) 2014; 102 Yamanaka (10.1016/j.nicl.2017.04.024_bb0235) 2008; 11 Sugiyama (10.1016/j.nicl.2017.04.024_bb0195) 2013; 33 Pierpaoli (10.1016/j.nicl.2017.04.024_bb0165) 2010 |
References_xml | – volume: 42 start-page: 5 year: 1965 ident: 10.1016/j.nicl.2017.04.024_bb0190 article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient publication-title: J. Chem. Phys. doi: 10.1063/1.1695690 – volume: 8 start-page: 333 year: 1995 ident: 10.1016/j.nicl.2017.04.024_bb0015 article-title: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images publication-title: NMR Biomed. doi: 10.1002/nbm.1940080707 – volume: 4 start-page: 389 year: 2009 ident: 10.1016/j.nicl.2017.04.024_bb0085 article-title: Microglia in ALS: the good, the bad, and the resting publication-title: J. NeuroImmune Pharmacol. doi: 10.1007/s11481-009-9171-5 – volume: 53 start-page: 1447 year: 2005 ident: 10.1016/j.nicl.2017.04.024_bb0200 article-title: Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infarcted brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20488 – volume: 54 start-page: 324 year: 2005 ident: 10.1016/j.nicl.2017.04.024_bb0240 article-title: Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20578 – volume: 21 start-page: 1585 year: 2004 ident: 10.1016/j.nicl.2017.04.024_bb0150 article-title: Postmortem MR imaging of formalin-fixed human brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.024 – volume: 16 start-page: 166 year: 2010 ident: 10.1016/j.nicl.2017.04.024_bb0145 article-title: MRI of the corpus callosum in multiple sclerosis: association with disability publication-title: Mult. Scler. (Houndmills, Basingstoke, England) doi: 10.1177/1352458509353649 – volume: 75 start-page: 1645 year: 2010 ident: 10.1016/j.nicl.2017.04.024_bb0065 article-title: Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis publication-title: Neurology doi: 10.1212/WNL.0b013e3181fb84d1 – volume: 46 start-page: 775 year: 2009 ident: 10.1016/j.nicl.2017.04.024_bb0120 article-title: High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.008 – volume: 27 start-page: 12132 year: 2007 ident: 10.1016/j.nicl.2017.04.024_bb0220 article-title: Human motor corpus callosum: topography, somatotopy, and link between microstructure and function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2320-07.2007 – year: 2010 ident: 10.1016/j.nicl.2017.04.024_bb0165 article-title: Tortoise: an integrated software package for processing of diffusion MRI data – volume: 36 start-page: 893 year: 1996 ident: 10.1016/j.nicl.2017.04.024_bb0155 article-title: Toward a quantitative assessment of diffusion anisotropy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910360612 – volume: 12 start-page: 364 year: 2015 ident: 10.1016/j.nicl.2017.04.024_bb0095 article-title: Protective and toxic neuroinflammation in amyotrophic lateral sclerosis publication-title: Neurotherapeutics doi: 10.1007/s13311-014-0329-3 – volume: 32 start-page: 989 year: 2006 ident: 10.1016/j.nicl.2017.04.024_bb0090 article-title: Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.044 – volume: 16 start-page: 77 year: 2003 ident: 10.1016/j.nicl.2017.04.024_bb0080 article-title: Diffusion tensor imaging in fixed brain tissue at 7.0T publication-title: NMR Biomed. doi: 10.1002/nbm.814 – volume: 351 start-page: 1324 year: 2016 ident: 10.1016/j.nicl.2017.04.024_bb0140 article-title: C9orf72 is required for proper macrophage and microglial function in mice publication-title: Science doi: 10.1126/science.aaf1064 – volume: 53 start-page: 1051 year: 1999 ident: 10.1016/j.nicl.2017.04.024_bb0060 article-title: Diffusion tensor MRI assesses corticospinal tract damage in ALS publication-title: Neurology doi: 10.1212/WNL.53.5.1051 – volume: 23 start-page: S208 issue: Suppl. 1 year: 2004 ident: 10.1016/j.nicl.2017.04.024_bb0180 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 69 start-page: 1493 year: 2012 ident: 10.1016/j.nicl.2017.04.024_bb0125 article-title: Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis publication-title: Arch. Neurol. doi: 10.1001/archneurol.2012.1122 – volume: 15 start-page: 601 year: 2004 ident: 10.1016/j.nicl.2017.04.024_bb0215 article-title: Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2003.12.012 – volume: 57 start-page: 167 year: 2011 ident: 10.1016/j.nicl.2017.04.024_bb0130 article-title: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.070 – volume: 11 start-page: 251 year: 2008 ident: 10.1016/j.nicl.2017.04.024_bb0235 article-title: Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis publication-title: Nat. Neurosci. doi: 10.1038/nn2047 – volume: 28 start-page: 1489 year: 2015 ident: 10.1016/j.nicl.2017.04.024_bb0175 article-title: Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis publication-title: NMR Biomed. doi: 10.1002/nbm.3405 – volume: 112 start-page: E6993 year: 2015 ident: 10.1016/j.nicl.2017.04.024_bb0205 article-title: Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1520639112 – volume: 598 start-page: 143 year: 1992 ident: 10.1016/j.nicl.2017.04.024_bb0005 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res. doi: 10.1016/0006-8993(92)90178-C – volume: 1 start-page: 293 year: 2000 ident: 10.1016/j.nicl.2017.04.024_bb0030 article-title: El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis publication-title: Amyotroph. Lateral Scler. Other Motor Neuron Disord. doi: 10.1080/146608200300079536 – volume: 29 start-page: 235 year: 1993 ident: 10.1016/j.nicl.2017.04.024_bb0035 article-title: The diffusion sensitivity of fast steady-state free precession imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910290212 – volume: 33 start-page: 591 year: 2013 ident: 10.1016/j.nicl.2017.04.024_bb0195 article-title: Increased number of astrocytes and macrophages/microglial cells in the corpus callosum in amyotrophic lateral sclerosis publication-title: Neuropathology doi: 10.1111/neup.12027 – volume: 26 start-page: 1070 year: 2013 ident: 10.1016/j.nicl.2017.04.024_bb0055 article-title: Improved Bloch-Siegert based B1 mapping by reducing off-resonance shift publication-title: NMR Biomed. doi: 10.1002/nbm.2920 – volume: 2 start-page: 151 year: 2012 ident: 10.1016/j.nicl.2017.04.024_bb0110 article-title: Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis publication-title: Neuroimage (Amst) – volume: 60 start-page: 405 year: 2008 ident: 10.1016/j.nicl.2017.04.024_bb0115 article-title: Sensitivity of diffusion weighted steady state free precession to anisotropic diffusion publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21668 – volume: 20 start-page: 1714 year: 2003 ident: 10.1016/j.nicl.2017.04.024_bb0185 article-title: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.07.005 – volume: 45 start-page: S173 year: 2009 ident: 10.1016/j.nicl.2017.04.024_bb0230 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 112 start-page: 799 issue: Pt 3 year: 1989 ident: 10.1016/j.nicl.2017.04.024_bb0225 article-title: Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study publication-title: Brain doi: 10.1093/brain/112.3.799 – volume: 7 year: 2012 ident: 10.1016/j.nicl.2017.04.024_bb0025 article-title: Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis publication-title: PLoS One doi: 10.1371/journal.pone.0039216 – volume: 72 start-page: 257 year: 2011 ident: 10.1016/j.nicl.2017.04.024_bb0170 article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – volume: 7 start-page: 409 year: 2015 ident: 10.1016/j.nicl.2017.04.024_bb0245 article-title: Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2015.01.009 – volume: 36 start-page: 64 year: 2007 ident: 10.1016/j.nicl.2017.04.024_bb0045 article-title: The effects of brain tissue decomposition on diffusion tensor imaging and tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.039 – volume: 201 start-page: 637 year: 1996 ident: 10.1016/j.nicl.2017.04.024_bb0160 article-title: Diffusion tensor MR imaging of the human brain publication-title: Radiology doi: 10.1148/radiology.201.3.8939209 – volume: 20 start-page: 1099 year: 2013 ident: 10.1016/j.nicl.2017.04.024_bb0070 article-title: Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.03.017 – volume: 59 start-page: 2284 year: 2012 ident: 10.1016/j.nicl.2017.04.024_bb0135 article-title: Diffusion tractography of post-mortem human brains: optimization and comparison of spin echo and steady-state free precession techniques publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.054 – volume: 134 start-page: 2642 year: 2011 ident: 10.1016/j.nicl.2017.04.024_bb0100 article-title: White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis publication-title: Brain doi: 10.1093/brain/awr178 – volume: 102 start-page: 579 issue: Pt 2 year: 2014 ident: 10.1016/j.nicl.2017.04.024_bb0075 article-title: Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.08.014 – volume: 35 start-page: 553 year: 2007 ident: 10.1016/j.nicl.2017.04.024_bb0050 article-title: An approach to high resolution diffusion tensor imaging in fixed primate brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.12.028 – volume: 30 start-page: 615 year: 2009 ident: 10.1016/j.nicl.2017.04.024_bb0040 article-title: Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20527 – volume: 16 start-page: 771 year: 2009 ident: 10.1016/j.nicl.2017.04.024_bb0105 article-title: Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis publication-title: Eur. J. Neurol. doi: 10.1111/j.1468-1331.2009.02560.x – volume: 26 start-page: 1562 year: 2013 ident: 10.1016/j.nicl.2017.04.024_bb0210 article-title: Quantitative MRI and ultrastructural examination of the cuprizone mouse model of demyelination publication-title: NMR Biomed. doi: 10.1002/nbm.2992 – volume: 165 start-page: 111 year: 2007 ident: 10.1016/j.nicl.2017.04.024_bb0020 article-title: Volumetric neuroimage analysis extensions for the MIPAV software package publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.05.024 – volume: 32 start-page: 1490 year: 2010 ident: 10.1016/j.nicl.2017.04.024_bb0010 article-title: MRI predictors of long-term evolution in amyotrophic lateral sclerosis publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2010.07445.x |
SSID | ssj0000800766 |
Score | 2.3136399 |
Snippet | AbstractObjectivesThe goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS... The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. Diffusion... The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients.OBJECTIVESThe... • Diffusion-weighted SSFP and histology were carried out on 4 ALS and 2 control brains. • The FA of the splenium, an unaffected region, was a control for... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 200 |
SubjectTerms | Adult Aged Amyotrophic Lateral Sclerosis - diagnostic imaging Amyotrophic Lateral Sclerosis - pathology Corpus Callosum - diagnostic imaging Corpus Callosum - pathology Diffusion Tensor Imaging - methods Female Humans Male Middle Aged Radiology Regular |
Title | Pathology of callosal damage in ALS: An ex-vivo, 7 T diffusion tensor MRI study |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217301018 https://www.ncbi.nlm.nih.gov/pubmed/28529876 https://www.proquest.com/docview/1901310886 https://pubmed.ncbi.nlm.nih.gov/PMC5429246 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-QwEB88heNeDk9PXb2TCL55lTZtklY4ZBFFxRVRF3wLaZviitfq_hH9Nn4WP5kz2Xbv9PQe7i3QDG1nJpNJMvn9ANaFtH5gBPekMkRhJq1nRJJ5RsYpuleqEgcp1DmW-93o8EJcTEFDd1QrcPDm0o74pLr9683724dtHPA_f9dqEYgslWkpB1vKow8wgzOTJC_v1On-VZ0dKSnruzNvixI6cCw4LsXle1PV36no64rKP6aovVn4XOeWrD12hi8wZcs5-NipT8_n4eTEDF2we2BVwTI6ch9g_9z8wqDCeiVrH51tsXbJ7L1317urfjD19HjOiENlRJtqjKrdqz7rnB4wB0v7Fbp7u-c7-17NqOBlkVBDT4SRb2OTcjQdz7gh_qk05aEpsjxQKrQqEjbG8F1EaY5thcsxIekkLw0L7BsuwHRZlXYJWGHpDqrM4xwbjrLcT8IktrwoAhzKWQuCRnk6q-HGifXiWjd1ZVeadK9J99qPNOq-BRsTmZsx2MY_e6vGJrq5RoqBzw4aJ9KBHnDt6zPOgzCgG8EUzvwgbsFaY0KNo4mOSExpqxFKJIQ_hJFXtmBxbNLJlzRuge99YexJB0Lqfvmk7F06xG5HChbJ5f-WXIFP9OfjvZ9vMD3sj-x3zIaG6arbRVh1jv4M0xwI8A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathology+of+callosal+damage+in+ALS%3A+An+ex-vivo%2C+7%C2%A0T+diffusion+tensor+MRI+study&rft.jtitle=NeuroImage+clinical&rft.au=Cardenas%2C+Agustin+M.&rft.au=Sarlls%2C+Joelle+E.&rft.au=Kwan%2C+Justin+Y.&rft.au=Bageac%2C+Devin&rft.date=2017-01-01&rft.pub=Elsevier&rft.eissn=2213-1582&rft.volume=15&rft.spage=200&rft.epage=208&rft_id=info:doi/10.1016%2Fj.nicl.2017.04.024&rft_id=info%3Apmid%2F28529876&rft.externalDocID=PMC5429246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1582&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1582&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1582&client=summon |