Long short-term memory neural network for traffic speed prediction using remote microwave sensor data

•A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time series.•The LSTM NN can automatically determine the optimal time window.•A comparative study suggests that the LSTM NN receives the best perfor...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 54; pp. 187 - 197
Main Authors Ma, Xiaolei, Tao, Zhimin, Wang, Yinhai, Yu, Haiyang, Wang, Yunpeng
Format Journal Article
LanguageEnglish
Published Elsevier India Pvt Ltd 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time series.•The LSTM NN can automatically determine the optimal time window.•A comparative study suggests that the LSTM NN receives the best performance. Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
AbstractList Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
•A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time series.•The LSTM NN can automatically determine the optimal time window.•A comparative study suggests that the LSTM NN receives the best performance. Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Author Tao, Zhimin
Wang, Yinhai
Yu, Haiyang
Ma, Xiaolei
Wang, Yunpeng
Author_xml – sequence: 1
  givenname: Xiaolei
  surname: Ma
  fullname: Ma, Xiaolei
  email: xiaolei@buaa.edu.cn
  organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Zhimin
  surname: Tao
  fullname: Tao, Zhimin
  email: msetao@126.com
  organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Yinhai
  surname: Wang
  fullname: Wang, Yinhai
  email: yinhai@uw.edu
  organization: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, United States
– sequence: 4
  givenname: Haiyang
  surname: Yu
  fullname: Yu, Haiyang
  email: hyyu@buaa.edu.cn
  organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China
– sequence: 5
  givenname: Yunpeng
  surname: Wang
  fullname: Wang, Yunpeng
  email: ypwang@buaa.edu.cn
  organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China
BookMark eNqNkDFvFDEQhS0UJC4HP4DOJc0u9nq9tkWFIghIJ6UBic7yzc6Cj931MfYlyr_Hp6NKEaEpXjPfk953za7WtCJjb6VopZDD-0NbCNpOSN0K1QrZv2AbaY1rOqXdFdsIN9hGOPHjFbvO-SCEkE6bDcNdWn_y_CtRaQrSwhdcEj3yFU8U5hrlIdFvPiXihcI0ReD5iDjyI-EYocS08lOOtYMqWJAvESg9hHvkGddcsTGU8Jq9nMKc8c2_3LLvnz99u_nS7O5uv9583DXQa1Oavocw7IfJIHTaWitdcNb2e-gGDToICWPQdZQyw14GaVQvuh7U2MFeKK0ntWXvLr1HSn9OmItfYgac57BiOmUvjdVdZ510__FqhJLK1tsyeXmty3ImnPyR4hLo0Uvhz_b9wVf7_mzfC-Wr_cqYJwzEEs66qsY4P0t-uJBYRd1HJJ8h4gpVNyEUP6b4DP0XWpGiSQ
CitedBy_id crossref_primary_10_1109_TKDE_2020_3001195
crossref_primary_10_3390_app12199723
crossref_primary_10_1016_j_trc_2022_103932
crossref_primary_10_3390_sym12122045
crossref_primary_10_1016_j_physa_2024_130185
crossref_primary_10_1016_j_trpro_2021_11_037
crossref_primary_10_3390_su142416701
crossref_primary_10_1016_j_iot_2024_101188
crossref_primary_10_1016_j_trc_2023_104066
crossref_primary_10_1016_j_trc_2024_104585
crossref_primary_10_1049_iet_its_2020_0406
crossref_primary_10_1080_23249935_2018_1491073
crossref_primary_10_1016_j_asoc_2022_108644
crossref_primary_10_1016_j_aap_2020_105628
crossref_primary_10_3390_s19020382
crossref_primary_10_1007_s42421_020_00019_8
crossref_primary_10_1109_TITS_2021_3108939
crossref_primary_10_1016_j_neunet_2023_12_016
crossref_primary_10_1155_2022_5926663
crossref_primary_10_1109_ACCESS_2020_2964680
crossref_primary_10_1007_s00521_019_04504_2
crossref_primary_10_1007_s13042_024_02101_x
crossref_primary_10_1049_iet_its_2018_5020
crossref_primary_10_1061_JTEPBS_0000763
crossref_primary_10_1061_JTEPBS_0000522
crossref_primary_10_1080_23249935_2023_2264949
crossref_primary_10_1016_j_engappai_2025_110074
crossref_primary_10_1049_iet_its_2019_0428
crossref_primary_10_1049_iet_its_2020_0410
crossref_primary_10_1016_j_nucengdes_2022_111976
crossref_primary_10_1016_j_inffus_2024_102916
crossref_primary_10_3390_electronics11142230
crossref_primary_10_1016_j_eswa_2024_124288
crossref_primary_10_1088_1757_899X_495_1_012067
crossref_primary_10_1007_s11269_019_02345_1
crossref_primary_10_1155_2020_4251517
crossref_primary_10_1016_j_bdr_2022_100313
crossref_primary_10_1109_MITS_2021_3049383
crossref_primary_10_1155_2021_6626024
crossref_primary_10_12677_mos_2024_134381
crossref_primary_10_3390_su13095108
crossref_primary_10_1080_21680566_2021_1922320
crossref_primary_10_1049_iet_its_2019_0200
crossref_primary_10_1016_j_energy_2023_127140
crossref_primary_10_1016_j_trc_2022_103719
crossref_primary_10_1016_j_enconman_2023_116804
crossref_primary_10_1155_2020_3247847
crossref_primary_10_1155_2022_9407999
crossref_primary_10_1080_23249935_2019_1637966
crossref_primary_10_1109_ACCESS_2020_3027499
crossref_primary_10_1016_j_jrtpm_2022_100342
crossref_primary_10_1109_TITS_2022_3201879
crossref_primary_10_1016_j_tre_2018_04_003
crossref_primary_10_1109_ACCESS_2018_2869890
crossref_primary_10_1016_j_compenvurbsys_2022_101776
crossref_primary_10_3390_s22124565
crossref_primary_10_1109_JIOT_2020_2991401
crossref_primary_10_1016_j_trc_2022_103965
crossref_primary_10_1109_TITS_2020_2989365
crossref_primary_10_1109_ACCESS_2020_2990939
crossref_primary_10_3390_app122211497
crossref_primary_10_1016_j_eswa_2022_118475
crossref_primary_10_1109_ACCESS_2020_3038380
crossref_primary_10_3390_s19092206
crossref_primary_10_1007_s10479_024_05990_x
crossref_primary_10_1007_s11227_024_06331_2
crossref_primary_10_1007_s11269_018_1919_3
crossref_primary_10_1016_j_asoc_2025_112966
crossref_primary_10_1061_JTEPBS_0000504
crossref_primary_10_2139_ssrn_4181235
crossref_primary_10_1007_s10898_020_00912_0
crossref_primary_10_1109_ACCESS_2021_3070625
crossref_primary_10_1109_TITS_2020_2970754
crossref_primary_10_1016_j_trc_2023_104032
crossref_primary_10_1109_TMM_2020_3038315
crossref_primary_10_3390_atmos11040348
crossref_primary_10_1016_j_jwpe_2024_104876
crossref_primary_10_3390_a16060305
crossref_primary_10_1002_mp_16237
crossref_primary_10_1371_journal_pone_0192792
crossref_primary_10_3390_su15107949
crossref_primary_10_1007_s12083_024_01821_9
crossref_primary_10_3390_app13042681
crossref_primary_10_1049_iet_its_2018_5230
crossref_primary_10_1007_s11356_022_20393_w
crossref_primary_10_3390_en13246601
crossref_primary_10_1109_MITS_2021_3049362
crossref_primary_10_3390_en16176357
crossref_primary_10_1186_s40537_024_00967_w
crossref_primary_10_1016_j_eswa_2023_120421
crossref_primary_10_1016_j_trc_2023_104263
crossref_primary_10_1109_ACCESS_2019_2938091
crossref_primary_10_1016_j_neucom_2024_129280
crossref_primary_10_3390_en15010021
crossref_primary_10_1007_s42421_023_00083_w
crossref_primary_10_1016_j_knosys_2019_01_015
crossref_primary_10_1016_j_jwpe_2024_106821
crossref_primary_10_1109_ACCESS_2020_3039410
crossref_primary_10_1016_j_trc_2018_05_008
crossref_primary_10_3390_ijgi12090366
crossref_primary_10_1016_j_physa_2023_128877
crossref_primary_10_1016_j_knosys_2022_108120
crossref_primary_10_1109_ACCESS_2019_2891073
crossref_primary_10_1049_iet_its_2019_0873
crossref_primary_10_1109_TITS_2019_2909571
crossref_primary_10_1155_2021_5577179
crossref_primary_10_4028_p_FZ0iNi
crossref_primary_10_1007_s11277_018_5251_2
crossref_primary_10_1002_ett_4427
crossref_primary_10_1016_j_trc_2022_103742
crossref_primary_10_3390_app11073059
crossref_primary_10_1080_15472450_2021_1927728
crossref_primary_10_1109_TIM_2021_3051948
crossref_primary_10_3390_s22239456
crossref_primary_10_1016_j_trc_2018_05_012
crossref_primary_10_1109_ACCESS_2023_3282323
crossref_primary_10_1109_TVT_2019_2899125
crossref_primary_10_1016_j_ifacol_2021_10_153
crossref_primary_10_1080_23249935_2020_1764662
crossref_primary_10_1007_s10707_024_00532_w
crossref_primary_10_3389_ffutr_2021_644988
crossref_primary_10_1145_3316414
crossref_primary_10_1109_TITS_2018_2815678
crossref_primary_10_1088_1742_6596_1918_4_042012
crossref_primary_10_1016_j_apenergy_2023_121032
crossref_primary_10_1109_TITS_2021_3117835
crossref_primary_10_1155_2021_3083190
crossref_primary_10_1016_j_asoc_2022_109314
crossref_primary_10_1109_TITS_2020_3011700
crossref_primary_10_1016_j_measurement_2021_110073
crossref_primary_10_3390_info9070165
crossref_primary_10_1109_ACCESS_2020_3031722
crossref_primary_10_1016_j_treng_2021_100095
crossref_primary_10_37943_19PPFN3256
crossref_primary_10_1016_j_autcon_2020_103351
crossref_primary_10_1155_2020_8845804
crossref_primary_10_1155_2017_1321237
crossref_primary_10_3390_app10072322
crossref_primary_10_1016_j_autcon_2020_103107
crossref_primary_10_1016_j_eswa_2023_121747
crossref_primary_10_3390_app11010315
crossref_primary_10_1016_j_ijpe_2021_108157
crossref_primary_10_1016_j_engstruct_2023_115686
crossref_primary_10_1016_j_physa_2024_129598
crossref_primary_10_1016_j_knosys_2022_109028
crossref_primary_10_1109_ACCESS_2022_3222561
crossref_primary_10_1080_23249935_2021_1964636
crossref_primary_10_3390_app15020752
crossref_primary_10_1007_s10258_024_00252_x
crossref_primary_10_1109_ACCESS_2019_2937114
crossref_primary_10_1109_JRFID_2022_3217031
crossref_primary_10_1080_19427867_2023_2261706
crossref_primary_10_3390_s25010095
crossref_primary_10_1016_j_measurement_2019_06_038
crossref_primary_10_1109_TKDE_2021_3118389
crossref_primary_10_1021_acs_jpclett_1c01961
crossref_primary_10_1109_ACCESS_2021_3050165
crossref_primary_10_1109_TITS_2021_3101000
crossref_primary_10_1049_smc2_12027
crossref_primary_10_3390_ijgi11050294
crossref_primary_10_3390_e21070709
crossref_primary_10_3390_su12208555
crossref_primary_10_1016_j_measurement_2019_106896
crossref_primary_10_1063_1_5117180
crossref_primary_10_1016_j_engappai_2023_106411
crossref_primary_10_1007_s11356_022_22959_0
crossref_primary_10_3103_S1060992X19030081
crossref_primary_10_3390_app13010637
crossref_primary_10_1016_j_physa_2021_125838
crossref_primary_10_1016_j_ejrh_2022_101220
crossref_primary_10_1109_ACCESS_2024_3357749
crossref_primary_10_1109_TITS_2019_2950416
crossref_primary_10_1002_er_7341
crossref_primary_10_1109_JSEN_2020_3027684
crossref_primary_10_3390_rs15030798
crossref_primary_10_3390_w15142542
crossref_primary_10_1109_TITS_2016_2609917
crossref_primary_10_1155_2020_3697625
crossref_primary_10_1177_1687814017719002
crossref_primary_10_1587_transinf_2018EDP7330
crossref_primary_10_1109_MITS_2022_3158631
crossref_primary_10_1109_JIOT_2022_3209523
crossref_primary_10_3390_info14040228
crossref_primary_10_1080_21680566_2024_2380915
crossref_primary_10_1108_IMDS_12_2021_0769
crossref_primary_10_3390_app9194156
crossref_primary_10_1109_TBDATA_2020_2972871
crossref_primary_10_1109_ACCESS_2020_2987934
crossref_primary_10_1177_09544070231186186
crossref_primary_10_1080_08839514_2016_1277291
crossref_primary_10_12677_CSA_2019_912262
crossref_primary_10_1016_j_ecoinf_2024_102477
crossref_primary_10_1145_3679017
crossref_primary_10_1016_j_inffus_2024_102292
crossref_primary_10_1088_1361_6501_ad8252
crossref_primary_10_3141_2643_13
crossref_primary_10_2166_wcc_2024_660
crossref_primary_10_1371_journal_pone_0178826
crossref_primary_10_2139_ssrn_4115556
crossref_primary_10_1016_j_enconman_2019_02_018
crossref_primary_10_1109_ACCESS_2020_2970250
crossref_primary_10_1109_MITS_2018_2806634
crossref_primary_10_1016_j_eswa_2023_120203
crossref_primary_10_3390_futuretransp1010003
crossref_primary_10_1371_journal_pone_0223973
crossref_primary_10_3390_a12080173
crossref_primary_10_1016_j_trc_2021_102977
crossref_primary_10_1016_j_eswa_2022_119161
crossref_primary_10_1109_ACCESS_2020_2997729
crossref_primary_10_1016_j_trc_2020_102674
crossref_primary_10_3390_buildings13061514
crossref_primary_10_3233_JIFS_18804
crossref_primary_10_3390_s20164574
crossref_primary_10_1177_0361198120927393
crossref_primary_10_1109_ACCESS_2018_2874399
crossref_primary_10_1155_2020_1434080
crossref_primary_10_1016_j_eswa_2023_121548
crossref_primary_10_1007_s00521_023_08519_8
crossref_primary_10_1016_j_trc_2020_102671
crossref_primary_10_3390_app13179729
crossref_primary_10_1002_for_2717
crossref_primary_10_2478_ttj_2021_0013
crossref_primary_10_1016_j_neucom_2021_03_068
crossref_primary_10_1371_journal_pone_0183442
crossref_primary_10_3390_math11163446
crossref_primary_10_1016_j_jcis_2020_08_052
crossref_primary_10_1162_neco_a_01134
crossref_primary_10_1016_j_knosys_2024_111946
crossref_primary_10_1109_ACCESS_2020_2987756
crossref_primary_10_1109_ACCESS_2019_2907739
crossref_primary_10_1016_j_physa_2023_129313
crossref_primary_10_1088_1742_6596_1769_1_012038
crossref_primary_10_1093_jom_ufad046
crossref_primary_10_1002_ail2_106
crossref_primary_10_1109_TIV_2021_3112499
crossref_primary_10_1109_TITS_2022_3231959
crossref_primary_10_1016_j_energy_2018_05_052
crossref_primary_10_1371_journal_pone_0198931
crossref_primary_10_1016_j_asoc_2019_105550
crossref_primary_10_2139_ssrn_4163415
crossref_primary_10_1155_2022_2265000
crossref_primary_10_3390_math9080871
crossref_primary_10_1007_s11227_021_04032_8
crossref_primary_10_1007_s40815_022_01288_x
crossref_primary_10_3390_app10217778
crossref_primary_10_1109_TASE_2021_3075773
crossref_primary_10_1007_s13177_021_00260_7
crossref_primary_10_1109_ACCESS_2018_2888561
crossref_primary_10_1016_j_ijpe_2020_107828
crossref_primary_10_1109_JSEN_2020_3007809
crossref_primary_10_3390_su8111100
crossref_primary_10_3233_JCM_215101
crossref_primary_10_3390_info10060193
crossref_primary_10_1093_bioinformatics_btab133
crossref_primary_10_1016_j_neucom_2018_06_012
crossref_primary_10_1016_j_jclepro_2019_118892
crossref_primary_10_1016_j_neucom_2018_12_016
crossref_primary_10_1109_ACCESS_2023_3338223
crossref_primary_10_1016_j_eswa_2023_122219
crossref_primary_10_1371_journal_pone_0176853
crossref_primary_10_1111_tgis_12641
crossref_primary_10_1016_j_trc_2018_10_011
crossref_primary_10_3390_atmos12050651
crossref_primary_10_1007_s00170_019_03557_w
crossref_primary_10_3390_s19040861
crossref_primary_10_1109_TITS_2021_3102747
crossref_primary_10_1109_TKDE_2023_3284156
crossref_primary_10_3390_s22093348
crossref_primary_10_1016_j_asoc_2020_106998
crossref_primary_10_1016_j_knosys_2022_110237
crossref_primary_10_1109_TITS_2022_3150600
crossref_primary_10_1049_itr2_12553
crossref_primary_10_1155_2017_6575947
crossref_primary_10_1016_j_cageo_2017_10_013
crossref_primary_10_1016_j_trc_2022_103917
crossref_primary_10_1016_j_aap_2019_105323
crossref_primary_10_1016_j_jtte_2022_05_004
crossref_primary_10_1109_OJITS_2021_3133573
crossref_primary_10_1109_ACCESS_2020_2995592
crossref_primary_10_1109_TITS_2023_3323379
crossref_primary_10_7717_peerj_cs_1450
crossref_primary_10_2139_ssrn_4054273
crossref_primary_10_3390_e24101462
crossref_primary_10_1155_2019_4145353
crossref_primary_10_1080_21680566_2021_2008280
crossref_primary_10_1016_j_apenergy_2019_113541
crossref_primary_10_1109_ACCESS_2018_2888585
crossref_primary_10_1007_s10489_020_02020_8
crossref_primary_10_1016_j_neucom_2021_03_054
crossref_primary_10_1109_TITS_2024_3424808
crossref_primary_10_1155_2020_8899478
crossref_primary_10_3390_aerospace9020077
crossref_primary_10_1016_j_knosys_2019_105239
crossref_primary_10_1049_itr2_12302
crossref_primary_10_1109_TITS_2024_3349565
crossref_primary_10_1155_2017_6290248
crossref_primary_10_1016_j_envsoft_2022_105403
crossref_primary_10_48130_DTS_2023_0018
crossref_primary_10_1155_2021_8878494
crossref_primary_10_1007_s42488_020_00037_9
crossref_primary_10_1016_j_engappai_2025_110219
crossref_primary_10_1145_3439346
crossref_primary_10_1016_j_tra_2023_103783
crossref_primary_10_1109_TITS_2021_3102983
crossref_primary_10_3390_en13236417
crossref_primary_10_1177_0361198118798737
crossref_primary_10_1016_j_jrtpm_2022_100311
crossref_primary_10_21595_vp_2022_22515
crossref_primary_10_1016_j_trc_2018_03_001
crossref_primary_10_1016_j_inffus_2023_102196
crossref_primary_10_1080_23249935_2020_1845250
crossref_primary_10_1109_TII_2021_3083596
crossref_primary_10_1080_23249935_2022_2033348
crossref_primary_10_1109_TITS_2020_3038457
crossref_primary_10_1002_2016RS006022
crossref_primary_10_1016_j_spasta_2024_100831
crossref_primary_10_1155_2021_1055910
crossref_primary_10_1016_j_renene_2021_02_161
crossref_primary_10_1109_ACCESS_2019_2926851
crossref_primary_10_1016_j_eswa_2016_06_032
crossref_primary_10_1016_j_future_2020_03_019
crossref_primary_10_1371_journal_pone_0183135
crossref_primary_10_1007_s13177_024_00398_0
crossref_primary_10_1016_j_eswa_2024_123721
crossref_primary_10_1016_j_ymssp_2021_107967
crossref_primary_10_1109_ACCESS_2018_2890725
crossref_primary_10_3390_su12155891
crossref_primary_10_1007_s00703_022_00946_x
crossref_primary_10_3390_electronics12061381
crossref_primary_10_3390_s22155742
crossref_primary_10_1177_09544070241237847
crossref_primary_10_1016_j_engappai_2024_108142
crossref_primary_10_1155_2021_4097149
crossref_primary_10_1016_j_procs_2018_10_214
crossref_primary_10_1155_2022_6526512
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1007_s00500_024_09856_z
crossref_primary_10_2196_27235
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_1016_j_inffus_2024_102695
crossref_primary_10_1016_j_scitotenv_2024_170698
crossref_primary_10_1109_ACCESS_2023_3305398
crossref_primary_10_1109_TITS_2022_3173689
crossref_primary_10_3390_app9152951
crossref_primary_10_1109_TKDE_2021_3130762
crossref_primary_10_1109_TITS_2021_3076494
crossref_primary_10_1016_j_trc_2020_102946
crossref_primary_10_1177_03611981231222232
crossref_primary_10_1016_j_neucom_2024_127507
crossref_primary_10_1177_09544070211050623
crossref_primary_10_1109_TASE_2021_3077537
crossref_primary_10_3390_s21196402
crossref_primary_10_1177_03611981231171909
crossref_primary_10_3390_s24175543
crossref_primary_10_3390_nano12060932
crossref_primary_10_1016_j_procs_2022_12_016
crossref_primary_10_1016_j_eswa_2024_123982
crossref_primary_10_1049_itr2_12468
crossref_primary_10_14295_transportes_v30i3_2660
crossref_primary_10_1049_itr2_12224
crossref_primary_10_1016_j_knosys_2024_112709
crossref_primary_10_1049_itr2_12464
crossref_primary_10_1109_TITS_2023_3234512
crossref_primary_10_1145_3447032
crossref_primary_10_1007_s13042_024_02307_z
crossref_primary_10_1155_2021_1338607
crossref_primary_10_3390_s20133749
crossref_primary_10_1016_j_measurement_2020_108566
crossref_primary_10_1016_j_scs_2020_102567
crossref_primary_10_1109_TITS_2018_2882814
crossref_primary_10_1109_TMECH_2023_3312259
crossref_primary_10_1080_21680566_2020_1822765
crossref_primary_10_1109_ACCESS_2020_2991462
crossref_primary_10_1007_s11227_022_04386_7
crossref_primary_10_1109_ACCESS_2019_2901118
crossref_primary_10_1080_15472450_2020_1780922
crossref_primary_10_1080_21680566_2022_2135633
crossref_primary_10_1049_itr2_12257
crossref_primary_10_1177_03611981221130026
crossref_primary_10_1016_j_trc_2018_09_007
crossref_primary_10_1109_TITS_2021_3113935
crossref_primary_10_3390_smartcities8010025
crossref_primary_10_1038_s41598_021_03282_z
crossref_primary_10_1177_03611981221143109
crossref_primary_10_1109_TITS_2022_3162566
crossref_primary_10_1371_journal_pone_0186689
crossref_primary_10_3390_rs15092378
crossref_primary_10_1109_ACCESS_2020_3034763
crossref_primary_10_1109_ACCESS_2022_3205736
crossref_primary_10_1109_TITS_2023_3341834
crossref_primary_10_1109_TITS_2022_3171451
crossref_primary_10_1049_itr2_12245
crossref_primary_10_1109_ACCESS_2021_3062114
crossref_primary_10_1007_s11069_020_04124_3
crossref_primary_10_1049_itr2_12244
crossref_primary_10_1109_TCOMM_2019_2927570
crossref_primary_10_3390_agronomy9020072
crossref_primary_10_1007_s12205_023_1221_7
crossref_primary_10_1142_S0218001423520158
crossref_primary_10_1007_s11280_020_00800_3
crossref_primary_10_1109_TITS_2022_3186707
crossref_primary_10_1177_0361198120930010
crossref_primary_10_3390_en10010074
crossref_primary_10_3390_machines12110805
crossref_primary_10_1109_TVT_2022_3217521
crossref_primary_10_1016_j_scs_2020_102500
crossref_primary_10_1109_TITS_2021_3117290
crossref_primary_10_2139_ssrn_4183278
crossref_primary_10_1016_j_trc_2019_03_001
crossref_primary_10_3390_info13080381
crossref_primary_10_1016_j_trc_2015_11_002
crossref_primary_10_3390_jmse12030446
crossref_primary_10_1063_5_0027130
crossref_primary_10_1109_ACCESS_2020_3034551
crossref_primary_10_1371_journal_pone_0217241
crossref_primary_10_3390_sym15030670
crossref_primary_10_1016_j_eswa_2024_124648
crossref_primary_10_3390_s24185995
crossref_primary_10_1016_j_trc_2019_02_002
crossref_primary_10_1016_j_physa_2022_127959
crossref_primary_10_1155_atr_7878081
crossref_primary_10_1145_3544976
crossref_primary_10_1049_itr2_12044
crossref_primary_10_1109_TITS_2020_3001470
crossref_primary_10_1109_TITS_2020_3030546
crossref_primary_10_3390_math12010103
crossref_primary_10_1016_j_trf_2025_01_018
crossref_primary_10_1109_TVT_2019_2926472
crossref_primary_10_3390_app10217830
crossref_primary_10_1061_JTEPBS_TEENG_7997
crossref_primary_10_1080_21680566_2024_2449483
crossref_primary_10_1007_s11276_020_02250_1
crossref_primary_10_1155_2023_9524966
crossref_primary_10_3390_app122111130
crossref_primary_10_1109_JIOT_2021_3064342
crossref_primary_10_1016_j_eswa_2021_115037
crossref_primary_10_1049_itr2_12024
crossref_primary_10_1080_03081079_2024_2380917
crossref_primary_10_1016_j_asoc_2019_105620
crossref_primary_10_1016_j_trb_2022_11_009
crossref_primary_10_3390_s21248273
crossref_primary_10_3390_rs12020256
crossref_primary_10_1109_TITS_2023_3234560
crossref_primary_10_3390_app13095625
crossref_primary_10_14801_jkiit_2022_20_3_19
crossref_primary_10_1109_TITS_2024_3373123
crossref_primary_10_1109_JSYST_2023_3268717
crossref_primary_10_3390_s20020421
crossref_primary_10_1016_j_trc_2019_03_022
crossref_primary_10_1109_ACCESS_2020_2992507
crossref_primary_10_1109_TITS_2019_2939290
crossref_primary_10_3390_rs14153732
crossref_primary_10_3390_su151713080
crossref_primary_10_1016_j_ijcip_2022_100540
crossref_primary_10_1007_s11280_019_00700_1
crossref_primary_10_1007_s12665_021_09696_2
crossref_primary_10_1155_2019_8392592
crossref_primary_10_1007_s12239_022_0085_z
crossref_primary_10_1111_coin_12291
crossref_primary_10_1155_2021_9134942
crossref_primary_10_1177_0361198120968823
crossref_primary_10_3390_electronics13142834
crossref_primary_10_1016_j_trc_2019_01_027
crossref_primary_10_1007_s11069_023_06322_1
crossref_primary_10_1016_j_ins_2024_121852
crossref_primary_10_1016_j_trc_2022_103772
crossref_primary_10_1109_TITS_2024_3379991
crossref_primary_10_1016_j_eswa_2024_125991
crossref_primary_10_1080_15472450_2023_2209913
crossref_primary_10_1109_TSC_2020_2966487
crossref_primary_10_1109_ACCESS_2019_2902813
crossref_primary_10_1109_TITS_2022_3202487
crossref_primary_10_26599_BDMA_2024_9020020
crossref_primary_10_1371_journal_pone_0205409
crossref_primary_10_3390_s17112455
crossref_primary_10_1155_2022_1793060
crossref_primary_10_1088_1742_6596_2703_1_012011
crossref_primary_10_1109_TITS_2021_3137446
crossref_primary_10_3390_app14125030
crossref_primary_10_1109_TITS_2016_2620498
crossref_primary_10_1049_itr2_12296
crossref_primary_10_1016_j_knosys_2023_111184
crossref_primary_10_1080_02533839_2024_2334209
crossref_primary_10_1007_s11063_024_11479_2
crossref_primary_10_1016_j_compeleceng_2022_108530
crossref_primary_10_3390_jmse11061146
crossref_primary_10_1109_TITS_2019_2955794
crossref_primary_10_3390_electronics8070722
crossref_primary_10_1016_j_ins_2024_121621
crossref_primary_10_1155_2022_4372168
crossref_primary_10_1016_j_neucom_2020_11_032
crossref_primary_10_1155_2021_5559562
crossref_primary_10_1109_ACCESS_2020_2991637
crossref_primary_10_1109_TNSE_2022_3152983
crossref_primary_10_1016_j_trc_2018_07_022
crossref_primary_10_1016_j_ymssp_2022_108907
crossref_primary_10_1007_s42835_023_01535_7
crossref_primary_10_1177_0361198119840611
crossref_primary_10_1016_j_trc_2024_104604
crossref_primary_10_1049_iet_its_2019_0287
crossref_primary_10_1145_3191746
crossref_primary_10_1007_s11042_024_19479_z
crossref_primary_10_1109_TITS_2024_3392975
crossref_primary_10_1134_S0361768820060079
crossref_primary_10_1109_JIOT_2023_3322862
crossref_primary_10_1016_j_jpowsour_2022_231200
crossref_primary_10_3390_aerospace5040101
crossref_primary_10_1007_s00170_019_04349_y
crossref_primary_10_1109_TKDE_2021_3077056
crossref_primary_10_1016_j_neucom_2024_128441
crossref_primary_10_1016_j_istruc_2023_04_025
crossref_primary_10_1007_s00703_021_00791_4
crossref_primary_10_1016_j_trc_2018_07_013
crossref_primary_10_1016_j_eswa_2016_01_011
crossref_primary_10_1109_TITS_2020_3041234
crossref_primary_10_2139_ssrn_4151298
crossref_primary_10_3390_s19183836
crossref_primary_10_1080_14697688_2022_2130085
crossref_primary_10_1109_TITS_2018_2867042
crossref_primary_10_1109_TITS_2023_3293116
crossref_primary_10_1109_ACCESS_2019_2933319
crossref_primary_10_3390_app14104130
crossref_primary_10_1080_19427867_2023_2219045
crossref_primary_10_1109_TVT_2018_2885366
crossref_primary_10_1109_JIOT_2024_3442922
crossref_primary_10_1115_1_4052819
crossref_primary_10_1007_s11704_016_6080_7
crossref_primary_10_3390_s18124436
crossref_primary_10_1049_iet_its_2017_0144
crossref_primary_10_1016_j_ijmst_2022_02_004
crossref_primary_10_1145_3604810
crossref_primary_10_1016_j_jclepro_2021_129660
crossref_primary_10_1007_s10489_019_01426_3
crossref_primary_10_1088_1741_4326_ab6c7a
crossref_primary_10_1109_TITS_2019_2923964
crossref_primary_10_1016_j_iot_2020_100167
crossref_primary_10_1109_JSYST_2023_3338265
crossref_primary_10_3390_aerospace10050453
crossref_primary_10_1080_19475705_2021_1968043
crossref_primary_10_1016_j_trc_2020_102921
crossref_primary_10_1155_2020_4575721
crossref_primary_10_1016_j_eswa_2024_124466
crossref_primary_10_1007_s00500_022_07230_5
crossref_primary_10_3390_app13084910
crossref_primary_10_1109_TITS_2022_3225553
crossref_primary_10_1016_j_trc_2020_102928
crossref_primary_10_54097_hset_v70i_12176
crossref_primary_10_1145_3470889
crossref_primary_10_1007_s11227_020_03373_0
crossref_primary_10_1016_j_eswa_2022_119311
crossref_primary_10_1016_j_jhydrol_2017_11_029
crossref_primary_10_1109_TAI_2024_3351105
crossref_primary_10_1016_j_cor_2023_106458
crossref_primary_10_1016_j_autcon_2021_103958
crossref_primary_10_3390_s20174824
crossref_primary_10_1109_TITS_2016_2635719
crossref_primary_10_1109_TITS_2023_3322745
crossref_primary_10_2196_23086
crossref_primary_10_3390_electronics10070785
crossref_primary_10_1016_j_dss_2019_113191
crossref_primary_10_1149_2_0621910jes
crossref_primary_10_1016_j_neucom_2021_06_028
crossref_primary_10_1016_j_physa_2022_127762
crossref_primary_10_3390_buildings14030647
crossref_primary_10_1109_ACCESS_2018_2879055
crossref_primary_10_3233_JIFS_224285
crossref_primary_10_1016_j_advengsoft_2017_09_002
crossref_primary_10_1177_03611981211036371
crossref_primary_10_1109_TITS_2018_2857224
crossref_primary_10_1016_j_jhydrol_2017_11_018
crossref_primary_10_1007_s00521_022_06898_y
crossref_primary_10_1061_JTEPBS_0000600
crossref_primary_10_1016_j_ins_2023_119056
crossref_primary_10_1016_j_amar_2021_100157
crossref_primary_10_17531_ein_2021_4_3
crossref_primary_10_3390_forecast5010010
crossref_primary_10_1016_j_asoc_2022_109945
crossref_primary_10_1016_j_ins_2023_119269
crossref_primary_10_1109_TITS_2022_3220089
crossref_primary_10_3390_ijgi8060243
crossref_primary_10_1061_JPCFEV_CFENG_4390
crossref_primary_10_1049_iet_its_2019_0008
crossref_primary_10_1155_2021_7161293
crossref_primary_10_1016_j_inffus_2018_07_007
crossref_primary_10_1088_1742_6596_2033_1_012167
crossref_primary_10_12720_jait_16_1_49_56
crossref_primary_10_1109_ACCESS_2021_3049556
crossref_primary_10_1109_TITS_2022_3151262
crossref_primary_10_1016_j_trc_2017_12_012
crossref_primary_10_1109_TITS_2018_2882861
crossref_primary_10_5194_acp_19_12935_2019
crossref_primary_10_1016_j_trc_2020_02_013
crossref_primary_10_1080_00207543_2021_1871675
crossref_primary_10_3390_s19102229
crossref_primary_10_2139_ssrn_3994301
crossref_primary_10_1016_j_asej_2022_102050
crossref_primary_10_1080_19427867_2023_2207278
crossref_primary_10_1016_j_asoc_2024_111380
crossref_primary_10_1016_j_bdr_2024_100427
crossref_primary_10_1177_0361198119842823
crossref_primary_10_1142_S2424922X22500103
crossref_primary_10_1080_01969722_2023_2240649
crossref_primary_10_1145_3416914
crossref_primary_10_2139_ssrn_4100305
crossref_primary_10_1177_0361198120912422
crossref_primary_10_1109_TITS_2021_3060959
crossref_primary_10_1109_JIOT_2022_3196461
crossref_primary_10_1109_ACCESS_2020_2964070
crossref_primary_10_1007_s40747_021_00365_2
crossref_primary_10_1109_TITS_2019_2906365
crossref_primary_10_1007_s10994_024_06711_y
crossref_primary_10_1016_j_asoc_2022_109700
crossref_primary_10_1109_MIS_2022_3173427
crossref_primary_10_2139_ssrn_4142192
crossref_primary_10_1109_JIOT_2021_3136031
crossref_primary_10_1109_TITS_2022_3168879
crossref_primary_10_1007_s00521_020_05196_9
crossref_primary_10_1089_big_2021_0318
crossref_primary_10_1007_s42421_023_00073_y
crossref_primary_10_1109_ACCESS_2019_2917228
crossref_primary_10_3390_atmos11040423
crossref_primary_10_1109_TNSM_2022_3161872
crossref_primary_10_1109_MITS_2022_3207831
crossref_primary_10_1155_2022_1702766
crossref_primary_10_1109_TITS_2020_3000761
crossref_primary_10_1177_0361198120941508
crossref_primary_10_1049_iet_its_2018_5155
crossref_primary_10_1061_JTEPBS_0000636
crossref_primary_10_1109_MIS_2023_3250600
crossref_primary_10_3390_s17040818
crossref_primary_10_1016_j_rsma_2025_104106
crossref_primary_10_1109_ACCESS_2020_3016469
crossref_primary_10_1177_1687814017748748
crossref_primary_10_1109_TITS_2018_2871269
crossref_primary_10_1109_TITS_2019_2924883
crossref_primary_10_1016_j_trc_2021_103526
crossref_primary_10_1109_ACCESS_2024_3396156
crossref_primary_10_1155_2021_6393951
crossref_primary_10_1007_s11227_023_05383_0
crossref_primary_10_1016_j_physa_2022_128414
crossref_primary_10_1145_3231541_3231544
crossref_primary_10_1088_1742_6596_1693_1_012112
crossref_primary_10_3390_app12115340
crossref_primary_10_1049_iet_its_2019_0552
crossref_primary_10_1109_ACCESS_2019_2918784
crossref_primary_10_3390_ijgi10080555
crossref_primary_10_1109_MITS_2021_3099796
crossref_primary_10_1109_TITS_2020_3031026
crossref_primary_10_1061_JTEPBS_TEENG_8059
crossref_primary_10_1080_13658816_2019_1652303
crossref_primary_10_3390_s18072287
crossref_primary_10_3390_app131810266
crossref_primary_10_1155_2019_4858546
crossref_primary_10_1109_ACCESS_2020_2985233
crossref_primary_10_1016_j_future_2021_10_022
crossref_primary_10_2139_ssrn_4065482
crossref_primary_10_1109_MITS_2018_2842249
crossref_primary_10_2200_S01156ED1V01Y202112AAT016
crossref_primary_10_3390_math12081137
crossref_primary_10_1007_s10489_021_02648_0
crossref_primary_10_1080_19475705_2022_2057241
crossref_primary_10_1109_TITS_2019_2932038
crossref_primary_10_1016_j_aej_2020_09_038
crossref_primary_10_1016_j_suscom_2022_100779
crossref_primary_10_1093_comjnl_bxac156
crossref_primary_10_1016_j_eswa_2022_117275
crossref_primary_10_17341_gazimmfd_921035
crossref_primary_10_3390_su15118731
crossref_primary_10_1155_2021_2564211
crossref_primary_10_1016_j_measurement_2019_01_038
crossref_primary_10_1109_ACCESS_2020_2974575
crossref_primary_10_1016_j_eswa_2023_120724
crossref_primary_10_1016_j_trc_2024_104689
crossref_primary_10_1016_j_knosys_2024_112029
crossref_primary_10_1016_j_asoc_2022_108544
crossref_primary_10_3389_ffutr_2020_594608
crossref_primary_10_1109_ACCESS_2020_3016004
crossref_primary_10_1038_s41598_022_14037_9
crossref_primary_10_1016_j_asoc_2022_108768
crossref_primary_10_1016_j_procs_2024_09_516
crossref_primary_10_1109_TVCG_2019_2922597
crossref_primary_10_1007_s13177_024_00411_6
crossref_primary_10_1155_2017_6905431
crossref_primary_10_1063_5_0007174
crossref_primary_10_3390_ijgi10080539
crossref_primary_10_3390_electronics11101613
crossref_primary_10_1016_j_comcom_2019_10_011
crossref_primary_10_1049_iet_its_2016_0208
crossref_primary_10_1080_02533839_2021_1936643
crossref_primary_10_1007_s10489_023_05053_x
crossref_primary_10_1109_TITS_2023_3344647
crossref_primary_10_1155_2016_9236156
crossref_primary_10_1109_ACCESS_2019_2929692
crossref_primary_10_3390_electronics10141610
crossref_primary_10_3233_IDA_230174
crossref_primary_10_1016_j_trc_2021_103339
crossref_primary_10_1016_j_trc_2022_103616
crossref_primary_10_1061__ASCE_CO_1943_7862_0001697
crossref_primary_10_1109_ACCESS_2020_2968718
crossref_primary_10_1109_TITS_2024_3485794
crossref_primary_10_26599_HTRD_2024_9480015
crossref_primary_10_1007_s00500_020_04855_2
crossref_primary_10_1016_j_neunet_2018_07_004
crossref_primary_10_1080_00051144_2025_2466257
crossref_primary_10_2166_ws_2023_081
crossref_primary_10_1007_s10707_023_00510_8
crossref_primary_10_1016_j_eswa_2019_112864
crossref_primary_10_1155_2020_2143921
crossref_primary_10_1155_2020_8877731
crossref_primary_10_1109_TBDATA_2021_3063553
crossref_primary_10_1016_j_trc_2024_104661
crossref_primary_10_1061_JTEPBS_0000435
crossref_primary_10_1049_iet_its_2018_5593
crossref_primary_10_1360_SSTe_2021_0128
crossref_primary_10_1016_j_aap_2020_105949
crossref_primary_10_1016_j_eswa_2024_124187
crossref_primary_10_1080_19427867_2024_2440211
crossref_primary_10_1371_journal_pone_0194629
crossref_primary_10_1155_2021_6457246
crossref_primary_10_1109_TITS_2022_3187121
crossref_primary_10_1142_S0218194019400187
crossref_primary_10_1155_2017_2415312
crossref_primary_10_1007_s10994_022_06136_5
crossref_primary_10_1177_03611981211011170
crossref_primary_10_1142_S1469026824500111
crossref_primary_10_1002_jbio_202300447
crossref_primary_10_3233_JIFS_213557
crossref_primary_10_1007_s12243_025_01081_5
crossref_primary_10_3390_s21020629
crossref_primary_10_1016_j_asoc_2019_02_006
crossref_primary_10_3389_fenvs_2022_905443
crossref_primary_10_1016_j_trc_2021_103323
crossref_primary_10_2139_ssrn_3733398
crossref_primary_10_1007_s12517_021_06982_y
crossref_primary_10_1016_j_pmcj_2023_101769
crossref_primary_10_1109_ACCESS_2022_3221970
crossref_primary_10_1109_TITS_2024_3436523
crossref_primary_10_1016_j_physa_2023_128769
crossref_primary_10_1108_IDD_12_2020_0160
crossref_primary_10_1016_j_jsv_2018_05_007
crossref_primary_10_1109_ACCESS_2024_3349591
crossref_primary_10_1017_S1466252319000033
crossref_primary_10_1080_07421222_2021_1870391
crossref_primary_10_1111_mice_12376
crossref_primary_10_3390_s21186089
crossref_primary_10_1061_JTEPBS_0000653
crossref_primary_10_1109_ACCESS_2021_3115709
crossref_primary_10_1016_j_trc_2023_104126
crossref_primary_10_3390_en18040993
crossref_primary_10_1109_ACCESS_2018_2884933
crossref_primary_10_1016_j_enconman_2018_01_010
crossref_primary_10_3390_rs13234834
crossref_primary_10_1016_j_trc_2021_103352
crossref_primary_10_1016_j_engappai_2023_107649
crossref_primary_10_1002_ett_3482
crossref_primary_10_3390_en14196199
crossref_primary_10_1109_TITS_2022_3168865
crossref_primary_10_1049_iet_its_2016_0257
crossref_primary_10_1109_JIOT_2020_2966792
crossref_primary_10_1016_j_knosys_2022_109796
crossref_primary_10_1109_JSAC_2019_2904357
crossref_primary_10_1109_TITS_2020_3008408
crossref_primary_10_3390_app14146102
crossref_primary_10_3390_su14148562
crossref_primary_10_1016_j_trc_2017_10_016
crossref_primary_10_1016_j_trc_2023_104354
crossref_primary_10_1109_ACCESS_2020_2999662
crossref_primary_10_1177_0361198120911052
crossref_primary_10_1007_s41060_018_0162_6
crossref_primary_10_1177_03611981241247050
crossref_primary_10_3390_s17071501
crossref_primary_10_1109_TITS_2023_3308949
crossref_primary_10_1016_j_trc_2019_07_003
crossref_primary_10_3390_app132112079
crossref_primary_10_1080_01430750_2022_2056917
crossref_primary_10_1051_e3sconf_202338222003
crossref_primary_10_1016_j_trc_2019_05_039
crossref_primary_10_1177_03611981231169531
crossref_primary_10_1139_cjce_2023_0495
crossref_primary_10_1287_trsc_2021_1086
crossref_primary_10_1049_iet_spr_2018_5240
crossref_primary_10_1109_ACCESS_2019_2931920
crossref_primary_10_3390_su131910704
crossref_primary_10_1109_TITS_2020_3006227
crossref_primary_10_1111_tgis_12975
crossref_primary_10_3233_IDT_240231
crossref_primary_10_1016_j_eswa_2023_122766
crossref_primary_10_1108_AA_02_2021_0018
crossref_primary_10_1080_15472450_2018_1542304
crossref_primary_10_1061_JTEPBS_0000230
crossref_primary_10_1109_TITS_2020_2995546
crossref_primary_10_1007_s11042_023_15395_w
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_3390_s19132946
crossref_primary_10_1007_s42421_024_00104_2
crossref_primary_10_1016_j_ast_2021_106652
crossref_primary_10_1155_2023_5070504
crossref_primary_10_1016_j_oceaneng_2022_113151
crossref_primary_10_3233_JIFS_210657
crossref_primary_10_1155_2020_9628957
crossref_primary_10_1109_TIM_2023_3260278
crossref_primary_10_1109_TITS_2019_2897341
crossref_primary_10_1016_j_jksuci_2023_101836
crossref_primary_10_1080_23249935_2024_2335244
crossref_primary_10_1109_ACCESS_2018_2805299
crossref_primary_10_1109_ACCESS_2019_2951780
crossref_primary_10_1016_j_ins_2021_04_057
crossref_primary_10_1002_sat_1508
crossref_primary_10_1007_s10489_018_1339_3
crossref_primary_10_1007_s40747_024_01391_6
crossref_primary_10_3390_sym12050861
crossref_primary_10_1109_ACCESS_2019_2941987
crossref_primary_10_1108_FS_01_2021_0024
crossref_primary_10_1016_j_physa_2024_130204
crossref_primary_10_1007_s43069_023_00266_9
crossref_primary_10_1371_journal_pone_0182458
crossref_primary_10_32604_cmc_2021_014598
crossref_primary_10_3390_app6020047
crossref_primary_10_3390_s24072348
crossref_primary_10_1061_JTEPBS_0000455
crossref_primary_10_1109_TVT_2022_3141880
crossref_primary_10_3390_app13158776
crossref_primary_10_7717_peerj_cs_1534
crossref_primary_10_3390_app12136412
crossref_primary_10_1109_ICJECE_2021_3076124
crossref_primary_10_3390_smartcities2030023
crossref_primary_10_1007_s13349_022_00576_2
crossref_primary_10_1088_1742_6596_2369_1_012031
crossref_primary_10_1016_j_engappai_2021_104491
crossref_primary_10_5604_01_3001_0015_8148
crossref_primary_10_1109_TITS_2020_3019509
crossref_primary_10_1016_j_asoc_2019_105654
crossref_primary_10_1109_TITS_2022_3146899
crossref_primary_10_3141_2594_10
crossref_primary_10_1109_TITS_2021_3103502
crossref_primary_10_3390_math12162434
crossref_primary_10_1016_j_eswa_2021_115878
crossref_primary_10_3390_s21227705
crossref_primary_10_1016_j_eswa_2023_119587
crossref_primary_10_1109_TITS_2020_3027628
crossref_primary_10_3390_s21248468
crossref_primary_10_1016_j_biteb_2021_100724
crossref_primary_10_3390_app10249037
crossref_primary_10_1061_JTEPBS_0000223
crossref_primary_10_1016_j_future_2020_12_003
crossref_primary_10_1016_j_scitotenv_2023_166986
crossref_primary_10_1109_TITS_2020_3004254
crossref_primary_10_3390_math12193159
crossref_primary_10_1109_ACCESS_2019_2918728
crossref_primary_10_1016_j_eswa_2023_120333
crossref_primary_10_1007_s10346_018_01127_x
crossref_primary_10_1371_journal_pone_0161259
crossref_primary_10_1016_j_watres_2021_117070
crossref_primary_10_1016_j_trc_2017_02_024
crossref_primary_10_1109_TITS_2021_3131248
crossref_primary_10_1016_j_egypro_2019_01_491
crossref_primary_10_1049_itr2_12411
crossref_primary_10_1007_s11633_020_1276_6
crossref_primary_10_3390_su151713209
crossref_primary_10_1016_j_physa_2021_126603
crossref_primary_10_3390_su12198070
crossref_primary_10_1016_j_apenergy_2024_124007
crossref_primary_10_3390_math11194075
crossref_primary_10_1109_ACCESS_2022_3211518
crossref_primary_10_1049_iet_its_2018_5511
crossref_primary_10_1109_TITS_2022_3215073
crossref_primary_10_1109_TVT_2024_3462708
crossref_primary_10_3390_ijgi12040144
crossref_primary_10_1016_j_ejor_2020_05_020
crossref_primary_10_1007_s11430_021_9870_8
crossref_primary_10_1177_1687814018802128
crossref_primary_10_3390_math11163574
crossref_primary_10_3390_su12020646
crossref_primary_10_2139_ssrn_4534689
crossref_primary_10_3390_su15032603
crossref_primary_10_1109_TITS_2023_3279929
crossref_primary_10_1109_TNSE_2024_3417371
crossref_primary_10_1080_15472450_2019_1598863
crossref_primary_10_1007_s11063_024_11571_7
crossref_primary_10_1016_j_future_2018_10_052
crossref_primary_10_1109_TITS_2020_2983763
crossref_primary_10_1155_2017_3515272
crossref_primary_10_1109_TITS_2023_3348634
crossref_primary_10_1080_03081060_2023_2245389
crossref_primary_10_1109_ACCESS_2020_2975655
crossref_primary_10_1177_09544070221104893
crossref_primary_10_1016_j_trc_2017_02_005
crossref_primary_10_1109_JIOT_2020_3037669
crossref_primary_10_1109_TITS_2021_3072118
crossref_primary_10_3390_rs10030452
crossref_primary_10_1007_s10479_023_05223_7
crossref_primary_10_1016_j_geoen_2023_211660
crossref_primary_10_1109_ACCESS_2020_2998515
crossref_primary_10_1016_j_neucom_2022_05_083
crossref_primary_10_1016_j_eswa_2023_120393
crossref_primary_10_1049_iet_its_2015_0212
crossref_primary_10_1109_ACCESS_2021_3056882
crossref_primary_10_1007_s41939_023_00350_x
crossref_primary_10_1016_j_physa_2018_04_031
crossref_primary_10_12815_kits_2017_16_4_153
crossref_primary_10_1016_j_eswa_2024_123959
crossref_primary_10_1109_ACCESS_2022_3195353
crossref_primary_10_1109_ACCESS_2023_3310821
crossref_primary_10_1049_itr2_12431
crossref_primary_10_1016_j_inffus_2023_101837
crossref_primary_10_1049_itr2_12440
crossref_primary_10_1109_TITS_2020_2984813
crossref_primary_10_1109_TITS_2021_3052796
crossref_primary_10_1155_2020_6901084
crossref_primary_10_1109_TITS_2019_2910295
crossref_primary_10_1016_j_scitotenv_2020_137117
crossref_primary_10_1016_j_trc_2019_05_021
crossref_primary_10_1080_19427867_2022_2057397
crossref_primary_10_1109_TITS_2022_3145382
crossref_primary_10_1016_j_oceaneng_2020_107380
crossref_primary_10_1109_ACCESS_2019_2902185
crossref_primary_10_3390_app13020711
crossref_primary_10_1088_1757_899X_392_6_062090
crossref_primary_10_1016_j_trc_2019_11_018
crossref_primary_10_1109_ACCESS_2019_2893997
crossref_primary_10_1002_ett_5021
crossref_primary_10_1177_0361198120917673
crossref_primary_10_1016_j_procs_2022_09_110
crossref_primary_10_3390_su14052564
crossref_primary_10_3390_aerospace8080224
crossref_primary_10_3390_su162310190
crossref_primary_10_1016_j_eswa_2021_114580
crossref_primary_10_1109_MITS_2023_3265808
crossref_primary_10_1088_1757_899X_646_1_012015
crossref_primary_10_3390_electronics13030636
crossref_primary_10_1007_s11063_021_10462_5
crossref_primary_10_1016_j_jpowsour_2019_04_118
crossref_primary_10_1016_j_trc_2024_104490
crossref_primary_10_1016_j_bdr_2018_04_002
crossref_primary_10_1109_TITS_2022_3219882
crossref_primary_10_1109_TITS_2024_3524582
crossref_primary_10_1016_j_trc_2016_09_016
crossref_primary_10_1109_TCBB_2019_2919307
crossref_primary_10_1371_journal_pone_0226910
crossref_primary_10_1016_j_physa_2024_129632
crossref_primary_10_1109_LGRS_2017_2738671
crossref_primary_10_1016_j_asr_2021_08_017
crossref_primary_10_1016_j_asoc_2020_106579
crossref_primary_10_1016_j_physa_2023_129233
crossref_primary_10_1109_JOE_2023_3314090
crossref_primary_10_1016_j_renene_2024_120367
crossref_primary_10_1109_TNNLS_2020_3016632
crossref_primary_10_1371_journal_pone_0313708
crossref_primary_10_1016_j_neucom_2018_08_067
crossref_primary_10_1007_s00521_018_3470_9
crossref_primary_10_1155_2023_4597386
crossref_primary_10_1016_j_aap_2018_10_015
crossref_primary_10_1109_TAP_2023_3254201
crossref_primary_10_1371_journal_pone_0173317
crossref_primary_10_15388_20_INFOR431
crossref_primary_10_1109_ACCESS_2020_2965094
crossref_primary_10_1109_TITS_2022_3160468
crossref_primary_10_1016_j_asoc_2020_106582
crossref_primary_10_1080_15472450_2021_1977639
crossref_primary_10_1016_j_energy_2020_118294
crossref_primary_10_1142_S0129065721300011
crossref_primary_10_1007_s10064_023_03247_8
crossref_primary_10_3390_aerospace9050250
crossref_primary_10_1061_JTEPBS_TEENG_7638
crossref_primary_10_1145_3511904
crossref_primary_10_1016_j_knosys_2018_09_003
crossref_primary_10_1080_19427867_2025_2450577
crossref_primary_10_1007_s11071_020_05646_y
crossref_primary_10_1016_j_trc_2020_102619
crossref_primary_10_1177_03611981231224740
crossref_primary_10_3390_electronics11060861
crossref_primary_10_1049_itr2_12330
crossref_primary_10_1109_TITS_2022_3219626
crossref_primary_10_1155_2020_6530530
crossref_primary_10_1063_1_5120502
crossref_primary_10_1007_s13131_021_1735_0
crossref_primary_10_1061_JTEPBS_TEENG_7647
crossref_primary_10_1109_ACCESS_2020_3036652
crossref_primary_10_1109_TITS_2024_3396382
crossref_primary_10_1142_S0218213023500677
crossref_primary_10_1177_1687814020923202
crossref_primary_10_1155_2023_7099652
crossref_primary_10_1680_jmuen_20_00004
crossref_primary_10_1016_j_eswa_2018_11_028
crossref_primary_10_1016_j_iswa_2023_200227
crossref_primary_10_1007_s11280_021_00877_4
crossref_primary_10_1016_j_ast_2019_105403
crossref_primary_10_1371_journal_pone_0263030
crossref_primary_10_1080_23249935_2025_2457339
crossref_primary_10_1155_2021_4819254
crossref_primary_10_1155_2024_7985408
crossref_primary_10_1080_03081060_2021_1992180
crossref_primary_10_1109_TCSS_2024_3372856
crossref_primary_10_1007_s12239_019_0067_y
crossref_primary_10_3390_su14106351
crossref_primary_10_1016_j_eswa_2024_124956
crossref_primary_10_2139_ssrn_3972695
crossref_primary_10_1088_1742_6596_1883_1_012010
crossref_primary_10_1088_1742_6596_1966_1_012013
crossref_primary_10_1155_2020_7293454
crossref_primary_10_1016_j_jocs_2018_03_010
crossref_primary_10_26599_BDMA_2023_9020017
crossref_primary_10_3390_app14209488
crossref_primary_10_1007_s41064_022_00203_1
crossref_primary_10_1088_1742_6596_1646_1_012050
crossref_primary_10_1007_s10878_017_0210_5
crossref_primary_10_1109_TITS_2020_2997412
crossref_primary_10_1016_j_trc_2019_10_011
crossref_primary_10_3390_a17090398
crossref_primary_10_3390_ijgi8090366
crossref_primary_10_1016_j_procs_2019_04_025
crossref_primary_10_1016_j_neucom_2023_02_017
crossref_primary_10_3390_app11104423
crossref_primary_10_1145_3472300
crossref_primary_10_1016_j_apenergy_2018_09_052
crossref_primary_10_1016_j_isatra_2019_08_024
crossref_primary_10_1109_JIOT_2023_3290401
crossref_primary_10_1049_itr2_12138
crossref_primary_10_1155_2022_8843000
crossref_primary_10_3141_2645_20
crossref_primary_10_1109_TITS_2024_3362145
crossref_primary_10_1177_1045389X20951263
crossref_primary_10_1109_ACCESS_2020_3001973
crossref_primary_10_1007_s00521_024_10494_7
crossref_primary_10_3934_mbe_2024112
crossref_primary_10_1109_ACCESS_2025_3541042
crossref_primary_10_1007_s44212_023_00032_6
crossref_primary_10_1371_journal_pone_0184142
crossref_primary_10_1016_j_asoc_2020_106387
crossref_primary_10_1109_TITS_2019_2947145
crossref_primary_10_1016_j_eswa_2024_123884
crossref_primary_10_3390_math12020255
crossref_primary_10_1016_j_cageo_2024_105824
crossref_primary_10_1002_widm_1285
crossref_primary_10_1007_s10489_023_05126_x
crossref_primary_10_1155_2019_6320186
crossref_primary_10_1109_ACCESS_2020_2973514
crossref_primary_10_1109_ACCESS_2021_3071174
crossref_primary_10_52756_ijerr_2024_v45spl_019
crossref_primary_10_3390_s19092063
crossref_primary_10_36548_jscp_2019_1_004
crossref_primary_10_1016_j_asoc_2019_105963
crossref_primary_10_1080_15567036_2021_1875082
crossref_primary_10_3390_app13116850
crossref_primary_10_1061_JTEPBS_TEENG_8715
crossref_primary_10_1016_j_trc_2020_102620
crossref_primary_10_1016_j_trc_2020_102622
crossref_primary_10_1109_TITS_2024_3362129
crossref_primary_10_1155_2019_8729367
crossref_primary_10_1016_j_tranpol_2022_08_019
crossref_primary_10_1016_j_gsf_2020_02_011
crossref_primary_10_1007_s12145_023_01146_w
crossref_primary_10_1016_j_physa_2022_126988
crossref_primary_10_1016_j_trd_2023_103678
crossref_primary_10_1155_2020_4656435
crossref_primary_10_3390_app12157597
crossref_primary_10_1016_j_istruc_2023_105654
crossref_primary_10_1007_s10489_023_05137_8
crossref_primary_10_1016_j_softx_2023_101350
crossref_primary_10_3390_app13095512
crossref_primary_10_1080_17538947_2022_2028912
crossref_primary_10_1002_int_22725
crossref_primary_10_1109_TVT_2019_2893173
crossref_primary_10_2139_ssrn_4127056
crossref_primary_10_1007_s40747_024_01578_x
crossref_primary_10_3390_rs12193231
crossref_primary_10_1016_j_tra_2023_103832
crossref_primary_10_1155_2021_6678355
crossref_primary_10_1109_TITS_2019_2909904
crossref_primary_10_1109_TITS_2020_3010296
crossref_primary_10_1016_j_isci_2022_103909
crossref_primary_10_1109_JSEN_2020_3019053
crossref_primary_10_1142_S0129183124501778
crossref_primary_10_3390_s24217086
crossref_primary_10_1016_j_bspc_2019_101675
crossref_primary_10_1109_TITS_2024_3381099
crossref_primary_10_1111_mice_12819
crossref_primary_10_1016_j_engappai_2024_108242
crossref_primary_10_1155_2021_7328056
crossref_primary_10_17798_bitlisfen_1292003
crossref_primary_10_1016_j_neucom_2025_129369
crossref_primary_10_1109_TMC_2024_3453657
crossref_primary_10_1016_j_rser_2021_111607
crossref_primary_10_1109_ACCESS_2020_2980019
crossref_primary_10_2139_ssrn_3996683
crossref_primary_10_1109_ACCESS_2020_2994415
crossref_primary_10_1109_TNNLS_2023_3293814
crossref_primary_10_1007_s10489_022_03966_7
crossref_primary_10_1016_j_physa_2019_122492
crossref_primary_10_1016_j_tranpol_2020_05_023
crossref_primary_10_1021_acsomega_3c02387
crossref_primary_10_1109_ACCESS_2020_2970836
crossref_primary_10_3390_math12101493
crossref_primary_10_1016_j_aap_2020_105910
crossref_primary_10_1007_s00521_021_06669_1
crossref_primary_10_1088_1742_6596_1915_2_022064
crossref_primary_10_1109_TITS_2021_3083968
crossref_primary_10_1016_j_trc_2019_08_005
crossref_primary_10_1109_ACCESS_2023_3264707
crossref_primary_10_1108_IJICC_04_2022_0104
crossref_primary_10_1109_ACCESS_2019_2907131
crossref_primary_10_1007_s42421_020_00030_z
crossref_primary_10_1016_j_asoc_2023_111128
crossref_primary_10_1016_j_heliyon_2022_e11847
crossref_primary_10_1080_03772063_2023_2277244
crossref_primary_10_1088_1755_1315_783_1_012153
crossref_primary_10_3390_ijgi11020088
crossref_primary_10_3390_ijgi12080346
crossref_primary_10_1049_iet_its_2020_0004
crossref_primary_10_1007_s10489_024_05291_7
crossref_primary_10_1049_iet_its_2020_0486
crossref_primary_10_3390_e25060938
crossref_primary_10_1016_j_engappai_2023_107061
crossref_primary_10_1016_j_trc_2021_103372
crossref_primary_10_1109_ACCESS_2020_3011186
crossref_primary_10_1016_j_eswa_2024_123208
crossref_primary_10_1186_s40854_021_00243_3
crossref_primary_10_2139_ssrn_4063434
crossref_primary_10_3390_su15021374
crossref_primary_10_1038_s41598_024_72094_8
crossref_primary_10_1155_2021_5589075
crossref_primary_10_1109_ACCESS_2020_2989443
crossref_primary_10_1109_TAI_2022_3153750
crossref_primary_10_1109_TITS_2021_3083957
crossref_primary_10_3846_transport_2024_20538
crossref_primary_10_1007_s11440_021_01264_z
crossref_primary_10_1109_TITS_2018_2878068
crossref_primary_10_1080_19439962_2022_2164636
crossref_primary_10_1177_03611981241248160
crossref_primary_10_1371_journal_pone_0188790
crossref_primary_10_1016_j_apm_2020_06_020
crossref_primary_10_1016_j_joule_2018_11_010
crossref_primary_10_1109_ACCESS_2024_3381987
crossref_primary_10_1016_j_eswa_2024_125655
crossref_primary_10_1007_s12205_018_1491_7
crossref_primary_10_1016_j_physa_2019_122601
crossref_primary_10_1016_j_inffus_2023_102214
crossref_primary_10_1109_TFUZZ_2020_2986995
crossref_primary_10_1080_09540091_2022_2061915
crossref_primary_10_1111_mice_12459
crossref_primary_10_1142_S0219622019500202
crossref_primary_10_1109_TITS_2016_2643005
crossref_primary_10_1109_ACCESS_2019_2932118
crossref_primary_10_3390_s19020409
crossref_primary_10_1109_ACCESS_2019_2957612
crossref_primary_10_1016_j_eswa_2022_116585
crossref_primary_10_1111_mice_13301
crossref_primary_10_1007_s42421_022_00059_2
crossref_primary_10_1016_j_apr_2020_05_007
crossref_primary_10_1109_TIM_2023_3341124
crossref_primary_10_1190_geo2019_0261_1
crossref_primary_10_1155_2021_9966382
crossref_primary_10_1007_s10489_024_05303_6
crossref_primary_10_1007_s12239_020_0010_2
crossref_primary_10_1109_TITS_2021_3067024
crossref_primary_10_1108_APJML_09_2019_0520
crossref_primary_10_1155_2022_6888115
crossref_primary_10_1177_03611981231192094
crossref_primary_10_1007_s10489_024_06055_z
crossref_primary_10_1049_iet_its_2020_0284
crossref_primary_10_1088_1742_6596_2491_1_012035
crossref_primary_10_1016_j_knosys_2021_107038
crossref_primary_10_1155_2021_9928073
crossref_primary_10_1109_ACCESS_2020_2974190
crossref_primary_10_1109_ACCESS_2019_2941280
crossref_primary_10_1109_TITS_2019_2932785
crossref_primary_10_1109_TITS_2023_3276916
crossref_primary_10_1109_TITS_2020_3031331
crossref_primary_10_1016_j_neucom_2019_04_061
crossref_primary_10_1016_j_aej_2023_05_015
crossref_primary_10_1109_ACCESS_2020_3000242
crossref_primary_10_1109_TITS_2016_2595526
crossref_primary_10_1155_2022_6456186
crossref_primary_10_1021_acsomega_2c07609
crossref_primary_10_1088_1755_1315_587_1_012065
crossref_primary_10_1109_ACCESS_2020_2977219
crossref_primary_10_1007_s00779_019_01333_x
crossref_primary_10_1109_ACCESS_2019_2936938
crossref_primary_10_1007_s00521_024_10302_2
crossref_primary_10_1109_ACCESS_2020_2991982
crossref_primary_10_1016_j_physa_2021_126474
crossref_primary_10_1016_j_cellsig_2021_110225
crossref_primary_10_1016_j_knosys_2024_112671
crossref_primary_10_1016_j_ejtl_2020_100006
crossref_primary_10_1109_ACCESS_2020_3038853
crossref_primary_10_1177_0361198118776139
crossref_primary_10_1109_TITS_2021_3067675
crossref_primary_10_1155_2021_2956151
crossref_primary_10_1631_FITEE_1500381
crossref_primary_10_3390_app11209680
crossref_primary_10_1007_s11227_021_04237_x
crossref_primary_10_3390_atmos12070924
crossref_primary_10_1016_j_trc_2016_10_019
crossref_primary_10_1109_ACCESS_2019_2909114
crossref_primary_10_1109_TITS_2024_3467172
crossref_primary_10_1016_j_trc_2019_09_008
crossref_primary_10_1016_j_ijtst_2024_07_004
crossref_primary_10_3934_era_2024034
crossref_primary_10_1007_s13042_024_02152_0
crossref_primary_10_1061_JTEPBS_TEENG_7451
crossref_primary_10_1109_TITS_2023_3237320
crossref_primary_10_1080_13658816_2024_2403023
crossref_primary_10_1016_j_trc_2021_103179
crossref_primary_10_3390_app10144917
crossref_primary_10_3390_app142311047
crossref_primary_10_3390_s24041266
crossref_primary_10_1016_j_cie_2019_106246
crossref_primary_10_1109_TITS_2020_2973279
crossref_primary_10_1016_j_jhydrol_2020_125734
crossref_primary_10_1109_ACCESS_2019_2923663
crossref_primary_10_1016_j_trc_2019_09_006
crossref_primary_10_1061_JTEPBS_TEENG_8304
crossref_primary_10_3390_ijgi10050322
crossref_primary_10_1016_j_vehcom_2019_100184
crossref_primary_10_1016_j_eneco_2025_108350
crossref_primary_10_1109_ACCESS_2020_2992657
crossref_primary_10_1016_j_neucom_2018_10_097
crossref_primary_10_1109_ACCESS_2023_3300232
crossref_primary_10_1007_s42486_020_00039_x
crossref_primary_10_1016_j_engappai_2020_103686
crossref_primary_10_1111_mice_12688
crossref_primary_10_1049_iet_its_2019_0112
crossref_primary_10_1109_TITS_2022_3215613
crossref_primary_10_3390_sym15020312
crossref_primary_10_1515_itit_2017_0040
crossref_primary_10_1016_j_eswa_2021_116057
crossref_primary_10_1007_s42488_025_00141_8
crossref_primary_10_1016_j_trc_2024_104953
crossref_primary_10_1155_2021_7756299
crossref_primary_10_1590_1678_4324_2024220670
crossref_primary_10_1108_JICV_03_2021_0004
crossref_primary_10_1109_TITS_2022_3155749
crossref_primary_10_3390_s25041225
crossref_primary_10_1016_j_trc_2019_09_013
crossref_primary_10_1088_1755_1315_587_1_012007
crossref_primary_10_4236_ars_2024_133004
crossref_primary_10_1016_j_physa_2019_122884
crossref_primary_10_1016_j_eswa_2024_125457
crossref_primary_10_1177_01423312211003372
crossref_primary_10_3390_su142416361
crossref_primary_10_1016_j_procs_2020_03_063
crossref_primary_10_1109_TITS_2021_3136287
crossref_primary_10_1109_TITS_2023_3329489
crossref_primary_10_1145_3446430
crossref_primary_10_1016_j_tre_2020_102106
crossref_primary_10_1680_jtran_23_00081
crossref_primary_10_1016_j_ins_2022_07_008
crossref_primary_10_1016_j_jnlssr_2021_10_008
crossref_primary_10_1007_s10489_024_06079_5
crossref_primary_10_1016_j_ifacol_2020_12_2369
crossref_primary_10_1109_TETCI_2019_2907718
crossref_primary_10_1109_TITS_2018_2869768
crossref_primary_10_3390_app14114481
crossref_primary_10_1080_03081079_2023_2203922
crossref_primary_10_1109_TITS_2023_3290165
crossref_primary_10_3389_fenrg_2021_753732
crossref_primary_10_3390_jmse11061203
crossref_primary_10_1371_journal_pone_0218626
crossref_primary_10_1016_j_aei_2021_101510
crossref_primary_10_1016_j_eswa_2022_118790
crossref_primary_10_1177_0361198120935875
crossref_primary_10_1016_j_trc_2024_104938
crossref_primary_10_3390_app10061953
crossref_primary_10_3390_app13042172
crossref_primary_10_1007_s10479_023_05260_2
crossref_primary_10_1109_JIOT_2020_2997795
crossref_primary_10_1109_TITS_2021_3055258
crossref_primary_10_1111_mice_12417
crossref_primary_10_1007_s11042_018_6374_x
crossref_primary_10_1080_15472450_2021_1904921
crossref_primary_10_1016_j_trpro_2020_08_125
crossref_primary_10_1093_jge_gxab046
crossref_primary_10_1016_j_envpol_2017_08_114
crossref_primary_10_1007_s00190_022_01662_5
crossref_primary_10_1155_2023_3208535
crossref_primary_10_1109_TVT_2021_3134312
crossref_primary_10_1016_j_trc_2021_103185
crossref_primary_10_3390_s22186921
Cites_doi 10.1016/j.trc.2013.10.007
10.3141/1855-04
10.1016/j.trc.2006.06.001
10.1080/0144164042000195072
10.1016/j.trc.2005.04.007
10.3141/1811-04
10.1002/scj.1206
10.1111/mice.12000
10.3141/2215-04
10.1016/S0968-090X(03)00004-4
10.3141/1805-03
10.1109/TITS.2013.2290285
10.1162/neco.1997.9.8.1735
10.1016/0191-2615(84)90002-X
10.1061/(ASCE)0733-947X(1999)125:6(515)
10.1111/j.1467-8667.2009.00620.x
10.1080/15472450600798551
10.1080/15472450902858368
10.3141/1879-08
10.1080/18128600902823216
10.1111/mice.12014
10.1061/(ASCE)0733-947X(2006)132:3(213)
10.1016/j.trc.2005.03.001
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.3141/2024-11
10.1109/TITS.2008.915649
10.1061/(ASCE)0733-947X(2006)132:12(921)
10.1023/B:STCO.0000035301.49549.88
10.1016/S0968-090X(01)00004-3
10.1061/(ASCE)0733-947X(2003)129:6(608)
10.3141/1836-07
10.1061/(ASCE)0733-947X(2005)131:10(771)
10.3141/1917-17
10.1016/j.trc.2014.01.005
10.1016/S0968-090X(00)00039-5
10.1049/cp:19991218
10.1109/TITS.2004.833765
10.1111/j.1467-8667.2010.00668.x
10.1016/j.trc.2009.04.006
10.3141/1651-06
10.1016/j.trc.2010.10.004
10.1016/S0968-090X(02)00009-8
10.3141/1776-25
10.1016/0191-2615(93)90038-C
10.1109/TITS.2013.2258916
10.4236/ars.2013.22006
10.1111/0885-9507.00154
10.1080/03081060500120340
10.3141/1968-12
10.1109/ITSC.2009.5309675
10.3141/1617-23
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
8FD
F28
FR3
KR7
7TK
DOI 10.1016/j.trc.2015.03.014
DatabaseName CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Neurosciences Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Neurosciences Abstracts
DatabaseTitleList Civil Engineering Abstracts

Neurosciences Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 197
ExternalDocumentID 10_1016_j_trc_2015_03_014
S0968090X15000935
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
F28
FR3
KR7
7TK
EFKBS
ID FETCH-LOGICAL-c457t-44ca6b6f7ec2588819a9884bc265c5a01cda5879376b1a1734024c3d2cb0355f3
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Mon Jul 21 09:49:14 EDT 2025
Fri Jul 11 00:36:16 EDT 2025
Tue Jul 01 01:45:05 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:16:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Traffic speed prediction
Long short-term neural network
Remote microwave detector data
Neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-44ca6b6f7ec2588819a9884bc265c5a01cda5879376b1a1734024c3d2cb0355f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770313838
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1785228919
proquest_miscellaneous_1770313838
crossref_primary_10_1016_j_trc_2015_03_014
crossref_citationtrail_10_1016_j_trc_2015_03_014
elsevier_sciencedirect_doi_10_1016_j_trc_2015_03_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2015
Publisher Elsevier India Pvt Ltd
Publisher_xml – name: Elsevier India Pvt Ltd
References Pan, Sumalee, Zhong, Indra-payoong (b0175) 2013; 14
Kikuchi, Nakanishi (b0135) 2003; 34
Smola, Scholkopf (b0220) 2004; 14
Hamad, Shourijeh, Lee, Faghri (b0080) 2009; 24
Schaul, Bayer, Wiestra, Yi, Felder, Sehnke, Rückstieß, Schmidhuber (b0205) 2010; 11
Chien, Liu, Ozbay (b0050) 2003; 1855
Electronic Integrated System Inc., 2003. ITS Designer’s Guide to RTMS Products.
Zhang, Xie (b0335) 2007; 2024
Junger, J.R., Havlicek, J.P., Barnes, R.D., Tull, M.P., 2009. Prediction aggregation of remote traffic microwave sensors speed and volume data. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, pp. 673–678.
Lingras, Sharma, Zhong (b0145) 2002; 1805
Van Lint, Hoogendoorn, Zuylen (b0255) 2002; 1811
Stathopoulos, Karlaftis (b0225) 2003; 11
Jiang, Adeli (b0115) 2005; 131
Hochreiter, Schmidhuber (b0085) 1997; 9
Vlahogianni, Golia, Karlaftis (b0265) 2004; 24
Zeng, Zhang (b0320) 2013; 28
Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to Forget: Continual Prediction with LSTM. Technical Report IDSIA-01-99.
Smith, Williams, Oswald (b0215) 2002; 10
(accessed 03.03.14).
Nagel, Schreckenberg (b0160) 1992; 2
Ishak, Kotha, Alecsandru (b0100) 2003; 1836
Okutani, Stephanedes (b0170) 1984; 18
Liu, Zuylen, Lint, Salomons (b0150) 2006; 1968
Wu, Ho, Lee (b0295) 2004; 125
Newell (b0165) 1993; 278
Van Lint (b0235) 2004; 130
Xie, Zhang (b0300) 2006; 10
Boto-Giralda, Díaz-Pernas, González-Ortega, Díez-Higuera, Antón-Rodríguez, Martínez-Zarzuela, Torre-Díez (b0025) 2010; 25
Park, Messer, Urbanik (b0190) 1998; 1651
Bullinara, J.A., 2013. Recurrent Neural Network. Neural Computation: Lecture 12.
Asif, Dauwels, Goh, Oran, Fathi, Xu, Dhanya, Mitrovic, Jaillet (b0015) 2014; 15
Bodén, M., 2002. A Guide to Recurrent Neural Networks and Backpropagation. The Dallas Project. SICS Technical Report.
Coifman (b0060) 2006; 132
Coifman (b0055) 2005; 1917
Williams (b0285) 2001; 1776
Jaeger, H., 2002. A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 148, German National Research Center for Information Technology.
Van Lint, Hoogendoorn, Zuylen (b0260) 2005; 13
Vlahogianni, Karlaftis, Golias (b0270) 2005; 13
Ma, Wu, Wang (b0155) 2011; 2215
Kerner (b0130) 2004
Park, Rilett (b0185) 1999; 14
Chandra, Al-Deek (b0035) 2009; 13
Zhang, Liu (b0330) 2009; 5
Chen, Grant-Muller (b0040) 2001; 9
Huang, Sadek (b0095) 2009; 17
Karlaftis, Vlahogianni (b0125) 2011; 19
Rice, Zwet (b0200) 2004; 5
Vlahogianni, Karlaftis, Golia (b0275) 2014; 43
Van Lint (b0240) 2006; 132
Van Lint, Van Hinsbergen (b0250) 2012
Yu, Prevedouros (b0310) 2013; 2
Shen, L., 2008. Freeway Travel Time Estimation and Prediction using Dynamic Neural Networks. Ph.D. Dissertation, Florida International University.
Park, Rilett (b0180) 1998; 1617
Park, Rilett, Han (b0195) 1999; 125
Chien, Kuchipudi (b0045) 2003; 129
Williams, Hoel (b0290) 2003; 129
Zhang, Ge (b0325) 2013; 28
Gers, F., 2001. Long Short-term Memory in Recurrent Neural Networks. Ph.D. Dissertation, École Polytechnique Fédérale De Lausanne.
Jaeger, H., 2012. Long Short-term Memory in Echo State Networks: Details of a Simulation Study. Jacobs University Technical Report No. 27.
Hua, Faghri (b0090) 1994; 1453
Sutskever, I., 2013. Training Recurrent Neural Networks. Ph.D. Dissertation, University of Toronto.
Wang, Papageorgiou, Messmer (b0280) 2006; 14
Zou, Zhu, Zhang, Zeng (b0345) 2014; 43
Abigogun, O.A., 2005. Data Mining, Fraud Detection and Mobile Telecommunications: Call Pattern Analysis with Unsupervised Neural Networks. Master Thesis, University of the Western Cape.
Van Lint (b0245) 2008; 9
Alecsandru, Ishak (b0010) 2004; 1879
Yin, Wong, Xu, Wong (b0305) 2002; 10
Zhong, Sharma, Lingras (b0340) 2005; 28
10.1016/j.trc.2015.03.014_b0105
Van Lint (10.1016/j.trc.2015.03.014_b0260) 2005; 13
Vlahogianni (10.1016/j.trc.2015.03.014_b0275) 2014; 43
Nagel (10.1016/j.trc.2015.03.014_b0160) 1992; 2
Lingras (10.1016/j.trc.2015.03.014_b0145) 2002; 1805
Alecsandru (10.1016/j.trc.2015.03.014_b0010) 2004; 1879
Zeng (10.1016/j.trc.2015.03.014_b0320) 2013; 28
10.1016/j.trc.2015.03.014_b0065
Hamad (10.1016/j.trc.2015.03.014_b0080) 2009; 24
10.1016/j.trc.2015.03.014_b0020
Park (10.1016/j.trc.2015.03.014_b0180) 1998; 1617
Vlahogianni (10.1016/j.trc.2015.03.014_b0265) 2004; 24
Van Lint (10.1016/j.trc.2015.03.014_b0240) 2006; 132
Wu (10.1016/j.trc.2015.03.014_b0295) 2004; 125
Coifman (10.1016/j.trc.2015.03.014_b0055) 2005; 1917
Chien (10.1016/j.trc.2015.03.014_b0045) 2003; 129
Newell (10.1016/j.trc.2015.03.014_b0165) 1993; 278
Coifman (10.1016/j.trc.2015.03.014_b0060) 2006; 132
Xie (10.1016/j.trc.2015.03.014_b0300) 2006; 10
Hua (10.1016/j.trc.2015.03.014_b0090) 1994; 1453
Zhang (10.1016/j.trc.2015.03.014_b0330) 2009; 5
Kikuchi (10.1016/j.trc.2015.03.014_b0135) 2003; 34
Park (10.1016/j.trc.2015.03.014_b0195) 1999; 125
10.1016/j.trc.2015.03.014_b0210
Zhang (10.1016/j.trc.2015.03.014_b0335) 2007; 2024
Van Lint (10.1016/j.trc.2015.03.014_b0250) 2012
Smith (10.1016/j.trc.2015.03.014_b0215) 2002; 10
Kerner (10.1016/j.trc.2015.03.014_b0130) 2004
Huang (10.1016/j.trc.2015.03.014_b0095) 2009; 17
10.1016/j.trc.2015.03.014_b0005
Ishak (10.1016/j.trc.2015.03.014_b0100) 2003; 1836
Boto-Giralda (10.1016/j.trc.2015.03.014_b0025) 2010; 25
Okutani (10.1016/j.trc.2015.03.014_b0170) 1984; 18
Van Lint (10.1016/j.trc.2015.03.014_b0235) 2004; 130
Williams (10.1016/j.trc.2015.03.014_b0285) 2001; 1776
Zhang (10.1016/j.trc.2015.03.014_b0325) 2013; 28
Asif (10.1016/j.trc.2015.03.014_b0015) 2014; 15
Jiang (10.1016/j.trc.2015.03.014_b0115) 2005; 131
Smola (10.1016/j.trc.2015.03.014_b0220) 2004; 14
10.1016/j.trc.2015.03.014_b0120
Van Lint (10.1016/j.trc.2015.03.014_b0245) 2008; 9
Hochreiter (10.1016/j.trc.2015.03.014_b0085) 1997; 9
Chandra (10.1016/j.trc.2015.03.014_b0035) 2009; 13
Schaul (10.1016/j.trc.2015.03.014_b0205) 2010; 11
Yin (10.1016/j.trc.2015.03.014_b0305) 2002; 10
Wang (10.1016/j.trc.2015.03.014_b0280) 2006; 14
Rice (10.1016/j.trc.2015.03.014_b0200) 2004; 5
Zhong (10.1016/j.trc.2015.03.014_b0340) 2005; 28
Yu (10.1016/j.trc.2015.03.014_b0310) 2013; 2
Chien (10.1016/j.trc.2015.03.014_b0050) 2003; 1855
Pan (10.1016/j.trc.2015.03.014_b0175) 2013; 14
Park (10.1016/j.trc.2015.03.014_b0190) 1998; 1651
Van Lint (10.1016/j.trc.2015.03.014_b0255) 2002; 1811
Ma (10.1016/j.trc.2015.03.014_b0155) 2011; 2215
Park (10.1016/j.trc.2015.03.014_b0185) 1999; 14
10.1016/j.trc.2015.03.014_b0070
Stathopoulos (10.1016/j.trc.2015.03.014_b0225) 2003; 11
Williams (10.1016/j.trc.2015.03.014_b0290) 2003; 129
Zou (10.1016/j.trc.2015.03.014_b0345) 2014; 43
Chen (10.1016/j.trc.2015.03.014_b0040) 2001; 9
Vlahogianni (10.1016/j.trc.2015.03.014_b0270) 2005; 13
10.1016/j.trc.2015.03.014_b0230
10.1016/j.trc.2015.03.014_b0075
10.1016/j.trc.2015.03.014_b0110
Karlaftis (10.1016/j.trc.2015.03.014_b0125) 2011; 19
10.1016/j.trc.2015.03.014_b0030
Liu (10.1016/j.trc.2015.03.014_b0150) 2006; 1968
References_xml – reference: Electronic Integrated System Inc., 2003. ITS Designer’s Guide to RTMS Products. <
– volume: 28
  start-page: 594
  year: 2013
  end-page: 603
  ident: b0325
  article-title: Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 10
  start-page: 303
  year: 2002
  end-page: 321
  ident: b0215
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transport. Res. Part C
– volume: 11
  start-page: 743
  year: 2010
  end-page: 746
  ident: b0205
  article-title: PyBrain
  publication-title: J. Mach. Learn. Res.
– reference: > (accessed 03.03.14).
– volume: 34
  start-page: 69
  year: 2003
  end-page: 79
  ident: b0135
  article-title: Recurrent neural network with short-term memory and fast structural learning method
  publication-title: Syst. Comput. Jpn.
– volume: 1651
  start-page: 39
  year: 1998
  end-page: 47
  ident: b0190
  article-title: Short-term freeway traffic volume forecasting using radial basis function neural network
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– reference: Sutskever, I., 2013. Training Recurrent Neural Networks. Ph.D. Dissertation, University of Toronto.
– volume: 13
  start-page: 347
  year: 2005
  end-page: 369
  ident: b0260
  article-title: Accurate freeway travel time prediction with state-space neural networks under missing data
  publication-title: Transport. Res. Part C
– volume: 10
  start-page: 141
  year: 2006
  end-page: 150
  ident: b0300
  article-title: A wavelet network model for short-term traffic volume forecasting
  publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper.
– volume: 14
  start-page: 1242
  year: 2013
  end-page: 1254
  ident: b0175
  article-title: Short-term traffic state prediction based on temporal-spatial correlation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Abigogun, O.A., 2005. Data Mining, Fraud Detection and Mobile Telecommunications: Call Pattern Analysis with Unsupervised Neural Networks. Master Thesis, University of the Western Cape.
– volume: 125
  start-page: 515
  year: 2004
  end-page: 523
  ident: b0295
  article-title: Travel-time prediction with support vector machine regression
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 28
  start-page: 213
  year: 2005
  end-page: 236
  ident: b0340
  article-title: Refining genetically designed models for improved traffic prediction on rural roads
  publication-title: Transport. Plann. Technol.
– volume: 14
  start-page: 190
  year: 2006
  end-page: 212
  ident: b0280
  article-title: RENASSANCE: a unified macroscopic model-based approach to real-time freeway network traffic surveillance
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 9
  start-page: 38
  year: 2008
  end-page: 47
  ident: b0245
  article-title: Online learning solutions for freeway travel time prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 1917
  start-page: 149
  year: 2005
  end-page: 163
  ident: b0055
  article-title: Freeway detector assessment-aggregate data from the remote traffic microwave sensor (RTMS)
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 278
  start-page: 281
  year: 1993
  end-page: 287
  ident: b0165
  article-title: A simplified theory of kinematic waves in highway traffic. Part I: general theory
  publication-title: Transport. Res. Part B
– volume: 1811
  start-page: 30
  year: 2002
  end-page: 39
  ident: b0255
  article-title: Freeway travel time prediction with state-spaced neural networks: modeling state-space dynamics with recurrent neural networks
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 43
  start-page: 3
  year: 2014
  end-page: 19
  ident: b0275
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Transport. Res. Part C
– reference: Bodén, M., 2002. A Guide to Recurrent Neural Networks and Backpropagation. The Dallas Project. SICS Technical Report. <
– reference: Gers, F., 2001. Long Short-term Memory in Recurrent Neural Networks. Ph.D. Dissertation, École Polytechnique Fédérale De Lausanne.
– reference: Bullinara, J.A., 2013. Recurrent Neural Network. Neural Computation: Lecture 12. <
– volume: 43
  start-page: 33
  year: 2014
  end-page: 49
  ident: b0345
  article-title: A space-time diurnal method for short-term freeway travel time prediction
  publication-title: Transport. Res. Part C
– year: 2012
  ident: b0250
  article-title: Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues
  publication-title: Transportation Research Circular
– volume: 132
  start-page: 921
  year: 2006
  end-page: 932
  ident: b0240
  article-title: Reliable real-time framework for short-term freeway travel time prediction
  publication-title: J. Transport. Eng.
– volume: 14
  start-page: 2004
  year: 2004
  ident: b0220
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 10
  start-page: 85
  year: 2002
  end-page: 98
  ident: b0305
  article-title: Urban traffic flow prediction using a fuzzy-neural approach
  publication-title: Transport. Res. Part C
– volume: 24
  start-page: 551
  year: 2009
  end-page: 776
  ident: b0080
  article-title: Near-term travel speed prediction utilizing Hilbert-Huang transform
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 13
  start-page: 211
  year: 2005
  end-page: 234
  ident: b0270
  article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
  publication-title: Transport. Res. Part C
– volume: 25
  start-page: 530
  year: 2010
  end-page: 545
  ident: b0025
  article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 1805
  start-page: 16
  year: 2002
  end-page: 24
  ident: b0145
  article-title: Prediction of recreational travel using genetically designed regression and time-delay neural network models
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 28
  start-page: 359
  year: 2013
  end-page: 371
  ident: b0320
  article-title: Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 13
  start-page: 53
  year: 2009
  end-page: 72
  ident: b0035
  article-title: Prediction of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper.
– volume: 5
  start-page: 200
  year: 2004
  end-page: 207
  ident: b0200
  article-title: A simple and effective method for predicting travel times on freeways
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 19
  start-page: 387
  year: 2011
  end-page: 399
  ident: b0125
  article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights
  publication-title: Transport. Res. Part C
– reference: Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to Forget: Continual Prediction with LSTM. Technical Report IDSIA-01-99.
– volume: 130
  start-page: 921
  year: 2004
  end-page: 932
  ident: b0235
  article-title: Reliable real-time framework for short-term freeway travel time prediction
  publication-title: J. Transport. Eng.
– volume: 129
  start-page: 608
  year: 2003
  end-page: 616
  ident: b0045
  article-title: Dynamic travel time prediction with real-time and historic data
  publication-title: J. Transport. Eng.
– volume: 5
  start-page: 193
  year: 2009
  end-page: 213
  ident: b0330
  article-title: Traffic forecasting using least squares support vector machines
  publication-title: Transportmetrica
– volume: 14
  start-page: 357
  year: 1999
  end-page: 367
  ident: b0185
  article-title: Forecasting freeway link travel times with a multilayer feedforward neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 18
  start-page: 1
  year: 1984
  end-page: 11
  ident: b0170
  article-title: Dynamic prediction of traffic volume through Kalman filtering theory
  publication-title: Transport. Res. Part B
– reference: Shen, L., 2008. Freeway Travel Time Estimation and Prediction using Dynamic Neural Networks. Ph.D. Dissertation, Florida International University.
– volume: 1776
  start-page: 194
  year: 2001
  end-page: 200
  ident: b0285
  article-title: Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 1879
  start-page: 59
  year: 2004
  end-page: 70
  ident: b0010
  article-title: Hybrid model-based and memory-based traffic prediction system
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 132
  start-page: 213
  year: 2006
  end-page: 226
  ident: b0060
  article-title: Vehicle level evaluation of loop detectors and the remote traffic microwave sensor
  publication-title: J. Transport. Eng.
– volume: 125
  start-page: 515
  year: 1999
  end-page: 523
  ident: b0195
  article-title: Spectral basis neural network for real-time travel time forecasting
  publication-title: J. Transport. Eng.
– volume: 1968
  start-page: 99
  year: 2006
  end-page: 108
  ident: b0150
  article-title: Predicting urban arterial travel time with state-space neural networks and Kalman filters
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 24
  start-page: 533
  year: 2004
  end-page: 557
  ident: b0265
  article-title: Short-term traffic forecasting: overview of objectives and methods
  publication-title: Transp. Rev.: Transnatl. Transdiscipl. J.
– reference: Jaeger, H., 2002. A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 148, German National Research Center for Information Technology.
– year: 2004
  ident: b0130
  article-title: The Physics of Traffic
– volume: 2
  start-page: 2221
  year: 1992
  end-page: 2229
  ident: b0160
  article-title: A cellular automaton model for freeway traffic
  publication-title: J. Phys. I
– volume: 11
  start-page: 121
  year: 2003
  end-page: 135
  ident: b0225
  article-title: A multivariate state space approach for urban traffic flow modeling and prediction
  publication-title: Transport. Res. Part C
– volume: 2
  start-page: 45
  year: 2013
  end-page: 50
  ident: b0310
  article-title: Performance and challenges in utilizing non-intrusive sensors for traffic data collection
  publication-title: Adv. Remote Sens.
– volume: 15
  start-page: 794
  year: 2014
  end-page: 804
  ident: b0015
  article-title: Spatiotemporal patterns in large-scale traffic speed prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
– reference: Junger, J.R., Havlicek, J.P., Barnes, R.D., Tull, M.P., 2009. Prediction aggregation of remote traffic microwave sensors speed and volume data. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, pp. 673–678.
– volume: 1617
  start-page: 163
  year: 1998
  end-page: 170
  ident: b0180
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 2024
  start-page: 92
  year: 2007
  end-page: 99
  ident: b0335
  article-title: Forecasting of short-term freeway volume with
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 1453
  start-page: 83
  year: 1994
  end-page: 90
  ident: b0090
  article-title: Applications of artificial neural networks to intelligent vehicle-highway systems
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 1836
  start-page: 45
  year: 2003
  end-page: 56
  ident: b0100
  article-title: Optimization of dynamic neural network performance for short-term traffic prediction
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 131
  start-page: 771
  year: 2005
  end-page: 779
  ident: b0115
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: J. Transport. Eng.
– volume: 17
  start-page: 510
  year: 2009
  end-page: 525
  ident: b0095
  article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
  publication-title: Transport. Res. Part C
– volume: 2215
  start-page: 37
  year: 2011
  end-page: 49
  ident: b0155
  article-title: DRIVE Net: an E-Science of transportation platform for data sharing, visualization, modeling, and analysis
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– reference: Jaeger, H., 2012. Long Short-term Memory in Echo State Networks: Details of a Simulation Study. Jacobs University Technical Report No. 27.
– volume: 1855
  start-page: 32
  year: 2003
  end-page: 40
  ident: b0050
  article-title: Predicting travel times for the South Jersey real-time motorist information system
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 9
  start-page: 319
  year: 2001
  end-page: 336
  ident: b0040
  article-title: Use of sequential learning for short-term traffic flow forecasting
  publication-title: Transport. Res. Part C
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 129
  start-page: 664
  year: 2003
  end-page: 672
  ident: b0290
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: a theoretical basis and empirical results
  publication-title: J. Transport. Eng.
– volume: 43
  start-page: 33
  issue: 1
  year: 2014
  ident: 10.1016/j.trc.2015.03.014_b0345
  article-title: A space-time diurnal method for short-term freeway travel time prediction
  publication-title: Transport. Res. Part C
  doi: 10.1016/j.trc.2013.10.007
– volume: 1855
  start-page: 32
  year: 2003
  ident: 10.1016/j.trc.2015.03.014_b0050
  article-title: Predicting travel times for the South Jersey real-time motorist information system
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1855-04
– ident: 10.1016/j.trc.2015.03.014_b0105
– ident: 10.1016/j.trc.2015.03.014_b0210
– volume: 14
  start-page: 190
  issue: 3
  year: 2006
  ident: 10.1016/j.trc.2015.03.014_b0280
  article-title: RENASSANCE: a unified macroscopic model-based approach to real-time freeway network traffic surveillance
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2006.06.001
– volume: 24
  start-page: 533
  issue: 5
  year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0265
  article-title: Short-term traffic forecasting: overview of objectives and methods
  publication-title: Transp. Rev.: Transnatl. Transdiscipl. J.
  doi: 10.1080/0144164042000195072
– volume: 13
  start-page: 211
  year: 2005
  ident: 10.1016/j.trc.2015.03.014_b0270
  article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
  publication-title: Transport. Res. Part C
  doi: 10.1016/j.trc.2005.04.007
– volume: 1811
  start-page: 30
  year: 2002
  ident: 10.1016/j.trc.2015.03.014_b0255
  article-title: Freeway travel time prediction with state-spaced neural networks: modeling state-space dynamics with recurrent neural networks
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1811-04
– volume: 125
  start-page: 515
  issue: 6
  year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0295
  article-title: Travel-time prediction with support vector machine regression
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 34
  start-page: 69
  issue: 6
  year: 2003
  ident: 10.1016/j.trc.2015.03.014_b0135
  article-title: Recurrent neural network with short-term memory and fast structural learning method
  publication-title: Syst. Comput. Jpn.
  doi: 10.1002/scj.1206
– volume: 11
  start-page: 743
  year: 2010
  ident: 10.1016/j.trc.2015.03.014_b0205
  article-title: PyBrain
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 359
  year: 2013
  ident: 10.1016/j.trc.2015.03.014_b0320
  article-title: Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12000
– volume: 2215
  start-page: 37
  year: 2011
  ident: 10.1016/j.trc.2015.03.014_b0155
  article-title: DRIVE Net: an E-Science of transportation platform for data sharing, visualization, modeling, and analysis
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/2215-04
– volume: 11
  start-page: 121
  year: 2003
  ident: 10.1016/j.trc.2015.03.014_b0225
  article-title: A multivariate state space approach for urban traffic flow modeling and prediction
  publication-title: Transport. Res. Part C
  doi: 10.1016/S0968-090X(03)00004-4
– volume: 1805
  start-page: 16
  year: 2002
  ident: 10.1016/j.trc.2015.03.014_b0145
  article-title: Prediction of recreational travel using genetically designed regression and time-delay neural network models
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1805-03
– volume: 15
  start-page: 794
  issue: 2
  year: 2014
  ident: 10.1016/j.trc.2015.03.014_b0015
  article-title: Spatiotemporal patterns in large-scale traffic speed prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2013.2290285
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.trc.2015.03.014_b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 18
  start-page: 1
  issue: 1
  year: 1984
  ident: 10.1016/j.trc.2015.03.014_b0170
  article-title: Dynamic prediction of traffic volume through Kalman filtering theory
  publication-title: Transport. Res. Part B
  doi: 10.1016/0191-2615(84)90002-X
– volume: 125
  start-page: 515
  issue: 6
  year: 1999
  ident: 10.1016/j.trc.2015.03.014_b0195
  article-title: Spectral basis neural network for real-time travel time forecasting
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(1999)125:6(515)
– ident: 10.1016/j.trc.2015.03.014_b0070
– volume: 24
  start-page: 551
  year: 2009
  ident: 10.1016/j.trc.2015.03.014_b0080
  article-title: Near-term travel speed prediction utilizing Hilbert-Huang transform
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2009.00620.x
– volume: 10
  start-page: 141
  issue: 3
  year: 2006
  ident: 10.1016/j.trc.2015.03.014_b0300
  article-title: A wavelet network model for short-term traffic volume forecasting
  publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper.
  doi: 10.1080/15472450600798551
– volume: 13
  start-page: 53
  issue: 2
  year: 2009
  ident: 10.1016/j.trc.2015.03.014_b0035
  article-title: Prediction of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper.
  doi: 10.1080/15472450902858368
– volume: 1879
  start-page: 59
  year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0010
  article-title: Hybrid model-based and memory-based traffic prediction system
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1879-08
– volume: 5
  start-page: 193
  issue: 3
  year: 2009
  ident: 10.1016/j.trc.2015.03.014_b0330
  article-title: Traffic forecasting using least squares support vector machines
  publication-title: Transportmetrica
  doi: 10.1080/18128600902823216
– ident: 10.1016/j.trc.2015.03.014_b0110
– ident: 10.1016/j.trc.2015.03.014_b0230
– ident: 10.1016/j.trc.2015.03.014_b0005
– volume: 28
  start-page: 594
  year: 2013
  ident: 10.1016/j.trc.2015.03.014_b0325
  article-title: Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12014
– volume: 132
  start-page: 213
  issue: 3
  year: 2006
  ident: 10.1016/j.trc.2015.03.014_b0060
  article-title: Vehicle level evaluation of loop detectors and the remote traffic microwave sensor
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2006)132:3(213)
– volume: 13
  start-page: 347
  year: 2005
  ident: 10.1016/j.trc.2015.03.014_b0260
  article-title: Accurate freeway travel time prediction with state-space neural networks under missing data
  publication-title: Transport. Res. Part C
  doi: 10.1016/j.trc.2005.03.001
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  ident: 10.1016/j.trc.2015.03.014_b0290
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: a theoretical basis and empirical results
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 2024
  start-page: 92
  year: 2007
  ident: 10.1016/j.trc.2015.03.014_b0335
  article-title: Forecasting of short-term freeway volume with v-support vector machines
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/2024-11
– volume: 9
  start-page: 38
  issue: 1
  year: 2008
  ident: 10.1016/j.trc.2015.03.014_b0245
  article-title: Online learning solutions for freeway travel time prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2008.915649
– volume: 132
  start-page: 921
  issue: 12
  year: 2006
  ident: 10.1016/j.trc.2015.03.014_b0240
  article-title: Reliable real-time framework for short-term freeway travel time prediction
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2006)132:12(921)
– volume: 2
  start-page: 2221
  year: 1992
  ident: 10.1016/j.trc.2015.03.014_b0160
  article-title: A cellular automaton model for freeway traffic
  publication-title: J. Phys. I
– volume: 14
  start-page: 2004
  year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0220
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 10
  start-page: 85
  year: 2002
  ident: 10.1016/j.trc.2015.03.014_b0305
  article-title: Urban traffic flow prediction using a fuzzy-neural approach
  publication-title: Transport. Res. Part C
  doi: 10.1016/S0968-090X(01)00004-3
– year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0130
– ident: 10.1016/j.trc.2015.03.014_b0065
– volume: 129
  start-page: 608
  issue: 6
  year: 2003
  ident: 10.1016/j.trc.2015.03.014_b0045
  article-title: Dynamic travel time prediction with real-time and historic data
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(608)
– volume: 1836
  start-page: 45
  year: 2003
  ident: 10.1016/j.trc.2015.03.014_b0100
  article-title: Optimization of dynamic neural network performance for short-term traffic prediction
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1836-07
– volume: 131
  start-page: 771
  issue: 10
  year: 2005
  ident: 10.1016/j.trc.2015.03.014_b0115
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2005)131:10(771)
– volume: 130
  start-page: 921
  issue: 12
  year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0235
  article-title: Reliable real-time framework for short-term freeway travel time prediction
  publication-title: J. Transport. Eng.
  doi: 10.1061/(ASCE)0733-947X(2006)132:12(921)
– volume: 1917
  start-page: 149
  year: 2005
  ident: 10.1016/j.trc.2015.03.014_b0055
  article-title: Freeway detector assessment-aggregate data from the remote traffic microwave sensor (RTMS)
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1917-17
– volume: 43
  start-page: 3
  issue: 1
  year: 2014
  ident: 10.1016/j.trc.2015.03.014_b0275
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Transport. Res. Part C
  doi: 10.1016/j.trc.2014.01.005
– volume: 9
  start-page: 319
  year: 2001
  ident: 10.1016/j.trc.2015.03.014_b0040
  article-title: Use of sequential learning for short-term traffic flow forecasting
  publication-title: Transport. Res. Part C
  doi: 10.1016/S0968-090X(00)00039-5
– ident: 10.1016/j.trc.2015.03.014_b0075
  doi: 10.1049/cp:19991218
– volume: 5
  start-page: 200
  issue: 3
  year: 2004
  ident: 10.1016/j.trc.2015.03.014_b0200
  article-title: A simple and effective method for predicting travel times on freeways
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2004.833765
– volume: 25
  start-page: 530
  year: 2010
  ident: 10.1016/j.trc.2015.03.014_b0025
  article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2010.00668.x
– ident: 10.1016/j.trc.2015.03.014_b0020
– volume: 17
  start-page: 510
  year: 2009
  ident: 10.1016/j.trc.2015.03.014_b0095
  article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
  publication-title: Transport. Res. Part C
  doi: 10.1016/j.trc.2009.04.006
– volume: 1651
  start-page: 39
  year: 1998
  ident: 10.1016/j.trc.2015.03.014_b0190
  article-title: Short-term freeway traffic volume forecasting using radial basis function neural network
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1651-06
– volume: 19
  start-page: 387
  year: 2011
  ident: 10.1016/j.trc.2015.03.014_b0125
  article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights
  publication-title: Transport. Res. Part C
  doi: 10.1016/j.trc.2010.10.004
– volume: 10
  start-page: 303
  year: 2002
  ident: 10.1016/j.trc.2015.03.014_b0215
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transport. Res. Part C
  doi: 10.1016/S0968-090X(02)00009-8
– volume: 1453
  start-page: 83
  year: 1994
  ident: 10.1016/j.trc.2015.03.014_b0090
  article-title: Applications of artificial neural networks to intelligent vehicle-highway systems
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 1776
  start-page: 194
  year: 2001
  ident: 10.1016/j.trc.2015.03.014_b0285
  article-title: Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1776-25
– volume: 278
  start-page: 281
  issue: 4
  year: 1993
  ident: 10.1016/j.trc.2015.03.014_b0165
  article-title: A simplified theory of kinematic waves in highway traffic. Part I: general theory
  publication-title: Transport. Res. Part B
  doi: 10.1016/0191-2615(93)90038-C
– year: 2012
  ident: 10.1016/j.trc.2015.03.014_b0250
  article-title: Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues
– volume: 14
  start-page: 1242
  issue: 3
  year: 2013
  ident: 10.1016/j.trc.2015.03.014_b0175
  article-title: Short-term traffic state prediction based on temporal-spatial correlation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2258916
– volume: 2
  start-page: 45
  year: 2013
  ident: 10.1016/j.trc.2015.03.014_b0310
  article-title: Performance and challenges in utilizing non-intrusive sensors for traffic data collection
  publication-title: Adv. Remote Sens.
  doi: 10.4236/ars.2013.22006
– volume: 14
  start-page: 357
  issue: 5
  year: 1999
  ident: 10.1016/j.trc.2015.03.014_b0185
  article-title: Forecasting freeway link travel times with a multilayer feedforward neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/0885-9507.00154
– volume: 28
  start-page: 213
  issue: 3
  year: 2005
  ident: 10.1016/j.trc.2015.03.014_b0340
  article-title: Refining genetically designed models for improved traffic prediction on rural roads
  publication-title: Transport. Plann. Technol.
  doi: 10.1080/03081060500120340
– ident: 10.1016/j.trc.2015.03.014_b0030
– volume: 1968
  start-page: 99
  year: 2006
  ident: 10.1016/j.trc.2015.03.014_b0150
  article-title: Predicting urban arterial travel time with state-space neural networks and Kalman filters
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1968-12
– ident: 10.1016/j.trc.2015.03.014_b0120
  doi: 10.1109/ITSC.2009.5309675
– volume: 1617
  start-page: 163
  year: 1998
  ident: 10.1016/j.trc.2015.03.014_b0180
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1617-23
SSID ssj0001957
Score 2.6418576
Snippet •A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time...
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms Algorithms
Detectors
Long short-term neural network
Mathematical models
Neural networks
Nonlinear dynamics
Remote microwave detector data
Time lag
Traffic engineering
Traffic flow
Traffic speed prediction
Title Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
URI https://dx.doi.org/10.1016/j.trc.2015.03.014
https://www.proquest.com/docview/1770313838
https://www.proquest.com/docview/1785228919
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAeKj5adQtFrtQTUrp2Ysf2EaGipRQuBSk3y3EcStXNrpIA4tLf3pl8FKjUPXBM5EmisTPzxn5-JuRTgBzlUlVGjmkRCcdD5KSII4jHiikVctGx3c_O09ml-JrJbI0cjXthkFY5xP4-pnfRergzHbw5XV5fT78D-NbMsIx3mv4JbjQXQuEo__z7gebBTa_2CY1xTiIbVzY7jldbo4ohl53OKRf_y03_ROku9RxvktcDZqSH_WdtkbVQbZONcUtxs01ePVIV3CHh26K6os0PANYRBl46RzbtPUXpSnhM1RO_KaBV2tYOJSRos4QkRpc1rtpgT1Gkw1_RGgzbQOdI2rtzt4E2UPSCGdJK35DL4y8XR7NoOE0h8kKqNhLCuzRPSxV8LKHu5cYZrUXu41R66Rj3hZMa5fLSnDuuEqgshU-K2OcMQEmZvCXr1aIK7wg1oWS8SHlpihIBgHbSCx47pQtUe5cTwkY_Wj9IjeOJF7_syCn7acH1Fl1vWWLB9RNy8Ndk2etsrGosxs6xTwaLhTywyuzj2JEWfiJcGXFVWNw0liuU8YdiXa9qowGrasPN--e9fpe8xKueLblH1tv6JnwARNPm-92Q3ScvDk9OZ-d_AIzQ9aw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7aFwqKCAKBQwEiekaO3Ejp1jVbXa0u1eaKW9WY7jlCKaXSUpVf89M_moKBJ74Jp4kmjszLyxn58BPgfMUS7VZeS4kZF0IkROyTjCeKy51iGXHdv9fJHOLuXXpVpuwdG4F4ZolUPs72N6F62HK9PBm9P19fX0G4JvwzO-FJ2mf6KewDapU6kJbB-ens0WDwFZZL3gJ7anaYnluLjZ0bzamoQMheqkToX8V3r6K1B32efkOewOsJEd9l_2ArZCtQc7467iZg-e_SEs-BLCfFVdseY7YuuIYi-7IULtPSP1SnxM1XO_GQJW1taOVCRYs8Y8xtY1LdxQZzFixF-xGg3bwG6It3fnfgXWYN2LZsQsfQWXJ8cXR7NoOFAh8lLpNpLSuzRPSx18rLD0FZnLjJG5j1PllePCF04ZUsxLc-GETrC4lD4pYp9zxCVl8hom1aoKb4BloeSiSEWZFSVhAOOUlyJ22hQk-K72gY9-tH5QG6dDL37akVb2w6LrLbne8sSi6_fhy4PJupfa2NRYjp1jH40Xi6lgk9mnsSMt_ke0OOKqsLptrNCk5I_1utnUxiBcNZnI3v7f6z_CzuzifG7np4uzd_CU7vTkyQOYtPVteI8Ap80_DAP4N_ed-F0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short-term+memory+neural+network+for+traffic+speed+prediction+using+remote+microwave+sensor+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ma%2C+Xiaolei&rft.au=Tao%2C+Zhimin&rft.au=Wang%2C+Yinhai&rft.au=Yu%2C+Haiyang&rft.date=2015-05-01&rft.issn=0968-090X&rft.volume=54&rft.spage=187&rft.epage=197&rft_id=info:doi/10.1016%2Fj.trc.2015.03.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon