Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
•A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time series.•The LSTM NN can automatically determine the optimal time window.•A comparative study suggests that the LSTM NN receives the best perfor...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 54; pp. 187 - 197 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier India Pvt Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time series.•The LSTM NN can automatically determine the optimal time window.•A comparative study suggests that the LSTM NN receives the best performance.
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability. |
---|---|
AbstractList | Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability. •A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time series.•The LSTM NN can automatically determine the optimal time window.•A comparative study suggests that the LSTM NN receives the best performance. Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability. |
Author | Tao, Zhimin Wang, Yinhai Yu, Haiyang Ma, Xiaolei Wang, Yunpeng |
Author_xml | – sequence: 1 givenname: Xiaolei surname: Ma fullname: Ma, Xiaolei email: xiaolei@buaa.edu.cn organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China – sequence: 2 givenname: Zhimin surname: Tao fullname: Tao, Zhimin email: msetao@126.com organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China – sequence: 3 givenname: Yinhai surname: Wang fullname: Wang, Yinhai email: yinhai@uw.edu organization: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, United States – sequence: 4 givenname: Haiyang surname: Yu fullname: Yu, Haiyang email: hyyu@buaa.edu.cn organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China – sequence: 5 givenname: Yunpeng surname: Wang fullname: Wang, Yunpeng email: ypwang@buaa.edu.cn organization: School of Transportation Science and Engineering, Beijing Key Laboratory for Cooperative Vehicle Infrastructure, Systems, and Safety Control, Beihang University, Beijing 100191, China |
BookMark | eNqNkDFvFDEQhS0UJC4HP4DOJc0u9nq9tkWFIghIJ6UBic7yzc6Cj931MfYlyr_Hp6NKEaEpXjPfk953za7WtCJjb6VopZDD-0NbCNpOSN0K1QrZv2AbaY1rOqXdFdsIN9hGOPHjFbvO-SCEkE6bDcNdWn_y_CtRaQrSwhdcEj3yFU8U5hrlIdFvPiXihcI0ReD5iDjyI-EYocS08lOOtYMqWJAvESg9hHvkGddcsTGU8Jq9nMKc8c2_3LLvnz99u_nS7O5uv9583DXQa1Oavocw7IfJIHTaWitdcNb2e-gGDToICWPQdZQyw14GaVQvuh7U2MFeKK0ntWXvLr1HSn9OmItfYgac57BiOmUvjdVdZ510__FqhJLK1tsyeXmty3ImnPyR4hLo0Uvhz_b9wVf7_mzfC-Wr_cqYJwzEEs66qsY4P0t-uJBYRd1HJJ8h4gpVNyEUP6b4DP0XWpGiSQ |
CitedBy_id | crossref_primary_10_1109_TKDE_2020_3001195 crossref_primary_10_3390_app12199723 crossref_primary_10_1016_j_trc_2022_103932 crossref_primary_10_3390_sym12122045 crossref_primary_10_1016_j_physa_2024_130185 crossref_primary_10_1016_j_trpro_2021_11_037 crossref_primary_10_3390_su142416701 crossref_primary_10_1016_j_iot_2024_101188 crossref_primary_10_1016_j_trc_2023_104066 crossref_primary_10_1016_j_trc_2024_104585 crossref_primary_10_1049_iet_its_2020_0406 crossref_primary_10_1080_23249935_2018_1491073 crossref_primary_10_1016_j_asoc_2022_108644 crossref_primary_10_1016_j_aap_2020_105628 crossref_primary_10_3390_s19020382 crossref_primary_10_1007_s42421_020_00019_8 crossref_primary_10_1109_TITS_2021_3108939 crossref_primary_10_1016_j_neunet_2023_12_016 crossref_primary_10_1155_2022_5926663 crossref_primary_10_1109_ACCESS_2020_2964680 crossref_primary_10_1007_s00521_019_04504_2 crossref_primary_10_1007_s13042_024_02101_x crossref_primary_10_1049_iet_its_2018_5020 crossref_primary_10_1061_JTEPBS_0000763 crossref_primary_10_1061_JTEPBS_0000522 crossref_primary_10_1080_23249935_2023_2264949 crossref_primary_10_1016_j_engappai_2025_110074 crossref_primary_10_1049_iet_its_2019_0428 crossref_primary_10_1049_iet_its_2020_0410 crossref_primary_10_1016_j_nucengdes_2022_111976 crossref_primary_10_1016_j_inffus_2024_102916 crossref_primary_10_3390_electronics11142230 crossref_primary_10_1016_j_eswa_2024_124288 crossref_primary_10_1088_1757_899X_495_1_012067 crossref_primary_10_1007_s11269_019_02345_1 crossref_primary_10_1155_2020_4251517 crossref_primary_10_1016_j_bdr_2022_100313 crossref_primary_10_1109_MITS_2021_3049383 crossref_primary_10_1155_2021_6626024 crossref_primary_10_12677_mos_2024_134381 crossref_primary_10_3390_su13095108 crossref_primary_10_1080_21680566_2021_1922320 crossref_primary_10_1049_iet_its_2019_0200 crossref_primary_10_1016_j_energy_2023_127140 crossref_primary_10_1016_j_trc_2022_103719 crossref_primary_10_1016_j_enconman_2023_116804 crossref_primary_10_1155_2020_3247847 crossref_primary_10_1155_2022_9407999 crossref_primary_10_1080_23249935_2019_1637966 crossref_primary_10_1109_ACCESS_2020_3027499 crossref_primary_10_1016_j_jrtpm_2022_100342 crossref_primary_10_1109_TITS_2022_3201879 crossref_primary_10_1016_j_tre_2018_04_003 crossref_primary_10_1109_ACCESS_2018_2869890 crossref_primary_10_1016_j_compenvurbsys_2022_101776 crossref_primary_10_3390_s22124565 crossref_primary_10_1109_JIOT_2020_2991401 crossref_primary_10_1016_j_trc_2022_103965 crossref_primary_10_1109_TITS_2020_2989365 crossref_primary_10_1109_ACCESS_2020_2990939 crossref_primary_10_3390_app122211497 crossref_primary_10_1016_j_eswa_2022_118475 crossref_primary_10_1109_ACCESS_2020_3038380 crossref_primary_10_3390_s19092206 crossref_primary_10_1007_s10479_024_05990_x crossref_primary_10_1007_s11227_024_06331_2 crossref_primary_10_1007_s11269_018_1919_3 crossref_primary_10_1016_j_asoc_2025_112966 crossref_primary_10_1061_JTEPBS_0000504 crossref_primary_10_2139_ssrn_4181235 crossref_primary_10_1007_s10898_020_00912_0 crossref_primary_10_1109_ACCESS_2021_3070625 crossref_primary_10_1109_TITS_2020_2970754 crossref_primary_10_1016_j_trc_2023_104032 crossref_primary_10_1109_TMM_2020_3038315 crossref_primary_10_3390_atmos11040348 crossref_primary_10_1016_j_jwpe_2024_104876 crossref_primary_10_3390_a16060305 crossref_primary_10_1002_mp_16237 crossref_primary_10_1371_journal_pone_0192792 crossref_primary_10_3390_su15107949 crossref_primary_10_1007_s12083_024_01821_9 crossref_primary_10_3390_app13042681 crossref_primary_10_1049_iet_its_2018_5230 crossref_primary_10_1007_s11356_022_20393_w crossref_primary_10_3390_en13246601 crossref_primary_10_1109_MITS_2021_3049362 crossref_primary_10_3390_en16176357 crossref_primary_10_1186_s40537_024_00967_w crossref_primary_10_1016_j_eswa_2023_120421 crossref_primary_10_1016_j_trc_2023_104263 crossref_primary_10_1109_ACCESS_2019_2938091 crossref_primary_10_1016_j_neucom_2024_129280 crossref_primary_10_3390_en15010021 crossref_primary_10_1007_s42421_023_00083_w crossref_primary_10_1016_j_knosys_2019_01_015 crossref_primary_10_1016_j_jwpe_2024_106821 crossref_primary_10_1109_ACCESS_2020_3039410 crossref_primary_10_1016_j_trc_2018_05_008 crossref_primary_10_3390_ijgi12090366 crossref_primary_10_1016_j_physa_2023_128877 crossref_primary_10_1016_j_knosys_2022_108120 crossref_primary_10_1109_ACCESS_2019_2891073 crossref_primary_10_1049_iet_its_2019_0873 crossref_primary_10_1109_TITS_2019_2909571 crossref_primary_10_1155_2021_5577179 crossref_primary_10_4028_p_FZ0iNi crossref_primary_10_1007_s11277_018_5251_2 crossref_primary_10_1002_ett_4427 crossref_primary_10_1016_j_trc_2022_103742 crossref_primary_10_3390_app11073059 crossref_primary_10_1080_15472450_2021_1927728 crossref_primary_10_1109_TIM_2021_3051948 crossref_primary_10_3390_s22239456 crossref_primary_10_1016_j_trc_2018_05_012 crossref_primary_10_1109_ACCESS_2023_3282323 crossref_primary_10_1109_TVT_2019_2899125 crossref_primary_10_1016_j_ifacol_2021_10_153 crossref_primary_10_1080_23249935_2020_1764662 crossref_primary_10_1007_s10707_024_00532_w crossref_primary_10_3389_ffutr_2021_644988 crossref_primary_10_1145_3316414 crossref_primary_10_1109_TITS_2018_2815678 crossref_primary_10_1088_1742_6596_1918_4_042012 crossref_primary_10_1016_j_apenergy_2023_121032 crossref_primary_10_1109_TITS_2021_3117835 crossref_primary_10_1155_2021_3083190 crossref_primary_10_1016_j_asoc_2022_109314 crossref_primary_10_1109_TITS_2020_3011700 crossref_primary_10_1016_j_measurement_2021_110073 crossref_primary_10_3390_info9070165 crossref_primary_10_1109_ACCESS_2020_3031722 crossref_primary_10_1016_j_treng_2021_100095 crossref_primary_10_37943_19PPFN3256 crossref_primary_10_1016_j_autcon_2020_103351 crossref_primary_10_1155_2020_8845804 crossref_primary_10_1155_2017_1321237 crossref_primary_10_3390_app10072322 crossref_primary_10_1016_j_autcon_2020_103107 crossref_primary_10_1016_j_eswa_2023_121747 crossref_primary_10_3390_app11010315 crossref_primary_10_1016_j_ijpe_2021_108157 crossref_primary_10_1016_j_engstruct_2023_115686 crossref_primary_10_1016_j_physa_2024_129598 crossref_primary_10_1016_j_knosys_2022_109028 crossref_primary_10_1109_ACCESS_2022_3222561 crossref_primary_10_1080_23249935_2021_1964636 crossref_primary_10_3390_app15020752 crossref_primary_10_1007_s10258_024_00252_x crossref_primary_10_1109_ACCESS_2019_2937114 crossref_primary_10_1109_JRFID_2022_3217031 crossref_primary_10_1080_19427867_2023_2261706 crossref_primary_10_3390_s25010095 crossref_primary_10_1016_j_measurement_2019_06_038 crossref_primary_10_1109_TKDE_2021_3118389 crossref_primary_10_1021_acs_jpclett_1c01961 crossref_primary_10_1109_ACCESS_2021_3050165 crossref_primary_10_1109_TITS_2021_3101000 crossref_primary_10_1049_smc2_12027 crossref_primary_10_3390_ijgi11050294 crossref_primary_10_3390_e21070709 crossref_primary_10_3390_su12208555 crossref_primary_10_1016_j_measurement_2019_106896 crossref_primary_10_1063_1_5117180 crossref_primary_10_1016_j_engappai_2023_106411 crossref_primary_10_1007_s11356_022_22959_0 crossref_primary_10_3103_S1060992X19030081 crossref_primary_10_3390_app13010637 crossref_primary_10_1016_j_physa_2021_125838 crossref_primary_10_1016_j_ejrh_2022_101220 crossref_primary_10_1109_ACCESS_2024_3357749 crossref_primary_10_1109_TITS_2019_2950416 crossref_primary_10_1002_er_7341 crossref_primary_10_1109_JSEN_2020_3027684 crossref_primary_10_3390_rs15030798 crossref_primary_10_3390_w15142542 crossref_primary_10_1109_TITS_2016_2609917 crossref_primary_10_1155_2020_3697625 crossref_primary_10_1177_1687814017719002 crossref_primary_10_1587_transinf_2018EDP7330 crossref_primary_10_1109_MITS_2022_3158631 crossref_primary_10_1109_JIOT_2022_3209523 crossref_primary_10_3390_info14040228 crossref_primary_10_1080_21680566_2024_2380915 crossref_primary_10_1108_IMDS_12_2021_0769 crossref_primary_10_3390_app9194156 crossref_primary_10_1109_TBDATA_2020_2972871 crossref_primary_10_1109_ACCESS_2020_2987934 crossref_primary_10_1177_09544070231186186 crossref_primary_10_1080_08839514_2016_1277291 crossref_primary_10_12677_CSA_2019_912262 crossref_primary_10_1016_j_ecoinf_2024_102477 crossref_primary_10_1145_3679017 crossref_primary_10_1016_j_inffus_2024_102292 crossref_primary_10_1088_1361_6501_ad8252 crossref_primary_10_3141_2643_13 crossref_primary_10_2166_wcc_2024_660 crossref_primary_10_1371_journal_pone_0178826 crossref_primary_10_2139_ssrn_4115556 crossref_primary_10_1016_j_enconman_2019_02_018 crossref_primary_10_1109_ACCESS_2020_2970250 crossref_primary_10_1109_MITS_2018_2806634 crossref_primary_10_1016_j_eswa_2023_120203 crossref_primary_10_3390_futuretransp1010003 crossref_primary_10_1371_journal_pone_0223973 crossref_primary_10_3390_a12080173 crossref_primary_10_1016_j_trc_2021_102977 crossref_primary_10_1016_j_eswa_2022_119161 crossref_primary_10_1109_ACCESS_2020_2997729 crossref_primary_10_1016_j_trc_2020_102674 crossref_primary_10_3390_buildings13061514 crossref_primary_10_3233_JIFS_18804 crossref_primary_10_3390_s20164574 crossref_primary_10_1177_0361198120927393 crossref_primary_10_1109_ACCESS_2018_2874399 crossref_primary_10_1155_2020_1434080 crossref_primary_10_1016_j_eswa_2023_121548 crossref_primary_10_1007_s00521_023_08519_8 crossref_primary_10_1016_j_trc_2020_102671 crossref_primary_10_3390_app13179729 crossref_primary_10_1002_for_2717 crossref_primary_10_2478_ttj_2021_0013 crossref_primary_10_1016_j_neucom_2021_03_068 crossref_primary_10_1371_journal_pone_0183442 crossref_primary_10_3390_math11163446 crossref_primary_10_1016_j_jcis_2020_08_052 crossref_primary_10_1162_neco_a_01134 crossref_primary_10_1016_j_knosys_2024_111946 crossref_primary_10_1109_ACCESS_2020_2987756 crossref_primary_10_1109_ACCESS_2019_2907739 crossref_primary_10_1016_j_physa_2023_129313 crossref_primary_10_1088_1742_6596_1769_1_012038 crossref_primary_10_1093_jom_ufad046 crossref_primary_10_1002_ail2_106 crossref_primary_10_1109_TIV_2021_3112499 crossref_primary_10_1109_TITS_2022_3231959 crossref_primary_10_1016_j_energy_2018_05_052 crossref_primary_10_1371_journal_pone_0198931 crossref_primary_10_1016_j_asoc_2019_105550 crossref_primary_10_2139_ssrn_4163415 crossref_primary_10_1155_2022_2265000 crossref_primary_10_3390_math9080871 crossref_primary_10_1007_s11227_021_04032_8 crossref_primary_10_1007_s40815_022_01288_x crossref_primary_10_3390_app10217778 crossref_primary_10_1109_TASE_2021_3075773 crossref_primary_10_1007_s13177_021_00260_7 crossref_primary_10_1109_ACCESS_2018_2888561 crossref_primary_10_1016_j_ijpe_2020_107828 crossref_primary_10_1109_JSEN_2020_3007809 crossref_primary_10_3390_su8111100 crossref_primary_10_3233_JCM_215101 crossref_primary_10_3390_info10060193 crossref_primary_10_1093_bioinformatics_btab133 crossref_primary_10_1016_j_neucom_2018_06_012 crossref_primary_10_1016_j_jclepro_2019_118892 crossref_primary_10_1016_j_neucom_2018_12_016 crossref_primary_10_1109_ACCESS_2023_3338223 crossref_primary_10_1016_j_eswa_2023_122219 crossref_primary_10_1371_journal_pone_0176853 crossref_primary_10_1111_tgis_12641 crossref_primary_10_1016_j_trc_2018_10_011 crossref_primary_10_3390_atmos12050651 crossref_primary_10_1007_s00170_019_03557_w crossref_primary_10_3390_s19040861 crossref_primary_10_1109_TITS_2021_3102747 crossref_primary_10_1109_TKDE_2023_3284156 crossref_primary_10_3390_s22093348 crossref_primary_10_1016_j_asoc_2020_106998 crossref_primary_10_1016_j_knosys_2022_110237 crossref_primary_10_1109_TITS_2022_3150600 crossref_primary_10_1049_itr2_12553 crossref_primary_10_1155_2017_6575947 crossref_primary_10_1016_j_cageo_2017_10_013 crossref_primary_10_1016_j_trc_2022_103917 crossref_primary_10_1016_j_aap_2019_105323 crossref_primary_10_1016_j_jtte_2022_05_004 crossref_primary_10_1109_OJITS_2021_3133573 crossref_primary_10_1109_ACCESS_2020_2995592 crossref_primary_10_1109_TITS_2023_3323379 crossref_primary_10_7717_peerj_cs_1450 crossref_primary_10_2139_ssrn_4054273 crossref_primary_10_3390_e24101462 crossref_primary_10_1155_2019_4145353 crossref_primary_10_1080_21680566_2021_2008280 crossref_primary_10_1016_j_apenergy_2019_113541 crossref_primary_10_1109_ACCESS_2018_2888585 crossref_primary_10_1007_s10489_020_02020_8 crossref_primary_10_1016_j_neucom_2021_03_054 crossref_primary_10_1109_TITS_2024_3424808 crossref_primary_10_1155_2020_8899478 crossref_primary_10_3390_aerospace9020077 crossref_primary_10_1016_j_knosys_2019_105239 crossref_primary_10_1049_itr2_12302 crossref_primary_10_1109_TITS_2024_3349565 crossref_primary_10_1155_2017_6290248 crossref_primary_10_1016_j_envsoft_2022_105403 crossref_primary_10_48130_DTS_2023_0018 crossref_primary_10_1155_2021_8878494 crossref_primary_10_1007_s42488_020_00037_9 crossref_primary_10_1016_j_engappai_2025_110219 crossref_primary_10_1145_3439346 crossref_primary_10_1016_j_tra_2023_103783 crossref_primary_10_1109_TITS_2021_3102983 crossref_primary_10_3390_en13236417 crossref_primary_10_1177_0361198118798737 crossref_primary_10_1016_j_jrtpm_2022_100311 crossref_primary_10_21595_vp_2022_22515 crossref_primary_10_1016_j_trc_2018_03_001 crossref_primary_10_1016_j_inffus_2023_102196 crossref_primary_10_1080_23249935_2020_1845250 crossref_primary_10_1109_TII_2021_3083596 crossref_primary_10_1080_23249935_2022_2033348 crossref_primary_10_1109_TITS_2020_3038457 crossref_primary_10_1002_2016RS006022 crossref_primary_10_1016_j_spasta_2024_100831 crossref_primary_10_1155_2021_1055910 crossref_primary_10_1016_j_renene_2021_02_161 crossref_primary_10_1109_ACCESS_2019_2926851 crossref_primary_10_1016_j_eswa_2016_06_032 crossref_primary_10_1016_j_future_2020_03_019 crossref_primary_10_1371_journal_pone_0183135 crossref_primary_10_1007_s13177_024_00398_0 crossref_primary_10_1016_j_eswa_2024_123721 crossref_primary_10_1016_j_ymssp_2021_107967 crossref_primary_10_1109_ACCESS_2018_2890725 crossref_primary_10_3390_su12155891 crossref_primary_10_1007_s00703_022_00946_x crossref_primary_10_3390_electronics12061381 crossref_primary_10_3390_s22155742 crossref_primary_10_1177_09544070241237847 crossref_primary_10_1016_j_engappai_2024_108142 crossref_primary_10_1155_2021_4097149 crossref_primary_10_1016_j_procs_2018_10_214 crossref_primary_10_1155_2022_6526512 crossref_primary_10_3390_electronics12030750 crossref_primary_10_1007_s00500_024_09856_z crossref_primary_10_2196_27235 crossref_primary_10_1016_j_eswa_2018_03_056 crossref_primary_10_1016_j_inffus_2024_102695 crossref_primary_10_1016_j_scitotenv_2024_170698 crossref_primary_10_1109_ACCESS_2023_3305398 crossref_primary_10_1109_TITS_2022_3173689 crossref_primary_10_3390_app9152951 crossref_primary_10_1109_TKDE_2021_3130762 crossref_primary_10_1109_TITS_2021_3076494 crossref_primary_10_1016_j_trc_2020_102946 crossref_primary_10_1177_03611981231222232 crossref_primary_10_1016_j_neucom_2024_127507 crossref_primary_10_1177_09544070211050623 crossref_primary_10_1109_TASE_2021_3077537 crossref_primary_10_3390_s21196402 crossref_primary_10_1177_03611981231171909 crossref_primary_10_3390_s24175543 crossref_primary_10_3390_nano12060932 crossref_primary_10_1016_j_procs_2022_12_016 crossref_primary_10_1016_j_eswa_2024_123982 crossref_primary_10_1049_itr2_12468 crossref_primary_10_14295_transportes_v30i3_2660 crossref_primary_10_1049_itr2_12224 crossref_primary_10_1016_j_knosys_2024_112709 crossref_primary_10_1049_itr2_12464 crossref_primary_10_1109_TITS_2023_3234512 crossref_primary_10_1145_3447032 crossref_primary_10_1007_s13042_024_02307_z crossref_primary_10_1155_2021_1338607 crossref_primary_10_3390_s20133749 crossref_primary_10_1016_j_measurement_2020_108566 crossref_primary_10_1016_j_scs_2020_102567 crossref_primary_10_1109_TITS_2018_2882814 crossref_primary_10_1109_TMECH_2023_3312259 crossref_primary_10_1080_21680566_2020_1822765 crossref_primary_10_1109_ACCESS_2020_2991462 crossref_primary_10_1007_s11227_022_04386_7 crossref_primary_10_1109_ACCESS_2019_2901118 crossref_primary_10_1080_15472450_2020_1780922 crossref_primary_10_1080_21680566_2022_2135633 crossref_primary_10_1049_itr2_12257 crossref_primary_10_1177_03611981221130026 crossref_primary_10_1016_j_trc_2018_09_007 crossref_primary_10_1109_TITS_2021_3113935 crossref_primary_10_3390_smartcities8010025 crossref_primary_10_1038_s41598_021_03282_z crossref_primary_10_1177_03611981221143109 crossref_primary_10_1109_TITS_2022_3162566 crossref_primary_10_1371_journal_pone_0186689 crossref_primary_10_3390_rs15092378 crossref_primary_10_1109_ACCESS_2020_3034763 crossref_primary_10_1109_ACCESS_2022_3205736 crossref_primary_10_1109_TITS_2023_3341834 crossref_primary_10_1109_TITS_2022_3171451 crossref_primary_10_1049_itr2_12245 crossref_primary_10_1109_ACCESS_2021_3062114 crossref_primary_10_1007_s11069_020_04124_3 crossref_primary_10_1049_itr2_12244 crossref_primary_10_1109_TCOMM_2019_2927570 crossref_primary_10_3390_agronomy9020072 crossref_primary_10_1007_s12205_023_1221_7 crossref_primary_10_1142_S0218001423520158 crossref_primary_10_1007_s11280_020_00800_3 crossref_primary_10_1109_TITS_2022_3186707 crossref_primary_10_1177_0361198120930010 crossref_primary_10_3390_en10010074 crossref_primary_10_3390_machines12110805 crossref_primary_10_1109_TVT_2022_3217521 crossref_primary_10_1016_j_scs_2020_102500 crossref_primary_10_1109_TITS_2021_3117290 crossref_primary_10_2139_ssrn_4183278 crossref_primary_10_1016_j_trc_2019_03_001 crossref_primary_10_3390_info13080381 crossref_primary_10_1016_j_trc_2015_11_002 crossref_primary_10_3390_jmse12030446 crossref_primary_10_1063_5_0027130 crossref_primary_10_1109_ACCESS_2020_3034551 crossref_primary_10_1371_journal_pone_0217241 crossref_primary_10_3390_sym15030670 crossref_primary_10_1016_j_eswa_2024_124648 crossref_primary_10_3390_s24185995 crossref_primary_10_1016_j_trc_2019_02_002 crossref_primary_10_1016_j_physa_2022_127959 crossref_primary_10_1155_atr_7878081 crossref_primary_10_1145_3544976 crossref_primary_10_1049_itr2_12044 crossref_primary_10_1109_TITS_2020_3001470 crossref_primary_10_1109_TITS_2020_3030546 crossref_primary_10_3390_math12010103 crossref_primary_10_1016_j_trf_2025_01_018 crossref_primary_10_1109_TVT_2019_2926472 crossref_primary_10_3390_app10217830 crossref_primary_10_1061_JTEPBS_TEENG_7997 crossref_primary_10_1080_21680566_2024_2449483 crossref_primary_10_1007_s11276_020_02250_1 crossref_primary_10_1155_2023_9524966 crossref_primary_10_3390_app122111130 crossref_primary_10_1109_JIOT_2021_3064342 crossref_primary_10_1016_j_eswa_2021_115037 crossref_primary_10_1049_itr2_12024 crossref_primary_10_1080_03081079_2024_2380917 crossref_primary_10_1016_j_asoc_2019_105620 crossref_primary_10_1016_j_trb_2022_11_009 crossref_primary_10_3390_s21248273 crossref_primary_10_3390_rs12020256 crossref_primary_10_1109_TITS_2023_3234560 crossref_primary_10_3390_app13095625 crossref_primary_10_14801_jkiit_2022_20_3_19 crossref_primary_10_1109_TITS_2024_3373123 crossref_primary_10_1109_JSYST_2023_3268717 crossref_primary_10_3390_s20020421 crossref_primary_10_1016_j_trc_2019_03_022 crossref_primary_10_1109_ACCESS_2020_2992507 crossref_primary_10_1109_TITS_2019_2939290 crossref_primary_10_3390_rs14153732 crossref_primary_10_3390_su151713080 crossref_primary_10_1016_j_ijcip_2022_100540 crossref_primary_10_1007_s11280_019_00700_1 crossref_primary_10_1007_s12665_021_09696_2 crossref_primary_10_1155_2019_8392592 crossref_primary_10_1007_s12239_022_0085_z crossref_primary_10_1111_coin_12291 crossref_primary_10_1155_2021_9134942 crossref_primary_10_1177_0361198120968823 crossref_primary_10_3390_electronics13142834 crossref_primary_10_1016_j_trc_2019_01_027 crossref_primary_10_1007_s11069_023_06322_1 crossref_primary_10_1016_j_ins_2024_121852 crossref_primary_10_1016_j_trc_2022_103772 crossref_primary_10_1109_TITS_2024_3379991 crossref_primary_10_1016_j_eswa_2024_125991 crossref_primary_10_1080_15472450_2023_2209913 crossref_primary_10_1109_TSC_2020_2966487 crossref_primary_10_1109_ACCESS_2019_2902813 crossref_primary_10_1109_TITS_2022_3202487 crossref_primary_10_26599_BDMA_2024_9020020 crossref_primary_10_1371_journal_pone_0205409 crossref_primary_10_3390_s17112455 crossref_primary_10_1155_2022_1793060 crossref_primary_10_1088_1742_6596_2703_1_012011 crossref_primary_10_1109_TITS_2021_3137446 crossref_primary_10_3390_app14125030 crossref_primary_10_1109_TITS_2016_2620498 crossref_primary_10_1049_itr2_12296 crossref_primary_10_1016_j_knosys_2023_111184 crossref_primary_10_1080_02533839_2024_2334209 crossref_primary_10_1007_s11063_024_11479_2 crossref_primary_10_1016_j_compeleceng_2022_108530 crossref_primary_10_3390_jmse11061146 crossref_primary_10_1109_TITS_2019_2955794 crossref_primary_10_3390_electronics8070722 crossref_primary_10_1016_j_ins_2024_121621 crossref_primary_10_1155_2022_4372168 crossref_primary_10_1016_j_neucom_2020_11_032 crossref_primary_10_1155_2021_5559562 crossref_primary_10_1109_ACCESS_2020_2991637 crossref_primary_10_1109_TNSE_2022_3152983 crossref_primary_10_1016_j_trc_2018_07_022 crossref_primary_10_1016_j_ymssp_2022_108907 crossref_primary_10_1007_s42835_023_01535_7 crossref_primary_10_1177_0361198119840611 crossref_primary_10_1016_j_trc_2024_104604 crossref_primary_10_1049_iet_its_2019_0287 crossref_primary_10_1145_3191746 crossref_primary_10_1007_s11042_024_19479_z crossref_primary_10_1109_TITS_2024_3392975 crossref_primary_10_1134_S0361768820060079 crossref_primary_10_1109_JIOT_2023_3322862 crossref_primary_10_1016_j_jpowsour_2022_231200 crossref_primary_10_3390_aerospace5040101 crossref_primary_10_1007_s00170_019_04349_y crossref_primary_10_1109_TKDE_2021_3077056 crossref_primary_10_1016_j_neucom_2024_128441 crossref_primary_10_1016_j_istruc_2023_04_025 crossref_primary_10_1007_s00703_021_00791_4 crossref_primary_10_1016_j_trc_2018_07_013 crossref_primary_10_1016_j_eswa_2016_01_011 crossref_primary_10_1109_TITS_2020_3041234 crossref_primary_10_2139_ssrn_4151298 crossref_primary_10_3390_s19183836 crossref_primary_10_1080_14697688_2022_2130085 crossref_primary_10_1109_TITS_2018_2867042 crossref_primary_10_1109_TITS_2023_3293116 crossref_primary_10_1109_ACCESS_2019_2933319 crossref_primary_10_3390_app14104130 crossref_primary_10_1080_19427867_2023_2219045 crossref_primary_10_1109_TVT_2018_2885366 crossref_primary_10_1109_JIOT_2024_3442922 crossref_primary_10_1115_1_4052819 crossref_primary_10_1007_s11704_016_6080_7 crossref_primary_10_3390_s18124436 crossref_primary_10_1049_iet_its_2017_0144 crossref_primary_10_1016_j_ijmst_2022_02_004 crossref_primary_10_1145_3604810 crossref_primary_10_1016_j_jclepro_2021_129660 crossref_primary_10_1007_s10489_019_01426_3 crossref_primary_10_1088_1741_4326_ab6c7a crossref_primary_10_1109_TITS_2019_2923964 crossref_primary_10_1016_j_iot_2020_100167 crossref_primary_10_1109_JSYST_2023_3338265 crossref_primary_10_3390_aerospace10050453 crossref_primary_10_1080_19475705_2021_1968043 crossref_primary_10_1016_j_trc_2020_102921 crossref_primary_10_1155_2020_4575721 crossref_primary_10_1016_j_eswa_2024_124466 crossref_primary_10_1007_s00500_022_07230_5 crossref_primary_10_3390_app13084910 crossref_primary_10_1109_TITS_2022_3225553 crossref_primary_10_1016_j_trc_2020_102928 crossref_primary_10_54097_hset_v70i_12176 crossref_primary_10_1145_3470889 crossref_primary_10_1007_s11227_020_03373_0 crossref_primary_10_1016_j_eswa_2022_119311 crossref_primary_10_1016_j_jhydrol_2017_11_029 crossref_primary_10_1109_TAI_2024_3351105 crossref_primary_10_1016_j_cor_2023_106458 crossref_primary_10_1016_j_autcon_2021_103958 crossref_primary_10_3390_s20174824 crossref_primary_10_1109_TITS_2016_2635719 crossref_primary_10_1109_TITS_2023_3322745 crossref_primary_10_2196_23086 crossref_primary_10_3390_electronics10070785 crossref_primary_10_1016_j_dss_2019_113191 crossref_primary_10_1149_2_0621910jes crossref_primary_10_1016_j_neucom_2021_06_028 crossref_primary_10_1016_j_physa_2022_127762 crossref_primary_10_3390_buildings14030647 crossref_primary_10_1109_ACCESS_2018_2879055 crossref_primary_10_3233_JIFS_224285 crossref_primary_10_1016_j_advengsoft_2017_09_002 crossref_primary_10_1177_03611981211036371 crossref_primary_10_1109_TITS_2018_2857224 crossref_primary_10_1016_j_jhydrol_2017_11_018 crossref_primary_10_1007_s00521_022_06898_y crossref_primary_10_1061_JTEPBS_0000600 crossref_primary_10_1016_j_ins_2023_119056 crossref_primary_10_1016_j_amar_2021_100157 crossref_primary_10_17531_ein_2021_4_3 crossref_primary_10_3390_forecast5010010 crossref_primary_10_1016_j_asoc_2022_109945 crossref_primary_10_1016_j_ins_2023_119269 crossref_primary_10_1109_TITS_2022_3220089 crossref_primary_10_3390_ijgi8060243 crossref_primary_10_1061_JPCFEV_CFENG_4390 crossref_primary_10_1049_iet_its_2019_0008 crossref_primary_10_1155_2021_7161293 crossref_primary_10_1016_j_inffus_2018_07_007 crossref_primary_10_1088_1742_6596_2033_1_012167 crossref_primary_10_12720_jait_16_1_49_56 crossref_primary_10_1109_ACCESS_2021_3049556 crossref_primary_10_1109_TITS_2022_3151262 crossref_primary_10_1016_j_trc_2017_12_012 crossref_primary_10_1109_TITS_2018_2882861 crossref_primary_10_5194_acp_19_12935_2019 crossref_primary_10_1016_j_trc_2020_02_013 crossref_primary_10_1080_00207543_2021_1871675 crossref_primary_10_3390_s19102229 crossref_primary_10_2139_ssrn_3994301 crossref_primary_10_1016_j_asej_2022_102050 crossref_primary_10_1080_19427867_2023_2207278 crossref_primary_10_1016_j_asoc_2024_111380 crossref_primary_10_1016_j_bdr_2024_100427 crossref_primary_10_1177_0361198119842823 crossref_primary_10_1142_S2424922X22500103 crossref_primary_10_1080_01969722_2023_2240649 crossref_primary_10_1145_3416914 crossref_primary_10_2139_ssrn_4100305 crossref_primary_10_1177_0361198120912422 crossref_primary_10_1109_TITS_2021_3060959 crossref_primary_10_1109_JIOT_2022_3196461 crossref_primary_10_1109_ACCESS_2020_2964070 crossref_primary_10_1007_s40747_021_00365_2 crossref_primary_10_1109_TITS_2019_2906365 crossref_primary_10_1007_s10994_024_06711_y crossref_primary_10_1016_j_asoc_2022_109700 crossref_primary_10_1109_MIS_2022_3173427 crossref_primary_10_2139_ssrn_4142192 crossref_primary_10_1109_JIOT_2021_3136031 crossref_primary_10_1109_TITS_2022_3168879 crossref_primary_10_1007_s00521_020_05196_9 crossref_primary_10_1089_big_2021_0318 crossref_primary_10_1007_s42421_023_00073_y crossref_primary_10_1109_ACCESS_2019_2917228 crossref_primary_10_3390_atmos11040423 crossref_primary_10_1109_TNSM_2022_3161872 crossref_primary_10_1109_MITS_2022_3207831 crossref_primary_10_1155_2022_1702766 crossref_primary_10_1109_TITS_2020_3000761 crossref_primary_10_1177_0361198120941508 crossref_primary_10_1049_iet_its_2018_5155 crossref_primary_10_1061_JTEPBS_0000636 crossref_primary_10_1109_MIS_2023_3250600 crossref_primary_10_3390_s17040818 crossref_primary_10_1016_j_rsma_2025_104106 crossref_primary_10_1109_ACCESS_2020_3016469 crossref_primary_10_1177_1687814017748748 crossref_primary_10_1109_TITS_2018_2871269 crossref_primary_10_1109_TITS_2019_2924883 crossref_primary_10_1016_j_trc_2021_103526 crossref_primary_10_1109_ACCESS_2024_3396156 crossref_primary_10_1155_2021_6393951 crossref_primary_10_1007_s11227_023_05383_0 crossref_primary_10_1016_j_physa_2022_128414 crossref_primary_10_1145_3231541_3231544 crossref_primary_10_1088_1742_6596_1693_1_012112 crossref_primary_10_3390_app12115340 crossref_primary_10_1049_iet_its_2019_0552 crossref_primary_10_1109_ACCESS_2019_2918784 crossref_primary_10_3390_ijgi10080555 crossref_primary_10_1109_MITS_2021_3099796 crossref_primary_10_1109_TITS_2020_3031026 crossref_primary_10_1061_JTEPBS_TEENG_8059 crossref_primary_10_1080_13658816_2019_1652303 crossref_primary_10_3390_s18072287 crossref_primary_10_3390_app131810266 crossref_primary_10_1155_2019_4858546 crossref_primary_10_1109_ACCESS_2020_2985233 crossref_primary_10_1016_j_future_2021_10_022 crossref_primary_10_2139_ssrn_4065482 crossref_primary_10_1109_MITS_2018_2842249 crossref_primary_10_2200_S01156ED1V01Y202112AAT016 crossref_primary_10_3390_math12081137 crossref_primary_10_1007_s10489_021_02648_0 crossref_primary_10_1080_19475705_2022_2057241 crossref_primary_10_1109_TITS_2019_2932038 crossref_primary_10_1016_j_aej_2020_09_038 crossref_primary_10_1016_j_suscom_2022_100779 crossref_primary_10_1093_comjnl_bxac156 crossref_primary_10_1016_j_eswa_2022_117275 crossref_primary_10_17341_gazimmfd_921035 crossref_primary_10_3390_su15118731 crossref_primary_10_1155_2021_2564211 crossref_primary_10_1016_j_measurement_2019_01_038 crossref_primary_10_1109_ACCESS_2020_2974575 crossref_primary_10_1016_j_eswa_2023_120724 crossref_primary_10_1016_j_trc_2024_104689 crossref_primary_10_1016_j_knosys_2024_112029 crossref_primary_10_1016_j_asoc_2022_108544 crossref_primary_10_3389_ffutr_2020_594608 crossref_primary_10_1109_ACCESS_2020_3016004 crossref_primary_10_1038_s41598_022_14037_9 crossref_primary_10_1016_j_asoc_2022_108768 crossref_primary_10_1016_j_procs_2024_09_516 crossref_primary_10_1109_TVCG_2019_2922597 crossref_primary_10_1007_s13177_024_00411_6 crossref_primary_10_1155_2017_6905431 crossref_primary_10_1063_5_0007174 crossref_primary_10_3390_ijgi10080539 crossref_primary_10_3390_electronics11101613 crossref_primary_10_1016_j_comcom_2019_10_011 crossref_primary_10_1049_iet_its_2016_0208 crossref_primary_10_1080_02533839_2021_1936643 crossref_primary_10_1007_s10489_023_05053_x crossref_primary_10_1109_TITS_2023_3344647 crossref_primary_10_1155_2016_9236156 crossref_primary_10_1109_ACCESS_2019_2929692 crossref_primary_10_3390_electronics10141610 crossref_primary_10_3233_IDA_230174 crossref_primary_10_1016_j_trc_2021_103339 crossref_primary_10_1016_j_trc_2022_103616 crossref_primary_10_1061__ASCE_CO_1943_7862_0001697 crossref_primary_10_1109_ACCESS_2020_2968718 crossref_primary_10_1109_TITS_2024_3485794 crossref_primary_10_26599_HTRD_2024_9480015 crossref_primary_10_1007_s00500_020_04855_2 crossref_primary_10_1016_j_neunet_2018_07_004 crossref_primary_10_1080_00051144_2025_2466257 crossref_primary_10_2166_ws_2023_081 crossref_primary_10_1007_s10707_023_00510_8 crossref_primary_10_1016_j_eswa_2019_112864 crossref_primary_10_1155_2020_2143921 crossref_primary_10_1155_2020_8877731 crossref_primary_10_1109_TBDATA_2021_3063553 crossref_primary_10_1016_j_trc_2024_104661 crossref_primary_10_1061_JTEPBS_0000435 crossref_primary_10_1049_iet_its_2018_5593 crossref_primary_10_1360_SSTe_2021_0128 crossref_primary_10_1016_j_aap_2020_105949 crossref_primary_10_1016_j_eswa_2024_124187 crossref_primary_10_1080_19427867_2024_2440211 crossref_primary_10_1371_journal_pone_0194629 crossref_primary_10_1155_2021_6457246 crossref_primary_10_1109_TITS_2022_3187121 crossref_primary_10_1142_S0218194019400187 crossref_primary_10_1155_2017_2415312 crossref_primary_10_1007_s10994_022_06136_5 crossref_primary_10_1177_03611981211011170 crossref_primary_10_1142_S1469026824500111 crossref_primary_10_1002_jbio_202300447 crossref_primary_10_3233_JIFS_213557 crossref_primary_10_1007_s12243_025_01081_5 crossref_primary_10_3390_s21020629 crossref_primary_10_1016_j_asoc_2019_02_006 crossref_primary_10_3389_fenvs_2022_905443 crossref_primary_10_1016_j_trc_2021_103323 crossref_primary_10_2139_ssrn_3733398 crossref_primary_10_1007_s12517_021_06982_y crossref_primary_10_1016_j_pmcj_2023_101769 crossref_primary_10_1109_ACCESS_2022_3221970 crossref_primary_10_1109_TITS_2024_3436523 crossref_primary_10_1016_j_physa_2023_128769 crossref_primary_10_1108_IDD_12_2020_0160 crossref_primary_10_1016_j_jsv_2018_05_007 crossref_primary_10_1109_ACCESS_2024_3349591 crossref_primary_10_1017_S1466252319000033 crossref_primary_10_1080_07421222_2021_1870391 crossref_primary_10_1111_mice_12376 crossref_primary_10_3390_s21186089 crossref_primary_10_1061_JTEPBS_0000653 crossref_primary_10_1109_ACCESS_2021_3115709 crossref_primary_10_1016_j_trc_2023_104126 crossref_primary_10_3390_en18040993 crossref_primary_10_1109_ACCESS_2018_2884933 crossref_primary_10_1016_j_enconman_2018_01_010 crossref_primary_10_3390_rs13234834 crossref_primary_10_1016_j_trc_2021_103352 crossref_primary_10_1016_j_engappai_2023_107649 crossref_primary_10_1002_ett_3482 crossref_primary_10_3390_en14196199 crossref_primary_10_1109_TITS_2022_3168865 crossref_primary_10_1049_iet_its_2016_0257 crossref_primary_10_1109_JIOT_2020_2966792 crossref_primary_10_1016_j_knosys_2022_109796 crossref_primary_10_1109_JSAC_2019_2904357 crossref_primary_10_1109_TITS_2020_3008408 crossref_primary_10_3390_app14146102 crossref_primary_10_3390_su14148562 crossref_primary_10_1016_j_trc_2017_10_016 crossref_primary_10_1016_j_trc_2023_104354 crossref_primary_10_1109_ACCESS_2020_2999662 crossref_primary_10_1177_0361198120911052 crossref_primary_10_1007_s41060_018_0162_6 crossref_primary_10_1177_03611981241247050 crossref_primary_10_3390_s17071501 crossref_primary_10_1109_TITS_2023_3308949 crossref_primary_10_1016_j_trc_2019_07_003 crossref_primary_10_3390_app132112079 crossref_primary_10_1080_01430750_2022_2056917 crossref_primary_10_1051_e3sconf_202338222003 crossref_primary_10_1016_j_trc_2019_05_039 crossref_primary_10_1177_03611981231169531 crossref_primary_10_1139_cjce_2023_0495 crossref_primary_10_1287_trsc_2021_1086 crossref_primary_10_1049_iet_spr_2018_5240 crossref_primary_10_1109_ACCESS_2019_2931920 crossref_primary_10_3390_su131910704 crossref_primary_10_1109_TITS_2020_3006227 crossref_primary_10_1111_tgis_12975 crossref_primary_10_3233_IDT_240231 crossref_primary_10_1016_j_eswa_2023_122766 crossref_primary_10_1108_AA_02_2021_0018 crossref_primary_10_1080_15472450_2018_1542304 crossref_primary_10_1061_JTEPBS_0000230 crossref_primary_10_1109_TITS_2020_2995546 crossref_primary_10_1007_s11042_023_15395_w crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_3390_s19132946 crossref_primary_10_1007_s42421_024_00104_2 crossref_primary_10_1016_j_ast_2021_106652 crossref_primary_10_1155_2023_5070504 crossref_primary_10_1016_j_oceaneng_2022_113151 crossref_primary_10_3233_JIFS_210657 crossref_primary_10_1155_2020_9628957 crossref_primary_10_1109_TIM_2023_3260278 crossref_primary_10_1109_TITS_2019_2897341 crossref_primary_10_1016_j_jksuci_2023_101836 crossref_primary_10_1080_23249935_2024_2335244 crossref_primary_10_1109_ACCESS_2018_2805299 crossref_primary_10_1109_ACCESS_2019_2951780 crossref_primary_10_1016_j_ins_2021_04_057 crossref_primary_10_1002_sat_1508 crossref_primary_10_1007_s10489_018_1339_3 crossref_primary_10_1007_s40747_024_01391_6 crossref_primary_10_3390_sym12050861 crossref_primary_10_1109_ACCESS_2019_2941987 crossref_primary_10_1108_FS_01_2021_0024 crossref_primary_10_1016_j_physa_2024_130204 crossref_primary_10_1007_s43069_023_00266_9 crossref_primary_10_1371_journal_pone_0182458 crossref_primary_10_32604_cmc_2021_014598 crossref_primary_10_3390_app6020047 crossref_primary_10_3390_s24072348 crossref_primary_10_1061_JTEPBS_0000455 crossref_primary_10_1109_TVT_2022_3141880 crossref_primary_10_3390_app13158776 crossref_primary_10_7717_peerj_cs_1534 crossref_primary_10_3390_app12136412 crossref_primary_10_1109_ICJECE_2021_3076124 crossref_primary_10_3390_smartcities2030023 crossref_primary_10_1007_s13349_022_00576_2 crossref_primary_10_1088_1742_6596_2369_1_012031 crossref_primary_10_1016_j_engappai_2021_104491 crossref_primary_10_5604_01_3001_0015_8148 crossref_primary_10_1109_TITS_2020_3019509 crossref_primary_10_1016_j_asoc_2019_105654 crossref_primary_10_1109_TITS_2022_3146899 crossref_primary_10_3141_2594_10 crossref_primary_10_1109_TITS_2021_3103502 crossref_primary_10_3390_math12162434 crossref_primary_10_1016_j_eswa_2021_115878 crossref_primary_10_3390_s21227705 crossref_primary_10_1016_j_eswa_2023_119587 crossref_primary_10_1109_TITS_2020_3027628 crossref_primary_10_3390_s21248468 crossref_primary_10_1016_j_biteb_2021_100724 crossref_primary_10_3390_app10249037 crossref_primary_10_1061_JTEPBS_0000223 crossref_primary_10_1016_j_future_2020_12_003 crossref_primary_10_1016_j_scitotenv_2023_166986 crossref_primary_10_1109_TITS_2020_3004254 crossref_primary_10_3390_math12193159 crossref_primary_10_1109_ACCESS_2019_2918728 crossref_primary_10_1016_j_eswa_2023_120333 crossref_primary_10_1007_s10346_018_01127_x crossref_primary_10_1371_journal_pone_0161259 crossref_primary_10_1016_j_watres_2021_117070 crossref_primary_10_1016_j_trc_2017_02_024 crossref_primary_10_1109_TITS_2021_3131248 crossref_primary_10_1016_j_egypro_2019_01_491 crossref_primary_10_1049_itr2_12411 crossref_primary_10_1007_s11633_020_1276_6 crossref_primary_10_3390_su151713209 crossref_primary_10_1016_j_physa_2021_126603 crossref_primary_10_3390_su12198070 crossref_primary_10_1016_j_apenergy_2024_124007 crossref_primary_10_3390_math11194075 crossref_primary_10_1109_ACCESS_2022_3211518 crossref_primary_10_1049_iet_its_2018_5511 crossref_primary_10_1109_TITS_2022_3215073 crossref_primary_10_1109_TVT_2024_3462708 crossref_primary_10_3390_ijgi12040144 crossref_primary_10_1016_j_ejor_2020_05_020 crossref_primary_10_1007_s11430_021_9870_8 crossref_primary_10_1177_1687814018802128 crossref_primary_10_3390_math11163574 crossref_primary_10_3390_su12020646 crossref_primary_10_2139_ssrn_4534689 crossref_primary_10_3390_su15032603 crossref_primary_10_1109_TITS_2023_3279929 crossref_primary_10_1109_TNSE_2024_3417371 crossref_primary_10_1080_15472450_2019_1598863 crossref_primary_10_1007_s11063_024_11571_7 crossref_primary_10_1016_j_future_2018_10_052 crossref_primary_10_1109_TITS_2020_2983763 crossref_primary_10_1155_2017_3515272 crossref_primary_10_1109_TITS_2023_3348634 crossref_primary_10_1080_03081060_2023_2245389 crossref_primary_10_1109_ACCESS_2020_2975655 crossref_primary_10_1177_09544070221104893 crossref_primary_10_1016_j_trc_2017_02_005 crossref_primary_10_1109_JIOT_2020_3037669 crossref_primary_10_1109_TITS_2021_3072118 crossref_primary_10_3390_rs10030452 crossref_primary_10_1007_s10479_023_05223_7 crossref_primary_10_1016_j_geoen_2023_211660 crossref_primary_10_1109_ACCESS_2020_2998515 crossref_primary_10_1016_j_neucom_2022_05_083 crossref_primary_10_1016_j_eswa_2023_120393 crossref_primary_10_1049_iet_its_2015_0212 crossref_primary_10_1109_ACCESS_2021_3056882 crossref_primary_10_1007_s41939_023_00350_x crossref_primary_10_1016_j_physa_2018_04_031 crossref_primary_10_12815_kits_2017_16_4_153 crossref_primary_10_1016_j_eswa_2024_123959 crossref_primary_10_1109_ACCESS_2022_3195353 crossref_primary_10_1109_ACCESS_2023_3310821 crossref_primary_10_1049_itr2_12431 crossref_primary_10_1016_j_inffus_2023_101837 crossref_primary_10_1049_itr2_12440 crossref_primary_10_1109_TITS_2020_2984813 crossref_primary_10_1109_TITS_2021_3052796 crossref_primary_10_1155_2020_6901084 crossref_primary_10_1109_TITS_2019_2910295 crossref_primary_10_1016_j_scitotenv_2020_137117 crossref_primary_10_1016_j_trc_2019_05_021 crossref_primary_10_1080_19427867_2022_2057397 crossref_primary_10_1109_TITS_2022_3145382 crossref_primary_10_1016_j_oceaneng_2020_107380 crossref_primary_10_1109_ACCESS_2019_2902185 crossref_primary_10_3390_app13020711 crossref_primary_10_1088_1757_899X_392_6_062090 crossref_primary_10_1016_j_trc_2019_11_018 crossref_primary_10_1109_ACCESS_2019_2893997 crossref_primary_10_1002_ett_5021 crossref_primary_10_1177_0361198120917673 crossref_primary_10_1016_j_procs_2022_09_110 crossref_primary_10_3390_su14052564 crossref_primary_10_3390_aerospace8080224 crossref_primary_10_3390_su162310190 crossref_primary_10_1016_j_eswa_2021_114580 crossref_primary_10_1109_MITS_2023_3265808 crossref_primary_10_1088_1757_899X_646_1_012015 crossref_primary_10_3390_electronics13030636 crossref_primary_10_1007_s11063_021_10462_5 crossref_primary_10_1016_j_jpowsour_2019_04_118 crossref_primary_10_1016_j_trc_2024_104490 crossref_primary_10_1016_j_bdr_2018_04_002 crossref_primary_10_1109_TITS_2022_3219882 crossref_primary_10_1109_TITS_2024_3524582 crossref_primary_10_1016_j_trc_2016_09_016 crossref_primary_10_1109_TCBB_2019_2919307 crossref_primary_10_1371_journal_pone_0226910 crossref_primary_10_1016_j_physa_2024_129632 crossref_primary_10_1109_LGRS_2017_2738671 crossref_primary_10_1016_j_asr_2021_08_017 crossref_primary_10_1016_j_asoc_2020_106579 crossref_primary_10_1016_j_physa_2023_129233 crossref_primary_10_1109_JOE_2023_3314090 crossref_primary_10_1016_j_renene_2024_120367 crossref_primary_10_1109_TNNLS_2020_3016632 crossref_primary_10_1371_journal_pone_0313708 crossref_primary_10_1016_j_neucom_2018_08_067 crossref_primary_10_1007_s00521_018_3470_9 crossref_primary_10_1155_2023_4597386 crossref_primary_10_1016_j_aap_2018_10_015 crossref_primary_10_1109_TAP_2023_3254201 crossref_primary_10_1371_journal_pone_0173317 crossref_primary_10_15388_20_INFOR431 crossref_primary_10_1109_ACCESS_2020_2965094 crossref_primary_10_1109_TITS_2022_3160468 crossref_primary_10_1016_j_asoc_2020_106582 crossref_primary_10_1080_15472450_2021_1977639 crossref_primary_10_1016_j_energy_2020_118294 crossref_primary_10_1142_S0129065721300011 crossref_primary_10_1007_s10064_023_03247_8 crossref_primary_10_3390_aerospace9050250 crossref_primary_10_1061_JTEPBS_TEENG_7638 crossref_primary_10_1145_3511904 crossref_primary_10_1016_j_knosys_2018_09_003 crossref_primary_10_1080_19427867_2025_2450577 crossref_primary_10_1007_s11071_020_05646_y crossref_primary_10_1016_j_trc_2020_102619 crossref_primary_10_1177_03611981231224740 crossref_primary_10_3390_electronics11060861 crossref_primary_10_1049_itr2_12330 crossref_primary_10_1109_TITS_2022_3219626 crossref_primary_10_1155_2020_6530530 crossref_primary_10_1063_1_5120502 crossref_primary_10_1007_s13131_021_1735_0 crossref_primary_10_1061_JTEPBS_TEENG_7647 crossref_primary_10_1109_ACCESS_2020_3036652 crossref_primary_10_1109_TITS_2024_3396382 crossref_primary_10_1142_S0218213023500677 crossref_primary_10_1177_1687814020923202 crossref_primary_10_1155_2023_7099652 crossref_primary_10_1680_jmuen_20_00004 crossref_primary_10_1016_j_eswa_2018_11_028 crossref_primary_10_1016_j_iswa_2023_200227 crossref_primary_10_1007_s11280_021_00877_4 crossref_primary_10_1016_j_ast_2019_105403 crossref_primary_10_1371_journal_pone_0263030 crossref_primary_10_1080_23249935_2025_2457339 crossref_primary_10_1155_2021_4819254 crossref_primary_10_1155_2024_7985408 crossref_primary_10_1080_03081060_2021_1992180 crossref_primary_10_1109_TCSS_2024_3372856 crossref_primary_10_1007_s12239_019_0067_y crossref_primary_10_3390_su14106351 crossref_primary_10_1016_j_eswa_2024_124956 crossref_primary_10_2139_ssrn_3972695 crossref_primary_10_1088_1742_6596_1883_1_012010 crossref_primary_10_1088_1742_6596_1966_1_012013 crossref_primary_10_1155_2020_7293454 crossref_primary_10_1016_j_jocs_2018_03_010 crossref_primary_10_26599_BDMA_2023_9020017 crossref_primary_10_3390_app14209488 crossref_primary_10_1007_s41064_022_00203_1 crossref_primary_10_1088_1742_6596_1646_1_012050 crossref_primary_10_1007_s10878_017_0210_5 crossref_primary_10_1109_TITS_2020_2997412 crossref_primary_10_1016_j_trc_2019_10_011 crossref_primary_10_3390_a17090398 crossref_primary_10_3390_ijgi8090366 crossref_primary_10_1016_j_procs_2019_04_025 crossref_primary_10_1016_j_neucom_2023_02_017 crossref_primary_10_3390_app11104423 crossref_primary_10_1145_3472300 crossref_primary_10_1016_j_apenergy_2018_09_052 crossref_primary_10_1016_j_isatra_2019_08_024 crossref_primary_10_1109_JIOT_2023_3290401 crossref_primary_10_1049_itr2_12138 crossref_primary_10_1155_2022_8843000 crossref_primary_10_3141_2645_20 crossref_primary_10_1109_TITS_2024_3362145 crossref_primary_10_1177_1045389X20951263 crossref_primary_10_1109_ACCESS_2020_3001973 crossref_primary_10_1007_s00521_024_10494_7 crossref_primary_10_3934_mbe_2024112 crossref_primary_10_1109_ACCESS_2025_3541042 crossref_primary_10_1007_s44212_023_00032_6 crossref_primary_10_1371_journal_pone_0184142 crossref_primary_10_1016_j_asoc_2020_106387 crossref_primary_10_1109_TITS_2019_2947145 crossref_primary_10_1016_j_eswa_2024_123884 crossref_primary_10_3390_math12020255 crossref_primary_10_1016_j_cageo_2024_105824 crossref_primary_10_1002_widm_1285 crossref_primary_10_1007_s10489_023_05126_x crossref_primary_10_1155_2019_6320186 crossref_primary_10_1109_ACCESS_2020_2973514 crossref_primary_10_1109_ACCESS_2021_3071174 crossref_primary_10_52756_ijerr_2024_v45spl_019 crossref_primary_10_3390_s19092063 crossref_primary_10_36548_jscp_2019_1_004 crossref_primary_10_1016_j_asoc_2019_105963 crossref_primary_10_1080_15567036_2021_1875082 crossref_primary_10_3390_app13116850 crossref_primary_10_1061_JTEPBS_TEENG_8715 crossref_primary_10_1016_j_trc_2020_102620 crossref_primary_10_1016_j_trc_2020_102622 crossref_primary_10_1109_TITS_2024_3362129 crossref_primary_10_1155_2019_8729367 crossref_primary_10_1016_j_tranpol_2022_08_019 crossref_primary_10_1016_j_gsf_2020_02_011 crossref_primary_10_1007_s12145_023_01146_w crossref_primary_10_1016_j_physa_2022_126988 crossref_primary_10_1016_j_trd_2023_103678 crossref_primary_10_1155_2020_4656435 crossref_primary_10_3390_app12157597 crossref_primary_10_1016_j_istruc_2023_105654 crossref_primary_10_1007_s10489_023_05137_8 crossref_primary_10_1016_j_softx_2023_101350 crossref_primary_10_3390_app13095512 crossref_primary_10_1080_17538947_2022_2028912 crossref_primary_10_1002_int_22725 crossref_primary_10_1109_TVT_2019_2893173 crossref_primary_10_2139_ssrn_4127056 crossref_primary_10_1007_s40747_024_01578_x crossref_primary_10_3390_rs12193231 crossref_primary_10_1016_j_tra_2023_103832 crossref_primary_10_1155_2021_6678355 crossref_primary_10_1109_TITS_2019_2909904 crossref_primary_10_1109_TITS_2020_3010296 crossref_primary_10_1016_j_isci_2022_103909 crossref_primary_10_1109_JSEN_2020_3019053 crossref_primary_10_1142_S0129183124501778 crossref_primary_10_3390_s24217086 crossref_primary_10_1016_j_bspc_2019_101675 crossref_primary_10_1109_TITS_2024_3381099 crossref_primary_10_1111_mice_12819 crossref_primary_10_1016_j_engappai_2024_108242 crossref_primary_10_1155_2021_7328056 crossref_primary_10_17798_bitlisfen_1292003 crossref_primary_10_1016_j_neucom_2025_129369 crossref_primary_10_1109_TMC_2024_3453657 crossref_primary_10_1016_j_rser_2021_111607 crossref_primary_10_1109_ACCESS_2020_2980019 crossref_primary_10_2139_ssrn_3996683 crossref_primary_10_1109_ACCESS_2020_2994415 crossref_primary_10_1109_TNNLS_2023_3293814 crossref_primary_10_1007_s10489_022_03966_7 crossref_primary_10_1016_j_physa_2019_122492 crossref_primary_10_1016_j_tranpol_2020_05_023 crossref_primary_10_1021_acsomega_3c02387 crossref_primary_10_1109_ACCESS_2020_2970836 crossref_primary_10_3390_math12101493 crossref_primary_10_1016_j_aap_2020_105910 crossref_primary_10_1007_s00521_021_06669_1 crossref_primary_10_1088_1742_6596_1915_2_022064 crossref_primary_10_1109_TITS_2021_3083968 crossref_primary_10_1016_j_trc_2019_08_005 crossref_primary_10_1109_ACCESS_2023_3264707 crossref_primary_10_1108_IJICC_04_2022_0104 crossref_primary_10_1109_ACCESS_2019_2907131 crossref_primary_10_1007_s42421_020_00030_z crossref_primary_10_1016_j_asoc_2023_111128 crossref_primary_10_1016_j_heliyon_2022_e11847 crossref_primary_10_1080_03772063_2023_2277244 crossref_primary_10_1088_1755_1315_783_1_012153 crossref_primary_10_3390_ijgi11020088 crossref_primary_10_3390_ijgi12080346 crossref_primary_10_1049_iet_its_2020_0004 crossref_primary_10_1007_s10489_024_05291_7 crossref_primary_10_1049_iet_its_2020_0486 crossref_primary_10_3390_e25060938 crossref_primary_10_1016_j_engappai_2023_107061 crossref_primary_10_1016_j_trc_2021_103372 crossref_primary_10_1109_ACCESS_2020_3011186 crossref_primary_10_1016_j_eswa_2024_123208 crossref_primary_10_1186_s40854_021_00243_3 crossref_primary_10_2139_ssrn_4063434 crossref_primary_10_3390_su15021374 crossref_primary_10_1038_s41598_024_72094_8 crossref_primary_10_1155_2021_5589075 crossref_primary_10_1109_ACCESS_2020_2989443 crossref_primary_10_1109_TAI_2022_3153750 crossref_primary_10_1109_TITS_2021_3083957 crossref_primary_10_3846_transport_2024_20538 crossref_primary_10_1007_s11440_021_01264_z crossref_primary_10_1109_TITS_2018_2878068 crossref_primary_10_1080_19439962_2022_2164636 crossref_primary_10_1177_03611981241248160 crossref_primary_10_1371_journal_pone_0188790 crossref_primary_10_1016_j_apm_2020_06_020 crossref_primary_10_1016_j_joule_2018_11_010 crossref_primary_10_1109_ACCESS_2024_3381987 crossref_primary_10_1016_j_eswa_2024_125655 crossref_primary_10_1007_s12205_018_1491_7 crossref_primary_10_1016_j_physa_2019_122601 crossref_primary_10_1016_j_inffus_2023_102214 crossref_primary_10_1109_TFUZZ_2020_2986995 crossref_primary_10_1080_09540091_2022_2061915 crossref_primary_10_1111_mice_12459 crossref_primary_10_1142_S0219622019500202 crossref_primary_10_1109_TITS_2016_2643005 crossref_primary_10_1109_ACCESS_2019_2932118 crossref_primary_10_3390_s19020409 crossref_primary_10_1109_ACCESS_2019_2957612 crossref_primary_10_1016_j_eswa_2022_116585 crossref_primary_10_1111_mice_13301 crossref_primary_10_1007_s42421_022_00059_2 crossref_primary_10_1016_j_apr_2020_05_007 crossref_primary_10_1109_TIM_2023_3341124 crossref_primary_10_1190_geo2019_0261_1 crossref_primary_10_1155_2021_9966382 crossref_primary_10_1007_s10489_024_05303_6 crossref_primary_10_1007_s12239_020_0010_2 crossref_primary_10_1109_TITS_2021_3067024 crossref_primary_10_1108_APJML_09_2019_0520 crossref_primary_10_1155_2022_6888115 crossref_primary_10_1177_03611981231192094 crossref_primary_10_1007_s10489_024_06055_z crossref_primary_10_1049_iet_its_2020_0284 crossref_primary_10_1088_1742_6596_2491_1_012035 crossref_primary_10_1016_j_knosys_2021_107038 crossref_primary_10_1155_2021_9928073 crossref_primary_10_1109_ACCESS_2020_2974190 crossref_primary_10_1109_ACCESS_2019_2941280 crossref_primary_10_1109_TITS_2019_2932785 crossref_primary_10_1109_TITS_2023_3276916 crossref_primary_10_1109_TITS_2020_3031331 crossref_primary_10_1016_j_neucom_2019_04_061 crossref_primary_10_1016_j_aej_2023_05_015 crossref_primary_10_1109_ACCESS_2020_3000242 crossref_primary_10_1109_TITS_2016_2595526 crossref_primary_10_1155_2022_6456186 crossref_primary_10_1021_acsomega_2c07609 crossref_primary_10_1088_1755_1315_587_1_012065 crossref_primary_10_1109_ACCESS_2020_2977219 crossref_primary_10_1007_s00779_019_01333_x crossref_primary_10_1109_ACCESS_2019_2936938 crossref_primary_10_1007_s00521_024_10302_2 crossref_primary_10_1109_ACCESS_2020_2991982 crossref_primary_10_1016_j_physa_2021_126474 crossref_primary_10_1016_j_cellsig_2021_110225 crossref_primary_10_1016_j_knosys_2024_112671 crossref_primary_10_1016_j_ejtl_2020_100006 crossref_primary_10_1109_ACCESS_2020_3038853 crossref_primary_10_1177_0361198118776139 crossref_primary_10_1109_TITS_2021_3067675 crossref_primary_10_1155_2021_2956151 crossref_primary_10_1631_FITEE_1500381 crossref_primary_10_3390_app11209680 crossref_primary_10_1007_s11227_021_04237_x crossref_primary_10_3390_atmos12070924 crossref_primary_10_1016_j_trc_2016_10_019 crossref_primary_10_1109_ACCESS_2019_2909114 crossref_primary_10_1109_TITS_2024_3467172 crossref_primary_10_1016_j_trc_2019_09_008 crossref_primary_10_1016_j_ijtst_2024_07_004 crossref_primary_10_3934_era_2024034 crossref_primary_10_1007_s13042_024_02152_0 crossref_primary_10_1061_JTEPBS_TEENG_7451 crossref_primary_10_1109_TITS_2023_3237320 crossref_primary_10_1080_13658816_2024_2403023 crossref_primary_10_1016_j_trc_2021_103179 crossref_primary_10_3390_app10144917 crossref_primary_10_3390_app142311047 crossref_primary_10_3390_s24041266 crossref_primary_10_1016_j_cie_2019_106246 crossref_primary_10_1109_TITS_2020_2973279 crossref_primary_10_1016_j_jhydrol_2020_125734 crossref_primary_10_1109_ACCESS_2019_2923663 crossref_primary_10_1016_j_trc_2019_09_006 crossref_primary_10_1061_JTEPBS_TEENG_8304 crossref_primary_10_3390_ijgi10050322 crossref_primary_10_1016_j_vehcom_2019_100184 crossref_primary_10_1016_j_eneco_2025_108350 crossref_primary_10_1109_ACCESS_2020_2992657 crossref_primary_10_1016_j_neucom_2018_10_097 crossref_primary_10_1109_ACCESS_2023_3300232 crossref_primary_10_1007_s42486_020_00039_x crossref_primary_10_1016_j_engappai_2020_103686 crossref_primary_10_1111_mice_12688 crossref_primary_10_1049_iet_its_2019_0112 crossref_primary_10_1109_TITS_2022_3215613 crossref_primary_10_3390_sym15020312 crossref_primary_10_1515_itit_2017_0040 crossref_primary_10_1016_j_eswa_2021_116057 crossref_primary_10_1007_s42488_025_00141_8 crossref_primary_10_1016_j_trc_2024_104953 crossref_primary_10_1155_2021_7756299 crossref_primary_10_1590_1678_4324_2024220670 crossref_primary_10_1108_JICV_03_2021_0004 crossref_primary_10_1109_TITS_2022_3155749 crossref_primary_10_3390_s25041225 crossref_primary_10_1016_j_trc_2019_09_013 crossref_primary_10_1088_1755_1315_587_1_012007 crossref_primary_10_4236_ars_2024_133004 crossref_primary_10_1016_j_physa_2019_122884 crossref_primary_10_1016_j_eswa_2024_125457 crossref_primary_10_1177_01423312211003372 crossref_primary_10_3390_su142416361 crossref_primary_10_1016_j_procs_2020_03_063 crossref_primary_10_1109_TITS_2021_3136287 crossref_primary_10_1109_TITS_2023_3329489 crossref_primary_10_1145_3446430 crossref_primary_10_1016_j_tre_2020_102106 crossref_primary_10_1680_jtran_23_00081 crossref_primary_10_1016_j_ins_2022_07_008 crossref_primary_10_1016_j_jnlssr_2021_10_008 crossref_primary_10_1007_s10489_024_06079_5 crossref_primary_10_1016_j_ifacol_2020_12_2369 crossref_primary_10_1109_TETCI_2019_2907718 crossref_primary_10_1109_TITS_2018_2869768 crossref_primary_10_3390_app14114481 crossref_primary_10_1080_03081079_2023_2203922 crossref_primary_10_1109_TITS_2023_3290165 crossref_primary_10_3389_fenrg_2021_753732 crossref_primary_10_3390_jmse11061203 crossref_primary_10_1371_journal_pone_0218626 crossref_primary_10_1016_j_aei_2021_101510 crossref_primary_10_1016_j_eswa_2022_118790 crossref_primary_10_1177_0361198120935875 crossref_primary_10_1016_j_trc_2024_104938 crossref_primary_10_3390_app10061953 crossref_primary_10_3390_app13042172 crossref_primary_10_1007_s10479_023_05260_2 crossref_primary_10_1109_JIOT_2020_2997795 crossref_primary_10_1109_TITS_2021_3055258 crossref_primary_10_1111_mice_12417 crossref_primary_10_1007_s11042_018_6374_x crossref_primary_10_1080_15472450_2021_1904921 crossref_primary_10_1016_j_trpro_2020_08_125 crossref_primary_10_1093_jge_gxab046 crossref_primary_10_1016_j_envpol_2017_08_114 crossref_primary_10_1007_s00190_022_01662_5 crossref_primary_10_1155_2023_3208535 crossref_primary_10_1109_TVT_2021_3134312 crossref_primary_10_1016_j_trc_2021_103185 crossref_primary_10_3390_s22186921 |
Cites_doi | 10.1016/j.trc.2013.10.007 10.3141/1855-04 10.1016/j.trc.2006.06.001 10.1080/0144164042000195072 10.1016/j.trc.2005.04.007 10.3141/1811-04 10.1002/scj.1206 10.1111/mice.12000 10.3141/2215-04 10.1016/S0968-090X(03)00004-4 10.3141/1805-03 10.1109/TITS.2013.2290285 10.1162/neco.1997.9.8.1735 10.1016/0191-2615(84)90002-X 10.1061/(ASCE)0733-947X(1999)125:6(515) 10.1111/j.1467-8667.2009.00620.x 10.1080/15472450600798551 10.1080/15472450902858368 10.3141/1879-08 10.1080/18128600902823216 10.1111/mice.12014 10.1061/(ASCE)0733-947X(2006)132:3(213) 10.1016/j.trc.2005.03.001 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.3141/2024-11 10.1109/TITS.2008.915649 10.1061/(ASCE)0733-947X(2006)132:12(921) 10.1023/B:STCO.0000035301.49549.88 10.1016/S0968-090X(01)00004-3 10.1061/(ASCE)0733-947X(2003)129:6(608) 10.3141/1836-07 10.1061/(ASCE)0733-947X(2005)131:10(771) 10.3141/1917-17 10.1016/j.trc.2014.01.005 10.1016/S0968-090X(00)00039-5 10.1049/cp:19991218 10.1109/TITS.2004.833765 10.1111/j.1467-8667.2010.00668.x 10.1016/j.trc.2009.04.006 10.3141/1651-06 10.1016/j.trc.2010.10.004 10.1016/S0968-090X(02)00009-8 10.3141/1776-25 10.1016/0191-2615(93)90038-C 10.1109/TITS.2013.2258916 10.4236/ars.2013.22006 10.1111/0885-9507.00154 10.1080/03081060500120340 10.3141/1968-12 10.1109/ITSC.2009.5309675 10.3141/1617-23 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 8FD F28 FR3 KR7 7TK |
DOI | 10.1016/j.trc.2015.03.014 |
DatabaseName | CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Neurosciences Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering Neurosciences Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Neurosciences Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 197 |
ExternalDocumentID | 10_1016_j_trc_2015_03_014 S0968090X15000935 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 8FD F28 FR3 KR7 7TK EFKBS |
ID | FETCH-LOGICAL-c457t-44ca6b6f7ec2588819a9884bc265c5a01cda5879376b1a1734024c3d2cb0355f3 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Mon Jul 21 09:49:14 EDT 2025 Fri Jul 11 00:36:16 EDT 2025 Tue Jul 01 01:45:05 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Fri Feb 23 02:16:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Traffic speed prediction Long short-term neural network Remote microwave detector data Neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-44ca6b6f7ec2588819a9884bc265c5a01cda5879376b1a1734024c3d2cb0355f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1770313838 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1785228919 proquest_miscellaneous_1770313838 crossref_primary_10_1016_j_trc_2015_03_014 crossref_citationtrail_10_1016_j_trc_2015_03_014 elsevier_sciencedirect_doi_10_1016_j_trc_2015_03_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2015 |
Publisher | Elsevier India Pvt Ltd |
Publisher_xml | – name: Elsevier India Pvt Ltd |
References | Pan, Sumalee, Zhong, Indra-payoong (b0175) 2013; 14 Kikuchi, Nakanishi (b0135) 2003; 34 Smola, Scholkopf (b0220) 2004; 14 Hamad, Shourijeh, Lee, Faghri (b0080) 2009; 24 Schaul, Bayer, Wiestra, Yi, Felder, Sehnke, Rückstieß, Schmidhuber (b0205) 2010; 11 Chien, Liu, Ozbay (b0050) 2003; 1855 Electronic Integrated System Inc., 2003. ITS Designer’s Guide to RTMS Products. Zhang, Xie (b0335) 2007; 2024 Junger, J.R., Havlicek, J.P., Barnes, R.D., Tull, M.P., 2009. Prediction aggregation of remote traffic microwave sensors speed and volume data. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, pp. 673–678. Lingras, Sharma, Zhong (b0145) 2002; 1805 Van Lint, Hoogendoorn, Zuylen (b0255) 2002; 1811 Stathopoulos, Karlaftis (b0225) 2003; 11 Jiang, Adeli (b0115) 2005; 131 Hochreiter, Schmidhuber (b0085) 1997; 9 Vlahogianni, Golia, Karlaftis (b0265) 2004; 24 Zeng, Zhang (b0320) 2013; 28 Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to Forget: Continual Prediction with LSTM. Technical Report IDSIA-01-99. Smith, Williams, Oswald (b0215) 2002; 10 (accessed 03.03.14). Nagel, Schreckenberg (b0160) 1992; 2 Ishak, Kotha, Alecsandru (b0100) 2003; 1836 Okutani, Stephanedes (b0170) 1984; 18 Liu, Zuylen, Lint, Salomons (b0150) 2006; 1968 Wu, Ho, Lee (b0295) 2004; 125 Newell (b0165) 1993; 278 Van Lint (b0235) 2004; 130 Xie, Zhang (b0300) 2006; 10 Boto-Giralda, Díaz-Pernas, González-Ortega, Díez-Higuera, Antón-Rodríguez, Martínez-Zarzuela, Torre-Díez (b0025) 2010; 25 Park, Messer, Urbanik (b0190) 1998; 1651 Bullinara, J.A., 2013. Recurrent Neural Network. Neural Computation: Lecture 12. Asif, Dauwels, Goh, Oran, Fathi, Xu, Dhanya, Mitrovic, Jaillet (b0015) 2014; 15 Bodén, M., 2002. A Guide to Recurrent Neural Networks and Backpropagation. The Dallas Project. SICS Technical Report. Coifman (b0060) 2006; 132 Coifman (b0055) 2005; 1917 Williams (b0285) 2001; 1776 Jaeger, H., 2002. A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 148, German National Research Center for Information Technology. Van Lint, Hoogendoorn, Zuylen (b0260) 2005; 13 Vlahogianni, Karlaftis, Golias (b0270) 2005; 13 Ma, Wu, Wang (b0155) 2011; 2215 Kerner (b0130) 2004 Park, Rilett (b0185) 1999; 14 Chandra, Al-Deek (b0035) 2009; 13 Zhang, Liu (b0330) 2009; 5 Chen, Grant-Muller (b0040) 2001; 9 Huang, Sadek (b0095) 2009; 17 Karlaftis, Vlahogianni (b0125) 2011; 19 Rice, Zwet (b0200) 2004; 5 Vlahogianni, Karlaftis, Golia (b0275) 2014; 43 Van Lint (b0240) 2006; 132 Van Lint, Van Hinsbergen (b0250) 2012 Yu, Prevedouros (b0310) 2013; 2 Shen, L., 2008. Freeway Travel Time Estimation and Prediction using Dynamic Neural Networks. Ph.D. Dissertation, Florida International University. Park, Rilett (b0180) 1998; 1617 Park, Rilett, Han (b0195) 1999; 125 Chien, Kuchipudi (b0045) 2003; 129 Williams, Hoel (b0290) 2003; 129 Zhang, Ge (b0325) 2013; 28 Gers, F., 2001. Long Short-term Memory in Recurrent Neural Networks. Ph.D. Dissertation, École Polytechnique Fédérale De Lausanne. Jaeger, H., 2012. Long Short-term Memory in Echo State Networks: Details of a Simulation Study. Jacobs University Technical Report No. 27. Hua, Faghri (b0090) 1994; 1453 Sutskever, I., 2013. Training Recurrent Neural Networks. Ph.D. Dissertation, University of Toronto. Wang, Papageorgiou, Messmer (b0280) 2006; 14 Zou, Zhu, Zhang, Zeng (b0345) 2014; 43 Abigogun, O.A., 2005. Data Mining, Fraud Detection and Mobile Telecommunications: Call Pattern Analysis with Unsupervised Neural Networks. Master Thesis, University of the Western Cape. Van Lint (b0245) 2008; 9 Alecsandru, Ishak (b0010) 2004; 1879 Yin, Wong, Xu, Wong (b0305) 2002; 10 Zhong, Sharma, Lingras (b0340) 2005; 28 10.1016/j.trc.2015.03.014_b0105 Van Lint (10.1016/j.trc.2015.03.014_b0260) 2005; 13 Vlahogianni (10.1016/j.trc.2015.03.014_b0275) 2014; 43 Nagel (10.1016/j.trc.2015.03.014_b0160) 1992; 2 Lingras (10.1016/j.trc.2015.03.014_b0145) 2002; 1805 Alecsandru (10.1016/j.trc.2015.03.014_b0010) 2004; 1879 Zeng (10.1016/j.trc.2015.03.014_b0320) 2013; 28 10.1016/j.trc.2015.03.014_b0065 Hamad (10.1016/j.trc.2015.03.014_b0080) 2009; 24 10.1016/j.trc.2015.03.014_b0020 Park (10.1016/j.trc.2015.03.014_b0180) 1998; 1617 Vlahogianni (10.1016/j.trc.2015.03.014_b0265) 2004; 24 Van Lint (10.1016/j.trc.2015.03.014_b0240) 2006; 132 Wu (10.1016/j.trc.2015.03.014_b0295) 2004; 125 Coifman (10.1016/j.trc.2015.03.014_b0055) 2005; 1917 Chien (10.1016/j.trc.2015.03.014_b0045) 2003; 129 Newell (10.1016/j.trc.2015.03.014_b0165) 1993; 278 Coifman (10.1016/j.trc.2015.03.014_b0060) 2006; 132 Xie (10.1016/j.trc.2015.03.014_b0300) 2006; 10 Hua (10.1016/j.trc.2015.03.014_b0090) 1994; 1453 Zhang (10.1016/j.trc.2015.03.014_b0330) 2009; 5 Kikuchi (10.1016/j.trc.2015.03.014_b0135) 2003; 34 Park (10.1016/j.trc.2015.03.014_b0195) 1999; 125 10.1016/j.trc.2015.03.014_b0210 Zhang (10.1016/j.trc.2015.03.014_b0335) 2007; 2024 Van Lint (10.1016/j.trc.2015.03.014_b0250) 2012 Smith (10.1016/j.trc.2015.03.014_b0215) 2002; 10 Kerner (10.1016/j.trc.2015.03.014_b0130) 2004 Huang (10.1016/j.trc.2015.03.014_b0095) 2009; 17 10.1016/j.trc.2015.03.014_b0005 Ishak (10.1016/j.trc.2015.03.014_b0100) 2003; 1836 Boto-Giralda (10.1016/j.trc.2015.03.014_b0025) 2010; 25 Okutani (10.1016/j.trc.2015.03.014_b0170) 1984; 18 Van Lint (10.1016/j.trc.2015.03.014_b0235) 2004; 130 Williams (10.1016/j.trc.2015.03.014_b0285) 2001; 1776 Zhang (10.1016/j.trc.2015.03.014_b0325) 2013; 28 Asif (10.1016/j.trc.2015.03.014_b0015) 2014; 15 Jiang (10.1016/j.trc.2015.03.014_b0115) 2005; 131 Smola (10.1016/j.trc.2015.03.014_b0220) 2004; 14 10.1016/j.trc.2015.03.014_b0120 Van Lint (10.1016/j.trc.2015.03.014_b0245) 2008; 9 Hochreiter (10.1016/j.trc.2015.03.014_b0085) 1997; 9 Chandra (10.1016/j.trc.2015.03.014_b0035) 2009; 13 Schaul (10.1016/j.trc.2015.03.014_b0205) 2010; 11 Yin (10.1016/j.trc.2015.03.014_b0305) 2002; 10 Wang (10.1016/j.trc.2015.03.014_b0280) 2006; 14 Rice (10.1016/j.trc.2015.03.014_b0200) 2004; 5 Zhong (10.1016/j.trc.2015.03.014_b0340) 2005; 28 Yu (10.1016/j.trc.2015.03.014_b0310) 2013; 2 Chien (10.1016/j.trc.2015.03.014_b0050) 2003; 1855 Pan (10.1016/j.trc.2015.03.014_b0175) 2013; 14 Park (10.1016/j.trc.2015.03.014_b0190) 1998; 1651 Van Lint (10.1016/j.trc.2015.03.014_b0255) 2002; 1811 Ma (10.1016/j.trc.2015.03.014_b0155) 2011; 2215 Park (10.1016/j.trc.2015.03.014_b0185) 1999; 14 10.1016/j.trc.2015.03.014_b0070 Stathopoulos (10.1016/j.trc.2015.03.014_b0225) 2003; 11 Williams (10.1016/j.trc.2015.03.014_b0290) 2003; 129 Zou (10.1016/j.trc.2015.03.014_b0345) 2014; 43 Chen (10.1016/j.trc.2015.03.014_b0040) 2001; 9 Vlahogianni (10.1016/j.trc.2015.03.014_b0270) 2005; 13 10.1016/j.trc.2015.03.014_b0230 10.1016/j.trc.2015.03.014_b0075 10.1016/j.trc.2015.03.014_b0110 Karlaftis (10.1016/j.trc.2015.03.014_b0125) 2011; 19 10.1016/j.trc.2015.03.014_b0030 Liu (10.1016/j.trc.2015.03.014_b0150) 2006; 1968 |
References_xml | – reference: Electronic Integrated System Inc., 2003. ITS Designer’s Guide to RTMS Products. < – volume: 28 start-page: 594 year: 2013 end-page: 603 ident: b0325 article-title: Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network publication-title: Comput. Civ. Infrastruct. Eng. – volume: 10 start-page: 303 year: 2002 end-page: 321 ident: b0215 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transport. Res. Part C – volume: 11 start-page: 743 year: 2010 end-page: 746 ident: b0205 article-title: PyBrain publication-title: J. Mach. Learn. Res. – reference: > (accessed 03.03.14). – volume: 34 start-page: 69 year: 2003 end-page: 79 ident: b0135 article-title: Recurrent neural network with short-term memory and fast structural learning method publication-title: Syst. Comput. Jpn. – volume: 1651 start-page: 39 year: 1998 end-page: 47 ident: b0190 article-title: Short-term freeway traffic volume forecasting using radial basis function neural network publication-title: Transport. Res. Rec.: J. Transport. Res. Board – reference: Sutskever, I., 2013. Training Recurrent Neural Networks. Ph.D. Dissertation, University of Toronto. – volume: 13 start-page: 347 year: 2005 end-page: 369 ident: b0260 article-title: Accurate freeway travel time prediction with state-space neural networks under missing data publication-title: Transport. Res. Part C – volume: 10 start-page: 141 year: 2006 end-page: 150 ident: b0300 article-title: A wavelet network model for short-term traffic volume forecasting publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper. – volume: 14 start-page: 1242 year: 2013 end-page: 1254 ident: b0175 article-title: Short-term traffic state prediction based on temporal-spatial correlation publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Abigogun, O.A., 2005. Data Mining, Fraud Detection and Mobile Telecommunications: Call Pattern Analysis with Unsupervised Neural Networks. Master Thesis, University of the Western Cape. – volume: 125 start-page: 515 year: 2004 end-page: 523 ident: b0295 article-title: Travel-time prediction with support vector machine regression publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 28 start-page: 213 year: 2005 end-page: 236 ident: b0340 article-title: Refining genetically designed models for improved traffic prediction on rural roads publication-title: Transport. Plann. Technol. – volume: 14 start-page: 190 year: 2006 end-page: 212 ident: b0280 article-title: RENASSANCE: a unified macroscopic model-based approach to real-time freeway network traffic surveillance publication-title: Transport. Res. Part C: Emerg. Technol. – volume: 9 start-page: 38 year: 2008 end-page: 47 ident: b0245 article-title: Online learning solutions for freeway travel time prediction publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 1917 start-page: 149 year: 2005 end-page: 163 ident: b0055 article-title: Freeway detector assessment-aggregate data from the remote traffic microwave sensor (RTMS) publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 278 start-page: 281 year: 1993 end-page: 287 ident: b0165 article-title: A simplified theory of kinematic waves in highway traffic. Part I: general theory publication-title: Transport. Res. Part B – volume: 1811 start-page: 30 year: 2002 end-page: 39 ident: b0255 article-title: Freeway travel time prediction with state-spaced neural networks: modeling state-space dynamics with recurrent neural networks publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 43 start-page: 3 year: 2014 end-page: 19 ident: b0275 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Transport. Res. Part C – reference: Bodén, M., 2002. A Guide to Recurrent Neural Networks and Backpropagation. The Dallas Project. SICS Technical Report. < – reference: Gers, F., 2001. Long Short-term Memory in Recurrent Neural Networks. Ph.D. Dissertation, École Polytechnique Fédérale De Lausanne. – reference: Bullinara, J.A., 2013. Recurrent Neural Network. Neural Computation: Lecture 12. < – volume: 43 start-page: 33 year: 2014 end-page: 49 ident: b0345 article-title: A space-time diurnal method for short-term freeway travel time prediction publication-title: Transport. Res. Part C – year: 2012 ident: b0250 article-title: Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues publication-title: Transportation Research Circular – volume: 132 start-page: 921 year: 2006 end-page: 932 ident: b0240 article-title: Reliable real-time framework for short-term freeway travel time prediction publication-title: J. Transport. Eng. – volume: 14 start-page: 2004 year: 2004 ident: b0220 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 10 start-page: 85 year: 2002 end-page: 98 ident: b0305 article-title: Urban traffic flow prediction using a fuzzy-neural approach publication-title: Transport. Res. Part C – volume: 24 start-page: 551 year: 2009 end-page: 776 ident: b0080 article-title: Near-term travel speed prediction utilizing Hilbert-Huang transform publication-title: Comput. Civ. Infrastruct. Eng. – volume: 13 start-page: 211 year: 2005 end-page: 234 ident: b0270 article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach publication-title: Transport. Res. Part C – volume: 25 start-page: 530 year: 2010 end-page: 545 ident: b0025 article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks publication-title: Comput. Civ. Infrastruct. Eng. – volume: 1805 start-page: 16 year: 2002 end-page: 24 ident: b0145 article-title: Prediction of recreational travel using genetically designed regression and time-delay neural network models publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 28 start-page: 359 year: 2013 end-page: 371 ident: b0320 article-title: Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling publication-title: Comput. Civ. Infrastruct. Eng. – volume: 13 start-page: 53 year: 2009 end-page: 72 ident: b0035 article-title: Prediction of freeway traffic speeds and volumes using vector autoregressive models publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper. – volume: 5 start-page: 200 year: 2004 end-page: 207 ident: b0200 article-title: A simple and effective method for predicting travel times on freeways publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 19 start-page: 387 year: 2011 end-page: 399 ident: b0125 article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights publication-title: Transport. Res. Part C – reference: Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to Forget: Continual Prediction with LSTM. Technical Report IDSIA-01-99. – volume: 130 start-page: 921 year: 2004 end-page: 932 ident: b0235 article-title: Reliable real-time framework for short-term freeway travel time prediction publication-title: J. Transport. Eng. – volume: 129 start-page: 608 year: 2003 end-page: 616 ident: b0045 article-title: Dynamic travel time prediction with real-time and historic data publication-title: J. Transport. Eng. – volume: 5 start-page: 193 year: 2009 end-page: 213 ident: b0330 article-title: Traffic forecasting using least squares support vector machines publication-title: Transportmetrica – volume: 14 start-page: 357 year: 1999 end-page: 367 ident: b0185 article-title: Forecasting freeway link travel times with a multilayer feedforward neural network publication-title: Comput. Civ. Infrastruct. Eng. – volume: 18 start-page: 1 year: 1984 end-page: 11 ident: b0170 article-title: Dynamic prediction of traffic volume through Kalman filtering theory publication-title: Transport. Res. Part B – reference: Shen, L., 2008. Freeway Travel Time Estimation and Prediction using Dynamic Neural Networks. Ph.D. Dissertation, Florida International University. – volume: 1776 start-page: 194 year: 2001 end-page: 200 ident: b0285 article-title: Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 1879 start-page: 59 year: 2004 end-page: 70 ident: b0010 article-title: Hybrid model-based and memory-based traffic prediction system publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 132 start-page: 213 year: 2006 end-page: 226 ident: b0060 article-title: Vehicle level evaluation of loop detectors and the remote traffic microwave sensor publication-title: J. Transport. Eng. – volume: 125 start-page: 515 year: 1999 end-page: 523 ident: b0195 article-title: Spectral basis neural network for real-time travel time forecasting publication-title: J. Transport. Eng. – volume: 1968 start-page: 99 year: 2006 end-page: 108 ident: b0150 article-title: Predicting urban arterial travel time with state-space neural networks and Kalman filters publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 24 start-page: 533 year: 2004 end-page: 557 ident: b0265 article-title: Short-term traffic forecasting: overview of objectives and methods publication-title: Transp. Rev.: Transnatl. Transdiscipl. J. – reference: Jaeger, H., 2002. A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 148, German National Research Center for Information Technology. – year: 2004 ident: b0130 article-title: The Physics of Traffic – volume: 2 start-page: 2221 year: 1992 end-page: 2229 ident: b0160 article-title: A cellular automaton model for freeway traffic publication-title: J. Phys. I – volume: 11 start-page: 121 year: 2003 end-page: 135 ident: b0225 article-title: A multivariate state space approach for urban traffic flow modeling and prediction publication-title: Transport. Res. Part C – volume: 2 start-page: 45 year: 2013 end-page: 50 ident: b0310 article-title: Performance and challenges in utilizing non-intrusive sensors for traffic data collection publication-title: Adv. Remote Sens. – volume: 15 start-page: 794 year: 2014 end-page: 804 ident: b0015 article-title: Spatiotemporal patterns in large-scale traffic speed prediction publication-title: IEEE Trans. Intell. Transport. Syst. – reference: Junger, J.R., Havlicek, J.P., Barnes, R.D., Tull, M.P., 2009. Prediction aggregation of remote traffic microwave sensors speed and volume data. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, pp. 673–678. – volume: 1617 start-page: 163 year: 1998 end-page: 170 ident: b0180 article-title: Forecasting multiple-period freeway link travel times using modular neural networks publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 2024 start-page: 92 year: 2007 end-page: 99 ident: b0335 article-title: Forecasting of short-term freeway volume with publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 1453 start-page: 83 year: 1994 end-page: 90 ident: b0090 article-title: Applications of artificial neural networks to intelligent vehicle-highway systems publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 1836 start-page: 45 year: 2003 end-page: 56 ident: b0100 article-title: Optimization of dynamic neural network performance for short-term traffic prediction publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 131 start-page: 771 year: 2005 end-page: 779 ident: b0115 article-title: Dynamic wavelet neural network model for traffic flow forecasting publication-title: J. Transport. Eng. – volume: 17 start-page: 510 year: 2009 end-page: 525 ident: b0095 article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting publication-title: Transport. Res. Part C – volume: 2215 start-page: 37 year: 2011 end-page: 49 ident: b0155 article-title: DRIVE Net: an E-Science of transportation platform for data sharing, visualization, modeling, and analysis publication-title: Transport. Res. Rec.: J. Transport. Res. Board – reference: Jaeger, H., 2012. Long Short-term Memory in Echo State Networks: Details of a Simulation Study. Jacobs University Technical Report No. 27. – volume: 1855 start-page: 32 year: 2003 end-page: 40 ident: b0050 article-title: Predicting travel times for the South Jersey real-time motorist information system publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 9 start-page: 319 year: 2001 end-page: 336 ident: b0040 article-title: Use of sequential learning for short-term traffic flow forecasting publication-title: Transport. Res. Part C – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0085 article-title: Long short-term memory publication-title: Neural Comput. – volume: 129 start-page: 664 year: 2003 end-page: 672 ident: b0290 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: a theoretical basis and empirical results publication-title: J. Transport. Eng. – volume: 43 start-page: 33 issue: 1 year: 2014 ident: 10.1016/j.trc.2015.03.014_b0345 article-title: A space-time diurnal method for short-term freeway travel time prediction publication-title: Transport. Res. Part C doi: 10.1016/j.trc.2013.10.007 – volume: 1855 start-page: 32 year: 2003 ident: 10.1016/j.trc.2015.03.014_b0050 article-title: Predicting travel times for the South Jersey real-time motorist information system publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1855-04 – ident: 10.1016/j.trc.2015.03.014_b0105 – ident: 10.1016/j.trc.2015.03.014_b0210 – volume: 14 start-page: 190 issue: 3 year: 2006 ident: 10.1016/j.trc.2015.03.014_b0280 article-title: RENASSANCE: a unified macroscopic model-based approach to real-time freeway network traffic surveillance publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2006.06.001 – volume: 24 start-page: 533 issue: 5 year: 2004 ident: 10.1016/j.trc.2015.03.014_b0265 article-title: Short-term traffic forecasting: overview of objectives and methods publication-title: Transp. Rev.: Transnatl. Transdiscipl. J. doi: 10.1080/0144164042000195072 – volume: 13 start-page: 211 year: 2005 ident: 10.1016/j.trc.2015.03.014_b0270 article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach publication-title: Transport. Res. Part C doi: 10.1016/j.trc.2005.04.007 – volume: 1811 start-page: 30 year: 2002 ident: 10.1016/j.trc.2015.03.014_b0255 article-title: Freeway travel time prediction with state-spaced neural networks: modeling state-space dynamics with recurrent neural networks publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1811-04 – volume: 125 start-page: 515 issue: 6 year: 2004 ident: 10.1016/j.trc.2015.03.014_b0295 article-title: Travel-time prediction with support vector machine regression publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 34 start-page: 69 issue: 6 year: 2003 ident: 10.1016/j.trc.2015.03.014_b0135 article-title: Recurrent neural network with short-term memory and fast structural learning method publication-title: Syst. Comput. Jpn. doi: 10.1002/scj.1206 – volume: 11 start-page: 743 year: 2010 ident: 10.1016/j.trc.2015.03.014_b0205 article-title: PyBrain publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 359 year: 2013 ident: 10.1016/j.trc.2015.03.014_b0320 article-title: Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12000 – volume: 2215 start-page: 37 year: 2011 ident: 10.1016/j.trc.2015.03.014_b0155 article-title: DRIVE Net: an E-Science of transportation platform for data sharing, visualization, modeling, and analysis publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/2215-04 – volume: 11 start-page: 121 year: 2003 ident: 10.1016/j.trc.2015.03.014_b0225 article-title: A multivariate state space approach for urban traffic flow modeling and prediction publication-title: Transport. Res. Part C doi: 10.1016/S0968-090X(03)00004-4 – volume: 1805 start-page: 16 year: 2002 ident: 10.1016/j.trc.2015.03.014_b0145 article-title: Prediction of recreational travel using genetically designed regression and time-delay neural network models publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1805-03 – volume: 15 start-page: 794 issue: 2 year: 2014 ident: 10.1016/j.trc.2015.03.014_b0015 article-title: Spatiotemporal patterns in large-scale traffic speed prediction publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2013.2290285 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.trc.2015.03.014_b0085 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 18 start-page: 1 issue: 1 year: 1984 ident: 10.1016/j.trc.2015.03.014_b0170 article-title: Dynamic prediction of traffic volume through Kalman filtering theory publication-title: Transport. Res. Part B doi: 10.1016/0191-2615(84)90002-X – volume: 125 start-page: 515 issue: 6 year: 1999 ident: 10.1016/j.trc.2015.03.014_b0195 article-title: Spectral basis neural network for real-time travel time forecasting publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(1999)125:6(515) – ident: 10.1016/j.trc.2015.03.014_b0070 – volume: 24 start-page: 551 year: 2009 ident: 10.1016/j.trc.2015.03.014_b0080 article-title: Near-term travel speed prediction utilizing Hilbert-Huang transform publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2009.00620.x – volume: 10 start-page: 141 issue: 3 year: 2006 ident: 10.1016/j.trc.2015.03.014_b0300 article-title: A wavelet network model for short-term traffic volume forecasting publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper. doi: 10.1080/15472450600798551 – volume: 13 start-page: 53 issue: 2 year: 2009 ident: 10.1016/j.trc.2015.03.014_b0035 article-title: Prediction of freeway traffic speeds and volumes using vector autoregressive models publication-title: J. Intell. Transport. Syst.: Technol. Plann. Oper. doi: 10.1080/15472450902858368 – volume: 1879 start-page: 59 year: 2004 ident: 10.1016/j.trc.2015.03.014_b0010 article-title: Hybrid model-based and memory-based traffic prediction system publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1879-08 – volume: 5 start-page: 193 issue: 3 year: 2009 ident: 10.1016/j.trc.2015.03.014_b0330 article-title: Traffic forecasting using least squares support vector machines publication-title: Transportmetrica doi: 10.1080/18128600902823216 – ident: 10.1016/j.trc.2015.03.014_b0110 – ident: 10.1016/j.trc.2015.03.014_b0230 – ident: 10.1016/j.trc.2015.03.014_b0005 – volume: 28 start-page: 594 year: 2013 ident: 10.1016/j.trc.2015.03.014_b0325 article-title: Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12014 – volume: 132 start-page: 213 issue: 3 year: 2006 ident: 10.1016/j.trc.2015.03.014_b0060 article-title: Vehicle level evaluation of loop detectors and the remote traffic microwave sensor publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2006)132:3(213) – volume: 13 start-page: 347 year: 2005 ident: 10.1016/j.trc.2015.03.014_b0260 article-title: Accurate freeway travel time prediction with state-space neural networks under missing data publication-title: Transport. Res. Part C doi: 10.1016/j.trc.2005.03.001 – volume: 129 start-page: 664 issue: 6 year: 2003 ident: 10.1016/j.trc.2015.03.014_b0290 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: a theoretical basis and empirical results publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 2024 start-page: 92 year: 2007 ident: 10.1016/j.trc.2015.03.014_b0335 article-title: Forecasting of short-term freeway volume with v-support vector machines publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/2024-11 – volume: 9 start-page: 38 issue: 1 year: 2008 ident: 10.1016/j.trc.2015.03.014_b0245 article-title: Online learning solutions for freeway travel time prediction publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2008.915649 – volume: 132 start-page: 921 issue: 12 year: 2006 ident: 10.1016/j.trc.2015.03.014_b0240 article-title: Reliable real-time framework for short-term freeway travel time prediction publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2006)132:12(921) – volume: 2 start-page: 2221 year: 1992 ident: 10.1016/j.trc.2015.03.014_b0160 article-title: A cellular automaton model for freeway traffic publication-title: J. Phys. I – volume: 14 start-page: 2004 year: 2004 ident: 10.1016/j.trc.2015.03.014_b0220 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 10 start-page: 85 year: 2002 ident: 10.1016/j.trc.2015.03.014_b0305 article-title: Urban traffic flow prediction using a fuzzy-neural approach publication-title: Transport. Res. Part C doi: 10.1016/S0968-090X(01)00004-3 – year: 2004 ident: 10.1016/j.trc.2015.03.014_b0130 – ident: 10.1016/j.trc.2015.03.014_b0065 – volume: 129 start-page: 608 issue: 6 year: 2003 ident: 10.1016/j.trc.2015.03.014_b0045 article-title: Dynamic travel time prediction with real-time and historic data publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(608) – volume: 1836 start-page: 45 year: 2003 ident: 10.1016/j.trc.2015.03.014_b0100 article-title: Optimization of dynamic neural network performance for short-term traffic prediction publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1836-07 – volume: 131 start-page: 771 issue: 10 year: 2005 ident: 10.1016/j.trc.2015.03.014_b0115 article-title: Dynamic wavelet neural network model for traffic flow forecasting publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2005)131:10(771) – volume: 130 start-page: 921 issue: 12 year: 2004 ident: 10.1016/j.trc.2015.03.014_b0235 article-title: Reliable real-time framework for short-term freeway travel time prediction publication-title: J. Transport. Eng. doi: 10.1061/(ASCE)0733-947X(2006)132:12(921) – volume: 1917 start-page: 149 year: 2005 ident: 10.1016/j.trc.2015.03.014_b0055 article-title: Freeway detector assessment-aggregate data from the remote traffic microwave sensor (RTMS) publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1917-17 – volume: 43 start-page: 3 issue: 1 year: 2014 ident: 10.1016/j.trc.2015.03.014_b0275 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Transport. Res. Part C doi: 10.1016/j.trc.2014.01.005 – volume: 9 start-page: 319 year: 2001 ident: 10.1016/j.trc.2015.03.014_b0040 article-title: Use of sequential learning for short-term traffic flow forecasting publication-title: Transport. Res. Part C doi: 10.1016/S0968-090X(00)00039-5 – ident: 10.1016/j.trc.2015.03.014_b0075 doi: 10.1049/cp:19991218 – volume: 5 start-page: 200 issue: 3 year: 2004 ident: 10.1016/j.trc.2015.03.014_b0200 article-title: A simple and effective method for predicting travel times on freeways publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2004.833765 – volume: 25 start-page: 530 year: 2010 ident: 10.1016/j.trc.2015.03.014_b0025 article-title: Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2010.00668.x – ident: 10.1016/j.trc.2015.03.014_b0020 – volume: 17 start-page: 510 year: 2009 ident: 10.1016/j.trc.2015.03.014_b0095 article-title: A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting publication-title: Transport. Res. Part C doi: 10.1016/j.trc.2009.04.006 – volume: 1651 start-page: 39 year: 1998 ident: 10.1016/j.trc.2015.03.014_b0190 article-title: Short-term freeway traffic volume forecasting using radial basis function neural network publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1651-06 – volume: 19 start-page: 387 year: 2011 ident: 10.1016/j.trc.2015.03.014_b0125 article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights publication-title: Transport. Res. Part C doi: 10.1016/j.trc.2010.10.004 – volume: 10 start-page: 303 year: 2002 ident: 10.1016/j.trc.2015.03.014_b0215 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transport. Res. Part C doi: 10.1016/S0968-090X(02)00009-8 – volume: 1453 start-page: 83 year: 1994 ident: 10.1016/j.trc.2015.03.014_b0090 article-title: Applications of artificial neural networks to intelligent vehicle-highway systems publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 1776 start-page: 194 year: 2001 ident: 10.1016/j.trc.2015.03.014_b0285 article-title: Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1776-25 – volume: 278 start-page: 281 issue: 4 year: 1993 ident: 10.1016/j.trc.2015.03.014_b0165 article-title: A simplified theory of kinematic waves in highway traffic. Part I: general theory publication-title: Transport. Res. Part B doi: 10.1016/0191-2615(93)90038-C – year: 2012 ident: 10.1016/j.trc.2015.03.014_b0250 article-title: Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues – volume: 14 start-page: 1242 issue: 3 year: 2013 ident: 10.1016/j.trc.2015.03.014_b0175 article-title: Short-term traffic state prediction based on temporal-spatial correlation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2258916 – volume: 2 start-page: 45 year: 2013 ident: 10.1016/j.trc.2015.03.014_b0310 article-title: Performance and challenges in utilizing non-intrusive sensors for traffic data collection publication-title: Adv. Remote Sens. doi: 10.4236/ars.2013.22006 – volume: 14 start-page: 357 issue: 5 year: 1999 ident: 10.1016/j.trc.2015.03.014_b0185 article-title: Forecasting freeway link travel times with a multilayer feedforward neural network publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/0885-9507.00154 – volume: 28 start-page: 213 issue: 3 year: 2005 ident: 10.1016/j.trc.2015.03.014_b0340 article-title: Refining genetically designed models for improved traffic prediction on rural roads publication-title: Transport. Plann. Technol. doi: 10.1080/03081060500120340 – ident: 10.1016/j.trc.2015.03.014_b0030 – volume: 1968 start-page: 99 year: 2006 ident: 10.1016/j.trc.2015.03.014_b0150 article-title: Predicting urban arterial travel time with state-space neural networks and Kalman filters publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1968-12 – ident: 10.1016/j.trc.2015.03.014_b0120 doi: 10.1109/ITSC.2009.5309675 – volume: 1617 start-page: 163 year: 1998 ident: 10.1016/j.trc.2015.03.014_b0180 article-title: Forecasting multiple-period freeway link travel times using modular neural networks publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1617-23 |
SSID | ssj0001957 |
Score | 2.6418576 |
Snippet | •A Long Short-Term Memory Neural Network (LSTM) is developed for travel speed prediction.•The LSTM NN can capture the long-term temporal dependency for time... Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | Algorithms Detectors Long short-term neural network Mathematical models Neural networks Nonlinear dynamics Remote microwave detector data Time lag Traffic engineering Traffic flow Traffic speed prediction |
Title | Long short-term memory neural network for traffic speed prediction using remote microwave sensor data |
URI | https://dx.doi.org/10.1016/j.trc.2015.03.014 https://www.proquest.com/docview/1770313838 https://www.proquest.com/docview/1785228919 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdAeKj5adQtFrtQTUrp2Ysf2EaGipRQuBSk3y3EcStXNrpIA4tLf3pl8FKjUPXBM5EmisTPzxn5-JuRTgBzlUlVGjmkRCcdD5KSII4jHiikVctGx3c_O09ml-JrJbI0cjXthkFY5xP4-pnfRergzHbw5XV5fT78D-NbMsIx3mv4JbjQXQuEo__z7gebBTa_2CY1xTiIbVzY7jldbo4ohl53OKRf_y03_ROku9RxvktcDZqSH_WdtkbVQbZONcUtxs01ePVIV3CHh26K6os0PANYRBl46RzbtPUXpSnhM1RO_KaBV2tYOJSRos4QkRpc1rtpgT1Gkw1_RGgzbQOdI2rtzt4E2UPSCGdJK35DL4y8XR7NoOE0h8kKqNhLCuzRPSxV8LKHu5cYZrUXu41R66Rj3hZMa5fLSnDuuEqgshU-K2OcMQEmZvCXr1aIK7wg1oWS8SHlpihIBgHbSCx47pQtUe5cTwkY_Wj9IjeOJF7_syCn7acH1Fl1vWWLB9RNy8Ndk2etsrGosxs6xTwaLhTywyuzj2JEWfiJcGXFVWNw0liuU8YdiXa9qowGrasPN--e9fpe8xKueLblH1tv6JnwARNPm-92Q3ScvDk9OZ-d_AIzQ9aw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7aFwqKCAKBQwEiekaO3Ejp1jVbXa0u1eaKW9WY7jlCKaXSUpVf89M_moKBJ74Jp4kmjszLyxn58BPgfMUS7VZeS4kZF0IkROyTjCeKy51iGXHdv9fJHOLuXXpVpuwdG4F4ZolUPs72N6F62HK9PBm9P19fX0G4JvwzO-FJ2mf6KewDapU6kJbB-ens0WDwFZZL3gJ7anaYnluLjZ0bzamoQMheqkToX8V3r6K1B32efkOewOsJEd9l_2ArZCtQc7467iZg-e_SEs-BLCfFVdseY7YuuIYi-7IULtPSP1SnxM1XO_GQJW1taOVCRYs8Y8xtY1LdxQZzFixF-xGg3bwG6It3fnfgXWYN2LZsQsfQWXJ8cXR7NoOFAh8lLpNpLSuzRPSx18rLD0FZnLjJG5j1PllePCF04ZUsxLc-GETrC4lD4pYp9zxCVl8hom1aoKb4BloeSiSEWZFSVhAOOUlyJ22hQk-K72gY9-tH5QG6dDL37akVb2w6LrLbne8sSi6_fhy4PJupfa2NRYjp1jH40Xi6lgk9mnsSMt_ke0OOKqsLptrNCk5I_1utnUxiBcNZnI3v7f6z_CzuzifG7np4uzd_CU7vTkyQOYtPVteI8Ap80_DAP4N_ed-F0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short-term+memory+neural+network+for+traffic+speed+prediction+using+remote+microwave+sensor+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ma%2C+Xiaolei&rft.au=Tao%2C+Zhimin&rft.au=Wang%2C+Yinhai&rft.au=Yu%2C+Haiyang&rft.date=2015-05-01&rft.issn=0968-090X&rft.volume=54&rft.spage=187&rft.epage=197&rft_id=info:doi/10.1016%2Fj.trc.2015.03.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |