High-avidity IgA protects the intestine by enchaining growing bacteria
Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance genes. Clumping antibody protects gut Immunoglobulin A (IgA) is a key component in the body's first line of defence against many infections,...
Saved in:
Published in | Nature (London) Vol. 544; no. 7651; pp. 498 - 502 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.04.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance genes.
Clumping antibody protects gut
Immunoglobulin A (IgA) is a key component in the body's first line of defence against many infections, but the physical processes that drive its protective function in the gut are poorly defined. Kathrin Moor
et al
. show that IgA protects against
Salmonella
infection in the intestines of mice by enchaining the progeny of dividing bacteria into clonal or oligoclonal clumps. This clumping mechanism enables IgA to directly disarm potentially invasive species and prevent bacterial invasion, while avoiding immune processes that could cause damage to the host.
Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues (‘immune exclusion’)
1
,
2
,
3
. IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal
Salmonella enterica
subspecies enterica serovar Typhimurium (
S.
Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥10
8
non-motile bacteria per gram). In typical infections, much lower densities
4
,
5
(10
0
–10
7
colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps
in vivo
: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer
in vivo
. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance. |
---|---|
AbstractList | Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance. Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion')(1-3). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (>= 10(8) non-motile bacteria per gram). In typical infections, much lower densities(4,5) (10(0)-10(7) colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance. Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥10 non-motile bacteria per gram). In typical infections, much lower densities (10 -10 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance. Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgAmediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance. Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance genes. Clumping antibody protects gut Immunoglobulin A (IgA) is a key component in the body's first line of defence against many infections, but the physical processes that drive its protective function in the gut are poorly defined. Kathrin Moor et al . show that IgA protects against Salmonella infection in the intestines of mice by enchaining the progeny of dividing bacteria into clonal or oligoclonal clumps. This clumping mechanism enables IgA to directly disarm potentially invasive species and prevent bacterial invasion, while avoiding immune processes that could cause damage to the host. Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues (‘immune exclusion’) 1 , 2 , 3 . IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium ( S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥10 8 non-motile bacteria per gram). In typical infections, much lower densities 4 , 5 (10 0 –10 7 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo : IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo . Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance. |
Author | Lanzavecchia, Antonio Diard, Médéric Bansept, Florence Toska, Albulena Völler, Tom Arnoldini, Markus Casiraghi, Costanza Slack, Emma Fernandez-Rodriguez, Blanca Agatic, Gloria Bakkeren, Erik Minola, Andrea Regoes, Roland R. Sellin, Mikael E. Felmy, Boas Co, Alma Dal Loverdo, Claude Piccoli, Luca Corti, Davide Wotzka, Sandra Y. Moor, Kathrin Barbieri, Sonia Brumley, Douglas R. Stocker, Roman Hardt, Wolf-Dietrich |
Author_xml | – sequence: 1 givenname: Kathrin surname: Moor fullname: Moor, Kathrin organization: Institute of Microbiology, ETH Zürich, †Present addresses: Center for Dental Medicine, University of Zürich, Zürich, Switzerland (K.M.); Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy (C.C.) – sequence: 2 givenname: Médéric surname: Diard fullname: Diard, Médéric organization: Institute of Microbiology, ETH Zürich – sequence: 3 givenname: Mikael E. surname: Sellin fullname: Sellin, Mikael E. organization: Institute of Microbiology, ETH Zürich, Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University – sequence: 4 givenname: Boas surname: Felmy fullname: Felmy, Boas organization: Institute of Microbiology, ETH Zürich – sequence: 5 givenname: Sandra Y. surname: Wotzka fullname: Wotzka, Sandra Y. organization: Institute of Microbiology, ETH Zürich – sequence: 6 givenname: Albulena surname: Toska fullname: Toska, Albulena organization: Institute of Microbiology, ETH Zürich – sequence: 7 givenname: Erik surname: Bakkeren fullname: Bakkeren, Erik organization: Institute of Microbiology, ETH Zürich – sequence: 8 givenname: Markus surname: Arnoldini fullname: Arnoldini, Markus organization: Institute of Microbiology, ETH Zürich – sequence: 9 givenname: Florence surname: Bansept fullname: Bansept, Florence organization: Laboratoire Jean Perrin (UMR 8237), CNRS - UPMC – sequence: 10 givenname: Alma Dal surname: Co fullname: Co, Alma Dal organization: Department of Environmental Systems Science, ETH Zurich, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology – sequence: 11 givenname: Tom surname: Völler fullname: Völler, Tom organization: Institute of Microbiology, ETH Zürich – sequence: 12 givenname: Andrea surname: Minola fullname: Minola, Andrea organization: Humabs BioMed SA – sequence: 13 givenname: Blanca surname: Fernandez-Rodriguez fullname: Fernandez-Rodriguez, Blanca organization: Institute for Research in Biomedicine – sequence: 14 givenname: Gloria surname: Agatic fullname: Agatic, Gloria organization: Humabs BioMed SA – sequence: 15 givenname: Sonia surname: Barbieri fullname: Barbieri, Sonia organization: Institute for Research in Biomedicine – sequence: 16 givenname: Luca surname: Piccoli fullname: Piccoli, Luca organization: Institute for Research in Biomedicine – sequence: 17 givenname: Costanza surname: Casiraghi fullname: Casiraghi, Costanza organization: Institute for Research in Biomedicine, †Present addresses: Center for Dental Medicine, University of Zürich, Zürich, Switzerland (K.M.); Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy (C.C.) – sequence: 18 givenname: Davide surname: Corti fullname: Corti, Davide organization: Humabs BioMed SA – sequence: 19 givenname: Antonio surname: Lanzavecchia fullname: Lanzavecchia, Antonio organization: Institute of Microbiology, ETH Zürich, Institute for Research in Biomedicine – sequence: 20 givenname: Roland R. surname: Regoes fullname: Regoes, Roland R. organization: Institute of Integrative Biology, ETH Zürich – sequence: 21 givenname: Claude surname: Loverdo fullname: Loverdo, Claude organization: Laboratoire Jean Perrin (UMR 8237), CNRS - UPMC – sequence: 22 givenname: Roman surname: Stocker fullname: Stocker, Roman organization: Department of Civil, Institute of Environmental Engineering, Environmental, and Geomatic Engineering, ETH Zürich – sequence: 23 givenname: Douglas R. surname: Brumley fullname: Brumley, Douglas R. organization: Department of Civil, Institute of Environmental Engineering, Environmental, and Geomatic Engineering, ETH Zürich, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia – sequence: 24 givenname: Wolf-Dietrich surname: Hardt fullname: Hardt, Wolf-Dietrich organization: Institute of Microbiology, ETH Zürich – sequence: 25 givenname: Emma surname: Slack fullname: Slack, Emma organization: Institute of Microbiology, ETH Zürich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28405025$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322172$$DView record from Swedish Publication Index |
BookMark | eNpt0U1rGzEQBmBRUhrn49R7Weil0G4z-tiV9mjSpgkEemlzFbPr8VrBllxJ2-B_XwXHJYScJMQzI72jE3bkgyfG3nP4ykGaC495iiQENOYNm3Gl21q1Rh-xGYAwNRjZHrOTlO4BoOFavWPHwihoQDQzdnXtxlWNf93C5V11M86rbQyZhpyqvKLK-UwpO09Vv6vIDyt03vmxGmN4eFx7HDJFh2fs7RLXic6f1lP2--r7r8vr-vbnj5vL-W09qEbnWhopFq1ESYgoVKeo7Dl1SJyU7CVxCWKArsQixRcakGPb4XJJJZwux6fsy75veqDt1NttdBuMOxvQ2W_ubm5DHO00WSkE16LwT3teQv2ZShK7cWmg9Ro9hSlZboxWAjquC_34gt6HKfoSpqhOdBKMMUV9eFJTv6HF__sPAy2A78EQQ0qRlnZwGbMLPkd0a8vBPn6affZppebzi5pD29f1YQRF-ZHis4e-wv8BPKam4A |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_ijmm_2021_151484 crossref_primary_10_1038_s41586_019_1898_4 crossref_primary_10_1016_j_ijmm_2021_151486 crossref_primary_10_1093_ibd_izad024 crossref_primary_10_3390_ijms20235904 crossref_primary_10_1053_j_gastro_2021_02_053 crossref_primary_10_1111_imcb_12273 crossref_primary_10_1016_j_chom_2024_05_002 crossref_primary_10_1128_msystems_01383_21 crossref_primary_10_1159_000510251 crossref_primary_10_1016_j_mib_2019_09_011 crossref_primary_10_3390_md18020102 crossref_primary_10_1002_eji_202350704 crossref_primary_10_1016_j_smim_2023_101807 crossref_primary_10_3389_fimmu_2022_1024330 crossref_primary_10_3389_fmicb_2022_1018748 crossref_primary_10_1080_10408398_2022_2031097 crossref_primary_10_1021_acsabm_0c00187 crossref_primary_10_1038_s41467_025_56851_5 crossref_primary_10_1038_s41579_018_0036_x crossref_primary_10_7554_eLife_67450 crossref_primary_10_1016_j_mucimm_2024_11_006 crossref_primary_10_1038_s41435_021_00131_x crossref_primary_10_3892_etm_2021_10868 crossref_primary_10_1038_s41385_019_0223_8 crossref_primary_10_3389_fnut_2022_1078060 crossref_primary_10_1038_s41586_021_03973_7 crossref_primary_10_1093_burnst_tkab036 crossref_primary_10_1126_scisignal_adh1641 crossref_primary_10_1038_s41577_021_00583_2 crossref_primary_10_1126_sciadv_adq7797 crossref_primary_10_1128_mBio_02847_20 crossref_primary_10_1016_j_csbj_2023_07_031 crossref_primary_10_1111_jgh_15828 crossref_primary_10_1021_acsnano_7b08969 crossref_primary_10_7554_eLife_69744 crossref_primary_10_1038_s41575_022_00674_y crossref_primary_10_1002_imt2_88 crossref_primary_10_3390_microorganisms9102117 crossref_primary_10_1016_j_heliyon_2022_e12071 crossref_primary_10_1016_j_celrep_2022_111112 crossref_primary_10_1016_j_coph_2020_10_002 crossref_primary_10_1016_j_vetimm_2021_110193 crossref_primary_10_1093_femsre_fuaa068 crossref_primary_10_1007_s00125_020_05268_4 crossref_primary_10_3389_fimmu_2018_02970 crossref_primary_10_1038_s41564_019_0568_5 crossref_primary_10_1126_science_adn9414 crossref_primary_10_1111_jam_14661 crossref_primary_10_15252_emmm_202216208 crossref_primary_10_3389_fimmu_2022_1076312 crossref_primary_10_1371_journal_ppat_1007391 crossref_primary_10_1016_j_tim_2018_08_009 crossref_primary_10_1186_s40168_020_00992_w crossref_primary_10_1021_acsinfecdis_0c00842 crossref_primary_10_1038_s41385_019_0247_0 crossref_primary_10_1080_14760584_2020_1745071 crossref_primary_10_3390_vaccines11061106 crossref_primary_10_7554_eLife_56098 crossref_primary_10_3389_fimmu_2018_02608 crossref_primary_10_1038_s41598_017_16187_7 crossref_primary_10_1016_j_it_2019_01_012 crossref_primary_10_1038_s41385_022_00574_z crossref_primary_10_1038_s41467_023_42027_6 crossref_primary_10_1155_2021_3044534 crossref_primary_10_1016_j_vaccine_2020_11_040 crossref_primary_10_1016_j_chom_2024_08_010 crossref_primary_10_1016_j_cellimm_2023_104796 crossref_primary_10_1038_s41564_024_01873_w crossref_primary_10_1111_mmi_15209 crossref_primary_10_1097_COH_0000000000000422 crossref_primary_10_1183_13993003_01526_2024 crossref_primary_10_1093_intimm_dxab049 crossref_primary_10_3389_fped_2020_00528 crossref_primary_10_1038_s41577_021_00506_1 crossref_primary_10_1038_s41392_019_0074_5 crossref_primary_10_1038_s41591_019_0480_9 crossref_primary_10_3390_biomedicines13010179 crossref_primary_10_1038_s41564_021_00925_9 crossref_primary_10_1080_19490976_2019_1651596 crossref_primary_10_3389_fimmu_2023_1192936 crossref_primary_10_1128_mBio_03679_20 crossref_primary_10_1126_scitranslmed_aan1217 crossref_primary_10_1186_s40168_021_01135_5 crossref_primary_10_1126_sciimmunol_abg3208 crossref_primary_10_2174_1871530322666220331145816 crossref_primary_10_4049_jimmunol_2100867 crossref_primary_10_1038_s41396_020_00819_4 crossref_primary_10_1103_PhysRevFluids_4_053102 crossref_primary_10_1093_gastro_goy052 crossref_primary_10_1016_j_xphs_2019_07_018 crossref_primary_10_7554_eLife_81212 crossref_primary_10_1146_annurev_micro_032521_041803 crossref_primary_10_1038_ni_3759 crossref_primary_10_1080_19490976_2024_2446403 crossref_primary_10_1038_s41467_020_15891_9 crossref_primary_10_31146_1682_8658_ecg_226_6_176_187 crossref_primary_10_1111_mmi_15267 crossref_primary_10_1016_j_celrep_2018_07_032 crossref_primary_10_1007_s13206_022_00078_9 crossref_primary_10_1126_scitranslmed_aau9356 crossref_primary_10_1038_s41598_020_69472_3 crossref_primary_10_1186_s13567_018_0558_2 crossref_primary_10_1002_eji_202250033 crossref_primary_10_1080_19490976_2022_2107866 crossref_primary_10_3389_fmicb_2021_813245 crossref_primary_10_1016_j_smim_2023_101757 crossref_primary_10_1038_s41577_019_0261_1 crossref_primary_10_1111_febs_17120 crossref_primary_10_1126_science_aaq0926 crossref_primary_10_3389_fncel_2021_698172 crossref_primary_10_1016_j_chom_2020_02_011 crossref_primary_10_3389_fimmu_2022_828758 crossref_primary_10_1016_j_vaccine_2020_09_070 crossref_primary_10_1016_j_coi_2018_09_003 crossref_primary_10_1038_s41586_020_2886_4 crossref_primary_10_1039_C9SM00791A crossref_primary_10_1111_cei_13329 crossref_primary_10_1126_science_aan6619 crossref_primary_10_1038_s41385_020_00350_x crossref_primary_10_1073_pnas_1907567116 crossref_primary_10_1128_mmbr_00063_23 crossref_primary_10_1146_annurev_immunol_102119_074236 crossref_primary_10_1126_science_aaz9866 crossref_primary_10_3389_fimmu_2020_555363 crossref_primary_10_1016_j_humic_2018_10_001 crossref_primary_10_1038_s41467_023_42469_y crossref_primary_10_1016_j_aninu_2021_05_001 crossref_primary_10_1038_ni_3780 crossref_primary_10_1038_s41467_018_08156_z crossref_primary_10_1016_j_banm_2024_01_021 crossref_primary_10_1039_D1FO02517A crossref_primary_10_1080_21645515_2021_1964317 crossref_primary_10_3390_microorganisms10071437 crossref_primary_10_3390_microorganisms11092221 crossref_primary_10_1038_s41385_021_00381_y crossref_primary_10_1186_s13567_017_0491_9 crossref_primary_10_3390_metabo14030134 crossref_primary_10_1016_j_lfs_2020_118258 crossref_primary_10_1084_jem_20200275 crossref_primary_10_1038_s41467_022_29597_7 crossref_primary_10_1084_jem_20180448 crossref_primary_10_1111_imr_12584 crossref_primary_10_1016_j_imbio_2022_152183 crossref_primary_10_1038_s41564_024_01887_4 crossref_primary_10_1038_mi_2017_62 crossref_primary_10_1038_s41385_019_0227_4 crossref_primary_10_1016_j_copbio_2019_11_006 crossref_primary_10_3390_v13030472 crossref_primary_10_1016_j_chom_2018_02_007 crossref_primary_10_3389_frmbi_2024_1363961 crossref_primary_10_1016_j_celrep_2024_113925 crossref_primary_10_1016_j_pt_2022_11_012 crossref_primary_10_1038_s41419_019_2086_z crossref_primary_10_7554_eLife_40387 crossref_primary_10_1016_j_clinthera_2021_11_005 crossref_primary_10_1016_j_jaci_2022_07_007 crossref_primary_10_1016_j_it_2017_10_006 crossref_primary_10_3389_fimmu_2018_00005 crossref_primary_10_3390_biology11020297 crossref_primary_10_1080_19490976_2024_2424914 crossref_primary_10_1183_23120541_00481_2021 crossref_primary_10_3390_ijms21155392 crossref_primary_10_1080_19490976_2024_2396494 crossref_primary_10_3389_fmicb_2022_880484 crossref_primary_10_3390_ijms25105487 crossref_primary_10_1074_jbc_RA117_001068 crossref_primary_10_1016_j_chom_2020_03_012 crossref_primary_10_3389_fimmu_2022_1085551 crossref_primary_10_1093_intimm_dxab066 crossref_primary_10_1016_j_vaccine_2020_01_050 crossref_primary_10_1016_j_yhbeh_2018_04_011 crossref_primary_10_1111_imr_12688 crossref_primary_10_1038_s41586_019_1521_8 crossref_primary_10_1146_annurev_micro_090817_062307 crossref_primary_10_1016_j_chom_2017_03_009 crossref_primary_10_3390_tropicalmed6040192 crossref_primary_10_3390_nu12030823 crossref_primary_10_15252_emmm_202115386 crossref_primary_10_1111_evo_13730 crossref_primary_10_7554_eLife_71105 crossref_primary_10_1134_S0026893317060152 crossref_primary_10_1126_science_adk2536 crossref_primary_10_2139_ssrn_4188499 crossref_primary_10_1016_j_xcrm_2023_101253 crossref_primary_10_1146_annurev_micro_020420_013457 crossref_primary_10_1080_19490976_2021_1908101 crossref_primary_10_1038_s41579_022_00833_7 crossref_primary_10_1038_s44341_024_00006_y crossref_primary_10_1074_jbc_H118_002949 crossref_primary_10_1016_j_immuni_2018_09_003 crossref_primary_10_1016_j_trac_2021_116452 crossref_primary_10_1210_clinem_dgaa590 crossref_primary_10_1038_s41565_018_0354_1 crossref_primary_10_1016_j_sbi_2022_102337 crossref_primary_10_1038_s41522_024_00553_1 crossref_primary_10_3389_fimmu_2019_00805 crossref_primary_10_1111_imm_12896 crossref_primary_10_3390_biom14121643 crossref_primary_10_1016_j_cub_2018_08_019 crossref_primary_10_1016_j_ebiom_2022_104163 crossref_primary_10_1038_s44321_024_00149_4 crossref_primary_10_1016_j_lfs_2023_121993 crossref_primary_10_1038_s41590_020_00856_3 crossref_primary_10_1099_jgv_0_001937 crossref_primary_10_1016_j_vaccine_2023_07_059 crossref_primary_10_3390_cimb46070442 crossref_primary_10_3389_fimmu_2022_807682 crossref_primary_10_1038_s41385_019_0192_y crossref_primary_10_1172_jci_insight_156255 crossref_primary_10_1093_femsre_fux023 crossref_primary_10_1084_jem_20211520 crossref_primary_10_3389_fimmu_2020_01011 crossref_primary_10_1016_j_cell_2021_02_031 crossref_primary_10_1128_microbiolspec_MTBP_0012_2016 crossref_primary_10_1016_j_immuni_2021_09_004 crossref_primary_10_1016_j_it_2020_03_006 crossref_primary_10_3390_pathogens12030363 crossref_primary_10_3390_ani12020145 crossref_primary_10_1038_s41590_022_01413_w crossref_primary_10_1097_ACI_0000000000000581 crossref_primary_10_1093_discim_kyad025 crossref_primary_10_3389_fimmu_2021_787464 crossref_primary_10_3390_nu14153012 crossref_primary_10_1038_s41467_019_13538_y crossref_primary_10_1073_pnas_1816621116 crossref_primary_10_1038_nri_2017_101 crossref_primary_10_1038_s41392_024_01946_6 crossref_primary_10_1093_femsre_fuy003 crossref_primary_10_1371_journal_pcbi_1006986 crossref_primary_10_1016_j_chom_2021_02_009 crossref_primary_10_1177_0023677218787538 crossref_primary_10_1038_s41385_022_00536_5 crossref_primary_10_1038_s41467_018_03455_x crossref_primary_10_1038_s41587_019_0070_x crossref_primary_10_3389_fimmu_2019_00426 crossref_primary_10_3389_fimmu_2023_1193855 crossref_primary_10_1093_cid_ciy670 crossref_primary_10_3390_cells11020307 crossref_primary_10_3390_nu15112489 crossref_primary_10_1016_j_mib_2022_102224 crossref_primary_10_1016_j_nantod_2023_101990 crossref_primary_10_1126_sciimmunol_aao1603 crossref_primary_10_1186_s40168_024_01923_9 crossref_primary_10_1016_j_coi_2020_05_010 crossref_primary_10_1111_obr_13155 crossref_primary_10_1016_j_fbio_2024_103936 crossref_primary_10_1016_j_molmed_2021_06_007 crossref_primary_10_1038_s41579_020_0378_z crossref_primary_10_1021_acsmedchemlett_4c00128 crossref_primary_10_1080_19490976_2024_2417729 crossref_primary_10_1016_j_micpath_2021_104936 crossref_primary_10_1371_journal_pbio_3000661 crossref_primary_10_1016_j_chom_2023_09_001 crossref_primary_10_1111_1348_0421_13191 crossref_primary_10_1016_j_bpj_2018_10_017 crossref_primary_10_1038_s41575_021_00563_w crossref_primary_10_1016_j_jaci_2022_07_014 crossref_primary_10_1126_science_adi3338 crossref_primary_10_1016_j_mib_2020_08_003 crossref_primary_10_1016_j_immuni_2018_08_011 crossref_primary_10_1080_19490976_2023_2172667 crossref_primary_10_1111_imm_13156 crossref_primary_10_1371_journal_ppat_1011200 crossref_primary_10_1038_s41564_021_00911_1 crossref_primary_10_1007_s00281_021_00893_6 crossref_primary_10_1098_rsfs_2022_0059 crossref_primary_10_3389_fimmu_2021_670290 crossref_primary_10_1021_acsinfecdis_9b00109 crossref_primary_10_1016_j_it_2021_11_005 crossref_primary_10_1111_imm_13827 crossref_primary_10_1146_annurev_immunol_093019_112348 crossref_primary_10_3389_frym_2021_576428 crossref_primary_10_22207_JPAM_18_1_10 crossref_primary_10_1007_s11302_022_09891_1 crossref_primary_10_1080_19490976_2017_1387344 crossref_primary_10_1186_s12866_024_03730_6 crossref_primary_10_1111_imr_13321 crossref_primary_10_1084_jem_20180871 crossref_primary_10_1111_imm_13266 |
Cites_doi | 10.1038/nm1080 10.1016/j.chom.2014.07.001 10.1038/mi.2011.41 10.1016/0378-1119(91)90508-9 10.1128/IAI.00813-12 10.1371/journal.ppat.1001097 10.1111/j.1600-065X.2011.01070.x 10.3389/fimmu.2016.00034 10.1016/j.chom.2011.11.013 10.1038/nprot.2016.091 10.1128/IAI.02856-14 10.1371/journal.ppat.1004557 10.1016/j.cub.2014.07.028 10.1073/pnas.1113246109 10.1016/j.chom.2013.11.002 10.1016/0198-0149(90)90038-W 10.1128/IAI.01537-08 10.1016/0016-5085(94)90214-3 10.1007/978-1-60327-853-9_23 10.1371/journal.pbio.0060074 10.1128/IAI.00018-12 10.1371/journal.ppat.1003532 10.1111/imr.12179 10.1016/j.cell.2014.08.006 10.1111/j.1600-0854.2008.00830.x 10.1371/journal.pbio.0050244 10.1073/pnas.1000041107 10.1038/nri3322 10.4049/jimmunol.170.5.2531 10.1128/IAI.00416-08 10.4049/jimmunol.174.3.1675 10.1016/j.tim.2012.04.004 10.1371/journal.ppat.1000711 10.1126/science.1142284 10.1128/IAI.72.7.4138-4150.2004 10.1126/science.1172747 10.1126/science.aaf8451 10.1128/IAI.71.5.2839-2858.2003 10.1038/291238a0 10.1128/mBio.01346-15 10.1007/BF01319822 10.1136/bmj.2.6147.1301 10.1007/s00360-005-0490-4 10.1371/journal.pbio.1001793 10.1128/JVI.5.6.754-764.1970 10.4049/jimmunol.162.5.2521 10.1128/IAI.58.5.1281-1289.1990 10.1128/IAI.60.5.1786-1792.1992 10.1109/ISBI.2011.5872394 10.1515/9780691190310 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016 Copyright Nature Publishing Group Apr 27, 2017 |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016 – notice: Copyright Nature Publishing Group Apr 27, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 ADTPV AOWAS DF2 |
DOI | 10.1038/nature22058 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) ProQuest STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 502 |
ExternalDocumentID | oai_DiVA_org_uu_322172 4322080329 28405025 10_1038_nature22058 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADTPV ADYSU ADZCM AEZWR AFBBN AFFDN AFHIU AFHKK AFKWF AGCDD AGGDT AGQPQ AHWEU AIXLP AIYXT AJUXI AOWAS APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DF2 DO4 EAD EAS EAZ EBC EBD EBO ECC EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZY4 ~8M ~G0 |
ID | FETCH-LOGICAL-c457t-3832d63a3eaaa2494e3a31e9ae1e43b3e1302c09038e41d70a1a69affe0587903 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 06:52:33 EDT 2025 Mon Jul 21 12:04:12 EDT 2025 Fri Jul 25 09:15:35 EDT 2025 Wed Feb 19 02:15:32 EST 2025 Tue Jul 01 00:56:55 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Fri Feb 21 02:38:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7651 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c457t-3832d63a3eaaa2494e3a31e9ae1e43b3e1302c09038e41d70a1a69affe0587903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28405025 |
PQID | 1892930888 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_322172 proquest_miscellaneous_1887420917 proquest_journals_1892930888 pubmed_primary_28405025 crossref_citationtrail_10_1038_nature22058 crossref_primary_10_1038_nature22058 springer_journals_10_1038_nature22058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-27 |
PublicationDateYYYYMMDD | 2017-04-27 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Barlow (CR24) 2009; 532 Mobley (CR42) 1990; 58 Jackson (CR52) 1990; 37 Endt (CR8) 2010; 6 Kaiser, Slack, Grant, Hardt, Regoes (CR22) 2013; 9 van Schothorst, Beckers (CR12) 1978; 2 Diard (CR35) 2014; 24 Barthel (CR18) 2003; 71 Maier (CR26) 2014; 10 Palm (CR30) 2014; 158 Uren (CR33) 2003; 170 Harriman (CR32) 1999; 162 Hapfelmeier (CR20) 2005; 174 Grant (CR25) 2008; 6 CR4 Müller (CR31) 2012; 11 CR7 Kaiser, Diard, Stecher, Hardt (CR19) 2012; 245 CR49 Hendrickx (CR9) 2015; 6 Perfeito, Fernandes, Mota, Gordo (CR23) 2007; 317 Traggiai (CR46) 2004; 10 Drecktrah (CR43) 2008; 9 Levinson, De Jesus, Mantis (CR10) 2015; 83 Stecher (CR27) 2007; 5 Moor (CR21) 2016; 7 Gil, Bouché (CR44) 1991; 105 Kaiser (CR50) 2014; 12 White (CR6) 1926; 103 Slack, Balmer, Macpherson (CR3) 2014; 260 Amarasinghe, D’Hondt, Waters, Mantis (CR15) 2013; 81 Michetti, Mahan, Slauch, Mekalanos, Neutra (CR16) 1992; 60 Slack (CR34) 2009; 325 Ilg (CR39) 2009; 77 Diard (CR40) 2017; 355 Forbes, Eschmann, Mantis (CR13) 2008; 76 CR11 Kiørboe, Andersen, Dam (CR53) 1990; 107 Sellin (CR48) 2014; 16 CR51 Mantis, Rol, Corthésy (CR1) 2011; 4 Gopinath, Carden, Monack (CR5) 2012; 20 Nutter, Bullas, Schultz (CR41) 1970; 5 Hoiseth, Stocker (CR36) 1981; 291 Pabst (CR2) 2012; 12 Maier (CR37) 2013; 14 Forbes (CR14) 2012; 80 Michetti (CR17) 1994; 107 Helaine (CR47) 2010; 107 Moor (CR45) 2016; 11 Stecher (CR28) 2012; 109 Stecher (CR38) 2004; 72 Stecher (CR29) 2010; 6 Lentle, Hemar, Hall, Stafford (CR54) 2005; 175 T Kiørboe (BFnature22058_CR53) 1990; 107 RL Nutter (BFnature22058_CR41) 1970; 5 TK Uren (BFnature22058_CR33) 2003; 170 AJ Grant (BFnature22058_CR25) 2008; 6 BFnature22058_CR49 GA Jackson (BFnature22058_CR52) 1990; 37 E Slack (BFnature22058_CR34) 2009; 325 SJ Forbes (BFnature22058_CR14) 2012; 80 PB White (BFnature22058_CR6) 1926; 103 SJ Forbes (BFnature22058_CR13) 2008; 76 AJ Müller (BFnature22058_CR31) 2012; 11 D Drecktrah (BFnature22058_CR43) 2008; 9 P Michetti (BFnature22058_CR17) 1994; 107 L Maier (BFnature22058_CR37) 2013; 14 E Slack (BFnature22058_CR3) 2014; 260 K Endt (BFnature22058_CR8) 2010; 6 AP Hendrickx (BFnature22058_CR9) 2015; 6 M Diard (BFnature22058_CR35) 2014; 24 E Traggiai (BFnature22058_CR46) 2004; 10 M Barlow (BFnature22058_CR24) 2009; 532 HL Mobley (BFnature22058_CR42) 1990; 58 B Stecher (BFnature22058_CR29) 2010; 6 NW Palm (BFnature22058_CR30) 2014; 158 M Diard (BFnature22058_CR40) 2017; 355 P Michetti (BFnature22058_CR16) 1992; 60 B Stecher (BFnature22058_CR38) 2004; 72 BFnature22058_CR51 SK Hoiseth (BFnature22058_CR36) 1981; 291 BFnature22058_CR11 B Stecher (BFnature22058_CR28) 2012; 109 O Pabst (BFnature22058_CR2) 2012; 12 L Maier (BFnature22058_CR26) 2014; 10 L Perfeito (BFnature22058_CR23) 2007; 317 S Hapfelmeier (BFnature22058_CR20) 2005; 174 NJ Mantis (BFnature22058_CR1) 2011; 4 M van Schothorst (BFnature22058_CR12) 1978; 2 ME Sellin (BFnature22058_CR48) 2014; 16 K Moor (BFnature22058_CR21) 2016; 7 GR Harriman (BFnature22058_CR32) 1999; 162 S Gopinath (BFnature22058_CR5) 2012; 20 K Ilg (BFnature22058_CR39) 2009; 77 BFnature22058_CR7 RG Lentle (BFnature22058_CR54) 2005; 175 B Stecher (BFnature22058_CR27) 2007; 5 M Barthel (BFnature22058_CR18) 2003; 71 S Helaine (BFnature22058_CR47) 2010; 107 D Gil (BFnature22058_CR44) 1991; 105 P Kaiser (BFnature22058_CR22) 2013; 9 P Kaiser (BFnature22058_CR19) 2012; 245 KJ Levinson (BFnature22058_CR10) 2015; 83 JJ Amarasinghe (BFnature22058_CR15) 2013; 81 BFnature22058_CR4 P Kaiser (BFnature22058_CR50) 2014; 12 K Moor (BFnature22058_CR45) 2016; 11 15661931 - J Immunol. 2005 Feb 1;174(3):1675-85 22168414 - Immunol Rev. 2012 Jan;245(1):56-83 20062525 - PLoS Pathog. 2010 Jan;6(1):e1000711 12594279 - J Immunol. 2003 Mar 1;170(5):2531-9 18625740 - Infect Immun. 2008 Sep;76(9):4137-44 10072491 - J Immunol. 1999 Mar 1;162(5):2521-9 22232693 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74 23103985 - Nat Rev Immunol. 2012 Dec;12(12):821-32 2182540 - Infect Immun. 1990 May;58(5):1281-9 25171403 - Cell. 2014 Aug 28;158(5):1000-10 25131673 - Curr Biol. 2014 Sep 8;24(17):2000-5 7015147 - Nature. 1981 May 21;291(5812):238-9 25121751 - Cell Host Microbe. 2014 Aug 13;16(2):237-48 23230292 - Infect Immun. 2013 Mar;81(3):653-64 1373399 - Infect Immun. 1992 May;60(5):1786-92 25522364 - PLoS Pathog. 2014 Dec 18;10(12):e1004557 19271198 - Methods Mol Biol. 2009;532:397-411 15247913 - Nat Med. 2004 Aug;10(8):871-5 18399718 - PLoS Biol. 2008 Apr 8;6(4):e74 20844578 - PLoS Pathog. 2010 Sep 09;6(9):e1001097 24942681 - Immunol Rev. 2014 Jul;260(1):50-66 24558351 - PLoS Biol. 2014 Feb 18;12(2):e1001793 17760501 - PLoS Biol. 2007 Oct;5(10):2177-89 27466712 - Nat Protoc. 2016 Aug;11(8):1531-53 21975936 - Mucosal Immunol. 2011 Nov;4(6):603-11 709340 - Br Med J. 1978 Nov 4;2(6147):1301 12704158 - Infect Immun. 2003 May;71(5):2839-58 28302859 - Science. 2017 Mar 17;355(6330):1211-1215 7926481 - Gastroenterology. 1994 Oct;107(4):915-23 26904024 - Front Immunol. 2016 Feb 11;7:34 22591832 - Trends Microbiol. 2012 Jul;20(7):320-7 15213159 - Infect Immun. 2004 Jul;72 (7):4138-50 19644121 - Science. 2009 Jul 31;325(5940):617-20 19364844 - Infect Immun. 2009 Jun;77(6):2568-75 22473607 - Infect Immun. 2012 Jul;80(7):2454-63 24331462 - Cell Host Microbe. 2013 Dec 11;14(6):641-51 25667263 - Infect Immun. 2015 Apr;83(4):1674-83 26556272 - MBio. 2015 Nov 10;6(6):e01346-15 15928916 - J Comp Physiol B. 2005 Jul;175(5):337-47 4193833 - J Virol. 1970 Jun;5(6):754-64 18785994 - Traffic. 2008 Dec;9(12):2117-29 17690297 - Science. 2007 Aug 10;317(5839):813-5 24068916 - PLoS Pathog. 2013 Sep;9(9):e1003532 1937005 - Gene. 1991 Aug 30;105(1):17-22 22264510 - Cell Host Microbe. 2012 Jan 19;11(1):19-32 20133586 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3746-51 |
References_xml | – volume: 10 start-page: 871 year: 2004 end-page: 875 ident: CR46 article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus publication-title: Nat. Med. doi: 10.1038/nm1080 – ident: CR49 – volume: 16 start-page: 237 year: 2014 end-page: 248 ident: CR48 article-title: Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict replication in the intestinal mucosa publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.07.001 – ident: CR4 – ident: CR51 – volume: 4 start-page: 603 year: 2011 end-page: 611 ident: CR1 article-title: Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut publication-title: Mucosal Immunol. doi: 10.1038/mi.2011.41 – volume: 105 start-page: 17 year: 1991 end-page: 22 ident: CR44 article-title: ColE1-type vectors with fully repressible replication publication-title: Gene doi: 10.1016/0378-1119(91)90508-9 – volume: 81 start-page: 653 year: 2013 end-page: 664 ident: CR15 article-title: Exposure of serovar Typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway publication-title: Infect. Immun. doi: 10.1128/IAI.00813-12 – volume: 6 start-page: e1001097 year: 2010 ident: CR8 article-title: The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal diarrhea publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001097 – volume: 245 start-page: 56 year: 2012 end-page: 83 ident: CR19 article-title: The streptomycin mouse model for diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01070.x – volume: 7 start-page: 34 year: 2016 ident: CR21 article-title: Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00034 – volume: 58 start-page: 1281 year: 1990 end-page: 1289 ident: CR42 article-title: Pyelonephritogenic and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains publication-title: Infect. Immun. – volume: 11 start-page: 19 year: 2012 end-page: 32 ident: CR31 article-title: gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.11.013 – volume: 11 start-page: 1531 year: 2016 end-page: 1553 ident: CR45 article-title: Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry publication-title: Nat. Protocols doi: 10.1038/nprot.2016.091 – volume: 83 start-page: 1674 year: 2015 end-page: 1683 ident: CR10 article-title: Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on agglutination, motility, and surface morphology publication-title: Infect. Immun. doi: 10.1128/IAI.02856-14 – volume: 10 start-page: e1004557 year: 2014 ident: CR26 article-title: Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during colitis publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004557 – volume: 24 start-page: 2000 year: 2014 end-page: 2005 ident: CR35 article-title: Antibiotic treatment selects for cooperative virulence of publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.07.028 – volume: 109 start-page: 1269 year: 2012 end-page: 1274 ident: CR28 article-title: Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1113246109 – volume: 103 start-page: 3 year: 1926 end-page: 160 ident: CR6 article-title: Further Studies of the Group publication-title: Great Britain Medical Research Council (Her Majesty’s Stationary Office) – volume: 14 start-page: 641 year: 2013 end-page: 651 ident: CR37 article-title: Microbiota-derived hydrogen fuels invasion of the gut ecosystem publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.11.002 – volume: 37 start-page: 1197 year: 1990 end-page: 1211 ident: CR52 article-title: A model of the formation of marine algal flocs by physical coagulation processes publication-title: Deep-Sea Res. A, Oceanogr. Res. Pap. doi: 10.1016/0198-0149(90)90038-W – volume: 77 start-page: 2568 year: 2009 end-page: 2575 ident: CR39 article-title: O-antigen-negative serovar Typhimurium is attenuated in intestinal colonization but elicits colitis in streptomycin-treated mice publication-title: Infect. Immun. doi: 10.1128/IAI.01537-08 – volume: 107 start-page: 915 year: 1994 end-page: 923 ident: CR17 article-title: Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by publication-title: Gastroenterology doi: 10.1016/0016-5085(94)90214-3 – volume: 532 start-page: 397 year: 2009 end-page: 411 ident: CR24 article-title: Methods in Molecular Biology publication-title: Horizontal Gene Transfer doi: 10.1007/978-1-60327-853-9_23 – volume: 6 start-page: e74 year: 2008 ident: CR25 article-title: Modelling within-host spatiotemporal dynamics of invasive bacterial disease publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060074 – volume: 80 start-page: 2454 year: 2012 end-page: 2463 ident: CR14 article-title: Association of a protective monoclonal IgA with the O antigen of serovar Typhimurium impacts type 3 secretion and outer membrane integrity publication-title: Infect. Immun. doi: 10.1128/IAI.00018-12 – volume: 9 start-page: e1003532 year: 2013 ident: CR22 article-title: Lymph node colonization dynamics after oral infection in mice publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003532 – ident: CR11 – volume: 260 start-page: 50 year: 2014 end-page: 66 ident: CR3 article-title: B cells as a critical node in the microbiota–host immune system network publication-title: Immunol. Rev. doi: 10.1111/imr.12179 – volume: 158 start-page: 1000 year: 2014 end-page: 1010 ident: CR30 article-title: Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease publication-title: Cell doi: 10.1016/j.cell.2014.08.006 – volume: 9 start-page: 2117 year: 2008 end-page: 2129 ident: CR43 article-title: Dynamic behavior of -induced membrane tubules in epithelial cells publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00830.x – volume: 5 start-page: 2177 year: 2007 end-page: 2189 ident: CR27 article-title: serovar typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050244 – volume: 107 start-page: 3746 year: 2010 end-page: 3751 ident: CR47 article-title: Dynamics of intracellular bacterial replication at the single cell level publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1000041107 – volume: 12 start-page: 821 year: 2012 end-page: 832 ident: CR2 article-title: New concepts in the generation and functions of IgA publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3322 – volume: 170 start-page: 2531 year: 2003 end-page: 2539 ident: CR33 article-title: Role of the polymeric Ig receptor in mucosal B cell homeostasis publication-title: J. Immunol. doi: 10.4049/jimmunol.170.5.2531 – volume: 76 start-page: 4137 year: 2008 end-page: 4144 ident: CR13 article-title: Inhibition of serovar Typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody publication-title: Infect. Immun. doi: 10.1128/IAI.00416-08 – volume: 174 start-page: 1675 year: 2005 end-page: 1685 ident: CR20 article-title: The pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow serovar Typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms publication-title: J. Immunol. doi: 10.4049/jimmunol.174.3.1675 – volume: 60 start-page: 1786 year: 1992 end-page: 1792 ident: CR16 article-title: Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen publication-title: Infect. Immun. – volume: 20 start-page: 320 year: 2012 end-page: 327 ident: CR5 article-title: Shedding light on carriers publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.04.004 – volume: 6 start-page: e1000711 year: 2010 ident: CR29 article-title: Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000711 – volume: 317 start-page: 813 year: 2007 end-page: 815 ident: CR23 article-title: Adaptive mutations in bacteria: high rate and small effects publication-title: Science doi: 10.1126/science.1142284 – volume: 72 start-page: 4138 year: 2004 end-page: 4150 ident: CR38 article-title: Flagella and chemotaxis are required for efficient induction of serovar Typhimurium colitis in streptomycin-pretreated mice publication-title: Infect. Immun. doi: 10.1128/IAI.72.7.4138-4150.2004 – volume: 325 start-page: 617 year: 2009 end-page: 620 ident: CR34 article-title: Innate and adaptive immunity cooperate flexibly to maintain host–microbiota mutualism publication-title: Science doi: 10.1126/science.1172747 – volume: 355 start-page: 1211 year: 2017 end-page: 1215 ident: CR40 article-title: Inflammation boosts bacteriophage transfer between spp publication-title: Science doi: 10.1126/science.aaf8451 – volume: 71 start-page: 2839 year: 2003 end-page: 2858 ident: CR18 article-title: Pretreatment of mice with streptomycin provides a serovar Typhimurium colitis model that allows analysis of both pathogen and host publication-title: Infect. Immun. doi: 10.1128/IAI.71.5.2839-2858.2003 – volume: 162 start-page: 2521 year: 1999 end-page: 2529 ident: CR32 article-title: Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes publication-title: J. Immunol. – volume: 291 start-page: 238 year: 1981 end-page: 239 ident: CR36 article-title: Aromatic-dependent are non-virulent and effective as live vaccines publication-title: Nature doi: 10.1038/291238a0 – volume: 5 start-page: 754 year: 1970 end-page: 764 ident: CR41 article-title: Some properties of five new bacteriophages publication-title: J. Virol. – volume: 6 start-page: e01346e15 year: 2015 ident: CR9 article-title: Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of from the intestinal epithelium publication-title: MBio doi: 10.1128/mBio.01346-15 – ident: CR7 – volume: 107 start-page: 235 year: 1990 end-page: 245 ident: CR53 article-title: Coagulation efficiency and aggregate formation in marine phytoplankton publication-title: Mar. Biol. doi: 10.1007/BF01319822 – volume: 2 start-page: 1301 year: 1978 ident: CR12 article-title: Persistent excretion of salmonellas publication-title: BMJ doi: 10.1136/bmj.2.6147.1301 – volume: 175 start-page: 337 year: 2005 end-page: 347 ident: CR54 article-title: Periodic fluid extrusion and models of digesta mixing in the intestine of a herbivore, the common brushtail possum ( ) publication-title: J. Comp. Physiol. B doi: 10.1007/s00360-005-0490-4 – volume: 12 start-page: e1001793 year: 2014 ident: CR50 article-title: Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001793 – volume: 317 start-page: 813 year: 2007 ident: BFnature22058_CR23 publication-title: Science doi: 10.1126/science.1142284 – volume: 107 start-page: 235 year: 1990 ident: BFnature22058_CR53 publication-title: Mar. Biol. doi: 10.1007/BF01319822 – volume: 325 start-page: 617 year: 2009 ident: BFnature22058_CR34 publication-title: Science doi: 10.1126/science.1172747 – volume: 16 start-page: 237 year: 2014 ident: BFnature22058_CR48 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.07.001 – volume: 81 start-page: 653 year: 2013 ident: BFnature22058_CR15 publication-title: Infect. Immun. doi: 10.1128/IAI.00813-12 – volume: 77 start-page: 2568 year: 2009 ident: BFnature22058_CR39 publication-title: Infect. Immun. doi: 10.1128/IAI.01537-08 – ident: BFnature22058_CR51 – volume: 260 start-page: 50 year: 2014 ident: BFnature22058_CR3 publication-title: Immunol. Rev. doi: 10.1111/imr.12179 – volume: 7 start-page: 34 year: 2016 ident: BFnature22058_CR21 publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00034 – volume: 24 start-page: 2000 year: 2014 ident: BFnature22058_CR35 publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.07.028 – volume: 6 start-page: e1000711 year: 2010 ident: BFnature22058_CR29 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000711 – volume: 174 start-page: 1675 year: 2005 ident: BFnature22058_CR20 publication-title: J. Immunol. doi: 10.4049/jimmunol.174.3.1675 – volume: 5 start-page: 2177 year: 2007 ident: BFnature22058_CR27 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050244 – volume: 2 start-page: 1301 year: 1978 ident: BFnature22058_CR12 publication-title: BMJ doi: 10.1136/bmj.2.6147.1301 – volume: 5 start-page: 754 year: 1970 ident: BFnature22058_CR41 publication-title: J. Virol. doi: 10.1128/JVI.5.6.754-764.1970 – volume: 532 start-page: 397 year: 2009 ident: BFnature22058_CR24 publication-title: Horizontal Gene Transfer doi: 10.1007/978-1-60327-853-9_23 – volume: 162 start-page: 2521 year: 1999 ident: BFnature22058_CR32 publication-title: J. Immunol. doi: 10.4049/jimmunol.162.5.2521 – volume: 4 start-page: 603 year: 2011 ident: BFnature22058_CR1 publication-title: Mucosal Immunol. doi: 10.1038/mi.2011.41 – volume: 80 start-page: 2454 year: 2012 ident: BFnature22058_CR14 publication-title: Infect. Immun. doi: 10.1128/IAI.00018-12 – volume: 9 start-page: e1003532 year: 2013 ident: BFnature22058_CR22 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003532 – volume: 105 start-page: 17 year: 1991 ident: BFnature22058_CR44 publication-title: Gene doi: 10.1016/0378-1119(91)90508-9 – volume: 6 start-page: e1001097 year: 2010 ident: BFnature22058_CR8 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001097 – volume: 37 start-page: 1197 year: 1990 ident: BFnature22058_CR52 publication-title: Deep-Sea Res. A, Oceanogr. Res. Pap. doi: 10.1016/0198-0149(90)90038-W – ident: BFnature22058_CR7 – volume: 10 start-page: e1004557 year: 2014 ident: BFnature22058_CR26 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004557 – volume: 107 start-page: 3746 year: 2010 ident: BFnature22058_CR47 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1000041107 – volume: 12 start-page: 821 year: 2012 ident: BFnature22058_CR2 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3322 – volume: 103 start-page: 3 year: 1926 ident: BFnature22058_CR6 publication-title: Great Britain Medical Research Council (Her Majesty’s Stationary Office) – volume: 20 start-page: 320 year: 2012 ident: BFnature22058_CR5 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.04.004 – volume: 83 start-page: 1674 year: 2015 ident: BFnature22058_CR10 publication-title: Infect. Immun. doi: 10.1128/IAI.02856-14 – volume: 58 start-page: 1281 year: 1990 ident: BFnature22058_CR42 publication-title: Infect. Immun. doi: 10.1128/IAI.58.5.1281-1289.1990 – volume: 60 start-page: 1786 year: 1992 ident: BFnature22058_CR16 publication-title: Infect. Immun. doi: 10.1128/IAI.60.5.1786-1792.1992 – volume: 12 start-page: e1001793 year: 2014 ident: BFnature22058_CR50 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001793 – volume: 14 start-page: 641 year: 2013 ident: BFnature22058_CR37 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.11.002 – volume: 72 start-page: 4138 year: 2004 ident: BFnature22058_CR38 publication-title: Infect. Immun. doi: 10.1128/IAI.72.7.4138-4150.2004 – ident: BFnature22058_CR49 doi: 10.1109/ISBI.2011.5872394 – volume: 11 start-page: 1531 year: 2016 ident: BFnature22058_CR45 publication-title: Nat. Protocols doi: 10.1038/nprot.2016.091 – volume: 245 start-page: 56 year: 2012 ident: BFnature22058_CR19 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01070.x – ident: BFnature22058_CR4 – volume: 76 start-page: 4137 year: 2008 ident: BFnature22058_CR13 publication-title: Infect. Immun. doi: 10.1128/IAI.00416-08 – volume: 11 start-page: 19 year: 2012 ident: BFnature22058_CR31 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.11.013 – volume: 9 start-page: 2117 year: 2008 ident: BFnature22058_CR43 publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00830.x – volume: 175 start-page: 337 year: 2005 ident: BFnature22058_CR54 publication-title: J. Comp. Physiol. B doi: 10.1007/s00360-005-0490-4 – volume: 6 start-page: e74 year: 2008 ident: BFnature22058_CR25 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060074 – volume: 355 start-page: 1211 year: 2017 ident: BFnature22058_CR40 publication-title: Science doi: 10.1126/science.aaf8451 – volume: 6 start-page: e01346e15 year: 2015 ident: BFnature22058_CR9 publication-title: MBio doi: 10.1128/mBio.01346-15 – volume: 158 start-page: 1000 year: 2014 ident: BFnature22058_CR30 publication-title: Cell doi: 10.1016/j.cell.2014.08.006 – volume: 170 start-page: 2531 year: 2003 ident: BFnature22058_CR33 publication-title: J. Immunol. doi: 10.4049/jimmunol.170.5.2531 – volume: 107 start-page: 915 year: 1994 ident: BFnature22058_CR17 publication-title: Gastroenterology doi: 10.1016/0016-5085(94)90214-3 – volume: 291 start-page: 238 year: 1981 ident: BFnature22058_CR36 publication-title: Nature doi: 10.1038/291238a0 – ident: BFnature22058_CR11 doi: 10.1515/9780691190310 – volume: 10 start-page: 871 year: 2004 ident: BFnature22058_CR46 publication-title: Nat. Med. doi: 10.1038/nm1080 – volume: 71 start-page: 2839 year: 2003 ident: BFnature22058_CR18 publication-title: Infect. Immun. doi: 10.1128/IAI.71.5.2839-2858.2003 – volume: 109 start-page: 1269 year: 2012 ident: BFnature22058_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1113246109 – reference: 22473607 - Infect Immun. 2012 Jul;80(7):2454-63 – reference: 15661931 - J Immunol. 2005 Feb 1;174(3):1675-85 – reference: 12704158 - Infect Immun. 2003 May;71(5):2839-58 – reference: 20133586 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3746-51 – reference: 25667263 - Infect Immun. 2015 Apr;83(4):1674-83 – reference: 27466712 - Nat Protoc. 2016 Aug;11(8):1531-53 – reference: 12594279 - J Immunol. 2003 Mar 1;170(5):2531-9 – reference: 4193833 - J Virol. 1970 Jun;5(6):754-64 – reference: 28302859 - Science. 2017 Mar 17;355(6330):1211-1215 – reference: 22168414 - Immunol Rev. 2012 Jan;245(1):56-83 – reference: 19364844 - Infect Immun. 2009 Jun;77(6):2568-75 – reference: 20062525 - PLoS Pathog. 2010 Jan;6(1):e1000711 – reference: 15928916 - J Comp Physiol B. 2005 Jul;175(5):337-47 – reference: 22264510 - Cell Host Microbe. 2012 Jan 19;11(1):19-32 – reference: 25121751 - Cell Host Microbe. 2014 Aug 13;16(2):237-48 – reference: 18399718 - PLoS Biol. 2008 Apr 8;6(4):e74 – reference: 23103985 - Nat Rev Immunol. 2012 Dec;12(12):821-32 – reference: 23230292 - Infect Immun. 2013 Mar;81(3):653-64 – reference: 1373399 - Infect Immun. 1992 May;60(5):1786-92 – reference: 7015147 - Nature. 1981 May 21;291(5812):238-9 – reference: 25171403 - Cell. 2014 Aug 28;158(5):1000-10 – reference: 22591832 - Trends Microbiol. 2012 Jul;20(7):320-7 – reference: 19644121 - Science. 2009 Jul 31;325(5940):617-20 – reference: 22232693 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74 – reference: 10072491 - J Immunol. 1999 Mar 1;162(5):2521-9 – reference: 18625740 - Infect Immun. 2008 Sep;76(9):4137-44 – reference: 1937005 - Gene. 1991 Aug 30;105(1):17-22 – reference: 15213159 - Infect Immun. 2004 Jul;72 (7):4138-50 – reference: 26904024 - Front Immunol. 2016 Feb 11;7:34 – reference: 19271198 - Methods Mol Biol. 2009;532:397-411 – reference: 2182540 - Infect Immun. 1990 May;58(5):1281-9 – reference: 26556272 - MBio. 2015 Nov 10;6(6):e01346-15 – reference: 17760501 - PLoS Biol. 2007 Oct;5(10):2177-89 – reference: 7926481 - Gastroenterology. 1994 Oct;107(4):915-23 – reference: 24331462 - Cell Host Microbe. 2013 Dec 11;14(6):641-51 – reference: 18785994 - Traffic. 2008 Dec;9(12):2117-29 – reference: 24068916 - PLoS Pathog. 2013 Sep;9(9):e1003532 – reference: 25131673 - Curr Biol. 2014 Sep 8;24(17):2000-5 – reference: 17690297 - Science. 2007 Aug 10;317(5839):813-5 – reference: 709340 - Br Med J. 1978 Nov 4;2(6147):1301 – reference: 21975936 - Mucosal Immunol. 2011 Nov;4(6):603-11 – reference: 24942681 - Immunol Rev. 2014 Jul;260(1):50-66 – reference: 25522364 - PLoS Pathog. 2014 Dec 18;10(12):e1004557 – reference: 24558351 - PLoS Biol. 2014 Feb 18;12(2):e1001793 – reference: 15247913 - Nat Med. 2004 Aug;10(8):871-5 – reference: 20844578 - PLoS Pathog. 2010 Sep 09;6(9):e1001097 |
SSID | ssj0005174 |
Score | 2.63423 |
Snippet | Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance... Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that... |
SourceID | swepub proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 498 |
SubjectTerms | 13/31 38/35 631/181/2474 631/250/2152/2153/1291 631/250/347 631/326/41/2531 631/326/590/1883 64/60 82/1 Animals Antibody Affinity Bacteria Bacterial Adhesion Bacterial Vaccines Cecum - immunology Cecum - microbiology Colony Count, Microbial Conjugation, Genetic Female Growth rate Humanities and Social Sciences Humans Immunization Immunoglobulin A - immunology Infections Inflammation Intestines - immunology Intestines - microbiology Invasive species letter Male Mice multidisciplinary Pathogens Plasmids - genetics Poultry Salmonella Salmonella Infections - immunology Salmonella Infections - microbiology Salmonella Infections - prevention & control Salmonella typhimurium - genetics Salmonella typhimurium - growth & development Salmonella typhimurium - immunology Salmonella typhimurium - pathogenicity Science Vaccines |
Title | High-avidity IgA protects the intestine by enchaining growing bacteria |
URI | https://link.springer.com/article/10.1038/nature22058 https://www.ncbi.nlm.nih.gov/pubmed/28405025 https://www.proquest.com/docview/1892930888 https://www.proquest.com/docview/1887420917 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322172 |
Volume | 544 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB_84MAXUc-7q1_kQEGFYNtkm_RJ1o_VO1DkUNm3kqbZPUG6ancf_O-dabPr-oEvbWnTNmQyyW8yk98AbMvUhBahBFdWxGigFJKnQiY8KuLUhk7oJKHNyReXyfmN_Nttdf2CW-XDKsdjYj1QFwNLa-QHkcaJXKBO6MOHR05Zo8i76lNozMI8UZdRSJfqqtcQj3cszH5_Xij0QUObSbtM9dsZ6QPMnHKRvqMTraegzhIseuzI2o2wl2HGlSvwrY7htNUKLHs9rdiuJ5Pe-w4dCuTgFLiOcJv96beZZ2aoGEI_RmwRqOSlY_kzw5f_NwkjWB-tczrnDZmzWYWbzun18Tn3uRO4lS015Gh4xkUijHDGGDSxpMPryKXGRU6KXDhyWFpapNFORoUKTWSS1PR6DltE4e0fMFcOSvcL8E9aohmmwjyxCO-kyXtYTOVozzoT2zSA_XH7ZdYTi1N-i_usdnALnU01dgDbk8IPDZ_G58U2xoLIvFJV2WsXCOD35DGqA_k4TOkGIyqj0dhHEKQC-NkIcPIfnInDFmK8AHbGEp36-GeV2GnEPfkCcXGf3N22s8FTPxuNMhwNEQCufV3ZdViICQuEksdqA-aGTyO3iUhmmG_V3RWP-jiiY-dsC-aPTi-v_r0AKgT0uA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviA0YgQFGWiVAspbYbuw8IFQxqpZ9PG2ob8Fx3IKEktG0mvZP8Tdyl4-ujIm3PbVqXCfy-e5-lzv_DmBPJTZ0CCW4dlJggJIrnkgV8ygXiQu9NHFMh5OPT-LRmfoy6U824Hd3FobKKjubWBvqvHT0jnw_MujIJeqE-Xj-i1PXKMqudi00mm1x6C8vMGSrPowPUL49IYafTz-NeNtVgDvV1wuOIZnIY2mlt9Zi8KE8fo98Yn3klcykp1Seo9cXxqso16GNbJzY6dSHfaPxZ5z3DtxFxxuSRumJviopucb63J4HxJn2G5pOOtVq_vaA_8DatZTsNfrS2uUNH8HDFquyQbO5tmDDF9twr64ZddU2bLV2oWJvW_Lqd49hSIUjnArlEd6z8WzAWiaIiiHUZMROgUal8Cy7ZPjn702DCjablxf0mTXk0fYJnN3Kqj6FzaIs_DPAOxmFYZ8Os9ghnFQ2m-IwnWH87K1wSQDvu_VLXUtkTv00fqZ1Ql2adG2xA9hbDT5v-DtuHrbbCSJtlbhKr7ZcAG9Wl1H9KKdiC18uaYzRSiDo0gHsNAJc3Qc9f9hHTBlAr5Po2uQ3PUSvEfdqBuL-PvjxdZCW81m6XKZofRFwPv__w76G-6PT46P0aHxy-AIeCMIhoeJC78LmYr70LxFFLbJX9dZl8O22deUP5YMthQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIRAviI1fGQOMtEqAFC2xnTh5QKiiVCuDiQeG-pY5jlsmTcnWtJr2r-2v213idGVMvO0pUeI4kc93_i53_g5gR6Y6MAglfGUERwelkH4qZOyHBU9NYEUSx7Q5-cdBvHcov42j8RpcdnthKK2ys4mNoS4qQ__Id8MEF3IRkMM2cWkRPwfDz6dnPlWQokhrV06jnSL79uIc3bf602iAsu5xPvz668ue7yoM-EZGau6je8aLWGhhtdboiEiL56FNtQ2tFLmwFNYz9CsjsTIsVKBDHad6MrFBlCi8jP3eg_tKRCHpmBqr6_SSGwzQbm8g9rTbUnbSDtfk79XwH4i7Ep69QWXaLH_DJ_DY4VbWbyfaBqzZchMeNPmjpt6EDWcjavbeEVl_eApDSiLxKWkeoT4bTfvMsULUDGEnI6YKNDClZfkFw4f_tMUq2HRWndMxb4mk9TM4vJNRfQ7rZVXal4BvSiS6gCrIY4PQUup8gs1Ujr601dykHnzsxi8zjtScamucZE1wXSTZymB7sLNsfNpyedzebLsTROYUus6up58H75a3URUpvqJLWy2oTaIkRwCmPHjRCnD5HkQBQYT40oNeJ9GVzm_7iF4r7mUPxAM-OP7dz6rZNFssMrTECD63_v-xb-Ehakn2fXSw_woecYIkgfS52ob1-WxhXyOgmudvmpnL4OiuVeUK3XIxuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-avidity+IgA+protects+the+intestine+by+enchaining+growing+bacteria&rft.jtitle=Nature+%28London%29&rft.au=Moor%2C+Kathrin&rft.au=Diard%2C+Mederic&rft.au=Sellin%2C+Mikael+E.&rft.au=Felmy%2C+Boas&rft.date=2017-04-27&rft.issn=0028-0836&rft.volume=544&rft.issue=7651&rft.spage=498&rft_id=info:doi/10.1038%2Fnature22058&rft.externalDocID=oai_DiVA_org_uu_322172 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |