High-avidity IgA protects the intestine by enchaining growing bacteria

Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance genes. Clumping antibody protects gut Immunoglobulin A (IgA) is a key component in the body's first line of defence against many infections,...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 544; no. 7651; pp. 498 - 502
Main Authors Moor, Kathrin, Diard, Médéric, Sellin, Mikael E., Felmy, Boas, Wotzka, Sandra Y., Toska, Albulena, Bakkeren, Erik, Arnoldini, Markus, Bansept, Florence, Co, Alma Dal, Völler, Tom, Minola, Andrea, Fernandez-Rodriguez, Blanca, Agatic, Gloria, Barbieri, Sonia, Piccoli, Luca, Casiraghi, Costanza, Corti, Davide, Lanzavecchia, Antonio, Regoes, Roland R., Loverdo, Claude, Stocker, Roman, Brumley, Douglas R., Hardt, Wolf-Dietrich, Slack, Emma
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.04.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance genes. Clumping antibody protects gut Immunoglobulin A (IgA) is a key component in the body's first line of defence against many infections, but the physical processes that drive its protective function in the gut are poorly defined. Kathrin Moor et al . show that IgA protects against Salmonella infection in the intestines of mice by enchaining the progeny of dividing bacteria into clonal or oligoclonal clumps. This clumping mechanism enables IgA to directly disarm potentially invasive species and prevent bacterial invasion, while avoiding immune processes that could cause damage to the host. Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues (‘immune exclusion’) 1 , 2 , 3 . IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium ( S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥10 8 non-motile bacteria per gram). In typical infections, much lower densities 4 , 5 (10 0 –10 7 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo : IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo . Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.
AbstractList Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.
Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion')(1-3). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (>= 10(8) non-motile bacteria per gram). In typical infections, much lower densities(4,5) (10(0)-10(7) colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.
Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥10 non-motile bacteria per gram). In typical infections, much lower densities (10 -10 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.
Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgAmediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.
Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance genes. Clumping antibody protects gut Immunoglobulin A (IgA) is a key component in the body's first line of defence against many infections, but the physical processes that drive its protective function in the gut are poorly defined. Kathrin Moor et al . show that IgA protects against Salmonella infection in the intestines of mice by enchaining the progeny of dividing bacteria into clonal or oligoclonal clumps. This clumping mechanism enables IgA to directly disarm potentially invasive species and prevent bacterial invasion, while avoiding immune processes that could cause damage to the host. Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues (‘immune exclusion’) 1 , 2 , 3 . IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium ( S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥10 8 non-motile bacteria per gram). In typical infections, much lower densities 4 , 5 (10 0 –10 7 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo : IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo . Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.
Author Lanzavecchia, Antonio
Diard, Médéric
Bansept, Florence
Toska, Albulena
Völler, Tom
Arnoldini, Markus
Casiraghi, Costanza
Slack, Emma
Fernandez-Rodriguez, Blanca
Agatic, Gloria
Bakkeren, Erik
Minola, Andrea
Regoes, Roland R.
Sellin, Mikael E.
Felmy, Boas
Co, Alma Dal
Loverdo, Claude
Piccoli, Luca
Corti, Davide
Wotzka, Sandra Y.
Moor, Kathrin
Barbieri, Sonia
Brumley, Douglas R.
Stocker, Roman
Hardt, Wolf-Dietrich
Author_xml – sequence: 1
  givenname: Kathrin
  surname: Moor
  fullname: Moor, Kathrin
  organization: Institute of Microbiology, ETH Zürich, †Present addresses: Center for Dental Medicine, University of Zürich, Zürich, Switzerland (K.M.); Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy (C.C.)
– sequence: 2
  givenname: Médéric
  surname: Diard
  fullname: Diard, Médéric
  organization: Institute of Microbiology, ETH Zürich
– sequence: 3
  givenname: Mikael E.
  surname: Sellin
  fullname: Sellin, Mikael E.
  organization: Institute of Microbiology, ETH Zürich, Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University
– sequence: 4
  givenname: Boas
  surname: Felmy
  fullname: Felmy, Boas
  organization: Institute of Microbiology, ETH Zürich
– sequence: 5
  givenname: Sandra Y.
  surname: Wotzka
  fullname: Wotzka, Sandra Y.
  organization: Institute of Microbiology, ETH Zürich
– sequence: 6
  givenname: Albulena
  surname: Toska
  fullname: Toska, Albulena
  organization: Institute of Microbiology, ETH Zürich
– sequence: 7
  givenname: Erik
  surname: Bakkeren
  fullname: Bakkeren, Erik
  organization: Institute of Microbiology, ETH Zürich
– sequence: 8
  givenname: Markus
  surname: Arnoldini
  fullname: Arnoldini, Markus
  organization: Institute of Microbiology, ETH Zürich
– sequence: 9
  givenname: Florence
  surname: Bansept
  fullname: Bansept, Florence
  organization: Laboratoire Jean Perrin (UMR 8237), CNRS - UPMC
– sequence: 10
  givenname: Alma Dal
  surname: Co
  fullname: Co, Alma Dal
  organization: Department of Environmental Systems Science, ETH Zurich, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology
– sequence: 11
  givenname: Tom
  surname: Völler
  fullname: Völler, Tom
  organization: Institute of Microbiology, ETH Zürich
– sequence: 12
  givenname: Andrea
  surname: Minola
  fullname: Minola, Andrea
  organization: Humabs BioMed SA
– sequence: 13
  givenname: Blanca
  surname: Fernandez-Rodriguez
  fullname: Fernandez-Rodriguez, Blanca
  organization: Institute for Research in Biomedicine
– sequence: 14
  givenname: Gloria
  surname: Agatic
  fullname: Agatic, Gloria
  organization: Humabs BioMed SA
– sequence: 15
  givenname: Sonia
  surname: Barbieri
  fullname: Barbieri, Sonia
  organization: Institute for Research in Biomedicine
– sequence: 16
  givenname: Luca
  surname: Piccoli
  fullname: Piccoli, Luca
  organization: Institute for Research in Biomedicine
– sequence: 17
  givenname: Costanza
  surname: Casiraghi
  fullname: Casiraghi, Costanza
  organization: Institute for Research in Biomedicine, †Present addresses: Center for Dental Medicine, University of Zürich, Zürich, Switzerland (K.M.); Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy (C.C.)
– sequence: 18
  givenname: Davide
  surname: Corti
  fullname: Corti, Davide
  organization: Humabs BioMed SA
– sequence: 19
  givenname: Antonio
  surname: Lanzavecchia
  fullname: Lanzavecchia, Antonio
  organization: Institute of Microbiology, ETH Zürich, Institute for Research in Biomedicine
– sequence: 20
  givenname: Roland R.
  surname: Regoes
  fullname: Regoes, Roland R.
  organization: Institute of Integrative Biology, ETH Zürich
– sequence: 21
  givenname: Claude
  surname: Loverdo
  fullname: Loverdo, Claude
  organization: Laboratoire Jean Perrin (UMR 8237), CNRS - UPMC
– sequence: 22
  givenname: Roman
  surname: Stocker
  fullname: Stocker, Roman
  organization: Department of Civil, Institute of Environmental Engineering, Environmental, and Geomatic Engineering, ETH Zürich
– sequence: 23
  givenname: Douglas R.
  surname: Brumley
  fullname: Brumley, Douglas R.
  organization: Department of Civil, Institute of Environmental Engineering, Environmental, and Geomatic Engineering, ETH Zürich, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
– sequence: 24
  givenname: Wolf-Dietrich
  surname: Hardt
  fullname: Hardt, Wolf-Dietrich
  organization: Institute of Microbiology, ETH Zürich
– sequence: 25
  givenname: Emma
  surname: Slack
  fullname: Slack, Emma
  organization: Institute of Microbiology, ETH Zürich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28405025$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322172$$DView record from Swedish Publication Index
BookMark eNpt0U1rGzEQBmBRUhrn49R7Weil0G4z-tiV9mjSpgkEemlzFbPr8VrBllxJ2-B_XwXHJYScJMQzI72jE3bkgyfG3nP4ykGaC495iiQENOYNm3Gl21q1Rh-xGYAwNRjZHrOTlO4BoOFavWPHwihoQDQzdnXtxlWNf93C5V11M86rbQyZhpyqvKLK-UwpO09Vv6vIDyt03vmxGmN4eFx7HDJFh2fs7RLXic6f1lP2--r7r8vr-vbnj5vL-W09qEbnWhopFq1ESYgoVKeo7Dl1SJyU7CVxCWKArsQixRcakGPb4XJJJZwux6fsy75veqDt1NttdBuMOxvQ2W_ubm5DHO00WSkE16LwT3teQv2ZShK7cWmg9Ro9hSlZboxWAjquC_34gt6HKfoSpqhOdBKMMUV9eFJTv6HF__sPAy2A78EQQ0qRlnZwGbMLPkd0a8vBPn6affZppebzi5pD29f1YQRF-ZHis4e-wv8BPKam4A
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_ijmm_2021_151484
crossref_primary_10_1038_s41586_019_1898_4
crossref_primary_10_1016_j_ijmm_2021_151486
crossref_primary_10_1093_ibd_izad024
crossref_primary_10_3390_ijms20235904
crossref_primary_10_1053_j_gastro_2021_02_053
crossref_primary_10_1111_imcb_12273
crossref_primary_10_1016_j_chom_2024_05_002
crossref_primary_10_1128_msystems_01383_21
crossref_primary_10_1159_000510251
crossref_primary_10_1016_j_mib_2019_09_011
crossref_primary_10_3390_md18020102
crossref_primary_10_1002_eji_202350704
crossref_primary_10_1016_j_smim_2023_101807
crossref_primary_10_3389_fimmu_2022_1024330
crossref_primary_10_3389_fmicb_2022_1018748
crossref_primary_10_1080_10408398_2022_2031097
crossref_primary_10_1021_acsabm_0c00187
crossref_primary_10_1038_s41467_025_56851_5
crossref_primary_10_1038_s41579_018_0036_x
crossref_primary_10_7554_eLife_67450
crossref_primary_10_1016_j_mucimm_2024_11_006
crossref_primary_10_1038_s41435_021_00131_x
crossref_primary_10_3892_etm_2021_10868
crossref_primary_10_1038_s41385_019_0223_8
crossref_primary_10_3389_fnut_2022_1078060
crossref_primary_10_1038_s41586_021_03973_7
crossref_primary_10_1093_burnst_tkab036
crossref_primary_10_1126_scisignal_adh1641
crossref_primary_10_1038_s41577_021_00583_2
crossref_primary_10_1126_sciadv_adq7797
crossref_primary_10_1128_mBio_02847_20
crossref_primary_10_1016_j_csbj_2023_07_031
crossref_primary_10_1111_jgh_15828
crossref_primary_10_1021_acsnano_7b08969
crossref_primary_10_7554_eLife_69744
crossref_primary_10_1038_s41575_022_00674_y
crossref_primary_10_1002_imt2_88
crossref_primary_10_3390_microorganisms9102117
crossref_primary_10_1016_j_heliyon_2022_e12071
crossref_primary_10_1016_j_celrep_2022_111112
crossref_primary_10_1016_j_coph_2020_10_002
crossref_primary_10_1016_j_vetimm_2021_110193
crossref_primary_10_1093_femsre_fuaa068
crossref_primary_10_1007_s00125_020_05268_4
crossref_primary_10_3389_fimmu_2018_02970
crossref_primary_10_1038_s41564_019_0568_5
crossref_primary_10_1126_science_adn9414
crossref_primary_10_1111_jam_14661
crossref_primary_10_15252_emmm_202216208
crossref_primary_10_3389_fimmu_2022_1076312
crossref_primary_10_1371_journal_ppat_1007391
crossref_primary_10_1016_j_tim_2018_08_009
crossref_primary_10_1186_s40168_020_00992_w
crossref_primary_10_1021_acsinfecdis_0c00842
crossref_primary_10_1038_s41385_019_0247_0
crossref_primary_10_1080_14760584_2020_1745071
crossref_primary_10_3390_vaccines11061106
crossref_primary_10_7554_eLife_56098
crossref_primary_10_3389_fimmu_2018_02608
crossref_primary_10_1038_s41598_017_16187_7
crossref_primary_10_1016_j_it_2019_01_012
crossref_primary_10_1038_s41385_022_00574_z
crossref_primary_10_1038_s41467_023_42027_6
crossref_primary_10_1155_2021_3044534
crossref_primary_10_1016_j_vaccine_2020_11_040
crossref_primary_10_1016_j_chom_2024_08_010
crossref_primary_10_1016_j_cellimm_2023_104796
crossref_primary_10_1038_s41564_024_01873_w
crossref_primary_10_1111_mmi_15209
crossref_primary_10_1097_COH_0000000000000422
crossref_primary_10_1183_13993003_01526_2024
crossref_primary_10_1093_intimm_dxab049
crossref_primary_10_3389_fped_2020_00528
crossref_primary_10_1038_s41577_021_00506_1
crossref_primary_10_1038_s41392_019_0074_5
crossref_primary_10_1038_s41591_019_0480_9
crossref_primary_10_3390_biomedicines13010179
crossref_primary_10_1038_s41564_021_00925_9
crossref_primary_10_1080_19490976_2019_1651596
crossref_primary_10_3389_fimmu_2023_1192936
crossref_primary_10_1128_mBio_03679_20
crossref_primary_10_1126_scitranslmed_aan1217
crossref_primary_10_1186_s40168_021_01135_5
crossref_primary_10_1126_sciimmunol_abg3208
crossref_primary_10_2174_1871530322666220331145816
crossref_primary_10_4049_jimmunol_2100867
crossref_primary_10_1038_s41396_020_00819_4
crossref_primary_10_1103_PhysRevFluids_4_053102
crossref_primary_10_1093_gastro_goy052
crossref_primary_10_1016_j_xphs_2019_07_018
crossref_primary_10_7554_eLife_81212
crossref_primary_10_1146_annurev_micro_032521_041803
crossref_primary_10_1038_ni_3759
crossref_primary_10_1080_19490976_2024_2446403
crossref_primary_10_1038_s41467_020_15891_9
crossref_primary_10_31146_1682_8658_ecg_226_6_176_187
crossref_primary_10_1111_mmi_15267
crossref_primary_10_1016_j_celrep_2018_07_032
crossref_primary_10_1007_s13206_022_00078_9
crossref_primary_10_1126_scitranslmed_aau9356
crossref_primary_10_1038_s41598_020_69472_3
crossref_primary_10_1186_s13567_018_0558_2
crossref_primary_10_1002_eji_202250033
crossref_primary_10_1080_19490976_2022_2107866
crossref_primary_10_3389_fmicb_2021_813245
crossref_primary_10_1016_j_smim_2023_101757
crossref_primary_10_1038_s41577_019_0261_1
crossref_primary_10_1111_febs_17120
crossref_primary_10_1126_science_aaq0926
crossref_primary_10_3389_fncel_2021_698172
crossref_primary_10_1016_j_chom_2020_02_011
crossref_primary_10_3389_fimmu_2022_828758
crossref_primary_10_1016_j_vaccine_2020_09_070
crossref_primary_10_1016_j_coi_2018_09_003
crossref_primary_10_1038_s41586_020_2886_4
crossref_primary_10_1039_C9SM00791A
crossref_primary_10_1111_cei_13329
crossref_primary_10_1126_science_aan6619
crossref_primary_10_1038_s41385_020_00350_x
crossref_primary_10_1073_pnas_1907567116
crossref_primary_10_1128_mmbr_00063_23
crossref_primary_10_1146_annurev_immunol_102119_074236
crossref_primary_10_1126_science_aaz9866
crossref_primary_10_3389_fimmu_2020_555363
crossref_primary_10_1016_j_humic_2018_10_001
crossref_primary_10_1038_s41467_023_42469_y
crossref_primary_10_1016_j_aninu_2021_05_001
crossref_primary_10_1038_ni_3780
crossref_primary_10_1038_s41467_018_08156_z
crossref_primary_10_1016_j_banm_2024_01_021
crossref_primary_10_1039_D1FO02517A
crossref_primary_10_1080_21645515_2021_1964317
crossref_primary_10_3390_microorganisms10071437
crossref_primary_10_3390_microorganisms11092221
crossref_primary_10_1038_s41385_021_00381_y
crossref_primary_10_1186_s13567_017_0491_9
crossref_primary_10_3390_metabo14030134
crossref_primary_10_1016_j_lfs_2020_118258
crossref_primary_10_1084_jem_20200275
crossref_primary_10_1038_s41467_022_29597_7
crossref_primary_10_1084_jem_20180448
crossref_primary_10_1111_imr_12584
crossref_primary_10_1016_j_imbio_2022_152183
crossref_primary_10_1038_s41564_024_01887_4
crossref_primary_10_1038_mi_2017_62
crossref_primary_10_1038_s41385_019_0227_4
crossref_primary_10_1016_j_copbio_2019_11_006
crossref_primary_10_3390_v13030472
crossref_primary_10_1016_j_chom_2018_02_007
crossref_primary_10_3389_frmbi_2024_1363961
crossref_primary_10_1016_j_celrep_2024_113925
crossref_primary_10_1016_j_pt_2022_11_012
crossref_primary_10_1038_s41419_019_2086_z
crossref_primary_10_7554_eLife_40387
crossref_primary_10_1016_j_clinthera_2021_11_005
crossref_primary_10_1016_j_jaci_2022_07_007
crossref_primary_10_1016_j_it_2017_10_006
crossref_primary_10_3389_fimmu_2018_00005
crossref_primary_10_3390_biology11020297
crossref_primary_10_1080_19490976_2024_2424914
crossref_primary_10_1183_23120541_00481_2021
crossref_primary_10_3390_ijms21155392
crossref_primary_10_1080_19490976_2024_2396494
crossref_primary_10_3389_fmicb_2022_880484
crossref_primary_10_3390_ijms25105487
crossref_primary_10_1074_jbc_RA117_001068
crossref_primary_10_1016_j_chom_2020_03_012
crossref_primary_10_3389_fimmu_2022_1085551
crossref_primary_10_1093_intimm_dxab066
crossref_primary_10_1016_j_vaccine_2020_01_050
crossref_primary_10_1016_j_yhbeh_2018_04_011
crossref_primary_10_1111_imr_12688
crossref_primary_10_1038_s41586_019_1521_8
crossref_primary_10_1146_annurev_micro_090817_062307
crossref_primary_10_1016_j_chom_2017_03_009
crossref_primary_10_3390_tropicalmed6040192
crossref_primary_10_3390_nu12030823
crossref_primary_10_15252_emmm_202115386
crossref_primary_10_1111_evo_13730
crossref_primary_10_7554_eLife_71105
crossref_primary_10_1134_S0026893317060152
crossref_primary_10_1126_science_adk2536
crossref_primary_10_2139_ssrn_4188499
crossref_primary_10_1016_j_xcrm_2023_101253
crossref_primary_10_1146_annurev_micro_020420_013457
crossref_primary_10_1080_19490976_2021_1908101
crossref_primary_10_1038_s41579_022_00833_7
crossref_primary_10_1038_s44341_024_00006_y
crossref_primary_10_1074_jbc_H118_002949
crossref_primary_10_1016_j_immuni_2018_09_003
crossref_primary_10_1016_j_trac_2021_116452
crossref_primary_10_1210_clinem_dgaa590
crossref_primary_10_1038_s41565_018_0354_1
crossref_primary_10_1016_j_sbi_2022_102337
crossref_primary_10_1038_s41522_024_00553_1
crossref_primary_10_3389_fimmu_2019_00805
crossref_primary_10_1111_imm_12896
crossref_primary_10_3390_biom14121643
crossref_primary_10_1016_j_cub_2018_08_019
crossref_primary_10_1016_j_ebiom_2022_104163
crossref_primary_10_1038_s44321_024_00149_4
crossref_primary_10_1016_j_lfs_2023_121993
crossref_primary_10_1038_s41590_020_00856_3
crossref_primary_10_1099_jgv_0_001937
crossref_primary_10_1016_j_vaccine_2023_07_059
crossref_primary_10_3390_cimb46070442
crossref_primary_10_3389_fimmu_2022_807682
crossref_primary_10_1038_s41385_019_0192_y
crossref_primary_10_1172_jci_insight_156255
crossref_primary_10_1093_femsre_fux023
crossref_primary_10_1084_jem_20211520
crossref_primary_10_3389_fimmu_2020_01011
crossref_primary_10_1016_j_cell_2021_02_031
crossref_primary_10_1128_microbiolspec_MTBP_0012_2016
crossref_primary_10_1016_j_immuni_2021_09_004
crossref_primary_10_1016_j_it_2020_03_006
crossref_primary_10_3390_pathogens12030363
crossref_primary_10_3390_ani12020145
crossref_primary_10_1038_s41590_022_01413_w
crossref_primary_10_1097_ACI_0000000000000581
crossref_primary_10_1093_discim_kyad025
crossref_primary_10_3389_fimmu_2021_787464
crossref_primary_10_3390_nu14153012
crossref_primary_10_1038_s41467_019_13538_y
crossref_primary_10_1073_pnas_1816621116
crossref_primary_10_1038_nri_2017_101
crossref_primary_10_1038_s41392_024_01946_6
crossref_primary_10_1093_femsre_fuy003
crossref_primary_10_1371_journal_pcbi_1006986
crossref_primary_10_1016_j_chom_2021_02_009
crossref_primary_10_1177_0023677218787538
crossref_primary_10_1038_s41385_022_00536_5
crossref_primary_10_1038_s41467_018_03455_x
crossref_primary_10_1038_s41587_019_0070_x
crossref_primary_10_3389_fimmu_2019_00426
crossref_primary_10_3389_fimmu_2023_1193855
crossref_primary_10_1093_cid_ciy670
crossref_primary_10_3390_cells11020307
crossref_primary_10_3390_nu15112489
crossref_primary_10_1016_j_mib_2022_102224
crossref_primary_10_1016_j_nantod_2023_101990
crossref_primary_10_1126_sciimmunol_aao1603
crossref_primary_10_1186_s40168_024_01923_9
crossref_primary_10_1016_j_coi_2020_05_010
crossref_primary_10_1111_obr_13155
crossref_primary_10_1016_j_fbio_2024_103936
crossref_primary_10_1016_j_molmed_2021_06_007
crossref_primary_10_1038_s41579_020_0378_z
crossref_primary_10_1021_acsmedchemlett_4c00128
crossref_primary_10_1080_19490976_2024_2417729
crossref_primary_10_1016_j_micpath_2021_104936
crossref_primary_10_1371_journal_pbio_3000661
crossref_primary_10_1016_j_chom_2023_09_001
crossref_primary_10_1111_1348_0421_13191
crossref_primary_10_1016_j_bpj_2018_10_017
crossref_primary_10_1038_s41575_021_00563_w
crossref_primary_10_1016_j_jaci_2022_07_014
crossref_primary_10_1126_science_adi3338
crossref_primary_10_1016_j_mib_2020_08_003
crossref_primary_10_1016_j_immuni_2018_08_011
crossref_primary_10_1080_19490976_2023_2172667
crossref_primary_10_1111_imm_13156
crossref_primary_10_1371_journal_ppat_1011200
crossref_primary_10_1038_s41564_021_00911_1
crossref_primary_10_1007_s00281_021_00893_6
crossref_primary_10_1098_rsfs_2022_0059
crossref_primary_10_3389_fimmu_2021_670290
crossref_primary_10_1021_acsinfecdis_9b00109
crossref_primary_10_1016_j_it_2021_11_005
crossref_primary_10_1111_imm_13827
crossref_primary_10_1146_annurev_immunol_093019_112348
crossref_primary_10_3389_frym_2021_576428
crossref_primary_10_22207_JPAM_18_1_10
crossref_primary_10_1007_s11302_022_09891_1
crossref_primary_10_1080_19490976_2017_1387344
crossref_primary_10_1186_s12866_024_03730_6
crossref_primary_10_1111_imr_13321
crossref_primary_10_1084_jem_20180871
crossref_primary_10_1111_imm_13266
Cites_doi 10.1038/nm1080
10.1016/j.chom.2014.07.001
10.1038/mi.2011.41
10.1016/0378-1119(91)90508-9
10.1128/IAI.00813-12
10.1371/journal.ppat.1001097
10.1111/j.1600-065X.2011.01070.x
10.3389/fimmu.2016.00034
10.1016/j.chom.2011.11.013
10.1038/nprot.2016.091
10.1128/IAI.02856-14
10.1371/journal.ppat.1004557
10.1016/j.cub.2014.07.028
10.1073/pnas.1113246109
10.1016/j.chom.2013.11.002
10.1016/0198-0149(90)90038-W
10.1128/IAI.01537-08
10.1016/0016-5085(94)90214-3
10.1007/978-1-60327-853-9_23
10.1371/journal.pbio.0060074
10.1128/IAI.00018-12
10.1371/journal.ppat.1003532
10.1111/imr.12179
10.1016/j.cell.2014.08.006
10.1111/j.1600-0854.2008.00830.x
10.1371/journal.pbio.0050244
10.1073/pnas.1000041107
10.1038/nri3322
10.4049/jimmunol.170.5.2531
10.1128/IAI.00416-08
10.4049/jimmunol.174.3.1675
10.1016/j.tim.2012.04.004
10.1371/journal.ppat.1000711
10.1126/science.1142284
10.1128/IAI.72.7.4138-4150.2004
10.1126/science.1172747
10.1126/science.aaf8451
10.1128/IAI.71.5.2839-2858.2003
10.1038/291238a0
10.1128/mBio.01346-15
10.1007/BF01319822
10.1136/bmj.2.6147.1301
10.1007/s00360-005-0490-4
10.1371/journal.pbio.1001793
10.1128/JVI.5.6.754-764.1970
10.4049/jimmunol.162.5.2521
10.1128/IAI.58.5.1281-1289.1990
10.1128/IAI.60.5.1786-1792.1992
10.1109/ISBI.2011.5872394
10.1515/9780691190310
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016
Copyright Nature Publishing Group Apr 27, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016
– notice: Copyright Nature Publishing Group Apr 27, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
ADTPV
AOWAS
DF2
DOI 10.1038/nature22058
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
ProQuest STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 502
ExternalDocumentID oai_DiVA_org_uu_322172
4322080329
28405025
10_1038_nature22058
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADTPV
ADYSU
ADZCM
AEZWR
AFBBN
AFFDN
AFHIU
AFHKK
AFKWF
AGCDD
AGGDT
AGQPQ
AHWEU
AIXLP
AIYXT
AJUXI
AOWAS
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DF2
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZY4
~8M
~G0
ID FETCH-LOGICAL-c457t-3832d63a3eaaa2494e3a31e9ae1e43b3e1302c09038e41d70a1a69affe0587903
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 06:52:33 EDT 2025
Mon Jul 21 12:04:12 EDT 2025
Fri Jul 25 09:15:35 EDT 2025
Wed Feb 19 02:15:32 EST 2025
Tue Jul 01 00:56:55 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Fri Feb 21 02:38:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7651
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-3832d63a3eaaa2494e3a31e9ae1e43b3e1302c09038e41d70a1a69affe0587903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28405025
PQID 1892930888
PQPubID 40569
PageCount 5
ParticipantIDs swepub_primary_oai_DiVA_org_uu_322172
proquest_miscellaneous_1887420917
proquest_journals_1892930888
pubmed_primary_28405025
crossref_citationtrail_10_1038_nature22058
crossref_primary_10_1038_nature22058
springer_journals_10_1038_nature22058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-27
PublicationDateYYYYMMDD 2017-04-27
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Barlow (CR24) 2009; 532
Mobley (CR42) 1990; 58
Jackson (CR52) 1990; 37
Endt (CR8) 2010; 6
Kaiser, Slack, Grant, Hardt, Regoes (CR22) 2013; 9
van Schothorst, Beckers (CR12) 1978; 2
Diard (CR35) 2014; 24
Barthel (CR18) 2003; 71
Maier (CR26) 2014; 10
Palm (CR30) 2014; 158
Uren (CR33) 2003; 170
Harriman (CR32) 1999; 162
Hapfelmeier (CR20) 2005; 174
Grant (CR25) 2008; 6
CR4
Müller (CR31) 2012; 11
CR7
Kaiser, Diard, Stecher, Hardt (CR19) 2012; 245
CR49
Hendrickx (CR9) 2015; 6
Perfeito, Fernandes, Mota, Gordo (CR23) 2007; 317
Traggiai (CR46) 2004; 10
Drecktrah (CR43) 2008; 9
Levinson, De Jesus, Mantis (CR10) 2015; 83
Stecher (CR27) 2007; 5
Moor (CR21) 2016; 7
Gil, Bouché (CR44) 1991; 105
Kaiser (CR50) 2014; 12
White (CR6) 1926; 103
Slack, Balmer, Macpherson (CR3) 2014; 260
Amarasinghe, D’Hondt, Waters, Mantis (CR15) 2013; 81
Michetti, Mahan, Slauch, Mekalanos, Neutra (CR16) 1992; 60
Slack (CR34) 2009; 325
Ilg (CR39) 2009; 77
Diard (CR40) 2017; 355
Forbes, Eschmann, Mantis (CR13) 2008; 76
CR11
Kiørboe, Andersen, Dam (CR53) 1990; 107
Sellin (CR48) 2014; 16
CR51
Mantis, Rol, Corthésy (CR1) 2011; 4
Gopinath, Carden, Monack (CR5) 2012; 20
Nutter, Bullas, Schultz (CR41) 1970; 5
Hoiseth, Stocker (CR36) 1981; 291
Pabst (CR2) 2012; 12
Maier (CR37) 2013; 14
Forbes (CR14) 2012; 80
Michetti (CR17) 1994; 107
Helaine (CR47) 2010; 107
Moor (CR45) 2016; 11
Stecher (CR28) 2012; 109
Stecher (CR38) 2004; 72
Stecher (CR29) 2010; 6
Lentle, Hemar, Hall, Stafford (CR54) 2005; 175
T Kiørboe (BFnature22058_CR53) 1990; 107
RL Nutter (BFnature22058_CR41) 1970; 5
TK Uren (BFnature22058_CR33) 2003; 170
AJ Grant (BFnature22058_CR25) 2008; 6
BFnature22058_CR49
GA Jackson (BFnature22058_CR52) 1990; 37
E Slack (BFnature22058_CR34) 2009; 325
SJ Forbes (BFnature22058_CR14) 2012; 80
PB White (BFnature22058_CR6) 1926; 103
SJ Forbes (BFnature22058_CR13) 2008; 76
AJ Müller (BFnature22058_CR31) 2012; 11
D Drecktrah (BFnature22058_CR43) 2008; 9
P Michetti (BFnature22058_CR17) 1994; 107
L Maier (BFnature22058_CR37) 2013; 14
E Slack (BFnature22058_CR3) 2014; 260
K Endt (BFnature22058_CR8) 2010; 6
AP Hendrickx (BFnature22058_CR9) 2015; 6
M Diard (BFnature22058_CR35) 2014; 24
E Traggiai (BFnature22058_CR46) 2004; 10
M Barlow (BFnature22058_CR24) 2009; 532
HL Mobley (BFnature22058_CR42) 1990; 58
B Stecher (BFnature22058_CR29) 2010; 6
NW Palm (BFnature22058_CR30) 2014; 158
M Diard (BFnature22058_CR40) 2017; 355
P Michetti (BFnature22058_CR16) 1992; 60
B Stecher (BFnature22058_CR38) 2004; 72
BFnature22058_CR51
SK Hoiseth (BFnature22058_CR36) 1981; 291
BFnature22058_CR11
B Stecher (BFnature22058_CR28) 2012; 109
O Pabst (BFnature22058_CR2) 2012; 12
L Maier (BFnature22058_CR26) 2014; 10
L Perfeito (BFnature22058_CR23) 2007; 317
S Hapfelmeier (BFnature22058_CR20) 2005; 174
NJ Mantis (BFnature22058_CR1) 2011; 4
M van Schothorst (BFnature22058_CR12) 1978; 2
ME Sellin (BFnature22058_CR48) 2014; 16
K Moor (BFnature22058_CR21) 2016; 7
GR Harriman (BFnature22058_CR32) 1999; 162
S Gopinath (BFnature22058_CR5) 2012; 20
K Ilg (BFnature22058_CR39) 2009; 77
BFnature22058_CR7
RG Lentle (BFnature22058_CR54) 2005; 175
B Stecher (BFnature22058_CR27) 2007; 5
M Barthel (BFnature22058_CR18) 2003; 71
S Helaine (BFnature22058_CR47) 2010; 107
D Gil (BFnature22058_CR44) 1991; 105
P Kaiser (BFnature22058_CR22) 2013; 9
P Kaiser (BFnature22058_CR19) 2012; 245
KJ Levinson (BFnature22058_CR10) 2015; 83
JJ Amarasinghe (BFnature22058_CR15) 2013; 81
BFnature22058_CR4
P Kaiser (BFnature22058_CR50) 2014; 12
K Moor (BFnature22058_CR45) 2016; 11
15661931 - J Immunol. 2005 Feb 1;174(3):1675-85
22168414 - Immunol Rev. 2012 Jan;245(1):56-83
20062525 - PLoS Pathog. 2010 Jan;6(1):e1000711
12594279 - J Immunol. 2003 Mar 1;170(5):2531-9
18625740 - Infect Immun. 2008 Sep;76(9):4137-44
10072491 - J Immunol. 1999 Mar 1;162(5):2521-9
22232693 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74
23103985 - Nat Rev Immunol. 2012 Dec;12(12):821-32
2182540 - Infect Immun. 1990 May;58(5):1281-9
25171403 - Cell. 2014 Aug 28;158(5):1000-10
25131673 - Curr Biol. 2014 Sep 8;24(17):2000-5
7015147 - Nature. 1981 May 21;291(5812):238-9
25121751 - Cell Host Microbe. 2014 Aug 13;16(2):237-48
23230292 - Infect Immun. 2013 Mar;81(3):653-64
1373399 - Infect Immun. 1992 May;60(5):1786-92
25522364 - PLoS Pathog. 2014 Dec 18;10(12):e1004557
19271198 - Methods Mol Biol. 2009;532:397-411
15247913 - Nat Med. 2004 Aug;10(8):871-5
18399718 - PLoS Biol. 2008 Apr 8;6(4):e74
20844578 - PLoS Pathog. 2010 Sep 09;6(9):e1001097
24942681 - Immunol Rev. 2014 Jul;260(1):50-66
24558351 - PLoS Biol. 2014 Feb 18;12(2):e1001793
17760501 - PLoS Biol. 2007 Oct;5(10):2177-89
27466712 - Nat Protoc. 2016 Aug;11(8):1531-53
21975936 - Mucosal Immunol. 2011 Nov;4(6):603-11
709340 - Br Med J. 1978 Nov 4;2(6147):1301
12704158 - Infect Immun. 2003 May;71(5):2839-58
28302859 - Science. 2017 Mar 17;355(6330):1211-1215
7926481 - Gastroenterology. 1994 Oct;107(4):915-23
26904024 - Front Immunol. 2016 Feb 11;7:34
22591832 - Trends Microbiol. 2012 Jul;20(7):320-7
15213159 - Infect Immun. 2004 Jul;72 (7):4138-50
19644121 - Science. 2009 Jul 31;325(5940):617-20
19364844 - Infect Immun. 2009 Jun;77(6):2568-75
22473607 - Infect Immun. 2012 Jul;80(7):2454-63
24331462 - Cell Host Microbe. 2013 Dec 11;14(6):641-51
25667263 - Infect Immun. 2015 Apr;83(4):1674-83
26556272 - MBio. 2015 Nov 10;6(6):e01346-15
15928916 - J Comp Physiol B. 2005 Jul;175(5):337-47
4193833 - J Virol. 1970 Jun;5(6):754-64
18785994 - Traffic. 2008 Dec;9(12):2117-29
17690297 - Science. 2007 Aug 10;317(5839):813-5
24068916 - PLoS Pathog. 2013 Sep;9(9):e1003532
1937005 - Gene. 1991 Aug 30;105(1):17-22
22264510 - Cell Host Microbe. 2012 Jan 19;11(1):19-32
20133586 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3746-51
References_xml – volume: 10
  start-page: 871
  year: 2004
  end-page: 875
  ident: CR46
  article-title: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus
  publication-title: Nat. Med.
  doi: 10.1038/nm1080
– ident: CR49
– volume: 16
  start-page: 237
  year: 2014
  end-page: 248
  ident: CR48
  article-title: Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict replication in the intestinal mucosa
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.07.001
– ident: CR4
– ident: CR51
– volume: 4
  start-page: 603
  year: 2011
  end-page: 611
  ident: CR1
  article-title: Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2011.41
– volume: 105
  start-page: 17
  year: 1991
  end-page: 22
  ident: CR44
  article-title: ColE1-type vectors with fully repressible replication
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90508-9
– volume: 81
  start-page: 653
  year: 2013
  end-page: 664
  ident: CR15
  article-title: Exposure of serovar Typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00813-12
– volume: 6
  start-page: e1001097
  year: 2010
  ident: CR8
  article-title: The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal diarrhea
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001097
– volume: 245
  start-page: 56
  year: 2012
  end-page: 83
  ident: CR19
  article-title: The streptomycin mouse model for diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01070.x
– volume: 7
  start-page: 34
  year: 2016
  ident: CR21
  article-title: Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00034
– volume: 58
  start-page: 1281
  year: 1990
  end-page: 1289
  ident: CR42
  article-title: Pyelonephritogenic and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains
  publication-title: Infect. Immun.
– volume: 11
  start-page: 19
  year: 2012
  end-page: 32
  ident: CR31
  article-title: gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.11.013
– volume: 11
  start-page: 1531
  year: 2016
  end-page: 1553
  ident: CR45
  article-title: Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2016.091
– volume: 83
  start-page: 1674
  year: 2015
  end-page: 1683
  ident: CR10
  article-title: Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on agglutination, motility, and surface morphology
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.02856-14
– volume: 10
  start-page: e1004557
  year: 2014
  ident: CR26
  article-title: Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during colitis
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004557
– volume: 24
  start-page: 2000
  year: 2014
  end-page: 2005
  ident: CR35
  article-title: Antibiotic treatment selects for cooperative virulence of
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.07.028
– volume: 109
  start-page: 1269
  year: 2012
  end-page: 1274
  ident: CR28
  article-title: Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113246109
– volume: 103
  start-page: 3
  year: 1926
  end-page: 160
  ident: CR6
  article-title: Further Studies of the Group
  publication-title: Great Britain Medical Research Council (Her Majesty’s Stationary Office)
– volume: 14
  start-page: 641
  year: 2013
  end-page: 651
  ident: CR37
  article-title: Microbiota-derived hydrogen fuels invasion of the gut ecosystem
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.11.002
– volume: 37
  start-page: 1197
  year: 1990
  end-page: 1211
  ident: CR52
  article-title: A model of the formation of marine algal flocs by physical coagulation processes
  publication-title: Deep-Sea Res. A, Oceanogr. Res. Pap.
  doi: 10.1016/0198-0149(90)90038-W
– volume: 77
  start-page: 2568
  year: 2009
  end-page: 2575
  ident: CR39
  article-title: O-antigen-negative serovar Typhimurium is attenuated in intestinal colonization but elicits colitis in streptomycin-treated mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01537-08
– volume: 107
  start-page: 915
  year: 1994
  end-page: 923
  ident: CR17
  article-title: Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(94)90214-3
– volume: 532
  start-page: 397
  year: 2009
  end-page: 411
  ident: CR24
  article-title: Methods in Molecular Biology
  publication-title: Horizontal Gene Transfer
  doi: 10.1007/978-1-60327-853-9_23
– volume: 6
  start-page: e74
  year: 2008
  ident: CR25
  article-title: Modelling within-host spatiotemporal dynamics of invasive bacterial disease
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060074
– volume: 80
  start-page: 2454
  year: 2012
  end-page: 2463
  ident: CR14
  article-title: Association of a protective monoclonal IgA with the O antigen of serovar Typhimurium impacts type 3 secretion and outer membrane integrity
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00018-12
– volume: 9
  start-page: e1003532
  year: 2013
  ident: CR22
  article-title: Lymph node colonization dynamics after oral infection in mice
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003532
– ident: CR11
– volume: 260
  start-page: 50
  year: 2014
  end-page: 66
  ident: CR3
  article-title: B cells as a critical node in the microbiota–host immune system network
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12179
– volume: 158
  start-page: 1000
  year: 2014
  end-page: 1010
  ident: CR30
  article-title: Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.006
– volume: 9
  start-page: 2117
  year: 2008
  end-page: 2129
  ident: CR43
  article-title: Dynamic behavior of -induced membrane tubules in epithelial cells
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2008.00830.x
– volume: 5
  start-page: 2177
  year: 2007
  end-page: 2189
  ident: CR27
  article-title: serovar typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050244
– volume: 107
  start-page: 3746
  year: 2010
  end-page: 3751
  ident: CR47
  article-title: Dynamics of intracellular bacterial replication at the single cell level
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1000041107
– volume: 12
  start-page: 821
  year: 2012
  end-page: 832
  ident: CR2
  article-title: New concepts in the generation and functions of IgA
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3322
– volume: 170
  start-page: 2531
  year: 2003
  end-page: 2539
  ident: CR33
  article-title: Role of the polymeric Ig receptor in mucosal B cell homeostasis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.5.2531
– volume: 76
  start-page: 4137
  year: 2008
  end-page: 4144
  ident: CR13
  article-title: Inhibition of serovar Typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00416-08
– volume: 174
  start-page: 1675
  year: 2005
  end-page: 1685
  ident: CR20
  article-title: The pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow serovar Typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.3.1675
– volume: 60
  start-page: 1786
  year: 1992
  end-page: 1792
  ident: CR16
  article-title: Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen
  publication-title: Infect. Immun.
– volume: 20
  start-page: 320
  year: 2012
  end-page: 327
  ident: CR5
  article-title: Shedding light on carriers
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.04.004
– volume: 6
  start-page: e1000711
  year: 2010
  ident: CR29
  article-title: Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000711
– volume: 317
  start-page: 813
  year: 2007
  end-page: 815
  ident: CR23
  article-title: Adaptive mutations in bacteria: high rate and small effects
  publication-title: Science
  doi: 10.1126/science.1142284
– volume: 72
  start-page: 4138
  year: 2004
  end-page: 4150
  ident: CR38
  article-title: Flagella and chemotaxis are required for efficient induction of serovar Typhimurium colitis in streptomycin-pretreated mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.72.7.4138-4150.2004
– volume: 325
  start-page: 617
  year: 2009
  end-page: 620
  ident: CR34
  article-title: Innate and adaptive immunity cooperate flexibly to maintain host–microbiota mutualism
  publication-title: Science
  doi: 10.1126/science.1172747
– volume: 355
  start-page: 1211
  year: 2017
  end-page: 1215
  ident: CR40
  article-title: Inflammation boosts bacteriophage transfer between spp
  publication-title: Science
  doi: 10.1126/science.aaf8451
– volume: 71
  start-page: 2839
  year: 2003
  end-page: 2858
  ident: CR18
  article-title: Pretreatment of mice with streptomycin provides a serovar Typhimurium colitis model that allows analysis of both pathogen and host
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.71.5.2839-2858.2003
– volume: 162
  start-page: 2521
  year: 1999
  end-page: 2529
  ident: CR32
  article-title: Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes
  publication-title: J. Immunol.
– volume: 291
  start-page: 238
  year: 1981
  end-page: 239
  ident: CR36
  article-title: Aromatic-dependent are non-virulent and effective as live vaccines
  publication-title: Nature
  doi: 10.1038/291238a0
– volume: 5
  start-page: 754
  year: 1970
  end-page: 764
  ident: CR41
  article-title: Some properties of five new bacteriophages
  publication-title: J. Virol.
– volume: 6
  start-page: e01346e15
  year: 2015
  ident: CR9
  article-title: Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of from the intestinal epithelium
  publication-title: MBio
  doi: 10.1128/mBio.01346-15
– ident: CR7
– volume: 107
  start-page: 235
  year: 1990
  end-page: 245
  ident: CR53
  article-title: Coagulation efficiency and aggregate formation in marine phytoplankton
  publication-title: Mar. Biol.
  doi: 10.1007/BF01319822
– volume: 2
  start-page: 1301
  year: 1978
  ident: CR12
  article-title: Persistent excretion of salmonellas
  publication-title: BMJ
  doi: 10.1136/bmj.2.6147.1301
– volume: 175
  start-page: 337
  year: 2005
  end-page: 347
  ident: CR54
  article-title: Periodic fluid extrusion and models of digesta mixing in the intestine of a herbivore, the common brushtail possum ( )
  publication-title: J. Comp. Physiol. B
  doi: 10.1007/s00360-005-0490-4
– volume: 12
  start-page: e1001793
  year: 2014
  ident: CR50
  article-title: Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001793
– volume: 317
  start-page: 813
  year: 2007
  ident: BFnature22058_CR23
  publication-title: Science
  doi: 10.1126/science.1142284
– volume: 107
  start-page: 235
  year: 1990
  ident: BFnature22058_CR53
  publication-title: Mar. Biol.
  doi: 10.1007/BF01319822
– volume: 325
  start-page: 617
  year: 2009
  ident: BFnature22058_CR34
  publication-title: Science
  doi: 10.1126/science.1172747
– volume: 16
  start-page: 237
  year: 2014
  ident: BFnature22058_CR48
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.07.001
– volume: 81
  start-page: 653
  year: 2013
  ident: BFnature22058_CR15
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00813-12
– volume: 77
  start-page: 2568
  year: 2009
  ident: BFnature22058_CR39
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01537-08
– ident: BFnature22058_CR51
– volume: 260
  start-page: 50
  year: 2014
  ident: BFnature22058_CR3
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12179
– volume: 7
  start-page: 34
  year: 2016
  ident: BFnature22058_CR21
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00034
– volume: 24
  start-page: 2000
  year: 2014
  ident: BFnature22058_CR35
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.07.028
– volume: 6
  start-page: e1000711
  year: 2010
  ident: BFnature22058_CR29
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000711
– volume: 174
  start-page: 1675
  year: 2005
  ident: BFnature22058_CR20
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.3.1675
– volume: 5
  start-page: 2177
  year: 2007
  ident: BFnature22058_CR27
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050244
– volume: 2
  start-page: 1301
  year: 1978
  ident: BFnature22058_CR12
  publication-title: BMJ
  doi: 10.1136/bmj.2.6147.1301
– volume: 5
  start-page: 754
  year: 1970
  ident: BFnature22058_CR41
  publication-title: J. Virol.
  doi: 10.1128/JVI.5.6.754-764.1970
– volume: 532
  start-page: 397
  year: 2009
  ident: BFnature22058_CR24
  publication-title: Horizontal Gene Transfer
  doi: 10.1007/978-1-60327-853-9_23
– volume: 162
  start-page: 2521
  year: 1999
  ident: BFnature22058_CR32
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.162.5.2521
– volume: 4
  start-page: 603
  year: 2011
  ident: BFnature22058_CR1
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2011.41
– volume: 80
  start-page: 2454
  year: 2012
  ident: BFnature22058_CR14
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00018-12
– volume: 9
  start-page: e1003532
  year: 2013
  ident: BFnature22058_CR22
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003532
– volume: 105
  start-page: 17
  year: 1991
  ident: BFnature22058_CR44
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90508-9
– volume: 6
  start-page: e1001097
  year: 2010
  ident: BFnature22058_CR8
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001097
– volume: 37
  start-page: 1197
  year: 1990
  ident: BFnature22058_CR52
  publication-title: Deep-Sea Res. A, Oceanogr. Res. Pap.
  doi: 10.1016/0198-0149(90)90038-W
– ident: BFnature22058_CR7
– volume: 10
  start-page: e1004557
  year: 2014
  ident: BFnature22058_CR26
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004557
– volume: 107
  start-page: 3746
  year: 2010
  ident: BFnature22058_CR47
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1000041107
– volume: 12
  start-page: 821
  year: 2012
  ident: BFnature22058_CR2
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3322
– volume: 103
  start-page: 3
  year: 1926
  ident: BFnature22058_CR6
  publication-title: Great Britain Medical Research Council (Her Majesty’s Stationary Office)
– volume: 20
  start-page: 320
  year: 2012
  ident: BFnature22058_CR5
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.04.004
– volume: 83
  start-page: 1674
  year: 2015
  ident: BFnature22058_CR10
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.02856-14
– volume: 58
  start-page: 1281
  year: 1990
  ident: BFnature22058_CR42
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.58.5.1281-1289.1990
– volume: 60
  start-page: 1786
  year: 1992
  ident: BFnature22058_CR16
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.60.5.1786-1792.1992
– volume: 12
  start-page: e1001793
  year: 2014
  ident: BFnature22058_CR50
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001793
– volume: 14
  start-page: 641
  year: 2013
  ident: BFnature22058_CR37
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.11.002
– volume: 72
  start-page: 4138
  year: 2004
  ident: BFnature22058_CR38
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.72.7.4138-4150.2004
– ident: BFnature22058_CR49
  doi: 10.1109/ISBI.2011.5872394
– volume: 11
  start-page: 1531
  year: 2016
  ident: BFnature22058_CR45
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2016.091
– volume: 245
  start-page: 56
  year: 2012
  ident: BFnature22058_CR19
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01070.x
– ident: BFnature22058_CR4
– volume: 76
  start-page: 4137
  year: 2008
  ident: BFnature22058_CR13
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00416-08
– volume: 11
  start-page: 19
  year: 2012
  ident: BFnature22058_CR31
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.11.013
– volume: 9
  start-page: 2117
  year: 2008
  ident: BFnature22058_CR43
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2008.00830.x
– volume: 175
  start-page: 337
  year: 2005
  ident: BFnature22058_CR54
  publication-title: J. Comp. Physiol. B
  doi: 10.1007/s00360-005-0490-4
– volume: 6
  start-page: e74
  year: 2008
  ident: BFnature22058_CR25
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060074
– volume: 355
  start-page: 1211
  year: 2017
  ident: BFnature22058_CR40
  publication-title: Science
  doi: 10.1126/science.aaf8451
– volume: 6
  start-page: e01346e15
  year: 2015
  ident: BFnature22058_CR9
  publication-title: MBio
  doi: 10.1128/mBio.01346-15
– volume: 158
  start-page: 1000
  year: 2014
  ident: BFnature22058_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.006
– volume: 170
  start-page: 2531
  year: 2003
  ident: BFnature22058_CR33
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.5.2531
– volume: 107
  start-page: 915
  year: 1994
  ident: BFnature22058_CR17
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(94)90214-3
– volume: 291
  start-page: 238
  year: 1981
  ident: BFnature22058_CR36
  publication-title: Nature
  doi: 10.1038/291238a0
– ident: BFnature22058_CR11
  doi: 10.1515/9780691190310
– volume: 10
  start-page: 871
  year: 2004
  ident: BFnature22058_CR46
  publication-title: Nat. Med.
  doi: 10.1038/nm1080
– volume: 71
  start-page: 2839
  year: 2003
  ident: BFnature22058_CR18
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.71.5.2839-2858.2003
– volume: 109
  start-page: 1269
  year: 2012
  ident: BFnature22058_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113246109
– reference: 22473607 - Infect Immun. 2012 Jul;80(7):2454-63
– reference: 15661931 - J Immunol. 2005 Feb 1;174(3):1675-85
– reference: 12704158 - Infect Immun. 2003 May;71(5):2839-58
– reference: 20133586 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3746-51
– reference: 25667263 - Infect Immun. 2015 Apr;83(4):1674-83
– reference: 27466712 - Nat Protoc. 2016 Aug;11(8):1531-53
– reference: 12594279 - J Immunol. 2003 Mar 1;170(5):2531-9
– reference: 4193833 - J Virol. 1970 Jun;5(6):754-64
– reference: 28302859 - Science. 2017 Mar 17;355(6330):1211-1215
– reference: 22168414 - Immunol Rev. 2012 Jan;245(1):56-83
– reference: 19364844 - Infect Immun. 2009 Jun;77(6):2568-75
– reference: 20062525 - PLoS Pathog. 2010 Jan;6(1):e1000711
– reference: 15928916 - J Comp Physiol B. 2005 Jul;175(5):337-47
– reference: 22264510 - Cell Host Microbe. 2012 Jan 19;11(1):19-32
– reference: 25121751 - Cell Host Microbe. 2014 Aug 13;16(2):237-48
– reference: 18399718 - PLoS Biol. 2008 Apr 8;6(4):e74
– reference: 23103985 - Nat Rev Immunol. 2012 Dec;12(12):821-32
– reference: 23230292 - Infect Immun. 2013 Mar;81(3):653-64
– reference: 1373399 - Infect Immun. 1992 May;60(5):1786-92
– reference: 7015147 - Nature. 1981 May 21;291(5812):238-9
– reference: 25171403 - Cell. 2014 Aug 28;158(5):1000-10
– reference: 22591832 - Trends Microbiol. 2012 Jul;20(7):320-7
– reference: 19644121 - Science. 2009 Jul 31;325(5940):617-20
– reference: 22232693 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74
– reference: 10072491 - J Immunol. 1999 Mar 1;162(5):2521-9
– reference: 18625740 - Infect Immun. 2008 Sep;76(9):4137-44
– reference: 1937005 - Gene. 1991 Aug 30;105(1):17-22
– reference: 15213159 - Infect Immun. 2004 Jul;72 (7):4138-50
– reference: 26904024 - Front Immunol. 2016 Feb 11;7:34
– reference: 19271198 - Methods Mol Biol. 2009;532:397-411
– reference: 2182540 - Infect Immun. 1990 May;58(5):1281-9
– reference: 26556272 - MBio. 2015 Nov 10;6(6):e01346-15
– reference: 17760501 - PLoS Biol. 2007 Oct;5(10):2177-89
– reference: 7926481 - Gastroenterology. 1994 Oct;107(4):915-23
– reference: 24331462 - Cell Host Microbe. 2013 Dec 11;14(6):641-51
– reference: 18785994 - Traffic. 2008 Dec;9(12):2117-29
– reference: 24068916 - PLoS Pathog. 2013 Sep;9(9):e1003532
– reference: 25131673 - Curr Biol. 2014 Sep 8;24(17):2000-5
– reference: 17690297 - Science. 2007 Aug 10;317(5839):813-5
– reference: 709340 - Br Med J. 1978 Nov 4;2(6147):1301
– reference: 21975936 - Mucosal Immunol. 2011 Nov;4(6):603-11
– reference: 24942681 - Immunol Rev. 2014 Jul;260(1):50-66
– reference: 25522364 - PLoS Pathog. 2014 Dec 18;10(12):e1004557
– reference: 24558351 - PLoS Biol. 2014 Feb 18;12(2):e1001793
– reference: 15247913 - Nat Med. 2004 Aug;10(8):871-5
– reference: 20844578 - PLoS Pathog. 2010 Sep 09;6(9):e1001097
SSID ssj0005174
Score 2.63423
Snippet Oral-vaccine-induced IgA cross-links growing bacteria into clonal aggregates, inhibiting pathogenesis, adaption and the spread of antimicrobial resistance...
Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that...
SourceID swepub
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 498
SubjectTerms 13/31
38/35
631/181/2474
631/250/2152/2153/1291
631/250/347
631/326/41/2531
631/326/590/1883
64/60
82/1
Animals
Antibody Affinity
Bacteria
Bacterial Adhesion
Bacterial Vaccines
Cecum - immunology
Cecum - microbiology
Colony Count, Microbial
Conjugation, Genetic
Female
Growth rate
Humanities and Social Sciences
Humans
Immunization
Immunoglobulin A - immunology
Infections
Inflammation
Intestines - immunology
Intestines - microbiology
Invasive species
letter
Male
Mice
multidisciplinary
Pathogens
Plasmids - genetics
Poultry
Salmonella
Salmonella Infections - immunology
Salmonella Infections - microbiology
Salmonella Infections - prevention & control
Salmonella typhimurium - genetics
Salmonella typhimurium - growth & development
Salmonella typhimurium - immunology
Salmonella typhimurium - pathogenicity
Science
Vaccines
Title High-avidity IgA protects the intestine by enchaining growing bacteria
URI https://link.springer.com/article/10.1038/nature22058
https://www.ncbi.nlm.nih.gov/pubmed/28405025
https://www.proquest.com/docview/1892930888
https://www.proquest.com/docview/1887420917
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322172
Volume 544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB_84MAXUc-7q1_kQEGFYNtkm_RJ1o_VO1DkUNm3kqbZPUG6ancf_O-dabPr-oEvbWnTNmQyyW8yk98AbMvUhBahBFdWxGigFJKnQiY8KuLUhk7oJKHNyReXyfmN_Nttdf2CW-XDKsdjYj1QFwNLa-QHkcaJXKBO6MOHR05Zo8i76lNozMI8UZdRSJfqqtcQj3cszH5_Xij0QUObSbtM9dsZ6QPMnHKRvqMTraegzhIseuzI2o2wl2HGlSvwrY7htNUKLHs9rdiuJ5Pe-w4dCuTgFLiOcJv96beZZ2aoGEI_RmwRqOSlY_kzw5f_NwkjWB-tczrnDZmzWYWbzun18Tn3uRO4lS015Gh4xkUijHDGGDSxpMPryKXGRU6KXDhyWFpapNFORoUKTWSS1PR6DltE4e0fMFcOSvcL8E9aohmmwjyxCO-kyXtYTOVozzoT2zSA_XH7ZdYTi1N-i_usdnALnU01dgDbk8IPDZ_G58U2xoLIvFJV2WsXCOD35DGqA_k4TOkGIyqj0dhHEKQC-NkIcPIfnInDFmK8AHbGEp36-GeV2GnEPfkCcXGf3N22s8FTPxuNMhwNEQCufV3ZdViICQuEksdqA-aGTyO3iUhmmG_V3RWP-jiiY-dsC-aPTi-v_r0AKgT0uA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviA0YgQFGWiVAspbYbuw8IFQxqpZ9PG2ob8Fx3IKEktG0mvZP8Tdyl4-ujIm3PbVqXCfy-e5-lzv_DmBPJTZ0CCW4dlJggJIrnkgV8ygXiQu9NHFMh5OPT-LRmfoy6U824Hd3FobKKjubWBvqvHT0jnw_MujIJeqE-Xj-i1PXKMqudi00mm1x6C8vMGSrPowPUL49IYafTz-NeNtVgDvV1wuOIZnIY2mlt9Zi8KE8fo98Yn3klcykp1Seo9cXxqso16GNbJzY6dSHfaPxZ5z3DtxFxxuSRumJviopucb63J4HxJn2G5pOOtVq_vaA_8DatZTsNfrS2uUNH8HDFquyQbO5tmDDF9twr64ZddU2bLV2oWJvW_Lqd49hSIUjnArlEd6z8WzAWiaIiiHUZMROgUal8Cy7ZPjn702DCjablxf0mTXk0fYJnN3Kqj6FzaIs_DPAOxmFYZ8Os9ghnFQ2m-IwnWH87K1wSQDvu_VLXUtkTv00fqZ1Ql2adG2xA9hbDT5v-DtuHrbbCSJtlbhKr7ZcAG9Wl1H9KKdiC18uaYzRSiDo0gHsNAJc3Qc9f9hHTBlAr5Po2uQ3PUSvEfdqBuL-PvjxdZCW81m6XKZofRFwPv__w76G-6PT46P0aHxy-AIeCMIhoeJC78LmYr70LxFFLbJX9dZl8O22deUP5YMthQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIRAviI1fGQOMtEqAFC2xnTh5QKiiVCuDiQeG-pY5jlsmTcnWtJr2r-2v213idGVMvO0pUeI4kc93_i53_g5gR6Y6MAglfGUERwelkH4qZOyHBU9NYEUSx7Q5-cdBvHcov42j8RpcdnthKK2ys4mNoS4qQ__Id8MEF3IRkMM2cWkRPwfDz6dnPlWQokhrV06jnSL79uIc3bf602iAsu5xPvz668ue7yoM-EZGau6je8aLWGhhtdboiEiL56FNtQ2tFLmwFNYz9CsjsTIsVKBDHad6MrFBlCi8jP3eg_tKRCHpmBqr6_SSGwzQbm8g9rTbUnbSDtfk79XwH4i7Ep69QWXaLH_DJ_DY4VbWbyfaBqzZchMeNPmjpt6EDWcjavbeEVl_eApDSiLxKWkeoT4bTfvMsULUDGEnI6YKNDClZfkFw4f_tMUq2HRWndMxb4mk9TM4vJNRfQ7rZVXal4BvSiS6gCrIY4PQUup8gs1Ujr601dykHnzsxi8zjtScamucZE1wXSTZymB7sLNsfNpyedzebLsTROYUus6up58H75a3URUpvqJLWy2oTaIkRwCmPHjRCnD5HkQBQYT40oNeJ9GVzm_7iF4r7mUPxAM-OP7dz6rZNFssMrTECD63_v-xb-Ehakn2fXSw_woecYIkgfS52ob1-WxhXyOgmudvmpnL4OiuVeUK3XIxuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-avidity+IgA+protects+the+intestine+by+enchaining+growing+bacteria&rft.jtitle=Nature+%28London%29&rft.au=Moor%2C+Kathrin&rft.au=Diard%2C+Mederic&rft.au=Sellin%2C+Mikael+E.&rft.au=Felmy%2C+Boas&rft.date=2017-04-27&rft.issn=0028-0836&rft.volume=544&rft.issue=7651&rft.spage=498&rft_id=info:doi/10.1038%2Fnature22058&rft.externalDocID=oai_DiVA_org_uu_322172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon