Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels

Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable in...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics Vol. 51; no. 2; pp. 171 - 180
Main Authors Dasgupta, Subhashish, Banerjee, Rupak K., Hariharan, Prasanna, Myers, Matthew R.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400 ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2 mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8 W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.
AbstractList Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400 ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2 mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8 W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.
Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.
Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.
Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400 ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2 mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8 W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.
Author Hariharan, Prasanna
Myers, Matthew R.
Dasgupta, Subhashish
Banerjee, Rupak K.
Author_xml – sequence: 1
  givenname: Subhashish
  surname: Dasgupta
  fullname: Dasgupta, Subhashish
  organization: Mechanical Engineering Department, University of Cincinnati, Cincinnati, OH 45220, USA
– sequence: 2
  givenname: Rupak K.
  surname: Banerjee
  fullname: Banerjee, Rupak K.
  email: rupak.banerjee@uc.edu
  organization: Mechanical Engineering Department, University of Cincinnati, Cincinnati, OH 45220, USA
– sequence: 3
  givenname: Prasanna
  surname: Hariharan
  fullname: Hariharan, Prasanna
  organization: Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, Food and Drugs Administration, Silver Spring, MD 20993, USA
– sequence: 4
  givenname: Matthew R.
  surname: Myers
  fullname: Myers, Matthew R.
  organization: Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, Food and Drugs Administration, Silver Spring, MD 20993, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23830871$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20817250$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFrFTEUhYNU7Gv1H4hkI7rwPZNMMsl0IWixtlBwY8FdyGTutHlkJmOSqbS_3jznFcFFu7pw-c6Be885QgdjGAGh15RsKKH1x-1m9jmatGGkrIjcECKfoRVVkq-bplYHaEUIp-ua8Z-H6CilLSGUK1q9QIeMKCqZICt0_wXMgH2wxrt7k10YsRvx-cXZFc4wTBBNniPgAUwqc4AxJzwnN17jfANxCDbMk4f0Af92-QabafLOLjY5YBuC36HtHfYmXgNufQgdvoWUwKeX6HlvfIJX-3mMrs6-_jg9X19-_3Zx-vlybbmQec2g4pa3tBWCctt2jRFGND1h1gjGKi47Q3vFul7aVgBTtIeGKlHbupxf8746Ru8W3ymGXzOkrAeXLHhvRghz0ooyWsmqJoV8_yhJZVUJKglvnkZrSZkoWezQN3t0bgfo9BTdYOKdfgihAG_3gEklhz6a0br0j6tURZSkhTtZOBtDShF6bV3---zSA-c1JXrXDL3VSzP0rhmaSF2aUcT8P_GD_xOyT4usBAa3DqJO1sFooXMRbNZdcI8b_AHDVdVo
CODEN ULTRA3
CitedBy_id crossref_primary_10_1016_j_ultrasmedbio_2022_03_021
crossref_primary_10_1016_j_echo_2013_06_020
crossref_primary_10_1109_TUFFC_2014_006702
crossref_primary_10_1016_j_fuel_2024_133767
crossref_primary_10_1109_TBME_2014_2325070
crossref_primary_10_1007_s40042_022_00631_7
crossref_primary_10_1097_MPH_0000000000001563
crossref_primary_10_1615_AnnualRevHeatTransfer_2022042051
crossref_primary_10_1088_0031_9155_61_20_7427
crossref_primary_10_1371_journal_pone_0174922
crossref_primary_10_1016_j_jacc_2013_02_050
crossref_primary_10_1109_TUFFC_2013_2863
crossref_primary_10_1016_j_ultras_2015_05_014
crossref_primary_10_1109_TUFFC_2019_2940375
crossref_primary_10_1088_1742_6596_1952_3_032078
crossref_primary_10_1109_TUFFC_2017_2739649
crossref_primary_10_1186_s42252_023_00050_2
crossref_primary_10_1088_1361_6501_abc204
crossref_primary_10_1115_1_4033243
crossref_primary_10_1088_1361_6560_ac910c
crossref_primary_10_1088_1741_2552_ab6be6
crossref_primary_10_1371_journal_pone_0175093
crossref_primary_10_1088_0031_9155_57_4_937
crossref_primary_10_1115_1_4027082
crossref_primary_10_15406_ijrrt_2018_05_00150
crossref_primary_10_1021_acs_nanolett_7b00272
crossref_primary_10_1007_s40477_016_0204_7
crossref_primary_10_1115_1_4027340
crossref_primary_10_3390_cancers15092540
crossref_primary_10_1002_mrm_24695
crossref_primary_10_1080_02656736_2019_1605458
crossref_primary_10_1021_acsami_8b02496
crossref_primary_10_3390_s21041453
crossref_primary_10_1016_j_ultrasmedbio_2013_03_012
Cites_doi 10.1016/S1076-6332(96)80188-7
10.1088/0031-9155/43/5/011
10.1115/1.2798007
10.2214/ajr.176.1.1760187
10.1109/58.852092
10.1121/1.2431332
10.1016/0360-3016(84)90379-1
10.1088/0031-9155/45/4/317
10.1109/IEMBS.2005.1616380
10.1016/j.ultras.2003.12.008
10.1121/1.2835662
10.3109/02656739409012370
10.1088/0031-9155/30/5/007
10.1088/0031-9155/53/17/020
10.1121/1.1907332
10.1118/1.597694
10.1063/1.2744296
10.1016/0301-5629(83)90089-3
10.1088/0031-9155/37/6/009
10.1121/1.1452741
10.1109/TBME.1974.324342
10.1152/jappl.1948.1.2.93
10.1088/0031-9155/39/5/003
10.1002/cncr.10234
10.1093/comjnl/7.4.308
10.1115/1.2796092
10.1121/1.1787124
10.1016/j.ultrasmedbio.2008.09.021
10.2307/1267998
10.1088/0031-9155/52/12/011
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2010 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
H8D
L7M
7S9
L.6
7X8
DOI 10.1016/j.ultras.2010.07.007
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
EndPage 180
ExternalDocumentID 20817250
23830871
10_1016_j_ultras_2010_07_007
S0041624X10001137
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7SP
7U5
8FD
H8D
L7M
7S9
L.6
7X8
ID FETCH-LOGICAL-c457t-2e34c4b1b5514cbd9a5a59f02ca522347da1f82df7cb5e281fe91856c600464f3
IEDL.DBID .~1
ISSN 0041-624X
1874-9968
IngestDate Mon Jul 21 11:18:29 EDT 2025
Fri Jul 11 14:30:18 EDT 2025
Fri Jul 11 15:04:34 EDT 2025
Wed Feb 19 02:01:19 EST 2025
Mon Jul 21 09:15:35 EDT 2025
Tue Jul 01 01:00:24 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Fri Feb 23 02:36:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords HIFU
Thermal dose
Thermocouple artifacts
Blood flow cooling
Beam positioning error
Uncertainty
Pipe flow
Temperature effect
Artefact
Acoustic beam
Wire
Convection
Transients
Uncertain system
Focusing
Blood vessel
Model test
Exposure time
Localization
Target detection
Transient response
Cooling
Ultrasonic treatment
Inference
Experimental study
Blood flow
Temperature measurement
Heat source
Power device
Ultrasonic transducer
Induced hyperthermia
Thermocouple
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c457t-2e34c4b1b5514cbd9a5a59f02ca522347da1f82df7cb5e281fe91856c600464f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20817250
PQID 1671258749
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_812137360
proquest_miscellaneous_1733517049
proquest_miscellaneous_1671258749
pubmed_primary_20817250
pascalfrancis_primary_23830871
crossref_citationtrail_10_1016_j_ultras_2010_07_007
crossref_primary_10_1016_j_ultras_2010_07_007
elsevier_sciencedirect_doi_10_1016_j_ultras_2010_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dickinson (b0015) 1985; 30
Olsson, Nelson (b0145) 1975; 17
Roemer, Dutton (b0050) 1998; 120
Goldberg, Gazelle, Solbiati, Rittman, Mueller (b0085) 1996; 3
C.X. Zhang, S. Zhang, Y.Z. Chen, Effects of large blood vessel locations during high intensity focused ultrasound therapy for hepatic tumors: a finite element study, Engineering in Medicine and Biology Society, 2005, in: IEEE-EMBS 2005. 27th Annual International Conference of the 2005, pp. 209–212.
Raaymakers, Crezee, Lagendijk (b0070) 1998; 43
Hariharan, Myers, Banerjee (b0110) 2007; 52
Pennes (b0035) 1948; 1
Fry, Fry (b0020) 1954; 26
Weinbaum, Xu, Zhu, Ekpene (b0045) 1997; 119
Wulff (b0040) 1974; 21
Leeuwen, Kotte, Raaymakers, Lagendijk (b0060) 2000; 45
Creezee, Lagendijk (b0125) 1992; 37
T.D. Baere, A. Denys, B.J. Wood, N. Lassau, M. Kardache, V. Vilgrain, Y. Menu, A. Roche, RF Liver Ablation: Experimental Comparative Study of Water-Cooled Versus Expandable Systems, AJR, vol. 176, 2001, pp. 187–192.
Maruvada, Harris, Herman, King (b0130) 2007; 121
Creezee, Mooibroek, Lagendijk, Leeuwen (b0065) 1994; 39
Parker (b0025) 1983; 9
Lagendijk, Crezee, Hand (b0090) 1994; 10
R.L. King, B.A. Herman, S. Maruvada, K.A. Wear, G.R. Harris, Development of a HIFU phantom, in: Proc. 6th Int. Symp. on Therapeutic Ultrasound, Oxford, UK, 31 August–02 September 2006.
Nelder, Mead (b0140) 1965; 7
Kolios, Sherar, Hunt (b0055) 1996; 23
Hariharan, Myers, Robinson, Maruvada, Sliva, Banerjee (b0135) 2008; 123
Saperto, Dewey (b0150) 1984; 10
Harris, Gammell, Lewin, Radulescu (b0120) 2004; 42
Krasovitski, Kimmel (b0095) 2002; 111
Press, Teukolsky, Vetterling, Flannery (b0160) 2007
O’Neill, Vo, Angstadt, Li, Quinn, Frenkel (b0030) 2009; 35
Curra, Mourad, Khokhlova, Cleveland, Crum (b0100) 2000; 47
Wood, Ramkaransingh, Fojo, Walther, Libutti (b0075) 2002; 15
Huang, Holt, Cleveland, Roy (b0005) 2004; 116
Fluent Inc. 2002b, FIDAP User Manual ver. 8.6.2.
Morris, Rivens, Shaw, Ter Haar (b0010) 2008; 53
Kolios (10.1016/j.ultras.2010.07.007_b0055) 1996; 23
10.1016/j.ultras.2010.07.007_b0105
Maruvada (10.1016/j.ultras.2010.07.007_b0130) 2007; 121
Dickinson (10.1016/j.ultras.2010.07.007_b0015) 1985; 30
Creezee (10.1016/j.ultras.2010.07.007_b0065) 1994; 39
Harris (10.1016/j.ultras.2010.07.007_b0120) 2004; 42
Raaymakers (10.1016/j.ultras.2010.07.007_b0070) 1998; 43
Hariharan (10.1016/j.ultras.2010.07.007_b0110) 2007; 52
Weinbaum (10.1016/j.ultras.2010.07.007_b0045) 1997; 119
Krasovitski (10.1016/j.ultras.2010.07.007_b0095) 2002; 111
Roemer (10.1016/j.ultras.2010.07.007_b0050) 1998; 120
O’Neill (10.1016/j.ultras.2010.07.007_b0030) 2009; 35
Wood (10.1016/j.ultras.2010.07.007_b0075) 2002; 15
Nelder (10.1016/j.ultras.2010.07.007_b0140) 1965; 7
10.1016/j.ultras.2010.07.007_b0155
Curra (10.1016/j.ultras.2010.07.007_b0100) 2000; 47
10.1016/j.ultras.2010.07.007_b0115
Creezee (10.1016/j.ultras.2010.07.007_b0125) 1992; 37
Olsson (10.1016/j.ultras.2010.07.007_b0145) 1975; 17
Lagendijk (10.1016/j.ultras.2010.07.007_b0090) 1994; 10
Morris (10.1016/j.ultras.2010.07.007_b0010) 2008; 53
Press (10.1016/j.ultras.2010.07.007_b0160) 2007
Hariharan (10.1016/j.ultras.2010.07.007_b0135) 2008; 123
Wulff (10.1016/j.ultras.2010.07.007_b0040) 1974; 21
Fry (10.1016/j.ultras.2010.07.007_b0020) 1954; 26
Pennes (10.1016/j.ultras.2010.07.007_b0035) 1948; 1
Huang (10.1016/j.ultras.2010.07.007_b0005) 2004; 116
10.1016/j.ultras.2010.07.007_b0080
Goldberg (10.1016/j.ultras.2010.07.007_b0085) 1996; 3
Parker (10.1016/j.ultras.2010.07.007_b0025) 1983; 9
Saperto (10.1016/j.ultras.2010.07.007_b0150) 1984; 10
Leeuwen (10.1016/j.ultras.2010.07.007_b0060) 2000; 45
References_xml – volume: 9
  start-page: 363
  year: 1983
  end-page: 369
  ident: b0025
  article-title: Ultrasonic attenuation and absorption in liver tissue
  publication-title: Ultrasound Med. Biol.
– volume: 42
  start-page: 349
  year: 2004
  end-page: 353
  ident: b0120
  article-title: Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1
  publication-title: Ultrasonics
– volume: 37
  start-page: 1321
  year: 1992
  end-page: 1337
  ident: b0125
  article-title: Temperature uniformity during hyperthermia: the impact of large vessels
  publication-title: Phys. Med. Biol.
– volume: 35
  start-page: 416
  year: 2009
  end-page: 424
  ident: b0030
  article-title: Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle
  publication-title: Ultrasound Med. Biol.
– volume: 39
  start-page: 813
  year: 1994
  end-page: 832
  ident: b0065
  article-title: The theoretical and experimental evaluation of the heat balance in perfused tissue
  publication-title: Phys. Med. Biol.
– year: 2007
  ident: b0160
  article-title: Numerical Recipes: The Art of Scientific Computing
– reference: Fluent Inc. 2002b, FIDAP User Manual ver. 8.6.2.
– volume: 116
  start-page: 2451
  year: 2004
  end-page: 2458
  ident: b0005
  article-title: Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms
  publication-title: J. Acoust. Soc. Am.
– volume: 1
  start-page: 92
  year: 1948
  end-page: 122
  ident: b0035
  article-title: Analysis of tissue and arterial temperatures in the resting human Forearm
  publication-title: J. Appl. Physiol.
– volume: 15
  start-page: 443
  year: 2002
  end-page: 451
  ident: b0075
  article-title: Percutaneous RF tumor ablation
  publication-title: Cancer
– volume: 123
  start-page: 1706
  year: 2008
  end-page: 1719
  ident: b0135
  article-title: Characterization of high intensity focused ultrasound transducers using acoustic streaming
  publication-title: J. Acoust. Soc. Am.
– volume: 3
  start-page: 636
  year: 1996
  end-page: 644
  ident: b0085
  article-title: RF tissue ablation: increased lesion diameter with a perfusion electrode
  publication-title: Acad. Radiol.
– volume: 21
  start-page: 494
  year: 1974
  end-page: 495
  ident: b0040
  article-title: The energy conservation equation for liver tissue
  publication-title: IEEE Trans. Biomed. Eng.
– reference: R.L. King, B.A. Herman, S. Maruvada, K.A. Wear, G.R. Harris, Development of a HIFU phantom, in: Proc. 6th Int. Symp. on Therapeutic Ultrasound, Oxford, UK, 31 August–02 September 2006.
– reference: C.X. Zhang, S. Zhang, Y.Z. Chen, Effects of large blood vessel locations during high intensity focused ultrasound therapy for hepatic tumors: a finite element study, Engineering in Medicine and Biology Society, 2005, in: IEEE-EMBS 2005. 27th Annual International Conference of the 2005, pp. 209–212.
– volume: 30
  start-page: 445
  year: 1985
  end-page: 453
  ident: b0015
  article-title: Thermal conduction errors in manganine-constantan thermocouple
  publication-title: Phys. Med. Biol.
– volume: 111
  start-page: 1454
  year: 2002
  end-page: 1459
  ident: b0095
  article-title: A blood vessel exposed to ultrasound: a mathematical simulation of the temperature field
  publication-title: J. Acoust. Soc. Am.
– volume: 26
  start-page: 294
  year: 1954
  end-page: 310
  ident: b0020
  article-title: Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes – theory
  publication-title: J. Acoust. Soc. Am.
– volume: 10
  start-page: 775
  year: 1994
  end-page: 784
  ident: b0090
  article-title: Dose uniformity in scanned focused ultrasound hyperthermia
  publication-title: Int. J. Hyperther.
– volume: 47
  start-page: 1077
  year: 2000
  end-page: 1089
  ident: b0100
  article-title: Numerical simulation of heating patterns and tissue temperature response due to high-intensity focused ultrasound
  publication-title: IEEE Trans. Ultrasound Ferroelect. Freq. Control
– volume: 119
  start-page: 278
  year: 1997
  end-page: 288
  ident: b0045
  article-title: A new fundamental bioheat equation for muscle tissue: part I—blood perfusion term
  publication-title: ASME J. Biomech. Eng.
– volume: 121
  start-page: 1434
  year: 2007
  end-page: 1439
  ident: b0130
  article-title: Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique
  publication-title: J. Acoust. Soc. Am.
– volume: 52
  start-page: 3493
  year: 2007
  end-page: 3535
  ident: b0110
  article-title: HIFU procedures at moderate intensities – effect of large blood vessels
  publication-title: Phys. Med. Biol.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b0140
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 45
  start-page: 1035
  year: 2000
  end-page: 1049
  ident: b0060
  article-title: Temperature simulations in tissue with a realistic computer generated vessel network
  publication-title: Phys. Med. Biol.
– volume: 23
  start-page: 1287
  year: 1996
  end-page: 1298
  ident: b0055
  article-title: Blood flow cooling and ultrasonic lesion formation
  publication-title: Med. Phys.
– volume: 120
  start-page: 395
  year: 1998
  end-page: 404
  ident: b0050
  article-title: A generic tissue convective energy balance equation: part I—theory and derivation
  publication-title: ASME J. Biomech. Eng.
– volume: 17
  start-page: 45
  year: 1975
  end-page: 51
  ident: b0145
  article-title: The Nelder mead simplex procedure for function minimization
  publication-title: Technometrics
– volume: 43
  start-page: 1199
  year: 1998
  end-page: 1214
  ident: b0070
  article-title: Comparison of temperature distributions in interstitial hyperthermia: experiments in bovine tongues versus generic simulations
  publication-title: Phys. Med. Biol.
– volume: 10
  start-page: 787
  year: 1984
  end-page: 800
  ident: b0150
  article-title: Thermal dose determination in cancer therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 53
  start-page: 4759
  year: 2008
  ident: b0010
  article-title: Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field
  publication-title: Phys. Med. Biol.
– reference: T.D. Baere, A. Denys, B.J. Wood, N. Lassau, M. Kardache, V. Vilgrain, Y. Menu, A. Roche, RF Liver Ablation: Experimental Comparative Study of Water-Cooled Versus Expandable Systems, AJR, vol. 176, 2001, pp. 187–192.
– volume: 3
  start-page: 636
  year: 1996
  ident: 10.1016/j.ultras.2010.07.007_b0085
  article-title: RF tissue ablation: increased lesion diameter with a perfusion electrode
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(96)80188-7
– volume: 43
  start-page: 1199
  year: 1998
  ident: 10.1016/j.ultras.2010.07.007_b0070
  article-title: Comparison of temperature distributions in interstitial hyperthermia: experiments in bovine tongues versus generic simulations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/43/5/011
– volume: 120
  start-page: 395
  year: 1998
  ident: 10.1016/j.ultras.2010.07.007_b0050
  article-title: A generic tissue convective energy balance equation: part I—theory and derivation
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2798007
– ident: 10.1016/j.ultras.2010.07.007_b0080
  doi: 10.2214/ajr.176.1.1760187
– volume: 47
  start-page: 1077
  year: 2000
  ident: 10.1016/j.ultras.2010.07.007_b0100
  article-title: Numerical simulation of heating patterns and tissue temperature response due to high-intensity focused ultrasound
  publication-title: IEEE Trans. Ultrasound Ferroelect. Freq. Control
  doi: 10.1109/58.852092
– volume: 121
  start-page: 1434
  year: 2007
  ident: 10.1016/j.ultras.2010.07.007_b0130
  article-title: Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2431332
– volume: 10
  start-page: 787
  year: 1984
  ident: 10.1016/j.ultras.2010.07.007_b0150
  article-title: Thermal dose determination in cancer therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/0360-3016(84)90379-1
– volume: 45
  start-page: 1035
  year: 2000
  ident: 10.1016/j.ultras.2010.07.007_b0060
  article-title: Temperature simulations in tissue with a realistic computer generated vessel network
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/4/317
– ident: 10.1016/j.ultras.2010.07.007_b0105
  doi: 10.1109/IEMBS.2005.1616380
– volume: 42
  start-page: 349
  year: 2004
  ident: 10.1016/j.ultras.2010.07.007_b0120
  article-title: Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1MHz to 2MHz via time delay spectrometry
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2003.12.008
– volume: 123
  start-page: 1706
  year: 2008
  ident: 10.1016/j.ultras.2010.07.007_b0135
  article-title: Characterization of high intensity focused ultrasound transducers using acoustic streaming
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2835662
– volume: 10
  start-page: 775
  year: 1994
  ident: 10.1016/j.ultras.2010.07.007_b0090
  article-title: Dose uniformity in scanned focused ultrasound hyperthermia
  publication-title: Int. J. Hyperther.
  doi: 10.3109/02656739409012370
– volume: 30
  start-page: 445
  year: 1985
  ident: 10.1016/j.ultras.2010.07.007_b0015
  article-title: Thermal conduction errors in manganine-constantan thermocouple
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/30/5/007
– volume: 53
  start-page: 4759
  year: 2008
  ident: 10.1016/j.ultras.2010.07.007_b0010
  article-title: Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/020
– volume: 26
  start-page: 294
  year: 1954
  ident: 10.1016/j.ultras.2010.07.007_b0020
  article-title: Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes – theory
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907332
– volume: 23
  start-page: 1287
  year: 1996
  ident: 10.1016/j.ultras.2010.07.007_b0055
  article-title: Blood flow cooling and ultrasonic lesion formation
  publication-title: Med. Phys.
  doi: 10.1118/1.597694
– ident: 10.1016/j.ultras.2010.07.007_b0115
  doi: 10.1063/1.2744296
– volume: 9
  start-page: 363
  year: 1983
  ident: 10.1016/j.ultras.2010.07.007_b0025
  article-title: Ultrasonic attenuation and absorption in liver tissue
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/0301-5629(83)90089-3
– volume: 37
  start-page: 1321
  year: 1992
  ident: 10.1016/j.ultras.2010.07.007_b0125
  article-title: Temperature uniformity during hyperthermia: the impact of large vessels
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/37/6/009
– volume: 111
  start-page: 1454
  year: 2002
  ident: 10.1016/j.ultras.2010.07.007_b0095
  article-title: A blood vessel exposed to ultrasound: a mathematical simulation of the temperature field
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1452741
– volume: 21
  start-page: 494
  year: 1974
  ident: 10.1016/j.ultras.2010.07.007_b0040
  article-title: The energy conservation equation for liver tissue
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1974.324342
– year: 2007
  ident: 10.1016/j.ultras.2010.07.007_b0160
– volume: 1
  start-page: 92
  year: 1948
  ident: 10.1016/j.ultras.2010.07.007_b0035
  article-title: Analysis of tissue and arterial temperatures in the resting human Forearm
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1948.1.2.93
– volume: 39
  start-page: 813
  year: 1994
  ident: 10.1016/j.ultras.2010.07.007_b0065
  article-title: The theoretical and experimental evaluation of the heat balance in perfused tissue
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/5/003
– volume: 15
  start-page: 443
  year: 2002
  ident: 10.1016/j.ultras.2010.07.007_b0075
  article-title: Percutaneous RF tumor ablation
  publication-title: Cancer
  doi: 10.1002/cncr.10234
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.ultras.2010.07.007_b0140
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 119
  start-page: 278
  year: 1997
  ident: 10.1016/j.ultras.2010.07.007_b0045
  article-title: A new fundamental bioheat equation for muscle tissue: part I—blood perfusion term
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2796092
– volume: 116
  start-page: 2451
  year: 2004
  ident: 10.1016/j.ultras.2010.07.007_b0005
  article-title: Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1787124
– volume: 35
  start-page: 416
  year: 2009
  ident: 10.1016/j.ultras.2010.07.007_b0030
  article-title: Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2008.09.021
– ident: 10.1016/j.ultras.2010.07.007_b0155
– volume: 17
  start-page: 45
  year: 1975
  ident: 10.1016/j.ultras.2010.07.007_b0145
  article-title: The Nelder mead simplex procedure for function minimization
  publication-title: Technometrics
  doi: 10.2307/1267998
– volume: 52
  start-page: 3493
  year: 2007
  ident: 10.1016/j.ultras.2010.07.007_b0110
  article-title: HIFU procedures at moderate intensities – effect of large blood vessels
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/12/011
SSID ssj0014813
Score 2.119919
Snippet Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms acoustics
Algorithms
Beam positioning error
Beams (structural)
Biological and medical sciences
Blood flow
Blood flow cooling
blood vessels
cooling
Equipment Design
Errors
Exact sciences and technology
exposure duration
Gels
heat
HIFU
Humans
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Localization
Medical sciences
Models, Theoretical
Phantoms, Imaging
Physics
Position (location)
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Regional Blood Flow
Reproducibility of Results
shrinkage
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments. Material. Instrumentation
Temperature
temperature profiles
Thermal dose
Thermal instruments, apparatus and techniques
Thermocouple artifacts
Thermocouples
Thermometry
Transducers
Ultrasonic Therapy - adverse effects
Ultrasonic Therapy - methods
ultrasonics
Uncertainty
Title Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels
URI https://dx.doi.org/10.1016/j.ultras.2010.07.007
https://www.ncbi.nlm.nih.gov/pubmed/20817250
https://www.proquest.com/docview/1671258749
https://www.proquest.com/docview/1733517049
https://www.proquest.com/docview/812137360
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiQQQlC-lo-VkThiGsd2nBxLxWoLoidW2ptlO061VTZZNVkkOPDb8TjOtj0slbhG48Sxx54nz5tnhD6IkN0qBZFaCsKdZCSvTEYc0yXnUhrm4Lzj-3k2X_CvS7E8QKdjLQzQKuPeP-zpYbeOT47jaB5vViuo8fVgIuVLGnANg4py_3bw8k9_djQPj_ZpzDJTAtZj-VzgeG3r_kp3keAFWoZyX3h6tNGdH7RquO1iPxwNYWn2BD2OeBKfDF1-ig5cc4Qe3lAZPEL3A8vTds_Q789Or3EIX7H8Eq8aPD-bLTBIVEV9Zby-PjfsMBDjLzDAxHVr2-2mdt1HDKe3-EbuG_ctti3c_3OBzS9cA70cB048_gni5HX3HC1mX36czkm8fIFYLmRPUse45YYagFTWlIUWWhRVklrtIRvjstS0ytOyktYIl-a0coWP_ZnNQra0Yi_QYdM27hXCaaFLZpKKlSXz3iALAbJ1SaUL5tELsxPExjFXNiqTwwUZtRopaJdqmCkFM6USSJnLCSK7VptBmeMOezlOp7rlYcoHjztaTm_N_u5zHu6AoCKdoPejOyi_OiHlohvXbjtFM-kRZC558Q8byZigMgEbvMcmB-U9ybJkgl4O7nbdCQ_qpAeyr__7_96gB8NJOZB03qLD_mrr3nmo1ZtpWEtTdO_k7Nv8_C-y4in1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTggQQjBglB_DSDwSLYntOHkcE1XKtj6tUt8sx3GmojSplnQS_PX4EqfbHsokXqOzkvjXfbr77juAr7zLbuXcE0pwjxlBvbjIIs9QlTMmREYNxjsuZlE6Zz8XfLEHp0MtDNIq3d3f3-ndbe2eHLvZPF4vl1jja8FEyBZBh2uoeAT7qE7FR7B_Mj1LZ9tkAosDl2gOPBwwVNB1NK9N2V6rxnG8UM5Q7PJQz9eqsfNW9A0vdiPSzjNNXsILBynJSf_Vr2DPVAfw7I7Q4AE87oieunkNf74btSKdB3MVmGRZkXQ6mRNUqXISy2R1GzpsCHLjrwgixVWt6826NM03ggFccif9Tdqa6BpbAF2R7DcpkWFOOlo8uUF98rJ5A_PJj8vT1HP9FzzNuGi90FCmWRZkiKp0lieKK54UfqiVRW2UiVwFRRzmhdAZN2EcFCax7j_SUZcwLehbGFV1Zd4BCROV08wvaJ5TuyFEwlG5zi9UQi2AoXoMdJhzqZ04OfbIKOXAQvsl-5WSuFLSx6y5GIO3HbXuxTkesBfDcsp7m0xa__HAyKN7q799nUU8qKkYjOHLsB2kPaCYdVGVqTeNDCJhQWQsWPIPG0EpD4SPNmSHTYzie4JG_hgO--12-xEW1wmLZd__9_99hifp5cW5PJ_Ozj7A0z5wjpydjzBqrzfmk0VebXbkTtZfy-cspg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beam+localization+in+HIFU+temperature+measurements+using+thermocouples%2C+with+application+to+cooling+by+large+blood+vessels&rft.jtitle=Ultrasonics&rft.au=Dasgupta%2C+Subhashish&rft.au=Banerjee%2C+Rupak+K&rft.au=Hariharan%2C+Prasanna&rft.au=Myers%2C+Matthew+R&rft.date=2011-02-01&rft.eissn=1874-9968&rft.volume=51&rft.issue=2&rft.spage=171&rft_id=info:doi/10.1016%2Fj.ultras.2010.07.007&rft_id=info%3Apmid%2F20817250&rft.externalDocID=20817250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon