Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems

BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil stra...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 112; no. 2; pp. 347 - 357
Main Author Lynch, Jonathan P
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments.• The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
AbstractList • Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K m and high V max for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments.• The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K ₘ and high V ₘₐₓ for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.BACKGROUNDA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
Author Lynch, Jonathan P
AuthorAffiliation Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
AuthorAffiliation_xml – name: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
Author_xml – sequence: 1
  fullname: Lynch, Jonathan P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23328767$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQxi1URLeFC3fAR4QI9Tt2D0ioKg-pgkPpDclynEnrKonT2Ata_vp6m7IChMTJj_nNN59nfID2xjgCQk8peUOJ4UcuNkeDT8zwB2hVbmSlmSF7aEU4kVXNldhHByldE0KYMvQR2mecM12reoW-nWeA6TX2V-Am7MYWt-V8XHY4tBDzZgKcI45TDkP4CfiHyzDfcZ-x8zfrkEIOccTNBg9uC8wxZpw2KcOQHqOHnesTPLlfD9HF-9OvJx-rsy8fPp28O6u8kHWuGHOqk42nVGshhNJegzCEqM7VRioAxaUhpuZadQwaXTsuhZOigZZ5Lj0_RG8X3WndDNB6GPPsejvNYXDzxkYX7J-RMVzZy_jdcmU016IIvLwXmOPNGlK2Q0ge-t6NENfJUlUscE61-j_KDddUS0EL-vx3Wzs_v7pfgFcL4OeY0gzdDqHEbkdry2jtMtoCk79gH7LbNr88KfT_Tnm2pFynHOeduGC1qc1d_RdLvHPRuss5JHtxzgiV5afIWhjFbwGH7brI
CitedBy_id crossref_primary_10_1007_s11104_016_2963_5
crossref_primary_10_3390_plants4020334
crossref_primary_10_1016_j_eja_2020_126130
crossref_primary_10_24180_ijaws_857195
crossref_primary_10_1002_fes3_192
crossref_primary_10_1039_D4LC00180J
crossref_primary_10_1016_j_heliyon_2025_e42340
crossref_primary_10_1093_jxb_erw505
crossref_primary_10_1007_s11104_015_2413_9
crossref_primary_10_3390_bacteria4010012
crossref_primary_10_1016_j_copbio_2014_11_015
crossref_primary_10_1093_jxb_erab406
crossref_primary_10_1111_jac_12307
crossref_primary_10_1093_jpe_rty015
crossref_primary_10_1007_s12298_021_01113_z
crossref_primary_10_1016_j_fcr_2024_109488
crossref_primary_10_1111_tpj_15560
crossref_primary_10_3389_fpls_2019_00151
crossref_primary_10_1007_s11103_016_0472_9
crossref_primary_10_3389_fpls_2022_1083374
crossref_primary_10_1111_pce_14567
crossref_primary_10_1111_jac_12530
crossref_primary_10_1016_j_fcr_2022_108603
crossref_primary_10_1007_s11104_020_04747_2
crossref_primary_10_1093_pcp_pcy141
crossref_primary_10_3390_plants10040692
crossref_primary_10_1016_j_envexpbot_2020_104002
crossref_primary_10_1071_CP18324
crossref_primary_10_1093_aob_mcaa068
crossref_primary_10_1111_tpj_15774
crossref_primary_10_1007_s11104_019_04396_0
crossref_primary_10_1016_j_agrcom_2024_100063
crossref_primary_10_1007_s11032_019_1058_4
crossref_primary_10_3389_fpls_2022_894657
crossref_primary_10_1080_15427528_2016_1258603
crossref_primary_10_2136_vzj2017_12_0212
crossref_primary_10_3389_fsufs_2023_1169886
crossref_primary_10_1016_j_fcr_2015_02_007
crossref_primary_10_1111_pce_13683
crossref_primary_10_1007_s11104_019_04132_8
crossref_primary_10_1111_pce_13681
crossref_primary_10_1016_j_pbi_2020_101983
crossref_primary_10_1186_s12284_017_0190_1
crossref_primary_10_3390_su13063303
crossref_primary_10_1093_aob_mcab144
crossref_primary_10_1111_nph_17435
crossref_primary_10_1093_jxb_eraa324
crossref_primary_10_1007_s11104_019_04154_2
crossref_primary_10_1093_aob_mcv127
crossref_primary_10_3390_w14081253
crossref_primary_10_1371_journal_pone_0270109
crossref_primary_10_1002_fes3_167
crossref_primary_10_1016_j_fcr_2025_109737
crossref_primary_10_1007_s11104_023_06073_9
crossref_primary_10_1016_j_jia_2023_05_033
crossref_primary_10_1111_jac_12554
crossref_primary_10_3390_ijms22137188
crossref_primary_10_1007_s11104_014_2291_6
crossref_primary_10_1016_j_still_2021_105198
crossref_primary_10_1111_pce_13659
crossref_primary_10_3390_plants8040103
crossref_primary_10_2134_age2019_03_0018
crossref_primary_10_1016_j_agwat_2018_08_031
crossref_primary_10_3389_fpls_2016_00699
crossref_primary_10_3390_agronomy12102334
crossref_primary_10_3390_plants11091270
crossref_primary_10_1111_oik_02726
crossref_primary_10_1007_s11103_021_01173_5
crossref_primary_10_1016_j_plantsci_2017_09_016
crossref_primary_10_1016_j_jia_2023_04_022
crossref_primary_10_1016_j_envexpbot_2022_105071
crossref_primary_10_1007_s42729_024_01833_7
crossref_primary_10_1016_j_envexpbot_2023_105376
crossref_primary_10_1002_pei3_10057
crossref_primary_10_1093_aob_mcae201
crossref_primary_10_1002_jpln_202200003
crossref_primary_10_1186_s13007_016_0140_8
crossref_primary_10_3390_f6103733
crossref_primary_10_1016_j_rhisph_2021_100368
crossref_primary_10_2134_age2018_10_0055
crossref_primary_10_1007_s40502_020_00540_6
crossref_primary_10_1016_j_tplants_2017_10_004
crossref_primary_10_1186_s40168_024_01839_4
crossref_primary_10_1111_jac_12525
crossref_primary_10_1016_j_fcr_2025_109786
crossref_primary_10_3390_plants12132513
crossref_primary_10_3390_environments8070064
crossref_primary_10_1016_j_jplph_2018_03_002
crossref_primary_10_1093_treephys_tpaa126
crossref_primary_10_1007_s10681_019_2472_8
crossref_primary_10_1111_pbi_13531
crossref_primary_10_1016_j_agwat_2018_08_013
crossref_primary_10_1002_fes3_369
crossref_primary_10_3390_ijms19123888
crossref_primary_10_1038_s41598_021_88588_8
crossref_primary_10_3390_genes13020181
crossref_primary_10_1093_insilicoplants_diaa001
crossref_primary_10_3390_agronomy12020358
crossref_primary_10_1016_j_scienta_2019_01_038
crossref_primary_10_1007_s00425_023_04262_5
crossref_primary_10_1007_s11104_023_06301_2
crossref_primary_10_34133_2021_6953197
crossref_primary_10_1016_j_plaphy_2021_11_002
crossref_primary_10_1093_jxb_erv017
crossref_primary_10_1080_15592324_2015_1013795
crossref_primary_10_2134_agronj2019_03_0146
crossref_primary_10_1007_s00425_023_04327_5
crossref_primary_10_1111_ppl_13313
crossref_primary_10_3390_ijms23031091
crossref_primary_10_3389_fpls_2023_1080427
crossref_primary_10_3389_fpls_2024_1440859
crossref_primary_10_1051_ocl_2022021
crossref_primary_10_3390_ijms22158085
crossref_primary_10_3390_genes13040670
crossref_primary_10_2139_ssrn_4666863
crossref_primary_10_1093_plcell_koae083
crossref_primary_10_3389_fpls_2017_01577
crossref_primary_10_1007_s10681_014_1163_8
crossref_primary_10_1111_pce_13875
crossref_primary_10_1016_j_fcr_2021_108142
crossref_primary_10_1007_s10681_015_1625_7
crossref_primary_10_1016_j_molp_2017_08_011
crossref_primary_10_1007_s40502_018_0415_3
crossref_primary_10_1007_s11104_022_05461_x
crossref_primary_10_1016_j_jgg_2024_10_007
crossref_primary_10_1007_s40502_021_00592_2
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1002_ece3_1662
crossref_primary_10_3390_agriculture14122157
crossref_primary_10_1002_pei3_10060
crossref_primary_10_1016_j_jia_2023_07_013
crossref_primary_10_1016_j_eja_2014_11_009
crossref_primary_10_1016_j_jia_2023_07_012
crossref_primary_10_1038_s41893_018_0106_0
crossref_primary_10_3389_fpls_2016_01584
crossref_primary_10_1016_j_fcr_2021_108378
crossref_primary_10_1155_2024_8247993
crossref_primary_10_1071_CP20259
crossref_primary_10_1002_csc2_20838
crossref_primary_10_3389_fpls_2021_725915
crossref_primary_10_1007_s00122_024_04797_5
crossref_primary_10_1093_jxb_erv241
crossref_primary_10_1007_s10535_016_0643_1
crossref_primary_10_1371_journal_pone_0242472
crossref_primary_10_1016_j_jplph_2016_11_003
crossref_primary_10_1007_s00344_021_10454_8
crossref_primary_10_3389_fpls_2022_1004904
crossref_primary_10_1093_jxb_erv007
crossref_primary_10_1093_jxb_erx427
crossref_primary_10_2478_boku_2020_0008
crossref_primary_10_34133_2022_9858049
crossref_primary_10_1016_j_agwat_2024_108932
crossref_primary_10_1007_s11104_019_04185_9
crossref_primary_10_1186_s12284_020_00443_y
crossref_primary_10_1093_aob_mcac087
crossref_primary_10_1093_jxb_eru162
crossref_primary_10_1016_j_pbi_2016_04_005
crossref_primary_10_1016_j_fcr_2024_109283
crossref_primary_10_1016_j_fcr_2024_109282
crossref_primary_10_3390_plants9050645
crossref_primary_10_1016_j_catena_2018_09_040
crossref_primary_10_3389_fpls_2020_618222
crossref_primary_10_1016_j_agwat_2023_108607
crossref_primary_10_3390_plants12020275
crossref_primary_10_1016_j_envsoft_2023_105932
crossref_primary_10_3390_plants8120584
crossref_primary_10_1093_aob_mcx157
crossref_primary_10_1038_s41598_024_53798_3
crossref_primary_10_1016_j_agwat_2019_105839
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_1186_s12870_022_03987_x
crossref_primary_10_1007_s40502_024_00828_x
crossref_primary_10_3390_plants11141855
crossref_primary_10_1111_nph_19279
crossref_primary_10_3923_ajps_2018_191_197
crossref_primary_10_1111_plb_12594
crossref_primary_10_1093_pcp_pcx090
crossref_primary_10_1016_j_fcr_2018_12_015
crossref_primary_10_3389_fpls_2017_00296
crossref_primary_10_1146_annurev_arplant_042817_040218
crossref_primary_10_1093_jxb_erv074
crossref_primary_10_3389_fpls_2016_02001
crossref_primary_10_1016_j_cj_2020_12_001
crossref_primary_10_1093_aob_mcw073
crossref_primary_10_1038_s41467_024_45272_5
crossref_primary_10_1016_j_molp_2023_09_003
crossref_primary_10_1007_s11104_018_3803_6
crossref_primary_10_3389_fpls_2019_00363
crossref_primary_10_1111_nph_19263
crossref_primary_10_5433_1679_0359_2020v41n4p1093
crossref_primary_10_1371_journal_pone_0120604
crossref_primary_10_13080_z_a_2019_106_025
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_3390_genes16010064
crossref_primary_10_1016_j_rhisph_2023_100772
crossref_primary_10_1016_j_agwat_2021_107371
crossref_primary_10_1186_s12870_024_05183_5
crossref_primary_10_1016_j_indcrop_2024_118844
crossref_primary_10_3389_fpls_2019_00119
crossref_primary_10_3390_agronomy10050713
crossref_primary_10_1016_j_fcr_2020_108013
crossref_primary_10_3389_fpls_2023_1061503
crossref_primary_10_1002_csc2_20635
crossref_primary_10_1007_s11104_015_2462_0
crossref_primary_10_1038_s41598_018_36958_0
crossref_primary_10_7717_peerj_12766
crossref_primary_10_3390_biology13040244
crossref_primary_10_1016_j_tplants_2017_07_008
crossref_primary_10_1007_s10705_023_10286_w
crossref_primary_10_3389_fpls_2022_918043
crossref_primary_10_1073_pnas_1604021113
crossref_primary_10_1093_jxb_ery252
crossref_primary_10_1002_csc2_20312
crossref_primary_10_1270_jsbbs_20118
crossref_primary_10_1093_aob_mcz011
crossref_primary_10_1111_pce_15085
crossref_primary_10_1088_1748_9326_abe74e
crossref_primary_10_1007_s11104_023_06255_5
crossref_primary_10_1021_acs_jafc_4c08169
crossref_primary_10_1016_j_agwat_2021_106879
crossref_primary_10_3389_fpls_2018_00163
crossref_primary_10_2136_vzj2016_12_0125
crossref_primary_10_1007_s11104_024_06840_2
crossref_primary_10_1007_s00425_025_04635_y
crossref_primary_10_1016_j_agee_2017_05_012
crossref_primary_10_1016_j_jplph_2021_153586
crossref_primary_10_1590_0034_737x2024710025
crossref_primary_10_1111_jipb_12433
crossref_primary_10_1270_jsbbs_20126
crossref_primary_10_1002_csc2_20781
crossref_primary_10_1016_j_fcr_2020_107872
crossref_primary_10_3389_fpls_2019_00820
crossref_primary_10_1093_jxb_erz315
crossref_primary_10_3390_genes13091632
crossref_primary_10_3389_fpls_2017_01709
crossref_primary_10_1093_insilicoplants_diz012
crossref_primary_10_1186_s12870_015_0585_3
crossref_primary_10_3390_agronomy12061472
crossref_primary_10_1556_0806_47_2019_010
crossref_primary_10_1007_s11104_017_3454_z
crossref_primary_10_3389_fpls_2024_1383373
crossref_primary_10_1007_s11105_020_01214_1
crossref_primary_10_1186_s12870_018_1383_5
crossref_primary_10_3390_ijms24076233
crossref_primary_10_3390_ijms21041513
crossref_primary_10_3389_fsoil_2022_831775
crossref_primary_10_1007_s11104_023_05892_0
crossref_primary_10_3389_fpls_2022_877544
crossref_primary_10_1016_j_plaphy_2022_04_024
crossref_primary_10_3389_fpls_2022_795011
crossref_primary_10_1002_imt2_70015
crossref_primary_10_1270_jsbbs_20106
crossref_primary_10_1111_jipb_12452
crossref_primary_10_1093_jxb_erw061
crossref_primary_10_2135_cropsci2014_12_0847
crossref_primary_10_1016_j_envpol_2024_125141
crossref_primary_10_1002_csc2_20108
crossref_primary_10_1093_jxb_ery048
crossref_primary_10_1094_PDIS_09_19_1904_RE
crossref_primary_10_3389_fpls_2017_00436
crossref_primary_10_1016_j_agsy_2024_103895
crossref_primary_10_1007_s11540_024_09802_4
crossref_primary_10_1007_s11104_023_06068_6
crossref_primary_10_3390_agriculture15060574
crossref_primary_10_1093_jxb_erz383
crossref_primary_10_1002_vzj2_20181
crossref_primary_10_1016_j_scienta_2018_04_054
crossref_primary_10_1093_jxb_erad059
crossref_primary_10_1016_j_cj_2019_12_006
crossref_primary_10_1111_mec_13007
crossref_primary_10_3390_plants10071450
crossref_primary_10_1111_ppl_14336
crossref_primary_10_1016_j_fcr_2023_108989
crossref_primary_10_1186_s12284_018_0234_1
crossref_primary_10_1590_0103_8478cr20210032
crossref_primary_10_1111_ppl_13487
crossref_primary_10_3390_agriculture13040765
crossref_primary_10_1038_s41477_022_01274_z
crossref_primary_10_1080_00103624_2021_1925688
crossref_primary_10_3389_fpls_2024_1358163
crossref_primary_10_3390_microorganisms9040870
crossref_primary_10_1371_journal_pone_0127526
crossref_primary_10_1016_j_still_2019_03_001
crossref_primary_10_1111_pce_14175
crossref_primary_10_3390_agronomy12092136
crossref_primary_10_1093_jxb_ery034
crossref_primary_10_3390_genes12050709
crossref_primary_10_1093_jxb_erw093
crossref_primary_10_2134_age2018_07_0018
crossref_primary_10_1016_j_fcr_2021_108178
crossref_primary_10_1002_csc2_21208
crossref_primary_10_1016_j_biotechadv_2013_08_019
crossref_primary_10_1042_BCJ20220245
crossref_primary_10_3390_agronomy11112294
crossref_primary_10_1007_s40484_017_0110_9
crossref_primary_10_1016_j_pbi_2018_05_003
crossref_primary_10_1016_j_scienta_2023_111956
crossref_primary_10_1016_j_fcr_2022_108462
crossref_primary_10_1007_s11104_018_3744_0
crossref_primary_10_1016_j_rhisph_2021_100426
crossref_primary_10_1016_j_jia_2024_05_031
crossref_primary_10_1139_cjps_2023_0020
crossref_primary_10_1007_s11104_015_2673_4
crossref_primary_10_12688_f1000research_140649_1
crossref_primary_10_1002_ece3_7628
crossref_primary_10_1016_j_fcr_2025_109805
crossref_primary_10_1111_sum_12382
crossref_primary_10_1016_j_fcr_2023_109006
crossref_primary_10_1016_j_fcr_2025_109806
crossref_primary_10_3389_fpls_2023_1125672
crossref_primary_10_1093_plphys_kiac586
crossref_primary_10_1093_plcell_koac327
crossref_primary_10_1093_jxb_erab231
crossref_primary_10_1007_s00122_014_2353_4
crossref_primary_10_1016_j_rhisph_2021_100415
crossref_primary_10_1007_s11104_023_06020_8
crossref_primary_10_3389_fpls_2021_728527
crossref_primary_10_3390_agronomy14061228
crossref_primary_10_1007_s11104_020_04673_3
crossref_primary_10_1111_1365_2745_12648
crossref_primary_10_3390_agronomy9100651
crossref_primary_10_1038_s43017_023_00514_w
crossref_primary_10_1016_j_jclepro_2018_06_233
crossref_primary_10_3117_rootres_33_7
crossref_primary_10_1002_aps3_1238
crossref_primary_10_1093_jxb_erad444
crossref_primary_10_1186_1939_8433_6_30
crossref_primary_10_1093_jxb_erac118
crossref_primary_10_1016_j_envexpbot_2017_12_008
crossref_primary_10_1038_s41467_024_55324_5
crossref_primary_10_1016_j_fcr_2024_109305
crossref_primary_10_18393_ejss_977955
crossref_primary_10_1111_pce_14135
crossref_primary_10_1002_fes3_208
crossref_primary_10_1007_s00425_014_2150_y
crossref_primary_10_1111_pce_15462
crossref_primary_10_3389_fpls_2020_00546
crossref_primary_10_1371_journal_pone_0125781
crossref_primary_10_3389_fpls_2020_00544
crossref_primary_10_1093_jxb_eraa165
crossref_primary_10_1186_s12870_021_03127_x
crossref_primary_10_3390_ijms25126791
crossref_primary_10_1080_01904167_2018_1554074
crossref_primary_10_1016_j_envexpbot_2018_06_023
crossref_primary_10_1073_pnas_2219668120
crossref_primary_10_3390_agriculture10120634
crossref_primary_10_3389_fpls_2024_1389082
crossref_primary_10_3390_ijms241310492
crossref_primary_10_3390_plants10071274
crossref_primary_10_1186_s12284_020_00404_5
crossref_primary_10_2134_agronj2016_09_0507
crossref_primary_10_1111_nph_70013
crossref_primary_10_1016_j_envres_2024_119523
crossref_primary_10_3389_fpls_2016_00865
crossref_primary_10_1016_j_apsoil_2023_104994
crossref_primary_10_1002_fes3_70017
crossref_primary_10_1111_oik_10763
crossref_primary_10_1016_j_still_2019_104407
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_1088_1755_1315_918_1_012046
crossref_primary_10_3390_plants13081075
crossref_primary_10_3390_agronomy10030324
crossref_primary_10_1007_s00122_024_04606_z
crossref_primary_10_1016_j_jplph_2020_153281
crossref_primary_10_34133_plantphenomics_0127
crossref_primary_10_1007_s11103_020_00984_2
crossref_primary_10_1016_j_scienta_2021_110454
crossref_primary_10_1016_j_jgg_2024_01_006
crossref_primary_10_1093_aob_mct123
crossref_primary_10_3390_agronomy12112892
crossref_primary_10_1002_tpg2_20490
crossref_primary_10_1093_jxb_erad488
crossref_primary_10_3389_fpls_2015_00835
crossref_primary_10_1111_jipb_12823
crossref_primary_10_1111_nph_18733
crossref_primary_10_1007_s11104_018_3764_9
crossref_primary_10_1086_717295
crossref_primary_10_1093_plphys_kiae540
crossref_primary_10_1186_s12870_024_04799_x
crossref_primary_10_1007_s00468_018_1710_3
crossref_primary_10_1007_s11104_018_3888_y
crossref_primary_10_1007_s11104_013_1872_0
crossref_primary_10_1093_jxb_eru508
crossref_primary_10_3389_fpls_2016_01939
crossref_primary_10_1016_j_fcr_2023_109225
crossref_primary_10_1016_j_fcr_2018_02_009
crossref_primary_10_1002_tpg2_20003
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_1002_tpg2_20489
crossref_primary_10_1093_plphys_kiad213
crossref_primary_10_2134_agronj2015_0367
crossref_primary_10_3390_agronomy11030552
crossref_primary_10_1111_tpj_16672
crossref_primary_10_1093_jxb_ert421
crossref_primary_10_3389_fpls_2022_959629
crossref_primary_10_1002_jpln_201800560
crossref_primary_10_1016_j_fcr_2014_10_009
crossref_primary_10_34133_2020_1925495
crossref_primary_10_1016_j_bcab_2021_101935
crossref_primary_10_1007_s40502_023_00748_2
crossref_primary_10_1016_j_fcr_2017_09_003
crossref_primary_10_1016_j_ecolmodel_2015_05_028
crossref_primary_10_3390_agronomy12051230
crossref_primary_10_3390_agronomy12112671
crossref_primary_10_3389_fpls_2021_808001
crossref_primary_10_1007_s11032_021_01257_6
crossref_primary_10_3390_stresses3010011
crossref_primary_10_3389_fpls_2022_853309
crossref_primary_10_1016_j_molp_2017_10_005
crossref_primary_10_1016_j_fcr_2023_109083
crossref_primary_10_3389_fpls_2019_00021
crossref_primary_10_1093_aobpla_plae046
crossref_primary_10_1007_s00122_021_03819_w
crossref_primary_10_1016_j_devcel_2022_11_006
crossref_primary_10_1038_s41467_019_09287_7
crossref_primary_10_3390_agronomy14112513
crossref_primary_10_1016_j_fcr_2024_109369
crossref_primary_10_3389_fpls_2021_657629
crossref_primary_10_1016_j_copbio_2023_102961
crossref_primary_10_1371_journal_pone_0158718
crossref_primary_10_1111_nph_16483
crossref_primary_10_1111_nph_17572
crossref_primary_10_1111_jipb_13090
crossref_primary_10_1016_j_tplants_2013_04_010
crossref_primary_10_1016_j_pld_2024_09_008
crossref_primary_10_3390_horticulturae7080243
crossref_primary_10_1007_s10681_018_2283_3
crossref_primary_10_1093_jxb_erv307
crossref_primary_10_3390_plants11060821
crossref_primary_10_1080_1343943X_2021_1883990
crossref_primary_10_3389_fpls_2023_1132017
crossref_primary_10_1098_rsif_2019_0556
crossref_primary_10_1186_s13007_025_01348_x
crossref_primary_10_1146_annurev_cellbio_100617_062949
crossref_primary_10_1186_s40659_018_0194_3
crossref_primary_10_3389_fpls_2020_01247
crossref_primary_10_1007_s10725_015_0123_1
crossref_primary_10_1080_17429145_2021_1933224
crossref_primary_10_1002_fes3_66
crossref_primary_10_1016_j_agwat_2022_107781
crossref_primary_10_1016_j_envexpbot_2020_104344
crossref_primary_10_1080_15592324_2017_1305536
crossref_primary_10_1093_plphys_kiac281
crossref_primary_10_1016_j_fcr_2016_04_008
crossref_primary_10_1017_S1479262120000192
crossref_primary_10_1111_pce_14898
crossref_primary_10_3390_agronomy10010134
crossref_primary_10_1007_s11104_024_06828_y
crossref_primary_10_1111_nph_17329
crossref_primary_10_3390_agronomy9110772
crossref_primary_10_1111_tpj_13470
crossref_primary_10_1002_jpln_202200115
crossref_primary_10_2134_agronj2016_11_0669
crossref_primary_10_1515_opag_2022_0238
crossref_primary_10_3390_agronomy13010066
crossref_primary_10_1111_sum_12795
crossref_primary_10_1016_j_jplph_2020_153307
crossref_primary_10_1007_s11104_022_05331_6
crossref_primary_10_3390_stresses3030041
crossref_primary_10_1111_jac_12437
crossref_primary_10_3389_fpls_2022_1085409
crossref_primary_10_1093_jxb_erw422
crossref_primary_10_1093_aob_mcac147
crossref_primary_10_1002_agj2_20039
crossref_primary_10_1007_s11104_023_05966_z
crossref_primary_10_1111_pce_12448
crossref_primary_10_1111_pce_12451
crossref_primary_10_3390_ijms252010940
crossref_primary_10_1007_s40333_025_0074_y
crossref_primary_10_1016_j_agwat_2024_109252
crossref_primary_10_1016_j_rhisph_2024_100915
crossref_primary_10_1371_journal_pone_0318522
crossref_primary_10_1002_agj2_20040
crossref_primary_10_1093_jxb_eru496
crossref_primary_10_1093_jxb_erab551
crossref_primary_10_3390_plants10040764
crossref_primary_10_7717_peerj_7294
crossref_primary_10_1093_aob_mcw112
crossref_primary_10_1186_s12870_023_04469_4
crossref_primary_10_1556_0806_47_2019_10
crossref_primary_10_1016_j_agwat_2024_109247
crossref_primary_10_3390_agriculture13010210
crossref_primary_10_1007_s00425_023_04261_6
crossref_primary_10_1002_fes3_252
crossref_primary_10_1002_ppj2_20041
crossref_primary_10_1093_aob_mcw122
crossref_primary_10_1111_jac_12641
crossref_primary_10_1111_pce_12673
crossref_primary_10_1016_j_envexpbot_2023_105222
crossref_primary_10_3389_fpls_2024_1408356
crossref_primary_10_3389_fpls_2022_926214
crossref_primary_10_1002_ppj2_20036
crossref_primary_10_1093_jxb_eraa002
crossref_primary_10_1016_j_plantsci_2019_110380
crossref_primary_10_3390_plants11243520
crossref_primary_10_31083_j_fbl2710284
crossref_primary_10_1093_jxb_eraa487
crossref_primary_10_1093_plphys_kiae495
crossref_primary_10_1002_jpln_202000079
crossref_primary_10_1111_pce_12439
crossref_primary_10_3390_ijms20235893
crossref_primary_10_3390_agronomy10010105
crossref_primary_10_1111_pce_12684
crossref_primary_10_1016_j_jplph_2017_12_019
crossref_primary_10_3389_fpls_2020_00332
crossref_primary_10_1371_journal_pone_0121892
crossref_primary_10_3390_plants11192472
crossref_primary_10_1093_aob_mcab074
crossref_primary_10_1007_s11104_020_04626_w
crossref_primary_10_1093_aob_mcae101
crossref_primary_10_34133_plantphenomics_0066
crossref_primary_10_1021_acs_jafc_9b02491
crossref_primary_10_3389_fpls_2023_1122833
crossref_primary_10_3390_plants8070240
crossref_primary_10_1093_jxb_eru048
crossref_primary_10_7868_S0002188117070122
crossref_primary_10_1007_s11104_023_06431_7
crossref_primary_10_1016_j_semcdb_2017_08_051
crossref_primary_10_3389_fpls_2017_00117
crossref_primary_10_3390_plants11172275
crossref_primary_10_1080_03650340_2019_1675872
crossref_primary_10_3389_fpls_2020_568009
crossref_primary_10_1007_s00442_014_2987_6
crossref_primary_10_1016_j_bcab_2021_102215
crossref_primary_10_1080_17429145_2022_2086307
crossref_primary_10_34133_2022_9758532
crossref_primary_10_1371_journal_pone_0126293
crossref_primary_10_3390_plants8110470
crossref_primary_10_3390_plants13233361
crossref_primary_10_1186_s12864_015_1226_9
crossref_primary_10_1002_ppj2_20050
crossref_primary_10_1007_s11104_018_3794_3
crossref_primary_10_3390_f12010050
crossref_primary_10_3390_plants11172256
crossref_primary_10_3389_fbioe_2022_1081647
crossref_primary_10_1093_aob_mcw154
crossref_primary_10_1007_s11104_023_06322_x
crossref_primary_10_1093_jxb_erae191
crossref_primary_10_1016_j_scitotenv_2022_156229
crossref_primary_10_1186_s12284_018_0252_z
crossref_primary_10_1016_j_envexpbot_2022_104965
crossref_primary_10_1371_journal_pone_0247810
crossref_primary_10_1111_nph_19589
crossref_primary_10_1007_s10535_015_0576_0
crossref_primary_10_2136_vzj2017_05_0107
crossref_primary_10_1093_jxb_eraf062
crossref_primary_10_3389_fpls_2017_00335
crossref_primary_10_3390_agronomy12020284
crossref_primary_10_1080_13505033_2016_1175909
crossref_primary_10_3389_fpls_2018_00229
crossref_primary_10_1007_s40502_019_00451_1
crossref_primary_10_1093_aob_mcae151
crossref_primary_10_3389_fpls_2019_00436
crossref_primary_10_1093_jxb_erv121
crossref_primary_10_1007_s10681_020_02700_z
crossref_primary_10_1093_jxb_erv127
crossref_primary_10_1093_jxb_erx300
crossref_primary_10_3390_agronomy11081583
crossref_primary_10_2139_ssrn_4049601
crossref_primary_10_3390_plants8070236
crossref_primary_10_1080_23311932_2024_2370396
crossref_primary_10_3390_plants11212842
crossref_primary_10_1016_j_still_2022_105546
crossref_primary_10_1007_s11104_024_06626_6
crossref_primary_10_1007_s40626_017_0090_1
crossref_primary_10_3117_plantroot_19_13
crossref_primary_10_3389_fpls_2022_1047563
crossref_primary_10_3390_plants11212841
crossref_primary_10_1186_s12284_015_0049_2
crossref_primary_10_1007_s11104_024_07185_6
crossref_primary_10_1016_j_tplants_2018_08_004
crossref_primary_10_1111_jvs_13194
crossref_primary_10_3390_agriculture12020209
crossref_primary_10_1186_s12864_021_07874_x
crossref_primary_10_1016_j_plaphy_2020_02_002
crossref_primary_10_1093_aob_mcv099
crossref_primary_10_3390_agronomy10091328
crossref_primary_10_1111_nph_14710
crossref_primary_10_1007_s40502_018_0429_x
crossref_primary_10_1016_j_agwat_2024_109095
crossref_primary_10_1093_jxb_erw039
crossref_primary_10_1093_jxb_erz307
crossref_primary_10_1080_10426507_2021_1920588
crossref_primary_10_1002_jpln_201500181
crossref_primary_10_1111_pce_12616
crossref_primary_10_1002_agj2_20441
crossref_primary_10_1007_s11104_018_3792_5
crossref_primary_10_1186_s13007_017_0207_1
crossref_primary_10_1016_j_pbi_2017_06_008
crossref_primary_10_1007_s42729_023_01127_4
crossref_primary_10_1016_j_plantsci_2023_111903
crossref_primary_10_1016_j_tplants_2014_01_007
crossref_primary_10_32615_bp_2019_093
crossref_primary_10_1371_journal_pone_0151697
crossref_primary_10_1007_s11104_023_06159_4
crossref_primary_10_1093_jxb_erw282
crossref_primary_10_3390_biology10121249
crossref_primary_10_1007_s11104_018_3824_1
crossref_primary_10_1007_s11738_014_1609_6
crossref_primary_10_3389_fpls_2021_580462
crossref_primary_10_1002_pld3_328
crossref_primary_10_3390_f14040806
crossref_primary_10_1186_s12864_018_4639_4
crossref_primary_10_1016_j_geoderma_2024_116773
crossref_primary_10_1093_jxb_erw243
crossref_primary_10_1007_s11104_022_05527_w
crossref_primary_10_1002_agj2_20210
crossref_primary_10_1111_pce_12822
crossref_primary_10_3390_plants13131808
crossref_primary_10_1016_j_plaphy_2020_02_025
crossref_primary_10_1590_s0100_204x2018000500011
crossref_primary_10_3390_su10114315
crossref_primary_10_1002_pld3_310
crossref_primary_10_3390_agronomy11010188
crossref_primary_10_1111_jac_12248
crossref_primary_10_1111_jipb_12384
crossref_primary_10_3390_ijms19123927
crossref_primary_10_1093_jxb_erw011
crossref_primary_10_1007_s11032_014_0177_1
crossref_primary_10_1038_s41477_023_01479_w
crossref_primary_10_1093_aob_mcx068
crossref_primary_10_3389_fpls_2020_590179
crossref_primary_10_1186_s12870_020_02390_8
crossref_primary_10_1071_FP16154
crossref_primary_10_1016_j_agwat_2019_105706
crossref_primary_10_1016_j_jgg_2024_05_001
crossref_primary_10_1093_jxb_erw262
crossref_primary_10_1016_j_heliyon_2023_e13535
crossref_primary_10_3389_fpls_2022_928229
crossref_primary_10_1093_jxb_eraa409
crossref_primary_10_1186_s12870_022_03972_4
crossref_primary_10_2135_cropsci2016_10_0834
crossref_primary_10_3390_plants10010005
crossref_primary_10_1007_s11104_024_07106_7
crossref_primary_10_2134_agronj2017_07_0400
crossref_primary_10_1007_s40009_017_0588_8
crossref_primary_10_1002_ldr_3616
crossref_primary_10_1007_s00122_018_3183_6
crossref_primary_10_1002_pld3_130
crossref_primary_10_3390_plants9121722
crossref_primary_10_1038_s41598_020_65047_4
crossref_primary_10_1111_pbr_13248
crossref_primary_10_3390_plants13233407
crossref_primary_10_1111_plb_13478
crossref_primary_10_3390_plants10050939
crossref_primary_10_1016_j_agwat_2023_108487
crossref_primary_10_1111_jipb_13408
crossref_primary_10_1111_jipb_12559
crossref_primary_10_1093_jxb_ery379
crossref_primary_10_1534_g3_117_300147
crossref_primary_10_3390_agronomy12061324
crossref_primary_10_3389_fpls_2022_1017048
crossref_primary_10_1038_s41598_024_73350_7
crossref_primary_10_1111_pce_12933
crossref_primary_10_1093_plphys_kiab527
crossref_primary_10_1111_nph_16807
crossref_primary_10_3390_agronomy14092018
crossref_primary_10_1007_s00285_017_1111_z
crossref_primary_10_1093_insilicoplants_diad012
crossref_primary_10_3389_fpls_2022_992799
crossref_primary_10_3390_agronomy12061329
crossref_primary_10_1002_jsfa_11892
crossref_primary_10_1186_s12870_020_02448_7
crossref_primary_10_1002_jpln_201900353
crossref_primary_10_1007_s11104_013_1997_1
crossref_primary_10_1016_j_pocean_2023_103074
crossref_primary_10_1016_j_scienta_2020_109858
crossref_primary_10_1111_jipb_13670
crossref_primary_10_17221_57_2024_CJGPB
crossref_primary_10_1007_s11104_022_05669_x
crossref_primary_10_1186_s12864_020_07320_4
crossref_primary_10_1007_s40333_021_0010_8
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_1016_j_envexpbot_2017_06_006
crossref_primary_10_1007_s00122_023_04376_0
crossref_primary_10_1093_jxb_erad390
crossref_primary_10_3390_agronomy14092031
crossref_primary_10_31590_ejosat_871122
crossref_primary_10_1016_j_fcr_2014_05_009
crossref_primary_10_1016_j_jia_2022_07_003
crossref_primary_10_1007_s11104_022_05427_z
crossref_primary_10_1073_pnas_2012087118
crossref_primary_10_1093_jxb_ery361
crossref_primary_10_1016_j_eja_2022_126472
crossref_primary_10_1071_FP15308
crossref_primary_10_3390_agriculture12101677
crossref_primary_10_3389_fpls_2024_1345189
crossref_primary_10_1093_aob_mcz162
crossref_primary_10_1111_nph_14847
crossref_primary_10_1016_j_cropd_2023_100028
crossref_primary_10_1007_s40502_022_00652_1
crossref_primary_10_3390_plants12112135
crossref_primary_10_1093_jxb_erz258
crossref_primary_10_1007_s11104_019_04334_0
crossref_primary_10_1016_j_scienta_2024_113298
crossref_primary_10_1016_j_agwat_2023_108447
crossref_primary_10_1016_j_fcr_2023_108876
crossref_primary_10_1111_ppl_14207
crossref_primary_10_3389_fmicb_2024_1457624
crossref_primary_10_1016_j_agwat_2024_108728
crossref_primary_10_1016_j_fcr_2023_108878
crossref_primary_10_1007_s11104_019_03964_8
crossref_primary_10_1002_csc2_20237
crossref_primary_10_1007_s00122_014_2414_8
crossref_primary_10_1080_01904167_2022_2067055
crossref_primary_10_3390_agronomy12040845
crossref_primary_10_1002_biot_202100505
crossref_primary_10_1016_j_envexpbot_2021_104494
crossref_primary_10_1111_jipb_13603
crossref_primary_10_1007_s00425_018_3043_2
crossref_primary_10_1007_s11104_022_05434_0
crossref_primary_10_1007_s11816_018_0471_1
crossref_primary_10_1371_journal_pone_0212700
crossref_primary_10_1071_FP17303
crossref_primary_10_1186_s13007_018_0316_5
crossref_primary_10_1038_srep42664
crossref_primary_10_3389_fpls_2024_1351679
crossref_primary_10_1016_j_tplants_2014_08_005
crossref_primary_10_1007_s11104_024_07181_w
crossref_primary_10_1093_aob_mcy092
crossref_primary_10_1093_jxb_ery183
crossref_primary_10_1093_plphys_kiab568
crossref_primary_10_3390_plants12203543
crossref_primary_10_7124_visnyk_utgis_14_2_695
crossref_primary_10_2134_agronj2017_04_0202
crossref_primary_10_1007_s00271_017_0554_8
crossref_primary_10_1007_s11104_024_07006_w
crossref_primary_10_1007_s40502_022_00654_z
crossref_primary_10_34133_2022_9879610
crossref_primary_10_1016_j_tplants_2015_11_008
crossref_primary_10_3389_fgene_2022_1060304
crossref_primary_10_1007_s00122_023_04472_1
crossref_primary_10_1093_jxb_ery394
crossref_primary_10_1093_plphys_kiab311
crossref_primary_10_1016_j_fcr_2023_108893
crossref_primary_10_1093_jxb_ery390
crossref_primary_10_1093_plphys_kiac405
crossref_primary_10_1007_s11104_024_06943_w
crossref_primary_10_1016_j_fcr_2014_06_009
crossref_primary_10_1146_annurev_arplant_050718_100423
crossref_primary_10_1007_s11104_024_07139_y
crossref_primary_10_3390_agronomy12061305
crossref_primary_10_3390_resources13090120
crossref_primary_10_3389_fsufs_2021_660155
crossref_primary_10_3835_plantgenome2017_08_0071
crossref_primary_10_1016_j_cell_2019_06_018
crossref_primary_10_3389_fpls_2017_00786
crossref_primary_10_1007_s11356_022_22577_w
crossref_primary_10_1080_15226514_2018_1523869
crossref_primary_10_3389_fpls_2019_01619
crossref_primary_10_1007_s10722_015_0279_6
crossref_primary_10_1007_s11104_023_06154_9
crossref_primary_10_1186_s12870_024_04756_8
crossref_primary_10_3389_fpls_2015_00570
crossref_primary_10_1007_s11104_021_05026_4
crossref_primary_10_1016_j_fcr_2022_108580
crossref_primary_10_1038_nplants_2015_118
crossref_primary_10_1071_FP16435
crossref_primary_10_1111_nph_15738
crossref_primary_10_1007_s13593_014_0272_z
crossref_primary_10_1093_jxb_erab124
crossref_primary_10_1007_s11104_017_3533_1
crossref_primary_10_1093_jxb_erab121
crossref_primary_10_3389_fpls_2016_00944
crossref_primary_10_1016_j_fcr_2019_107562
crossref_primary_10_1007_s11104_019_04269_6
crossref_primary_10_1139_cjm_2023_0237
crossref_primary_10_1080_17429145_2024_2323991
crossref_primary_10_5010_JPB_2016_43_4_444
crossref_primary_10_1016_j_agwat_2022_107718
crossref_primary_10_3389_fpls_2017_00912
crossref_primary_10_1002_fes3_355
crossref_primary_10_1093_gigascience_giz123
crossref_primary_10_1007_s00284_021_02672_w
crossref_primary_10_3390_plants11070913
crossref_primary_10_2135_cropsci2016_02_0116
crossref_primary_10_1038_s41588_019_0401_3
crossref_primary_10_1111_pce_14270
crossref_primary_10_1016_j_fcr_2024_109640
crossref_primary_10_1186_s13007_019_0533_6
crossref_primary_10_1002_csc2_21108
crossref_primary_10_3390_cells11111765
crossref_primary_10_7717_peerj_10291
crossref_primary_10_1093_jxb_eraa027
crossref_primary_10_1007_s11104_015_2478_5
crossref_primary_10_1186_s12870_024_05477_8
crossref_primary_10_3389_fpls_2021_747142
crossref_primary_10_1186_s12870_019_1794_y
crossref_primary_10_1016_j_tplants_2016_07_011
crossref_primary_10_1038_srep39855
crossref_primary_10_1111_pce_13197
crossref_primary_10_3389_fpls_2022_760879
crossref_primary_10_1111_pce_14284
crossref_primary_10_1016_j_eja_2021_126393
crossref_primary_10_1038_s41598_020_61986_0
crossref_primary_10_1111_aab_12540
crossref_primary_10_31015_jaefs_2022_2_2
crossref_primary_10_1016_j_fcr_2023_109114
crossref_primary_10_1007_s11104_021_05190_7
crossref_primary_10_4236_wjet_2022_103039
crossref_primary_10_1007_s11104_020_04585_2
crossref_primary_10_1093_jxb_erac236
crossref_primary_10_1093_plphys_kiab352
crossref_primary_10_1016_j_agwat_2018_09_010
crossref_primary_10_1016_j_cj_2020_09_011
crossref_primary_10_1007_s10265_019_01089_8
crossref_primary_10_1007_s11104_020_04794_9
crossref_primary_10_1111_pce_14259
crossref_primary_10_1016_j_tplants_2017_02_001
crossref_primary_10_1111_pce_14256
crossref_primary_10_3390_plants11040492
crossref_primary_10_1007_s11103_016_0455_x
crossref_primary_10_1080_1343943X_2017_1288550
crossref_primary_10_1016_j_scitotenv_2024_177379
crossref_primary_10_1093_jxb_eraa049
crossref_primary_10_3389_fpls_2017_00900
crossref_primary_10_3389_fpls_2023_1260005
crossref_primary_10_3389_fpls_2022_836063
crossref_primary_10_3390_plants13030432
crossref_primary_10_1016_j_fcr_2023_109139
crossref_primary_10_1016_j_fcr_2014_03_017
crossref_primary_10_1016_j_plantsci_2017_12_004
crossref_primary_10_1002_tpg2_20395
crossref_primary_10_1093_jxb_erz293
crossref_primary_10_3389_fpls_2021_716691
crossref_primary_10_3389_fpls_2022_1035089
crossref_primary_10_3390_plants12234050
crossref_primary_10_1016_j_jplph_2020_153153
crossref_primary_10_3389_fpls_2023_1146681
crossref_primary_10_1111_pbr_12516
crossref_primary_10_1007_s11104_021_04921_0
crossref_primary_10_1071_FP13330
crossref_primary_10_1186_s12870_021_03237_6
crossref_primary_10_2144_btn_2018_0173
crossref_primary_10_3389_fphgy_2024_1341617
crossref_primary_10_1016_j_jarmap_2023_100463
crossref_primary_10_3390_plants10061121
crossref_primary_10_1002_jpln_201600120
crossref_primary_10_1016_j_envexpbot_2019_103962
crossref_primary_10_1007_s11104_021_05248_6
crossref_primary_10_1007_s11104_022_05685_x
crossref_primary_10_3923_ijss_2016_137_142
crossref_primary_10_7717_peerj_14218
crossref_primary_10_1590_s0100_204x2017000500006
crossref_primary_10_3390_plants7040088
crossref_primary_10_1016_j_tplants_2019_04_005
crossref_primary_10_1038_s41477_020_0684_5
crossref_primary_10_1080_01904167_2024_2380778
crossref_primary_10_1016_j_fcr_2024_109618
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1016_j_ygeno_2020_09_030
crossref_primary_10_3390_plants12051110
crossref_primary_10_1007_s00425_019_03232_0
crossref_primary_10_1007_s11104_018_3885_1
crossref_primary_10_1016_j_sajb_2020_03_003
crossref_primary_10_1007_s12010_015_1815_8
crossref_primary_10_1093_plphys_kiab392
crossref_primary_10_1007_s10681_015_1533_x
crossref_primary_10_1016_j_fcr_2019_03_006
crossref_primary_10_1007_s11104_018_3656_z
crossref_primary_10_1016_j_geoderma_2024_117061
crossref_primary_10_1016_j_stress_2023_100211
crossref_primary_10_1108_IJCHM_01_2022_0039
crossref_primary_10_1016_j_fcr_2019_04_012
crossref_primary_10_1007_s11104_021_05094_6
crossref_primary_10_1016_j_fcr_2023_109107
crossref_primary_10_1111_pbr_12777
crossref_primary_10_1007_s11738_016_2119_5
crossref_primary_10_1016_j_fcr_2023_109109
crossref_primary_10_1016_j_plaphy_2023_108213
crossref_primary_10_1016_j_apsoil_2017_07_030
crossref_primary_10_3390_ijms221910892
crossref_primary_10_1093_jxb_eraa084
crossref_primary_10_1016_j_eja_2019_01_008
crossref_primary_10_1007_s12298_021_01079_y
crossref_primary_10_1111_pce_13138
crossref_primary_10_1111_pce_14227
crossref_primary_10_1146_annurev_arplant_043015_111848
crossref_primary_10_1016_j_cub_2017_06_043
crossref_primary_10_1093_plphys_kiab145
crossref_primary_10_4236_as_2014_514155
crossref_primary_10_1002_csc2_21177
crossref_primary_10_19159_tutad_668185
crossref_primary_10_3390_ijms242015167
Cites_doi 10.1016/S0065-2113(08)60803-2
10.1002/jpln.19941570506
10.1007/s11104-008-9562-z
10.1016/j.pbi.2008.12.002
10.3117/plantroot.1.57
10.1016/j.fcr.2010.03.004
10.1016/j.fcr.2010.10.003
10.1104/pp.109.1.7
10.1104/pp.111.175489
10.1071/FP03078
10.1007/s11738-009-0447-4
10.1046/j.1365-2435.2002.06904.x
10.1007/s11104-004-1697-y
10.1111/j.1469-8137.1996.tb01847.x
10.1093/jexbot/52.355.329
10.1007/s00122-009-1144-9
10.1111/j.1365-3040.2009.02099.x
10.1093/aob/mcs082
10.1023/A:1014897607670
10.1046/j.1365-3040.2003.01015.x
10.1016/j.fcr.2011.01.001
10.1046/j.1469-8137.2003.00695.x
10.1023/A:1010381919003
10.1023/A:1014987710937
10.1016/j.tplants.2007.08.012
10.1016/S0022-5193(05)80130-4
10.1007/s00122-006-0260-z
10.1626/jcs.62.565
10.1006/anbo.2001.1530
10.1080/01904168609363512
10.1007/s11104-004-1096-4
10.1007/s11104-009-9984-2
10.1007/s11104-006-9008-4
10.1023/A:1012728819326
10.1071/FP04046
10.1016/j.fcr.2004.07.014
10.1590/S0100-204X2007000900020
10.1016/j.fcr.2011.03.001
10.2134/agronj1999.00021962009100030001x
10.1098/rspb.1999.0656
10.1071/FP05043
10.1098/rstb.2011.0243
10.1093/jxb/erp018
10.1007/s11738-999-0046-4
10.2136/sssaj2009.0227
10.1007/s11104-011-0950-4
10.1016/j.fcr.2007.03.014
10.1016/j.fcr.2012.09.010
10.1097/00010694-199210000-00005
10.1080/11263501003731805
10.1579/0044-7447-31.2.132
10.1007/s11104-007-9492-1
10.1007/3-540-27675-0_3
10.1046/j.0028-646X.2001.00285.x
10.1300/J144v01n02_11
10.1007/s00122-005-2051-3
10.1007/s11104-005-4268-y
10.1016/S1161-0301(02)00093-X
10.3117/plantroot.4.22
10.1104/pp.111.175414
10.2307/1939320
10.1093/aob/mcr143
10.2135/cropsci2011.01.0038
10.1023/A:1013324727040
10.1093/jxb/26.1.79
10.2135/cropsci2012.07.0440
10.1007/s00122-005-0139-4
10.1016/S0308-521X(01)00011-7
10.1007/s00122-011-1690-9
10.1104/pp.87.2.529
10.1007/s11104-011-0735-9
10.1071/FP03046
10.1093/jxb/ers111
10.1071/FP08132
10.1007/s11427-010-4097-y
10.1007/BF00056241
10.1201/9780203909423.pt6
10.1007/BF00007976
10.1007/s11104-012-1138-2
10.1111/j.1365-3040.2011.02311.x
10.1093/aob/mcq199
10.4141/P00-093
10.2135/cropsci2008.03.0152
10.1046/j.1365-3040.1999.00405.x
10.1007/BF00016284
10.1007/s11104-005-0389-6
10.1080/01904169209364361
10.1016/j.fcr.2008.07.010
10.1093/jxb/erh246
10.1007/s11104-010-0623-8
10.1093/aob/mcq029
10.1111/j.1365-3040.2008.01857.x
10.1007/BF00008076
10.1034/j.1399-3054.1996.970222.x
10.1093/jxb/erq350
10.1071/BT06118
10.1093/jxb/eri303
10.1007/s00122-004-1665-1
10.1071/FP05005
ContentType Journal Article
Copyright Annals of Botany Company 2013
The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013
Copyright_xml – notice: Annals of Botany Company 2013
– notice: The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/aob/mcs293
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 357
ExternalDocumentID PMC3698384
23328767
10_1093_aob_mcs293
42797967
US201500057496
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-E4
-~X
.2P
.I3
0R~
1B1
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
53G
5GY
5VS
5WA
5WD
6.Y
6J9
7-5
70D
71M
79B
A8Z
AABJS
AABMN
AACTN
AAEDT
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AALCJ
AALRI
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAQFI
AAQXK
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
AAXUO
ABBHK
ABDBF
ABEFU
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFGL
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMUD
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFDAS
AFFNX
AFFZL
AFGWE
AFIYH
AFMIJ
AFOFC
AFRAH
AFSWV
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
AOIJS
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DATOO
DFEDG
DFGAJ
DILTD
DM4
DPORF
DPPUQ
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
ELUNK
EMOBN
ESTFP
ESX
F5P
F9B
FA8
FBQ
FDB
FEDTE
FGOYB
FHSFR
FIRID
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HYE
HZ~
IHE
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
LG5
M-Z
M49
MBTAY
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
OZT
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R2-
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RW1
RXO
RZF
RZO
SA0
SSZ
SV3
TCN
TEORI
TLC
TN5
TR2
UHS
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
XPP
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZCG
ZKX
ZMT
~02
~91
~KM
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABPQP
ABVGC
ABXSQ
ABXVV
ACHIC
ACUHS
ADNBA
ADQBN
AGORE
AJBYB
AJNCP
AKRWK
AQVQM
ATGXG
H13
IPSME
JXSIZ
AAYWO
AAYXX
ABDPE
ABIME
ABNGD
ABPIB
ABWVN
ABZEO
ACRPL
ACUKT
ACVCV
ACZBC
ADNMO
ADXHL
AEHUL
AFSHK
AGMDO
AGQPQ
AHGBF
AJDVS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c457t-22a6f5bc118844468c8e49006fa7956ee6359097386f2eb87a354a54bed2c35c3
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 14:00:52 EDT 2025
Fri Jul 11 06:40:29 EDT 2025
Fri Jul 11 09:34:19 EDT 2025
Mon Jul 21 05:45:22 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
Tue Jul 01 01:39:12 EDT 2025
Sun Aug 24 12:10:45 EDT 2025
Wed Dec 27 19:03:14 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Root phenes
ideotype
anatomy
water
nitrogen
architecture
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c457t-22a6f5bc118844468c8e49006fa7956ee6359097386f2eb87a354a54bed2c35c3
Notes http://dx.doi.org/10.1093/aob/mcs293
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/aob/article-pdf/112/2/347/17008517/mcs293.pdf
PMID 23328767
PQID 1393818541
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3698384
proquest_miscellaneous_1663533186
proquest_miscellaneous_1393818541
pubmed_primary_23328767
crossref_primary_10_1093_aob_mcs293
crossref_citationtrail_10_1093_aob_mcs293
jstor_primary_42797967
fao_agris_US201500057496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hund ( key 20170512164909_MCS293C39) 2011; 344
Lambers ( key 20170512164909_MCS293C43) 2002
Yanai ( key 20170512164909_MCS293C99) 2002; 16
Tuberosa ( key 20170512164909_MCS293C90) 2002; 48
Wiesler ( key 20170512164909_MCS293C97) 1994; 163
Clark ( key 20170512164909_MCS293C12) 2008; 35
Nord ( key 20170512164909_MCS293C64) 2011; 108
Ge ( key 20170512164909_MCS293C22) 2000; 218
Henry ( key 20170512164909_MCS293C30) 2010; 117
Vance ( key 20170512164909_MCS293C91) 2003; 157
Zhu ( key 20170512164909_MCS293C104) 2006; 113
Manschadi ( key 20170512164909_MCS293C57) 2010; 144
Chen ( key 20170512164909_MCS293C11) 2010; 74
Kaspar ( key 20170512164909_MCS293C41) 1992; 154
Oyanagi ( key 20170512164909_MCS293C68) 1993; 62
Donald ( key 20170512164909_MCS293C13) 1968; 17
Lynch ( key 20170512164909_MCS293C49) 2011; 156
Rubio ( key 20170512164909_MCS293C81) 2004; 55
Barber ( key 20170512164909_MCS293C1) 1995
Burton ( key 20170512164909_MCS293C7) 2010
Lynch ( key 20170512164909_MCS293C51) 2012; 367
Bonser ( key 20170512164909_MCS293C5) 1996; 132
Eshel ( key 20170512164909_MCS293C19) 1996
Giuliani ( key 20170512164909_MCS293C23) 2005; 56
Bengough ( key 20170512164909_MCS293C3) 2011; 62
Ma ( key 20170512164909_MCS293C53) 2001; 236
Lynch ( key 20170512164909_MCS293C47) 1998; 1
Postma ( key 20170512164909_MCS293C73) 2012; 110
Sorgona ( key 20170512164909_MCS293C85) 2011; 34
Mace ( key 20170512164909_MCS293C54) 2012; 124
Lynch ( key 20170512164909_MCS293C46) 1995; 109
Nielsen ( key 20170512164909_MCS293C61) 2001; 52
Wiesler ( key 20170512164909_MCS293C96) 1993; 151
Liao ( key 20170512164909_MCS293C44) 2001; 232
Hund ( key 20170512164909_MCS293C37) 2004; 109
Thaler ( key 20170512164909_MCS293C86) 1996; 97
Trachsel ( key 20170512164909_MCS293C87) 2009; 119
Jackson ( key 20170512164909_MCS293C40) 1993; 74
Morrow de la Riva ( key 20170512164909_MCS293C60) 2010
Vieira ( key 20170512164909_MCS293C92) 2007; 42
Lynch ( key 20170512164909_MCS293C52) 2005; 269
Gowda ( key 20170512164909_MCS293C24) 2011; 122
Hammer ( key 20170512164909_MCS293C27) 2002; 18
Zhu ( key 20170512164909_MCS293C100) 2004; 31
Fisher ( key 20170512164909_MCS293C21) 2002; 153
Robinson ( key 20170512164909_MCS293C78) 2005
Wang ( key 20170512164909_MCS293C94) 2010; 106
Hoogenboom ( key 20170512164909_MCS293C35) 2004; 90
Drew ( key 20170512164909_MCS293C15) 1975; 26
Walk ( key 20170512164909_MCS293C93) 2006; 279
Sorgona ( key 20170512164909_MCS293C84) 2010; 32
Zhu ( key 20170512164909_MCS293C103) 2005; 32
Wasson ( key 20170512164909_MCS293C95) 2012; 63
Postma ( key 20170512164909_MCS293C72) 2011; 107
Hochholdinger ( key 20170512164909_MCS293C33) 2009; 12
Borch ( key 20170512164909_MCS293C6) 1999; 22
Postma ( key 20170512164909_MCS293C71) 2011; 156
Havlin ( key 20170512164909_MCS293C29) 2004
Mi ( key 20170512164909_MCS293C58) 2010; 53
Poudel ( key 20170512164909_MCS293C74) 2001; 68
Eissenstat ( key 20170512164909_MCS293C18) 1992; 15
Zhu ( key 20170512164909_MCS293C102) 2005; 111
Liu ( key 20170512164909_MCS293C45) 2008; 305
Nord ( key 20170512164909_MCS293C63) 2009; 60
Manschadi ( key 20170512164909_MCS293C56) 2008; 303
Ho ( key 20170512164909_MCS293C32) 2005; 32
Grzesiak ( key 20170512164909_MCS293C26) 1999; 21
Mano ( key 20170512164909_MCS293C55) 2006; 281
Trachsel ( key 20170512164909_MCS293C89) 2013; 140
Trachsel ( key 20170512164909_MCS293C88) 2011; 341
Robinson ( key 20170512164909_MCS293C77) 1990; 145
Raun ( key 20170512164909_MCS293C75) 1999; 91
de Dorlodot ( key 20170512164909_MCS293C14) 2007; 12
Oyanagi ( key 20170512164909_MCS293C67) 1994; 165
Bayuelo-Jimenez ( key 20170512164909_MCS293C2) 2011; 121
Bernier ( key 20170512164909_MCS293C4) 2009; 110
Hammer ( key 20170512164909_MCS293C28) 2009; 49
Kato ( key 20170512164909_MCS293C42) 2006; 287
Grant ( key 20170512164909_MCS293C25) 2001; 81
Lynch ( key 20170512164909_MCS293C48) 2007; 55
Fan ( key 20170512164909_MCS293C20) 2003; 30
Cassman ( key 20170512164909_MCS293C10) 2002; 31
Nord ( key 20170512164909_MCS293C62) 2008; 31
Rubio ( key 20170512164909_MCS293C80) 2001; 88
Singh ( key 20170512164909_MCS293C83) 2011; 51
Wiesler ( key 20170512164909_MCS293C98) 1994; 157
Henry ( key 20170512164909_MCS293C31) 2011; 120
Lynch ( key 20170512164909_MCS293C50) 2001; 237
O'Toole ( key 20170512164909_MCS293C65) 1987; 41
Zhu ( key 20170512164909_MCS293C101) 2005; 270
Dunbabin ( key 20170512164909_MCS293C17) 2003; 26
Zhu ( key 20170512164909_MCS293C105) 2010; 33
Burton ( key 20170512164909_MCS293C9) 2012; 357
Hoecker ( key 20170512164909_MCS293C34) 2006; 112
Hund ( key 20170512164909_MCS293C36) 2010; 4
Burton ( key 20170512164909_MCS293C8) 2013; 53
Omori ( key 20170512164909_MCS293C66) 2007; 1
Richardson ( key 20170512164909_MCS293C76) 2011; 349
Sanchez ( key 20170512164909_MCS293C82) 1976
Dunbabin ( key 20170512164909_MCS293C16) 2007; 104
Hund ( key 20170512164909_MCS293C38) 2009; 325
Pahlavian ( key 20170512164909_MCS293C70) 1988; 87
Miller ( key 20170512164909_MCS293C59) 2003; 30
Pace ( key 20170512164909_MCS293C69) 1986; 9
Robinson ( key 20170512164909_MCS293C79) 1999; 266
References_xml – volume: 41
  start-page: 91
  year: 1987
  ident: key 20170512164909_MCS293C65
  article-title: Genotypic variation in crop plant root systems
  publication-title: Advances in Agronomy
  doi: 10.1016/S0065-2113(08)60803-2
– volume: 157
  start-page: 351
  year: 1994
  ident: key 20170512164909_MCS293C98
  article-title: Root growth of maize cultivars under field conditions as studied by the core and minirhizotron method and relationships to shoot growth
  publication-title: Zeitschrift fur Pflanzenernahrung und Bodenkunde
  doi: 10.1002/jpln.19941570506
– volume: 305
  start-page: 253
  year: 2008
  ident: key 20170512164909_MCS293C45
  article-title: Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.)
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9562-z
– volume: 12
  start-page: 172
  year: 2009
  ident: key 20170512164909_MCS293C33
  article-title: Genetic and genomic dissection of maize root development and architecture
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2008.12.002
– volume: 1
  start-page: 57
  year: 2007
  ident: key 20170512164909_MCS293C66
  article-title: QTL mapping of root angle in F2 populations from maize ‘B73’×teosinte ‘Zea luxurians
  publication-title: Plant Root
  doi: 10.3117/plantroot.1.57
– volume: 117
  start-page: 209
  year: 2010
  ident: key 20170512164909_MCS293C30
  article-title: Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L.)
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2010.03.004
– volume: 120
  start-page: 205
  year: 2011
  ident: key 20170512164909_MCS293C31
  article-title: Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2010.10.003
– volume: 109
  start-page: 7
  year: 1995
  ident: key 20170512164909_MCS293C46
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.1.7
– volume: 156
  start-page: 1190
  year: 2011
  ident: key 20170512164909_MCS293C71
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175489
– volume-title: Soil fertility and fertilizers: an introduction to nutrient management
  year: 2004
  ident: key 20170512164909_MCS293C29
– volume: 30
  start-page: 973
  year: 2003
  ident: key 20170512164909_MCS293C59
  article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils
  publication-title: Functional Plant Biology
  doi: 10.1071/FP03078
– volume: 32
  start-page: 683
  year: 2010
  ident: key 20170512164909_MCS293C84
  article-title: Spatial and temporal patterns of net nitrate uptake regulation and kinetics along the tap root of Citrus aurantium
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-009-0447-4
– volume: 16
  start-page: 865
  year: 2002
  ident: key 20170512164909_MCS293C99
  article-title: Coping with herbivores and pathogens: a model of optimal root turnover
  publication-title: Functional Ecology
  doi: 10.1046/j.1365-2435.2002.06904.x
– volume: 270
  start-page: 299
  year: 2005
  ident: key 20170512164909_MCS293C101
  article-title: Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-1697-y
– volume: 132
  start-page: 281
  year: 1996
  ident: key 20170512164909_MCS293C5
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– volume: 52
  start-page: 329
  year: 2001
  ident: key 20170512164909_MCS293C61
  article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/52.355.329
– volume: 119
  start-page: 1413
  year: 2009
  ident: key 20170512164909_MCS293C87
  article-title: Mapping of QTLs for lateral and axile root growth of tropical maize
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-009-1144-9
– volume: 33
  start-page: 740
  year: 2010
  ident: key 20170512164909_MCS293C105
  article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02099.x
– volume: 110
  start-page: 521
  year: 2012
  ident: key 20170512164909_MCS293C73
  article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs082
– volume: 48
  start-page: 697
  year: 2002
  ident: key 20170512164909_MCS293C90
  article-title: Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1014897607670
– volume: 26
  start-page: 835
  year: 2003
  ident: key 20170512164909_MCS293C17
  article-title: Is there an optimal root architecture for nitrate capture in leaching environments?
  publication-title: Plant, Cell & Environment
  doi: 10.1046/j.1365-3040.2003.01015.x
– volume: 121
  start-page: 350
  year: 2011
  ident: key 20170512164909_MCS293C2
  article-title: Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2011.01.001
– volume: 157
  start-page: 423
  year: 2003
  ident: key 20170512164909_MCS293C91
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00695.x
– start-page: 175
  volume-title: Plant roots: the hidden half
  year: 1996
  ident: key 20170512164909_MCS293C19
  article-title: Multiform and multifunction of various constituents of one root system
– volume: 232
  start-page: 69
  year: 2001
  ident: key 20170512164909_MCS293C44
  article-title: Effect of phosphorus availability on basal root shallowness in common bean
  publication-title: Plant and Soil
  doi: 10.1023/A:1010381919003
– volume: 218
  start-page: 159
  year: 2000
  ident: key 20170512164909_MCS293C22
  article-title: The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model
  publication-title: Plant and Soil
  doi: 10.1023/A:1014987710937
– volume: 12
  start-page: 474
  year: 2007
  ident: key 20170512164909_MCS293C14
  article-title: Root system architecture: opportunities and constraints for genetic improvement of crops
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2007.08.012
– volume: 145
  start-page: 257
  year: 1990
  ident: key 20170512164909_MCS293C77
  article-title: Phosphorus availability and cortical senescence in cereal roots
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(05)80130-4
– volume: 113
  start-page: 1
  year: 2006
  ident: key 20170512164909_MCS293C104
  article-title: Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-006-0260-z
– volume: 62
  start-page: 565
  year: 1993
  ident: key 20170512164909_MCS293C68
  article-title: Relationship between root growth angle of seedlings and vertical distribution of roots in the field in wheat cultivars
  publication-title: Japanese Journal of Crop Science
  doi: 10.1626/jcs.62.565
– volume: 88
  start-page: 929
  year: 2001
  ident: key 20170512164909_MCS293C80
  article-title: Root gravitropism and below-ground competition among neighbouring plants: a modelling approach
  publication-title: Annals of Botany
  doi: 10.1006/anbo.2001.1530
– volume: 9
  start-page: 1095
  year: 1986
  ident: key 20170512164909_MCS293C69
  article-title: Comparison of nitrate uptake kinetic parameters across maize inbred lines
  publication-title: Journal of Plant Nutrition
  doi: 10.1080/01904168609363512
– volume: 269
  start-page: 45
  year: 2005
  ident: key 20170512164909_MCS293C52
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-1096-4
– volume: 325
  start-page: 335
  year: 2009
  ident: key 20170512164909_MCS293C38
  article-title: Growth of axile and lateral roots of maize. I. Development of a phenotying platform
  publication-title: Plant and Soil
  doi: 10.1007/s11104-009-9984-2
– volume: 287
  start-page: 117
  year: 2006
  ident: key 20170512164909_MCS293C42
  article-title: Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes
  publication-title: Plant and Soil
  doi: 10.1007/s11104-006-9008-4
– volume: 236
  start-page: 221
  year: 2001
  ident: key 20170512164909_MCS293C53
  article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: a modeling approach
  publication-title: Plant and Soil
  doi: 10.1023/A:1012728819326
– volume: 31
  start-page: 949
  year: 2004
  ident: key 20170512164909_MCS293C100
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings
  publication-title: Functional Plant Biology
  doi: 10.1071/FP04046
– volume: 90
  start-page: 145
  year: 2004
  ident: key 20170512164909_MCS293C35
  article-title: From genome to crop: integration through simulation modeling
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2004.07.014
– volume: 42
  start-page: 1365
  year: 2007
  ident: key 20170512164909_MCS293C92
  article-title: Method for evaluation of root hairs of common bean genotypes
  publication-title: Pesquisa Agropecuária Brasiliera, Brasília
  doi: 10.1590/S0100-204X2007000900020
– volume: 122
  start-page: 1
  year: 2011
  ident: key 20170512164909_MCS293C24
  article-title: Root biology and genetic improvement for drought avoidance in rice
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2011.03.001
– volume: 91
  start-page: 357
  year: 1999
  ident: key 20170512164909_MCS293C75
  article-title: Improving nitrogen use efficiency for cereal production
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1999.00021962009100030001x
– volume: 266
  start-page: 431
  year: 1999
  ident: key 20170512164909_MCS293C79
  article-title: Plant root proliferation in nitrogen-rich patches confers competitive advantage
  publication-title: Proceedings of the Royal Society of London Series B: Biological Sciences
  doi: 10.1098/rspb.1999.0656
– volume: 32
  start-page: 737
  year: 2005
  ident: key 20170512164909_MCS293C32
  article-title: Root architectural tradeoffs for water and phosphorus acquisition
  publication-title: Functional Plant Biology
  doi: 10.1071/FP05043
– year: 2010
  ident: key 20170512164909_MCS293C7
– volume: 367
  start-page: 1598
  year: 2012
  ident: key 20170512164909_MCS293C51
  article-title: New roots for agriculture: exploiting the root phenome
  publication-title: Philosophical Transactions of the Royal Society B – Biological Sciences
  doi: 10.1098/rstb.2011.0243
– volume: 60
  start-page: 1927
  year: 2009
  ident: key 20170512164909_MCS293C63
  article-title: Plant phenology: a critical controller of soil resource acquisition
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erp018
– volume: 21
  start-page: 305
  year: 1999
  ident: key 20170512164909_MCS293C26
  article-title: The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-999-0046-4
– volume: 74
  start-page: 1367
  year: 2010
  ident: key 20170512164909_MCS293C11
  article-title: Optimizing soil nitrogen supply in the root zone to improve maize management
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2009.0227
– volume: 349
  start-page: 121
  year: 2011
  ident: key 20170512164909_MCS293C76
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 104
  start-page: 44
  year: 2007
  ident: key 20170512164909_MCS293C16
  article-title: Simulating the role of rooting traits in crop–weed competition
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2007.03.014
– volume: 140
  start-page: 18
  year: 2013
  ident: key 20170512164909_MCS293C89
  article-title: Maize root growth angles become steeper under low N conditions
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2012.09.010
– volume-title: Properties and management of soils in the tropics
  year: 1976
  ident: key 20170512164909_MCS293C82
– volume: 154
  start-page: 290
  year: 1992
  ident: key 20170512164909_MCS293C41
  article-title: Soil temperature and root growth
  publication-title: Soil Science
  doi: 10.1097/00010694-199210000-00005
– volume: 144
  start-page: 458
  year: 2010
  ident: key 20170512164909_MCS293C57
  article-title: Experimental and modelling studies of drought-adaptive root architectural traits in wheat (Triticum aestivum L.)
  publication-title: Plant Biosystems
  doi: 10.1080/11263501003731805
– volume: 31
  start-page: 132
  year: 2002
  ident: key 20170512164909_MCS293C10
  article-title: Agroecosystems, nitrogen-use efficiency, and nitrogen management
  publication-title: Ambio
  doi: 10.1579/0044-7447-31.2.132
– volume: 303
  start-page: 115
  year: 2008
  ident: key 20170512164909_MCS293C56
  article-title: Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.)
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9492-1
– start-page: 43
  volume-title: Nutrient acquisition by plants: an ecological perspective.
  year: 2005
  ident: key 20170512164909_MCS293C78
  article-title: Integrated root responses to variations in nutrient supply
  doi: 10.1007/3-540-27675-0_3
– volume: 153
  start-page: 63
  year: 2002
  ident: key 20170512164909_MCS293C21
  article-title: Lack of evidence for programmed root senescence in common bean (Phaseolus vulgaris) grown at different levels of phosphorus supply
  publication-title: New Phytologist
  doi: 10.1046/j.0028-646X.2001.00285.x
– volume: 1
  start-page: 241
  year: 1998
  ident: key 20170512164909_MCS293C47
  article-title: The role of nutrient efficient crops in modern agriculture
  publication-title: Journal of Crop Production
  doi: 10.1300/J144v01n02_11
– volume: 111
  start-page: 688
  year: 2005
  ident: key 20170512164909_MCS293C102
  article-title: Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-005-2051-3
– volume: 281
  start-page: 269
  year: 2006
  ident: key 20170512164909_MCS293C55
  article-title: Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings
  publication-title: Plant and Soil
  doi: 10.1007/s11104-005-4268-y
– volume: 18
  start-page: 15
  year: 2002
  ident: key 20170512164909_MCS293C27
  article-title: Future contributions of crop modelling – from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement
  publication-title: European Journal of Agronomy
  doi: 10.1016/S1161-0301(02)00093-X
– volume: 4
  start-page: 22
  year: 2010
  ident: key 20170512164909_MCS293C36
  article-title: Genetic variation in the gravitropic response of maize roots to low temperature
  publication-title: Plant Root
  doi: 10.3117/plantroot.4.22
– volume: 156
  start-page: 1041
  year: 2011
  ident: key 20170512164909_MCS293C49
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175414
– volume: 74
  start-page: 612
  year: 1993
  ident: key 20170512164909_MCS293C40
  article-title: The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics
  publication-title: Ecology
  doi: 10.2307/1939320
– volume: 108
  start-page: 391
  year: 2011
  ident: key 20170512164909_MCS293C64
  article-title: Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcr143
– volume: 51
  start-page: 2011
  year: 2011
  ident: key 20170512164909_MCS293C83
  article-title: Genetic variability and control of nodal root angle in sorghum
  publication-title: Crop Science
  doi: 10.2135/cropsci2011.01.0038
– volume: 237
  start-page: 225
  year: 2001
  ident: key 20170512164909_MCS293C50
  article-title: Topsoil foraging – an architectural adaptation of plants to low phosphorus availability
  publication-title: Plant and Soil
  doi: 10.1023/A:1013324727040
– volume: 26
  start-page: 79
  year: 1975
  ident: key 20170512164909_MCS293C15
  article-title: Nutrient supply and the growth of the seminal root system in barley. 2. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/26.1.79
– year: 2010
  ident: key 20170512164909_MCS293C60
– volume: 53
  start-page: 1042
  year: 2013
  ident: key 20170512164909_MCS293C8
  article-title: Phenotypic diversity of root anatomical and architectural traits in Zea species
  publication-title: Crop Science
  doi: 10.2135/cropsci2012.07.0440
– volume: 112
  start-page: 421
  year: 2006
  ident: key 20170512164909_MCS293C34
  article-title: Manifestation of heterosis during early maize (Zea mays L.) root development
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-005-0139-4
– volume: 68
  start-page: 253
  year: 2001
  ident: key 20170512164909_MCS293C74
  article-title: Impacts of cropping systems on soil nitrogen storage and loss
  publication-title: Agricultural Systems
  doi: 10.1016/S0308-521X(01)00011-7
– volume: 124
  start-page: 97
  year: 2012
  ident: key 20170512164909_MCS293C54
  article-title: QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-011-1690-9
– volume: 87
  start-page: 529
  year: 1988
  ident: key 20170512164909_MCS293C70
  article-title: Effect of temperature on spatial and temporal aspects of growth in the primary maize root
  publication-title: Plant Physiology
  doi: 10.1104/pp.87.2.529
– volume: 344
  start-page: 143
  year: 2011
  ident: key 20170512164909_MCS293C39
  article-title: A consensus map of QTLs controlling the root length of maize
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-0735-9
– volume: 30
  start-page: 493
  year: 2003
  ident: key 20170512164909_MCS293C20
  article-title: Physiological roles for aerenchyma in phosphorus-stressed roots
  publication-title: Functional Plant Biology
  doi: 10.1071/FP03046
– volume: 63
  start-page: 3485
  year: 2012
  ident: key 20170512164909_MCS293C95
  article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ers111
– volume: 35
  start-page: 1163
  year: 2008
  ident: key 20170512164909_MCS293C12
  article-title: Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice
  publication-title: Functional Plant Biology
  doi: 10.1071/FP08132
– volume-title: Soil nutrient bioavailability: a mechanistic approach
  year: 1995
  ident: key 20170512164909_MCS293C1
– volume: 53
  start-page: 1369
  year: 2010
  ident: key 20170512164909_MCS293C58
  article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems
  publication-title: Science China – Life Sciences
  doi: 10.1007/s11427-010-4097-y
– volume: 17
  start-page: 385
  year: 1968
  ident: key 20170512164909_MCS293C13
  article-title: The breeding of crop ideotypes
  publication-title: Euphytica
  doi: 10.1007/BF00056241
– start-page: 521
  volume-title: Plant roots: the hidden half
  year: 2002
  ident: key 20170512164909_MCS293C43
  article-title: Respiratory patterns in roots in relation to their functioning
  doi: 10.1201/9780203909423.pt6
– volume: 163
  start-page: 267
  year: 1994
  ident: key 20170512164909_MCS293C97
  article-title: Root growth and nitrate utilization of maize cultivars under field conditions
  publication-title: Plant and Soil
  doi: 10.1007/BF00007976
– volume: 357
  start-page: 189
  year: 2012
  ident: key 20170512164909_MCS293C9
  article-title: RootScan: software for high-throughput analysis of root anatomical traits
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1138-2
– volume: 34
  start-page: 1127
  year: 2011
  ident: key 20170512164909_MCS293C85
  article-title: Nitrate uptake along the maize primary root: an integrated physiological and molecular approach
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2011.02311.x
– volume: 107
  start-page: 829
  year: 2011
  ident: key 20170512164909_MCS293C72
  article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcq199
– volume: 81
  start-page: 211
  year: 2001
  ident: key 20170512164909_MCS293C25
  article-title: The importance of early season phosphorus nutrition
  publication-title: Canadian Journal of Plant Science
  doi: 10.4141/P00-093
– volume: 49
  start-page: 299
  year: 2009
  ident: key 20170512164909_MCS293C28
  article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US Corn Belt?
  publication-title: Crop Science
  doi: 10.2135/cropsci2008.03.0152
– volume: 22
  start-page: 425
  year: 1999
  ident: key 20170512164909_MCS293C6
  article-title: Ethylene: a regulator of root architectural responses to soil phosphorus availability
  publication-title: Plant, Cell & Environment
  doi: 10.1046/j.1365-3040.1999.00405.x
– volume: 151
  start-page: 193
  year: 1993
  ident: key 20170512164909_MCS293C96
  article-title: Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching
  publication-title: Plant and Soil
  doi: 10.1007/BF00016284
– volume: 279
  start-page: 347
  year: 2006
  ident: key 20170512164909_MCS293C93
  article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition
  publication-title: Plant and Soil
  doi: 10.1007/s11104-005-0389-6
– volume: 15
  start-page: 763
  year: 1992
  ident: key 20170512164909_MCS293C18
  article-title: Costs and benefits of constructing roots of small diameter
  publication-title: Journal of Plant Nutrition
  doi: 10.1080/01904169209364361
– volume: 110
  start-page: 139
  year: 2009
  ident: key 20170512164909_MCS293C4
  article-title: The large-effect drought-resistance QTL qtl12·1 increases water uptake in upland rice
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2008.07.010
– volume: 55
  start-page: 2269
  year: 2004
  ident: key 20170512164909_MCS293C81
  article-title: Spatial mapping of phosphorus influx in bean root systems using digital autoradiography
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erh246
– volume: 341
  start-page: 75
  year: 2011
  ident: key 20170512164909_MCS293C88
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 106
  start-page: 215
  year: 2010
  ident: key 20170512164909_MCS293C94
  article-title: Genetic improvement for phosphorus efficiency in soybean: a radical approach
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcq029
– volume: 31
  start-page: 1432
  year: 2008
  ident: key 20170512164909_MCS293C62
  article-title: Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2008.01857.x
– volume: 165
  start-page: 323
  year: 1994
  ident: key 20170512164909_MCS293C67
  article-title: Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivum L.)
  publication-title: Plant and Soil
  doi: 10.1007/BF00008076
– volume: 97
  start-page: 365
  year: 1996
  ident: key 20170512164909_MCS293C86
  article-title: Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.1996.970222.x
– volume: 62
  start-page: 59
  year: 2011
  ident: key 20170512164909_MCS293C3
  article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq350
– volume: 55
  start-page: 1
  year: 2007
  ident: key 20170512164909_MCS293C48
  article-title: Roots of the second green revolution
  publication-title: Australian Journal of Botany
  doi: 10.1071/BT06118
– volume: 56
  start-page: 3061
  year: 2005
  ident: key 20170512164909_MCS293C23
  article-title: Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eri303
– volume: 109
  start-page: 618
  year: 2004
  ident: key 20170512164909_MCS293C37
  article-title: QTL controlling root and shoot traits of maize seedlings under cold stress
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-004-1665-1
– volume: 32
  start-page: 749
  year: 2005
  ident: key 20170512164909_MCS293C103
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays L.)
  publication-title: Functional Plant Biology
  doi: 10.1071/FP05005
SSID ssj0002691
Score 2.6148355
SecondaryResourceType review_article
Snippet BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition...
• Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource...
A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is...
Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 347
SubjectTerms aerenchyma
Agricultural soils
branching
cold soils
cold tolerance
Corn
genetics
growth & development
Ideotypes
metabolism
Models, Biological
nitrates
Nitrogen
Nitrogen - metabolism
Phosphorus
Plant Roots
Plant Roots - genetics
Plant Roots - growth & development
Plant Roots - metabolism
Plants
Root growth
root hairs
Root systems
rooting
senescence
Soil
Soil depth
Soil resources
space and time
temperature
VIEWPOINT
Water
Water - metabolism
Zea mays
Zea mays - genetics
Zea mays - growth & development
Zea mays - metabolism
Title Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
URI https://www.jstor.org/stable/42797967
https://www.ncbi.nlm.nih.gov/pubmed/23328767
https://www.proquest.com/docview/1393818541
https://www.proquest.com/docview/1663533186
https://pubmed.ncbi.nlm.nih.gov/PMC3698384
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe6jgdeEF9j5UtG8IJK9mE7icMTKzBNSPRlq7QHpMh2nFGJJoOmQttfz52dZMnoEPASRe41bn2_nO9s3-8IeRUJcGITqYIsZ3kglOSByvHYjsn2DNeZZRnu6H6eRkcz8ek0PB0M3nWzSyq9Yy7X5pX8j1ahDfSKWbL_oNn2odAA96BfuIKG4fpXOj6urHX15WDk1bnbB8iwBROYi_E8s6VbYQX3sgTLsJhf2vFPhayIKDkdK_N9NfdnttALXSgUAE-6qvmdl13P9YppWZdVY0HwJM9F4atJNevwdcZYvZKAVR3i7krCDRmKHYMEtiGIuWcd37HeYIKLFuBmbM-i7rMOdFjHPnJPr1lPtdxzU_9mxT3DlSo1XBdmyXwNxWu82LNjhqs1mE0rkmiDbDIIFNiQbB5MPkwO29mYRb5qYvPbG4rahO9CB7v-8T2nZCNXZXM6dV3ccf34bMcfOblL7tSBBD3wqLhHBra4T25NnG4ekC8OGm-oAwYFdVMExlu4ow0saFXSBhbUwcLJTWkHFlRfUAcLirCgNSwektnhx5P3R0FdSCMw8CpWAWMqykNtIJiUAuJ_aaQVCdjbXMUQH1sLXmeCvE0yypnVMlY8FCoU2mbM8NDwLTIsysJuE6pYbCN4Ck8yKSyLNMtyke_FWoKnyBI9Iq-bkUxNzTKPxU6-pf60A09h1FM_6iPyspU999wqa6W2QSGpOoNJL-0rfUS2nJbabwsWJ3ESxSPyolFbCuYS98BUYcvVMoWAx_moYv8PMuiFc5jsoINHXtVtD4xzBg4E9BD3QNAKIF17_5Ni_tXRtnOwiVyKxzf_nyfk9tV7-ZQMqx8r-wx83ko_r2H9CybKrFc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steep%2C+cheap+and+deep%3A+an+ideotype+to+optimize+water+and+N+acquisition+by+maize+root+systems&rft.jtitle=Annals+of+botany&rft.au=Lynch%2C+Jonathan+P&rft.date=2013-07-01&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=112&rft.issue=2&rft.spage=347&rft.epage=357&rft_id=info:doi/10.1093%2Faob%2Fmcs293&rft.externalDocID=US201500057496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon