Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil stra...
Saved in:
Published in | Annals of botany Vol. 112; no. 2; pp. 347 - 357 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments.• The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. |
---|---|
AbstractList | • Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K m and high V max for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments.• The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K ₘ and high V ₘₐₓ for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.BACKGROUNDA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. |
Author | Lynch, Jonathan P |
AuthorAffiliation | Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA |
AuthorAffiliation_xml | – name: Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA |
Author_xml | – sequence: 1 fullname: Lynch, Jonathan P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23328767$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstv1DAQxi1URLeFC3fAR4QI9Tt2D0ioKg-pgkPpDclynEnrKonT2Ata_vp6m7IChMTJj_nNN59nfID2xjgCQk8peUOJ4UcuNkeDT8zwB2hVbmSlmSF7aEU4kVXNldhHByldE0KYMvQR2mecM12reoW-nWeA6TX2V-Am7MYWt-V8XHY4tBDzZgKcI45TDkP4CfiHyzDfcZ-x8zfrkEIOccTNBg9uC8wxZpw2KcOQHqOHnesTPLlfD9HF-9OvJx-rsy8fPp28O6u8kHWuGHOqk42nVGshhNJegzCEqM7VRioAxaUhpuZadQwaXTsuhZOigZZ5Lj0_RG8X3WndDNB6GPPsejvNYXDzxkYX7J-RMVzZy_jdcmU016IIvLwXmOPNGlK2Q0ge-t6NENfJUlUscE61-j_KDddUS0EL-vx3Wzs_v7pfgFcL4OeY0gzdDqHEbkdry2jtMtoCk79gH7LbNr88KfT_Tnm2pFynHOeduGC1qc1d_RdLvHPRuss5JHtxzgiV5afIWhjFbwGH7brI |
CitedBy_id | crossref_primary_10_1007_s11104_016_2963_5 crossref_primary_10_3390_plants4020334 crossref_primary_10_1016_j_eja_2020_126130 crossref_primary_10_24180_ijaws_857195 crossref_primary_10_1002_fes3_192 crossref_primary_10_1039_D4LC00180J crossref_primary_10_1016_j_heliyon_2025_e42340 crossref_primary_10_1093_jxb_erw505 crossref_primary_10_1007_s11104_015_2413_9 crossref_primary_10_3390_bacteria4010012 crossref_primary_10_1016_j_copbio_2014_11_015 crossref_primary_10_1093_jxb_erab406 crossref_primary_10_1111_jac_12307 crossref_primary_10_1093_jpe_rty015 crossref_primary_10_1007_s12298_021_01113_z crossref_primary_10_1016_j_fcr_2024_109488 crossref_primary_10_1111_tpj_15560 crossref_primary_10_3389_fpls_2019_00151 crossref_primary_10_1007_s11103_016_0472_9 crossref_primary_10_3389_fpls_2022_1083374 crossref_primary_10_1111_pce_14567 crossref_primary_10_1111_jac_12530 crossref_primary_10_1016_j_fcr_2022_108603 crossref_primary_10_1007_s11104_020_04747_2 crossref_primary_10_1093_pcp_pcy141 crossref_primary_10_3390_plants10040692 crossref_primary_10_1016_j_envexpbot_2020_104002 crossref_primary_10_1071_CP18324 crossref_primary_10_1093_aob_mcaa068 crossref_primary_10_1111_tpj_15774 crossref_primary_10_1007_s11104_019_04396_0 crossref_primary_10_1016_j_agrcom_2024_100063 crossref_primary_10_1007_s11032_019_1058_4 crossref_primary_10_3389_fpls_2022_894657 crossref_primary_10_1080_15427528_2016_1258603 crossref_primary_10_2136_vzj2017_12_0212 crossref_primary_10_3389_fsufs_2023_1169886 crossref_primary_10_1016_j_fcr_2015_02_007 crossref_primary_10_1111_pce_13683 crossref_primary_10_1007_s11104_019_04132_8 crossref_primary_10_1111_pce_13681 crossref_primary_10_1016_j_pbi_2020_101983 crossref_primary_10_1186_s12284_017_0190_1 crossref_primary_10_3390_su13063303 crossref_primary_10_1093_aob_mcab144 crossref_primary_10_1111_nph_17435 crossref_primary_10_1093_jxb_eraa324 crossref_primary_10_1007_s11104_019_04154_2 crossref_primary_10_1093_aob_mcv127 crossref_primary_10_3390_w14081253 crossref_primary_10_1371_journal_pone_0270109 crossref_primary_10_1002_fes3_167 crossref_primary_10_1016_j_fcr_2025_109737 crossref_primary_10_1007_s11104_023_06073_9 crossref_primary_10_1016_j_jia_2023_05_033 crossref_primary_10_1111_jac_12554 crossref_primary_10_3390_ijms22137188 crossref_primary_10_1007_s11104_014_2291_6 crossref_primary_10_1016_j_still_2021_105198 crossref_primary_10_1111_pce_13659 crossref_primary_10_3390_plants8040103 crossref_primary_10_2134_age2019_03_0018 crossref_primary_10_1016_j_agwat_2018_08_031 crossref_primary_10_3389_fpls_2016_00699 crossref_primary_10_3390_agronomy12102334 crossref_primary_10_3390_plants11091270 crossref_primary_10_1111_oik_02726 crossref_primary_10_1007_s11103_021_01173_5 crossref_primary_10_1016_j_plantsci_2017_09_016 crossref_primary_10_1016_j_jia_2023_04_022 crossref_primary_10_1016_j_envexpbot_2022_105071 crossref_primary_10_1007_s42729_024_01833_7 crossref_primary_10_1016_j_envexpbot_2023_105376 crossref_primary_10_1002_pei3_10057 crossref_primary_10_1093_aob_mcae201 crossref_primary_10_1002_jpln_202200003 crossref_primary_10_1186_s13007_016_0140_8 crossref_primary_10_3390_f6103733 crossref_primary_10_1016_j_rhisph_2021_100368 crossref_primary_10_2134_age2018_10_0055 crossref_primary_10_1007_s40502_020_00540_6 crossref_primary_10_1016_j_tplants_2017_10_004 crossref_primary_10_1186_s40168_024_01839_4 crossref_primary_10_1111_jac_12525 crossref_primary_10_1016_j_fcr_2025_109786 crossref_primary_10_3390_plants12132513 crossref_primary_10_3390_environments8070064 crossref_primary_10_1016_j_jplph_2018_03_002 crossref_primary_10_1093_treephys_tpaa126 crossref_primary_10_1007_s10681_019_2472_8 crossref_primary_10_1111_pbi_13531 crossref_primary_10_1016_j_agwat_2018_08_013 crossref_primary_10_1002_fes3_369 crossref_primary_10_3390_ijms19123888 crossref_primary_10_1038_s41598_021_88588_8 crossref_primary_10_3390_genes13020181 crossref_primary_10_1093_insilicoplants_diaa001 crossref_primary_10_3390_agronomy12020358 crossref_primary_10_1016_j_scienta_2019_01_038 crossref_primary_10_1007_s00425_023_04262_5 crossref_primary_10_1007_s11104_023_06301_2 crossref_primary_10_34133_2021_6953197 crossref_primary_10_1016_j_plaphy_2021_11_002 crossref_primary_10_1093_jxb_erv017 crossref_primary_10_1080_15592324_2015_1013795 crossref_primary_10_2134_agronj2019_03_0146 crossref_primary_10_1007_s00425_023_04327_5 crossref_primary_10_1111_ppl_13313 crossref_primary_10_3390_ijms23031091 crossref_primary_10_3389_fpls_2023_1080427 crossref_primary_10_3389_fpls_2024_1440859 crossref_primary_10_1051_ocl_2022021 crossref_primary_10_3390_ijms22158085 crossref_primary_10_3390_genes13040670 crossref_primary_10_2139_ssrn_4666863 crossref_primary_10_1093_plcell_koae083 crossref_primary_10_3389_fpls_2017_01577 crossref_primary_10_1007_s10681_014_1163_8 crossref_primary_10_1111_pce_13875 crossref_primary_10_1016_j_fcr_2021_108142 crossref_primary_10_1007_s10681_015_1625_7 crossref_primary_10_1016_j_molp_2017_08_011 crossref_primary_10_1007_s40502_018_0415_3 crossref_primary_10_1007_s11104_022_05461_x crossref_primary_10_1016_j_jgg_2024_10_007 crossref_primary_10_1007_s40502_021_00592_2 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1002_ece3_1662 crossref_primary_10_3390_agriculture14122157 crossref_primary_10_1002_pei3_10060 crossref_primary_10_1016_j_jia_2023_07_013 crossref_primary_10_1016_j_eja_2014_11_009 crossref_primary_10_1016_j_jia_2023_07_012 crossref_primary_10_1038_s41893_018_0106_0 crossref_primary_10_3389_fpls_2016_01584 crossref_primary_10_1016_j_fcr_2021_108378 crossref_primary_10_1155_2024_8247993 crossref_primary_10_1071_CP20259 crossref_primary_10_1002_csc2_20838 crossref_primary_10_3389_fpls_2021_725915 crossref_primary_10_1007_s00122_024_04797_5 crossref_primary_10_1093_jxb_erv241 crossref_primary_10_1007_s10535_016_0643_1 crossref_primary_10_1371_journal_pone_0242472 crossref_primary_10_1016_j_jplph_2016_11_003 crossref_primary_10_1007_s00344_021_10454_8 crossref_primary_10_3389_fpls_2022_1004904 crossref_primary_10_1093_jxb_erv007 crossref_primary_10_1093_jxb_erx427 crossref_primary_10_2478_boku_2020_0008 crossref_primary_10_34133_2022_9858049 crossref_primary_10_1016_j_agwat_2024_108932 crossref_primary_10_1007_s11104_019_04185_9 crossref_primary_10_1186_s12284_020_00443_y crossref_primary_10_1093_aob_mcac087 crossref_primary_10_1093_jxb_eru162 crossref_primary_10_1016_j_pbi_2016_04_005 crossref_primary_10_1016_j_fcr_2024_109283 crossref_primary_10_1016_j_fcr_2024_109282 crossref_primary_10_3390_plants9050645 crossref_primary_10_1016_j_catena_2018_09_040 crossref_primary_10_3389_fpls_2020_618222 crossref_primary_10_1016_j_agwat_2023_108607 crossref_primary_10_3390_plants12020275 crossref_primary_10_1016_j_envsoft_2023_105932 crossref_primary_10_3390_plants8120584 crossref_primary_10_1093_aob_mcx157 crossref_primary_10_1038_s41598_024_53798_3 crossref_primary_10_1016_j_agwat_2019_105839 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_1186_s12870_022_03987_x crossref_primary_10_1007_s40502_024_00828_x crossref_primary_10_3390_plants11141855 crossref_primary_10_1111_nph_19279 crossref_primary_10_3923_ajps_2018_191_197 crossref_primary_10_1111_plb_12594 crossref_primary_10_1093_pcp_pcx090 crossref_primary_10_1016_j_fcr_2018_12_015 crossref_primary_10_3389_fpls_2017_00296 crossref_primary_10_1146_annurev_arplant_042817_040218 crossref_primary_10_1093_jxb_erv074 crossref_primary_10_3389_fpls_2016_02001 crossref_primary_10_1016_j_cj_2020_12_001 crossref_primary_10_1093_aob_mcw073 crossref_primary_10_1038_s41467_024_45272_5 crossref_primary_10_1016_j_molp_2023_09_003 crossref_primary_10_1007_s11104_018_3803_6 crossref_primary_10_3389_fpls_2019_00363 crossref_primary_10_1111_nph_19263 crossref_primary_10_5433_1679_0359_2020v41n4p1093 crossref_primary_10_1371_journal_pone_0120604 crossref_primary_10_13080_z_a_2019_106_025 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_3390_genes16010064 crossref_primary_10_1016_j_rhisph_2023_100772 crossref_primary_10_1016_j_agwat_2021_107371 crossref_primary_10_1186_s12870_024_05183_5 crossref_primary_10_1016_j_indcrop_2024_118844 crossref_primary_10_3389_fpls_2019_00119 crossref_primary_10_3390_agronomy10050713 crossref_primary_10_1016_j_fcr_2020_108013 crossref_primary_10_3389_fpls_2023_1061503 crossref_primary_10_1002_csc2_20635 crossref_primary_10_1007_s11104_015_2462_0 crossref_primary_10_1038_s41598_018_36958_0 crossref_primary_10_7717_peerj_12766 crossref_primary_10_3390_biology13040244 crossref_primary_10_1016_j_tplants_2017_07_008 crossref_primary_10_1007_s10705_023_10286_w crossref_primary_10_3389_fpls_2022_918043 crossref_primary_10_1073_pnas_1604021113 crossref_primary_10_1093_jxb_ery252 crossref_primary_10_1002_csc2_20312 crossref_primary_10_1270_jsbbs_20118 crossref_primary_10_1093_aob_mcz011 crossref_primary_10_1111_pce_15085 crossref_primary_10_1088_1748_9326_abe74e crossref_primary_10_1007_s11104_023_06255_5 crossref_primary_10_1021_acs_jafc_4c08169 crossref_primary_10_1016_j_agwat_2021_106879 crossref_primary_10_3389_fpls_2018_00163 crossref_primary_10_2136_vzj2016_12_0125 crossref_primary_10_1007_s11104_024_06840_2 crossref_primary_10_1007_s00425_025_04635_y crossref_primary_10_1016_j_agee_2017_05_012 crossref_primary_10_1016_j_jplph_2021_153586 crossref_primary_10_1590_0034_737x2024710025 crossref_primary_10_1111_jipb_12433 crossref_primary_10_1270_jsbbs_20126 crossref_primary_10_1002_csc2_20781 crossref_primary_10_1016_j_fcr_2020_107872 crossref_primary_10_3389_fpls_2019_00820 crossref_primary_10_1093_jxb_erz315 crossref_primary_10_3390_genes13091632 crossref_primary_10_3389_fpls_2017_01709 crossref_primary_10_1093_insilicoplants_diz012 crossref_primary_10_1186_s12870_015_0585_3 crossref_primary_10_3390_agronomy12061472 crossref_primary_10_1556_0806_47_2019_010 crossref_primary_10_1007_s11104_017_3454_z crossref_primary_10_3389_fpls_2024_1383373 crossref_primary_10_1007_s11105_020_01214_1 crossref_primary_10_1186_s12870_018_1383_5 crossref_primary_10_3390_ijms24076233 crossref_primary_10_3390_ijms21041513 crossref_primary_10_3389_fsoil_2022_831775 crossref_primary_10_1007_s11104_023_05892_0 crossref_primary_10_3389_fpls_2022_877544 crossref_primary_10_1016_j_plaphy_2022_04_024 crossref_primary_10_3389_fpls_2022_795011 crossref_primary_10_1002_imt2_70015 crossref_primary_10_1270_jsbbs_20106 crossref_primary_10_1111_jipb_12452 crossref_primary_10_1093_jxb_erw061 crossref_primary_10_2135_cropsci2014_12_0847 crossref_primary_10_1016_j_envpol_2024_125141 crossref_primary_10_1002_csc2_20108 crossref_primary_10_1093_jxb_ery048 crossref_primary_10_1094_PDIS_09_19_1904_RE crossref_primary_10_3389_fpls_2017_00436 crossref_primary_10_1016_j_agsy_2024_103895 crossref_primary_10_1007_s11540_024_09802_4 crossref_primary_10_1007_s11104_023_06068_6 crossref_primary_10_3390_agriculture15060574 crossref_primary_10_1093_jxb_erz383 crossref_primary_10_1002_vzj2_20181 crossref_primary_10_1016_j_scienta_2018_04_054 crossref_primary_10_1093_jxb_erad059 crossref_primary_10_1016_j_cj_2019_12_006 crossref_primary_10_1111_mec_13007 crossref_primary_10_3390_plants10071450 crossref_primary_10_1111_ppl_14336 crossref_primary_10_1016_j_fcr_2023_108989 crossref_primary_10_1186_s12284_018_0234_1 crossref_primary_10_1590_0103_8478cr20210032 crossref_primary_10_1111_ppl_13487 crossref_primary_10_3390_agriculture13040765 crossref_primary_10_1038_s41477_022_01274_z crossref_primary_10_1080_00103624_2021_1925688 crossref_primary_10_3389_fpls_2024_1358163 crossref_primary_10_3390_microorganisms9040870 crossref_primary_10_1371_journal_pone_0127526 crossref_primary_10_1016_j_still_2019_03_001 crossref_primary_10_1111_pce_14175 crossref_primary_10_3390_agronomy12092136 crossref_primary_10_1093_jxb_ery034 crossref_primary_10_3390_genes12050709 crossref_primary_10_1093_jxb_erw093 crossref_primary_10_2134_age2018_07_0018 crossref_primary_10_1016_j_fcr_2021_108178 crossref_primary_10_1002_csc2_21208 crossref_primary_10_1016_j_biotechadv_2013_08_019 crossref_primary_10_1042_BCJ20220245 crossref_primary_10_3390_agronomy11112294 crossref_primary_10_1007_s40484_017_0110_9 crossref_primary_10_1016_j_pbi_2018_05_003 crossref_primary_10_1016_j_scienta_2023_111956 crossref_primary_10_1016_j_fcr_2022_108462 crossref_primary_10_1007_s11104_018_3744_0 crossref_primary_10_1016_j_rhisph_2021_100426 crossref_primary_10_1016_j_jia_2024_05_031 crossref_primary_10_1139_cjps_2023_0020 crossref_primary_10_1007_s11104_015_2673_4 crossref_primary_10_12688_f1000research_140649_1 crossref_primary_10_1002_ece3_7628 crossref_primary_10_1016_j_fcr_2025_109805 crossref_primary_10_1111_sum_12382 crossref_primary_10_1016_j_fcr_2023_109006 crossref_primary_10_1016_j_fcr_2025_109806 crossref_primary_10_3389_fpls_2023_1125672 crossref_primary_10_1093_plphys_kiac586 crossref_primary_10_1093_plcell_koac327 crossref_primary_10_1093_jxb_erab231 crossref_primary_10_1007_s00122_014_2353_4 crossref_primary_10_1016_j_rhisph_2021_100415 crossref_primary_10_1007_s11104_023_06020_8 crossref_primary_10_3389_fpls_2021_728527 crossref_primary_10_3390_agronomy14061228 crossref_primary_10_1007_s11104_020_04673_3 crossref_primary_10_1111_1365_2745_12648 crossref_primary_10_3390_agronomy9100651 crossref_primary_10_1038_s43017_023_00514_w crossref_primary_10_1016_j_jclepro_2018_06_233 crossref_primary_10_3117_rootres_33_7 crossref_primary_10_1002_aps3_1238 crossref_primary_10_1093_jxb_erad444 crossref_primary_10_1186_1939_8433_6_30 crossref_primary_10_1093_jxb_erac118 crossref_primary_10_1016_j_envexpbot_2017_12_008 crossref_primary_10_1038_s41467_024_55324_5 crossref_primary_10_1016_j_fcr_2024_109305 crossref_primary_10_18393_ejss_977955 crossref_primary_10_1111_pce_14135 crossref_primary_10_1002_fes3_208 crossref_primary_10_1007_s00425_014_2150_y crossref_primary_10_1111_pce_15462 crossref_primary_10_3389_fpls_2020_00546 crossref_primary_10_1371_journal_pone_0125781 crossref_primary_10_3389_fpls_2020_00544 crossref_primary_10_1093_jxb_eraa165 crossref_primary_10_1186_s12870_021_03127_x crossref_primary_10_3390_ijms25126791 crossref_primary_10_1080_01904167_2018_1554074 crossref_primary_10_1016_j_envexpbot_2018_06_023 crossref_primary_10_1073_pnas_2219668120 crossref_primary_10_3390_agriculture10120634 crossref_primary_10_3389_fpls_2024_1389082 crossref_primary_10_3390_ijms241310492 crossref_primary_10_3390_plants10071274 crossref_primary_10_1186_s12284_020_00404_5 crossref_primary_10_2134_agronj2016_09_0507 crossref_primary_10_1111_nph_70013 crossref_primary_10_1016_j_envres_2024_119523 crossref_primary_10_3389_fpls_2016_00865 crossref_primary_10_1016_j_apsoil_2023_104994 crossref_primary_10_1002_fes3_70017 crossref_primary_10_1111_oik_10763 crossref_primary_10_1016_j_still_2019_104407 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_1088_1755_1315_918_1_012046 crossref_primary_10_3390_plants13081075 crossref_primary_10_3390_agronomy10030324 crossref_primary_10_1007_s00122_024_04606_z crossref_primary_10_1016_j_jplph_2020_153281 crossref_primary_10_34133_plantphenomics_0127 crossref_primary_10_1007_s11103_020_00984_2 crossref_primary_10_1016_j_scienta_2021_110454 crossref_primary_10_1016_j_jgg_2024_01_006 crossref_primary_10_1093_aob_mct123 crossref_primary_10_3390_agronomy12112892 crossref_primary_10_1002_tpg2_20490 crossref_primary_10_1093_jxb_erad488 crossref_primary_10_3389_fpls_2015_00835 crossref_primary_10_1111_jipb_12823 crossref_primary_10_1111_nph_18733 crossref_primary_10_1007_s11104_018_3764_9 crossref_primary_10_1086_717295 crossref_primary_10_1093_plphys_kiae540 crossref_primary_10_1186_s12870_024_04799_x crossref_primary_10_1007_s00468_018_1710_3 crossref_primary_10_1007_s11104_018_3888_y crossref_primary_10_1007_s11104_013_1872_0 crossref_primary_10_1093_jxb_eru508 crossref_primary_10_3389_fpls_2016_01939 crossref_primary_10_1016_j_fcr_2023_109225 crossref_primary_10_1016_j_fcr_2018_02_009 crossref_primary_10_1002_tpg2_20003 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1002_tpg2_20489 crossref_primary_10_1093_plphys_kiad213 crossref_primary_10_2134_agronj2015_0367 crossref_primary_10_3390_agronomy11030552 crossref_primary_10_1111_tpj_16672 crossref_primary_10_1093_jxb_ert421 crossref_primary_10_3389_fpls_2022_959629 crossref_primary_10_1002_jpln_201800560 crossref_primary_10_1016_j_fcr_2014_10_009 crossref_primary_10_34133_2020_1925495 crossref_primary_10_1016_j_bcab_2021_101935 crossref_primary_10_1007_s40502_023_00748_2 crossref_primary_10_1016_j_fcr_2017_09_003 crossref_primary_10_1016_j_ecolmodel_2015_05_028 crossref_primary_10_3390_agronomy12051230 crossref_primary_10_3390_agronomy12112671 crossref_primary_10_3389_fpls_2021_808001 crossref_primary_10_1007_s11032_021_01257_6 crossref_primary_10_3390_stresses3010011 crossref_primary_10_3389_fpls_2022_853309 crossref_primary_10_1016_j_molp_2017_10_005 crossref_primary_10_1016_j_fcr_2023_109083 crossref_primary_10_3389_fpls_2019_00021 crossref_primary_10_1093_aobpla_plae046 crossref_primary_10_1007_s00122_021_03819_w crossref_primary_10_1016_j_devcel_2022_11_006 crossref_primary_10_1038_s41467_019_09287_7 crossref_primary_10_3390_agronomy14112513 crossref_primary_10_1016_j_fcr_2024_109369 crossref_primary_10_3389_fpls_2021_657629 crossref_primary_10_1016_j_copbio_2023_102961 crossref_primary_10_1371_journal_pone_0158718 crossref_primary_10_1111_nph_16483 crossref_primary_10_1111_nph_17572 crossref_primary_10_1111_jipb_13090 crossref_primary_10_1016_j_tplants_2013_04_010 crossref_primary_10_1016_j_pld_2024_09_008 crossref_primary_10_3390_horticulturae7080243 crossref_primary_10_1007_s10681_018_2283_3 crossref_primary_10_1093_jxb_erv307 crossref_primary_10_3390_plants11060821 crossref_primary_10_1080_1343943X_2021_1883990 crossref_primary_10_3389_fpls_2023_1132017 crossref_primary_10_1098_rsif_2019_0556 crossref_primary_10_1186_s13007_025_01348_x crossref_primary_10_1146_annurev_cellbio_100617_062949 crossref_primary_10_1186_s40659_018_0194_3 crossref_primary_10_3389_fpls_2020_01247 crossref_primary_10_1007_s10725_015_0123_1 crossref_primary_10_1080_17429145_2021_1933224 crossref_primary_10_1002_fes3_66 crossref_primary_10_1016_j_agwat_2022_107781 crossref_primary_10_1016_j_envexpbot_2020_104344 crossref_primary_10_1080_15592324_2017_1305536 crossref_primary_10_1093_plphys_kiac281 crossref_primary_10_1016_j_fcr_2016_04_008 crossref_primary_10_1017_S1479262120000192 crossref_primary_10_1111_pce_14898 crossref_primary_10_3390_agronomy10010134 crossref_primary_10_1007_s11104_024_06828_y crossref_primary_10_1111_nph_17329 crossref_primary_10_3390_agronomy9110772 crossref_primary_10_1111_tpj_13470 crossref_primary_10_1002_jpln_202200115 crossref_primary_10_2134_agronj2016_11_0669 crossref_primary_10_1515_opag_2022_0238 crossref_primary_10_3390_agronomy13010066 crossref_primary_10_1111_sum_12795 crossref_primary_10_1016_j_jplph_2020_153307 crossref_primary_10_1007_s11104_022_05331_6 crossref_primary_10_3390_stresses3030041 crossref_primary_10_1111_jac_12437 crossref_primary_10_3389_fpls_2022_1085409 crossref_primary_10_1093_jxb_erw422 crossref_primary_10_1093_aob_mcac147 crossref_primary_10_1002_agj2_20039 crossref_primary_10_1007_s11104_023_05966_z crossref_primary_10_1111_pce_12448 crossref_primary_10_1111_pce_12451 crossref_primary_10_3390_ijms252010940 crossref_primary_10_1007_s40333_025_0074_y crossref_primary_10_1016_j_agwat_2024_109252 crossref_primary_10_1016_j_rhisph_2024_100915 crossref_primary_10_1371_journal_pone_0318522 crossref_primary_10_1002_agj2_20040 crossref_primary_10_1093_jxb_eru496 crossref_primary_10_1093_jxb_erab551 crossref_primary_10_3390_plants10040764 crossref_primary_10_7717_peerj_7294 crossref_primary_10_1093_aob_mcw112 crossref_primary_10_1186_s12870_023_04469_4 crossref_primary_10_1556_0806_47_2019_10 crossref_primary_10_1016_j_agwat_2024_109247 crossref_primary_10_3390_agriculture13010210 crossref_primary_10_1007_s00425_023_04261_6 crossref_primary_10_1002_fes3_252 crossref_primary_10_1002_ppj2_20041 crossref_primary_10_1093_aob_mcw122 crossref_primary_10_1111_jac_12641 crossref_primary_10_1111_pce_12673 crossref_primary_10_1016_j_envexpbot_2023_105222 crossref_primary_10_3389_fpls_2024_1408356 crossref_primary_10_3389_fpls_2022_926214 crossref_primary_10_1002_ppj2_20036 crossref_primary_10_1093_jxb_eraa002 crossref_primary_10_1016_j_plantsci_2019_110380 crossref_primary_10_3390_plants11243520 crossref_primary_10_31083_j_fbl2710284 crossref_primary_10_1093_jxb_eraa487 crossref_primary_10_1093_plphys_kiae495 crossref_primary_10_1002_jpln_202000079 crossref_primary_10_1111_pce_12439 crossref_primary_10_3390_ijms20235893 crossref_primary_10_3390_agronomy10010105 crossref_primary_10_1111_pce_12684 crossref_primary_10_1016_j_jplph_2017_12_019 crossref_primary_10_3389_fpls_2020_00332 crossref_primary_10_1371_journal_pone_0121892 crossref_primary_10_3390_plants11192472 crossref_primary_10_1093_aob_mcab074 crossref_primary_10_1007_s11104_020_04626_w crossref_primary_10_1093_aob_mcae101 crossref_primary_10_34133_plantphenomics_0066 crossref_primary_10_1021_acs_jafc_9b02491 crossref_primary_10_3389_fpls_2023_1122833 crossref_primary_10_3390_plants8070240 crossref_primary_10_1093_jxb_eru048 crossref_primary_10_7868_S0002188117070122 crossref_primary_10_1007_s11104_023_06431_7 crossref_primary_10_1016_j_semcdb_2017_08_051 crossref_primary_10_3389_fpls_2017_00117 crossref_primary_10_3390_plants11172275 crossref_primary_10_1080_03650340_2019_1675872 crossref_primary_10_3389_fpls_2020_568009 crossref_primary_10_1007_s00442_014_2987_6 crossref_primary_10_1016_j_bcab_2021_102215 crossref_primary_10_1080_17429145_2022_2086307 crossref_primary_10_34133_2022_9758532 crossref_primary_10_1371_journal_pone_0126293 crossref_primary_10_3390_plants8110470 crossref_primary_10_3390_plants13233361 crossref_primary_10_1186_s12864_015_1226_9 crossref_primary_10_1002_ppj2_20050 crossref_primary_10_1007_s11104_018_3794_3 crossref_primary_10_3390_f12010050 crossref_primary_10_3390_plants11172256 crossref_primary_10_3389_fbioe_2022_1081647 crossref_primary_10_1093_aob_mcw154 crossref_primary_10_1007_s11104_023_06322_x crossref_primary_10_1093_jxb_erae191 crossref_primary_10_1016_j_scitotenv_2022_156229 crossref_primary_10_1186_s12284_018_0252_z crossref_primary_10_1016_j_envexpbot_2022_104965 crossref_primary_10_1371_journal_pone_0247810 crossref_primary_10_1111_nph_19589 crossref_primary_10_1007_s10535_015_0576_0 crossref_primary_10_2136_vzj2017_05_0107 crossref_primary_10_1093_jxb_eraf062 crossref_primary_10_3389_fpls_2017_00335 crossref_primary_10_3390_agronomy12020284 crossref_primary_10_1080_13505033_2016_1175909 crossref_primary_10_3389_fpls_2018_00229 crossref_primary_10_1007_s40502_019_00451_1 crossref_primary_10_1093_aob_mcae151 crossref_primary_10_3389_fpls_2019_00436 crossref_primary_10_1093_jxb_erv121 crossref_primary_10_1007_s10681_020_02700_z crossref_primary_10_1093_jxb_erv127 crossref_primary_10_1093_jxb_erx300 crossref_primary_10_3390_agronomy11081583 crossref_primary_10_2139_ssrn_4049601 crossref_primary_10_3390_plants8070236 crossref_primary_10_1080_23311932_2024_2370396 crossref_primary_10_3390_plants11212842 crossref_primary_10_1016_j_still_2022_105546 crossref_primary_10_1007_s11104_024_06626_6 crossref_primary_10_1007_s40626_017_0090_1 crossref_primary_10_3117_plantroot_19_13 crossref_primary_10_3389_fpls_2022_1047563 crossref_primary_10_3390_plants11212841 crossref_primary_10_1186_s12284_015_0049_2 crossref_primary_10_1007_s11104_024_07185_6 crossref_primary_10_1016_j_tplants_2018_08_004 crossref_primary_10_1111_jvs_13194 crossref_primary_10_3390_agriculture12020209 crossref_primary_10_1186_s12864_021_07874_x crossref_primary_10_1016_j_plaphy_2020_02_002 crossref_primary_10_1093_aob_mcv099 crossref_primary_10_3390_agronomy10091328 crossref_primary_10_1111_nph_14710 crossref_primary_10_1007_s40502_018_0429_x crossref_primary_10_1016_j_agwat_2024_109095 crossref_primary_10_1093_jxb_erw039 crossref_primary_10_1093_jxb_erz307 crossref_primary_10_1080_10426507_2021_1920588 crossref_primary_10_1002_jpln_201500181 crossref_primary_10_1111_pce_12616 crossref_primary_10_1002_agj2_20441 crossref_primary_10_1007_s11104_018_3792_5 crossref_primary_10_1186_s13007_017_0207_1 crossref_primary_10_1016_j_pbi_2017_06_008 crossref_primary_10_1007_s42729_023_01127_4 crossref_primary_10_1016_j_plantsci_2023_111903 crossref_primary_10_1016_j_tplants_2014_01_007 crossref_primary_10_32615_bp_2019_093 crossref_primary_10_1371_journal_pone_0151697 crossref_primary_10_1007_s11104_023_06159_4 crossref_primary_10_1093_jxb_erw282 crossref_primary_10_3390_biology10121249 crossref_primary_10_1007_s11104_018_3824_1 crossref_primary_10_1007_s11738_014_1609_6 crossref_primary_10_3389_fpls_2021_580462 crossref_primary_10_1002_pld3_328 crossref_primary_10_3390_f14040806 crossref_primary_10_1186_s12864_018_4639_4 crossref_primary_10_1016_j_geoderma_2024_116773 crossref_primary_10_1093_jxb_erw243 crossref_primary_10_1007_s11104_022_05527_w crossref_primary_10_1002_agj2_20210 crossref_primary_10_1111_pce_12822 crossref_primary_10_3390_plants13131808 crossref_primary_10_1016_j_plaphy_2020_02_025 crossref_primary_10_1590_s0100_204x2018000500011 crossref_primary_10_3390_su10114315 crossref_primary_10_1002_pld3_310 crossref_primary_10_3390_agronomy11010188 crossref_primary_10_1111_jac_12248 crossref_primary_10_1111_jipb_12384 crossref_primary_10_3390_ijms19123927 crossref_primary_10_1093_jxb_erw011 crossref_primary_10_1007_s11032_014_0177_1 crossref_primary_10_1038_s41477_023_01479_w crossref_primary_10_1093_aob_mcx068 crossref_primary_10_3389_fpls_2020_590179 crossref_primary_10_1186_s12870_020_02390_8 crossref_primary_10_1071_FP16154 crossref_primary_10_1016_j_agwat_2019_105706 crossref_primary_10_1016_j_jgg_2024_05_001 crossref_primary_10_1093_jxb_erw262 crossref_primary_10_1016_j_heliyon_2023_e13535 crossref_primary_10_3389_fpls_2022_928229 crossref_primary_10_1093_jxb_eraa409 crossref_primary_10_1186_s12870_022_03972_4 crossref_primary_10_2135_cropsci2016_10_0834 crossref_primary_10_3390_plants10010005 crossref_primary_10_1007_s11104_024_07106_7 crossref_primary_10_2134_agronj2017_07_0400 crossref_primary_10_1007_s40009_017_0588_8 crossref_primary_10_1002_ldr_3616 crossref_primary_10_1007_s00122_018_3183_6 crossref_primary_10_1002_pld3_130 crossref_primary_10_3390_plants9121722 crossref_primary_10_1038_s41598_020_65047_4 crossref_primary_10_1111_pbr_13248 crossref_primary_10_3390_plants13233407 crossref_primary_10_1111_plb_13478 crossref_primary_10_3390_plants10050939 crossref_primary_10_1016_j_agwat_2023_108487 crossref_primary_10_1111_jipb_13408 crossref_primary_10_1111_jipb_12559 crossref_primary_10_1093_jxb_ery379 crossref_primary_10_1534_g3_117_300147 crossref_primary_10_3390_agronomy12061324 crossref_primary_10_3389_fpls_2022_1017048 crossref_primary_10_1038_s41598_024_73350_7 crossref_primary_10_1111_pce_12933 crossref_primary_10_1093_plphys_kiab527 crossref_primary_10_1111_nph_16807 crossref_primary_10_3390_agronomy14092018 crossref_primary_10_1007_s00285_017_1111_z crossref_primary_10_1093_insilicoplants_diad012 crossref_primary_10_3389_fpls_2022_992799 crossref_primary_10_3390_agronomy12061329 crossref_primary_10_1002_jsfa_11892 crossref_primary_10_1186_s12870_020_02448_7 crossref_primary_10_1002_jpln_201900353 crossref_primary_10_1007_s11104_013_1997_1 crossref_primary_10_1016_j_pocean_2023_103074 crossref_primary_10_1016_j_scienta_2020_109858 crossref_primary_10_1111_jipb_13670 crossref_primary_10_17221_57_2024_CJGPB crossref_primary_10_1007_s11104_022_05669_x crossref_primary_10_1186_s12864_020_07320_4 crossref_primary_10_1007_s40333_021_0010_8 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_1016_j_envexpbot_2017_06_006 crossref_primary_10_1007_s00122_023_04376_0 crossref_primary_10_1093_jxb_erad390 crossref_primary_10_3390_agronomy14092031 crossref_primary_10_31590_ejosat_871122 crossref_primary_10_1016_j_fcr_2014_05_009 crossref_primary_10_1016_j_jia_2022_07_003 crossref_primary_10_1007_s11104_022_05427_z crossref_primary_10_1073_pnas_2012087118 crossref_primary_10_1093_jxb_ery361 crossref_primary_10_1016_j_eja_2022_126472 crossref_primary_10_1071_FP15308 crossref_primary_10_3390_agriculture12101677 crossref_primary_10_3389_fpls_2024_1345189 crossref_primary_10_1093_aob_mcz162 crossref_primary_10_1111_nph_14847 crossref_primary_10_1016_j_cropd_2023_100028 crossref_primary_10_1007_s40502_022_00652_1 crossref_primary_10_3390_plants12112135 crossref_primary_10_1093_jxb_erz258 crossref_primary_10_1007_s11104_019_04334_0 crossref_primary_10_1016_j_scienta_2024_113298 crossref_primary_10_1016_j_agwat_2023_108447 crossref_primary_10_1016_j_fcr_2023_108876 crossref_primary_10_1111_ppl_14207 crossref_primary_10_3389_fmicb_2024_1457624 crossref_primary_10_1016_j_agwat_2024_108728 crossref_primary_10_1016_j_fcr_2023_108878 crossref_primary_10_1007_s11104_019_03964_8 crossref_primary_10_1002_csc2_20237 crossref_primary_10_1007_s00122_014_2414_8 crossref_primary_10_1080_01904167_2022_2067055 crossref_primary_10_3390_agronomy12040845 crossref_primary_10_1002_biot_202100505 crossref_primary_10_1016_j_envexpbot_2021_104494 crossref_primary_10_1111_jipb_13603 crossref_primary_10_1007_s00425_018_3043_2 crossref_primary_10_1007_s11104_022_05434_0 crossref_primary_10_1007_s11816_018_0471_1 crossref_primary_10_1371_journal_pone_0212700 crossref_primary_10_1071_FP17303 crossref_primary_10_1186_s13007_018_0316_5 crossref_primary_10_1038_srep42664 crossref_primary_10_3389_fpls_2024_1351679 crossref_primary_10_1016_j_tplants_2014_08_005 crossref_primary_10_1007_s11104_024_07181_w crossref_primary_10_1093_aob_mcy092 crossref_primary_10_1093_jxb_ery183 crossref_primary_10_1093_plphys_kiab568 crossref_primary_10_3390_plants12203543 crossref_primary_10_7124_visnyk_utgis_14_2_695 crossref_primary_10_2134_agronj2017_04_0202 crossref_primary_10_1007_s00271_017_0554_8 crossref_primary_10_1007_s11104_024_07006_w crossref_primary_10_1007_s40502_022_00654_z crossref_primary_10_34133_2022_9879610 crossref_primary_10_1016_j_tplants_2015_11_008 crossref_primary_10_3389_fgene_2022_1060304 crossref_primary_10_1007_s00122_023_04472_1 crossref_primary_10_1093_jxb_ery394 crossref_primary_10_1093_plphys_kiab311 crossref_primary_10_1016_j_fcr_2023_108893 crossref_primary_10_1093_jxb_ery390 crossref_primary_10_1093_plphys_kiac405 crossref_primary_10_1007_s11104_024_06943_w crossref_primary_10_1016_j_fcr_2014_06_009 crossref_primary_10_1146_annurev_arplant_050718_100423 crossref_primary_10_1007_s11104_024_07139_y crossref_primary_10_3390_agronomy12061305 crossref_primary_10_3390_resources13090120 crossref_primary_10_3389_fsufs_2021_660155 crossref_primary_10_3835_plantgenome2017_08_0071 crossref_primary_10_1016_j_cell_2019_06_018 crossref_primary_10_3389_fpls_2017_00786 crossref_primary_10_1007_s11356_022_22577_w crossref_primary_10_1080_15226514_2018_1523869 crossref_primary_10_3389_fpls_2019_01619 crossref_primary_10_1007_s10722_015_0279_6 crossref_primary_10_1007_s11104_023_06154_9 crossref_primary_10_1186_s12870_024_04756_8 crossref_primary_10_3389_fpls_2015_00570 crossref_primary_10_1007_s11104_021_05026_4 crossref_primary_10_1016_j_fcr_2022_108580 crossref_primary_10_1038_nplants_2015_118 crossref_primary_10_1071_FP16435 crossref_primary_10_1111_nph_15738 crossref_primary_10_1007_s13593_014_0272_z crossref_primary_10_1093_jxb_erab124 crossref_primary_10_1007_s11104_017_3533_1 crossref_primary_10_1093_jxb_erab121 crossref_primary_10_3389_fpls_2016_00944 crossref_primary_10_1016_j_fcr_2019_107562 crossref_primary_10_1007_s11104_019_04269_6 crossref_primary_10_1139_cjm_2023_0237 crossref_primary_10_1080_17429145_2024_2323991 crossref_primary_10_5010_JPB_2016_43_4_444 crossref_primary_10_1016_j_agwat_2022_107718 crossref_primary_10_3389_fpls_2017_00912 crossref_primary_10_1002_fes3_355 crossref_primary_10_1093_gigascience_giz123 crossref_primary_10_1007_s00284_021_02672_w crossref_primary_10_3390_plants11070913 crossref_primary_10_2135_cropsci2016_02_0116 crossref_primary_10_1038_s41588_019_0401_3 crossref_primary_10_1111_pce_14270 crossref_primary_10_1016_j_fcr_2024_109640 crossref_primary_10_1186_s13007_019_0533_6 crossref_primary_10_1002_csc2_21108 crossref_primary_10_3390_cells11111765 crossref_primary_10_7717_peerj_10291 crossref_primary_10_1093_jxb_eraa027 crossref_primary_10_1007_s11104_015_2478_5 crossref_primary_10_1186_s12870_024_05477_8 crossref_primary_10_3389_fpls_2021_747142 crossref_primary_10_1186_s12870_019_1794_y crossref_primary_10_1016_j_tplants_2016_07_011 crossref_primary_10_1038_srep39855 crossref_primary_10_1111_pce_13197 crossref_primary_10_3389_fpls_2022_760879 crossref_primary_10_1111_pce_14284 crossref_primary_10_1016_j_eja_2021_126393 crossref_primary_10_1038_s41598_020_61986_0 crossref_primary_10_1111_aab_12540 crossref_primary_10_31015_jaefs_2022_2_2 crossref_primary_10_1016_j_fcr_2023_109114 crossref_primary_10_1007_s11104_021_05190_7 crossref_primary_10_4236_wjet_2022_103039 crossref_primary_10_1007_s11104_020_04585_2 crossref_primary_10_1093_jxb_erac236 crossref_primary_10_1093_plphys_kiab352 crossref_primary_10_1016_j_agwat_2018_09_010 crossref_primary_10_1016_j_cj_2020_09_011 crossref_primary_10_1007_s10265_019_01089_8 crossref_primary_10_1007_s11104_020_04794_9 crossref_primary_10_1111_pce_14259 crossref_primary_10_1016_j_tplants_2017_02_001 crossref_primary_10_1111_pce_14256 crossref_primary_10_3390_plants11040492 crossref_primary_10_1007_s11103_016_0455_x crossref_primary_10_1080_1343943X_2017_1288550 crossref_primary_10_1016_j_scitotenv_2024_177379 crossref_primary_10_1093_jxb_eraa049 crossref_primary_10_3389_fpls_2017_00900 crossref_primary_10_3389_fpls_2023_1260005 crossref_primary_10_3389_fpls_2022_836063 crossref_primary_10_3390_plants13030432 crossref_primary_10_1016_j_fcr_2023_109139 crossref_primary_10_1016_j_fcr_2014_03_017 crossref_primary_10_1016_j_plantsci_2017_12_004 crossref_primary_10_1002_tpg2_20395 crossref_primary_10_1093_jxb_erz293 crossref_primary_10_3389_fpls_2021_716691 crossref_primary_10_3389_fpls_2022_1035089 crossref_primary_10_3390_plants12234050 crossref_primary_10_1016_j_jplph_2020_153153 crossref_primary_10_3389_fpls_2023_1146681 crossref_primary_10_1111_pbr_12516 crossref_primary_10_1007_s11104_021_04921_0 crossref_primary_10_1071_FP13330 crossref_primary_10_1186_s12870_021_03237_6 crossref_primary_10_2144_btn_2018_0173 crossref_primary_10_3389_fphgy_2024_1341617 crossref_primary_10_1016_j_jarmap_2023_100463 crossref_primary_10_3390_plants10061121 crossref_primary_10_1002_jpln_201600120 crossref_primary_10_1016_j_envexpbot_2019_103962 crossref_primary_10_1007_s11104_021_05248_6 crossref_primary_10_1007_s11104_022_05685_x crossref_primary_10_3923_ijss_2016_137_142 crossref_primary_10_7717_peerj_14218 crossref_primary_10_1590_s0100_204x2017000500006 crossref_primary_10_3390_plants7040088 crossref_primary_10_1016_j_tplants_2019_04_005 crossref_primary_10_1038_s41477_020_0684_5 crossref_primary_10_1080_01904167_2024_2380778 crossref_primary_10_1016_j_fcr_2024_109618 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1016_j_ygeno_2020_09_030 crossref_primary_10_3390_plants12051110 crossref_primary_10_1007_s00425_019_03232_0 crossref_primary_10_1007_s11104_018_3885_1 crossref_primary_10_1016_j_sajb_2020_03_003 crossref_primary_10_1007_s12010_015_1815_8 crossref_primary_10_1093_plphys_kiab392 crossref_primary_10_1007_s10681_015_1533_x crossref_primary_10_1016_j_fcr_2019_03_006 crossref_primary_10_1007_s11104_018_3656_z crossref_primary_10_1016_j_geoderma_2024_117061 crossref_primary_10_1016_j_stress_2023_100211 crossref_primary_10_1108_IJCHM_01_2022_0039 crossref_primary_10_1016_j_fcr_2019_04_012 crossref_primary_10_1007_s11104_021_05094_6 crossref_primary_10_1016_j_fcr_2023_109107 crossref_primary_10_1111_pbr_12777 crossref_primary_10_1007_s11738_016_2119_5 crossref_primary_10_1016_j_fcr_2023_109109 crossref_primary_10_1016_j_plaphy_2023_108213 crossref_primary_10_1016_j_apsoil_2017_07_030 crossref_primary_10_3390_ijms221910892 crossref_primary_10_1093_jxb_eraa084 crossref_primary_10_1016_j_eja_2019_01_008 crossref_primary_10_1007_s12298_021_01079_y crossref_primary_10_1111_pce_13138 crossref_primary_10_1111_pce_14227 crossref_primary_10_1146_annurev_arplant_043015_111848 crossref_primary_10_1016_j_cub_2017_06_043 crossref_primary_10_1093_plphys_kiab145 crossref_primary_10_4236_as_2014_514155 crossref_primary_10_1002_csc2_21177 crossref_primary_10_19159_tutad_668185 crossref_primary_10_3390_ijms242015167 |
Cites_doi | 10.1016/S0065-2113(08)60803-2 10.1002/jpln.19941570506 10.1007/s11104-008-9562-z 10.1016/j.pbi.2008.12.002 10.3117/plantroot.1.57 10.1016/j.fcr.2010.03.004 10.1016/j.fcr.2010.10.003 10.1104/pp.109.1.7 10.1104/pp.111.175489 10.1071/FP03078 10.1007/s11738-009-0447-4 10.1046/j.1365-2435.2002.06904.x 10.1007/s11104-004-1697-y 10.1111/j.1469-8137.1996.tb01847.x 10.1093/jexbot/52.355.329 10.1007/s00122-009-1144-9 10.1111/j.1365-3040.2009.02099.x 10.1093/aob/mcs082 10.1023/A:1014897607670 10.1046/j.1365-3040.2003.01015.x 10.1016/j.fcr.2011.01.001 10.1046/j.1469-8137.2003.00695.x 10.1023/A:1010381919003 10.1023/A:1014987710937 10.1016/j.tplants.2007.08.012 10.1016/S0022-5193(05)80130-4 10.1007/s00122-006-0260-z 10.1626/jcs.62.565 10.1006/anbo.2001.1530 10.1080/01904168609363512 10.1007/s11104-004-1096-4 10.1007/s11104-009-9984-2 10.1007/s11104-006-9008-4 10.1023/A:1012728819326 10.1071/FP04046 10.1016/j.fcr.2004.07.014 10.1590/S0100-204X2007000900020 10.1016/j.fcr.2011.03.001 10.2134/agronj1999.00021962009100030001x 10.1098/rspb.1999.0656 10.1071/FP05043 10.1098/rstb.2011.0243 10.1093/jxb/erp018 10.1007/s11738-999-0046-4 10.2136/sssaj2009.0227 10.1007/s11104-011-0950-4 10.1016/j.fcr.2007.03.014 10.1016/j.fcr.2012.09.010 10.1097/00010694-199210000-00005 10.1080/11263501003731805 10.1579/0044-7447-31.2.132 10.1007/s11104-007-9492-1 10.1007/3-540-27675-0_3 10.1046/j.0028-646X.2001.00285.x 10.1300/J144v01n02_11 10.1007/s00122-005-2051-3 10.1007/s11104-005-4268-y 10.1016/S1161-0301(02)00093-X 10.3117/plantroot.4.22 10.1104/pp.111.175414 10.2307/1939320 10.1093/aob/mcr143 10.2135/cropsci2011.01.0038 10.1023/A:1013324727040 10.1093/jxb/26.1.79 10.2135/cropsci2012.07.0440 10.1007/s00122-005-0139-4 10.1016/S0308-521X(01)00011-7 10.1007/s00122-011-1690-9 10.1104/pp.87.2.529 10.1007/s11104-011-0735-9 10.1071/FP03046 10.1093/jxb/ers111 10.1071/FP08132 10.1007/s11427-010-4097-y 10.1007/BF00056241 10.1201/9780203909423.pt6 10.1007/BF00007976 10.1007/s11104-012-1138-2 10.1111/j.1365-3040.2011.02311.x 10.1093/aob/mcq199 10.4141/P00-093 10.2135/cropsci2008.03.0152 10.1046/j.1365-3040.1999.00405.x 10.1007/BF00016284 10.1007/s11104-005-0389-6 10.1080/01904169209364361 10.1016/j.fcr.2008.07.010 10.1093/jxb/erh246 10.1007/s11104-010-0623-8 10.1093/aob/mcq029 10.1111/j.1365-3040.2008.01857.x 10.1007/BF00008076 10.1034/j.1399-3054.1996.970222.x 10.1093/jxb/erq350 10.1071/BT06118 10.1093/jxb/eri303 10.1007/s00122-004-1665-1 10.1071/FP05005 |
ContentType | Journal Article |
Copyright | Annals of Botany Company 2013 The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013 |
Copyright_xml | – notice: Annals of Botany Company 2013 – notice: The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/aob/mcs293 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 357 |
ExternalDocumentID | PMC3698384 23328767 10_1093_aob_mcs293 42797967 US201500057496 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -E4 -~X .2P .I3 0R~ 1B1 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 53G 5GY 5VS 5WA 5WD 6.Y 6J9 7-5 70D 71M 79B A8Z AABJS AABMN AACTN AAEDT AAESY AAIMJ AAIYJ AAJKP AAJQQ AALCJ AALRI AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAQFI AAQXK AAUQX AAVAP AAVLN AAWDT AAXTN AAXUO ABBHK ABDBF ABEFU ABEUO ABIXL ABJNI ABLJU ABNKS ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABXZS ABZBJ ACFRR ACGFO ACGFS ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ADBBV ADEIU ADEYI ADEZT ADFGL ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADMUD ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFDAS AFFNX AFFZL AFGWE AFIYH AFMIJ AFOFC AFRAH AFSWV AFXEN AFYAG AGINJ AGKEF AGKRT AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AIKOY AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD AOIJS APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATTQO AVWKF AXUDD AYOIW AZFZN AZQFJ BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BYORX C1A CAG CASEJ CDBKE COF CS3 CXTWN CZ4 DAKXR DATOO DFEDG DFGAJ DILTD DM4 DPORF DPPUQ D~K E3Z EBD EBS EDH EE~ EJD ELUNK EMOBN ESTFP ESX F5P F9B FA8 FBQ FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H5~ HAR HVGLF HW0 HYE HZ~ IHE IOX J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KC5 KOP KQ8 KSI KSN LG5 M-Z M49 MBTAY N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O-L O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF OZT O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R2- R44 RD5 RIG RNI ROL ROX ROZ RPM RPZ RUSNO RW1 RXO RZF RZO SA0 SSZ SV3 TCN TEORI TLC TN5 TR2 UHS UPT VH1 W8F WH7 WOQ X7H XOL XPP Y6R YAYTL YKOAZ YSK YXANX YZZ ZCG ZKX ZMT ~02 ~91 ~KM AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABPQP ABVGC ABXSQ ABXVV ACHIC ACUHS ADNBA ADQBN AGORE AJBYB AJNCP AKRWK AQVQM ATGXG H13 IPSME JXSIZ AAYWO AAYXX ABDPE ABIME ABNGD ABPIB ABWVN ABZEO ACRPL ACUKT ACVCV ACZBC ADNMO ADXHL AEHUL AFSHK AGMDO AGQPQ AHGBF AJDVS CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c457t-22a6f5bc118844468c8e49006fa7956ee6359097386f2eb87a354a54bed2c35c3 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 14:00:52 EDT 2025 Fri Jul 11 06:40:29 EDT 2025 Fri Jul 11 09:34:19 EDT 2025 Mon Jul 21 05:45:22 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 Tue Jul 01 01:39:12 EDT 2025 Sun Aug 24 12:10:45 EDT 2025 Wed Dec 27 19:03:14 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Root phenes ideotype anatomy water nitrogen architecture |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c457t-22a6f5bc118844468c8e49006fa7956ee6359097386f2eb87a354a54bed2c35c3 |
Notes | http://dx.doi.org/10.1093/aob/mcs293 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/112/2/347/17008517/mcs293.pdf |
PMID | 23328767 |
PQID | 1393818541 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3698384 proquest_miscellaneous_1663533186 proquest_miscellaneous_1393818541 pubmed_primary_23328767 crossref_primary_10_1093_aob_mcs293 crossref_citationtrail_10_1093_aob_mcs293 jstor_primary_42797967 fao_agris_US201500057496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hund ( key 20170512164909_MCS293C39) 2011; 344 Lambers ( key 20170512164909_MCS293C43) 2002 Yanai ( key 20170512164909_MCS293C99) 2002; 16 Tuberosa ( key 20170512164909_MCS293C90) 2002; 48 Wiesler ( key 20170512164909_MCS293C97) 1994; 163 Clark ( key 20170512164909_MCS293C12) 2008; 35 Nord ( key 20170512164909_MCS293C64) 2011; 108 Ge ( key 20170512164909_MCS293C22) 2000; 218 Henry ( key 20170512164909_MCS293C30) 2010; 117 Vance ( key 20170512164909_MCS293C91) 2003; 157 Zhu ( key 20170512164909_MCS293C104) 2006; 113 Manschadi ( key 20170512164909_MCS293C57) 2010; 144 Chen ( key 20170512164909_MCS293C11) 2010; 74 Kaspar ( key 20170512164909_MCS293C41) 1992; 154 Oyanagi ( key 20170512164909_MCS293C68) 1993; 62 Donald ( key 20170512164909_MCS293C13) 1968; 17 Lynch ( key 20170512164909_MCS293C49) 2011; 156 Rubio ( key 20170512164909_MCS293C81) 2004; 55 Barber ( key 20170512164909_MCS293C1) 1995 Burton ( key 20170512164909_MCS293C7) 2010 Lynch ( key 20170512164909_MCS293C51) 2012; 367 Bonser ( key 20170512164909_MCS293C5) 1996; 132 Eshel ( key 20170512164909_MCS293C19) 1996 Giuliani ( key 20170512164909_MCS293C23) 2005; 56 Bengough ( key 20170512164909_MCS293C3) 2011; 62 Ma ( key 20170512164909_MCS293C53) 2001; 236 Lynch ( key 20170512164909_MCS293C47) 1998; 1 Postma ( key 20170512164909_MCS293C73) 2012; 110 Sorgona ( key 20170512164909_MCS293C85) 2011; 34 Mace ( key 20170512164909_MCS293C54) 2012; 124 Lynch ( key 20170512164909_MCS293C46) 1995; 109 Nielsen ( key 20170512164909_MCS293C61) 2001; 52 Wiesler ( key 20170512164909_MCS293C96) 1993; 151 Liao ( key 20170512164909_MCS293C44) 2001; 232 Hund ( key 20170512164909_MCS293C37) 2004; 109 Thaler ( key 20170512164909_MCS293C86) 1996; 97 Trachsel ( key 20170512164909_MCS293C87) 2009; 119 Jackson ( key 20170512164909_MCS293C40) 1993; 74 Morrow de la Riva ( key 20170512164909_MCS293C60) 2010 Vieira ( key 20170512164909_MCS293C92) 2007; 42 Lynch ( key 20170512164909_MCS293C52) 2005; 269 Gowda ( key 20170512164909_MCS293C24) 2011; 122 Hammer ( key 20170512164909_MCS293C27) 2002; 18 Zhu ( key 20170512164909_MCS293C100) 2004; 31 Fisher ( key 20170512164909_MCS293C21) 2002; 153 Robinson ( key 20170512164909_MCS293C78) 2005 Wang ( key 20170512164909_MCS293C94) 2010; 106 Hoogenboom ( key 20170512164909_MCS293C35) 2004; 90 Drew ( key 20170512164909_MCS293C15) 1975; 26 Walk ( key 20170512164909_MCS293C93) 2006; 279 Sorgona ( key 20170512164909_MCS293C84) 2010; 32 Zhu ( key 20170512164909_MCS293C103) 2005; 32 Wasson ( key 20170512164909_MCS293C95) 2012; 63 Postma ( key 20170512164909_MCS293C72) 2011; 107 Hochholdinger ( key 20170512164909_MCS293C33) 2009; 12 Borch ( key 20170512164909_MCS293C6) 1999; 22 Postma ( key 20170512164909_MCS293C71) 2011; 156 Havlin ( key 20170512164909_MCS293C29) 2004 Mi ( key 20170512164909_MCS293C58) 2010; 53 Poudel ( key 20170512164909_MCS293C74) 2001; 68 Eissenstat ( key 20170512164909_MCS293C18) 1992; 15 Zhu ( key 20170512164909_MCS293C102) 2005; 111 Liu ( key 20170512164909_MCS293C45) 2008; 305 Nord ( key 20170512164909_MCS293C63) 2009; 60 Manschadi ( key 20170512164909_MCS293C56) 2008; 303 Ho ( key 20170512164909_MCS293C32) 2005; 32 Grzesiak ( key 20170512164909_MCS293C26) 1999; 21 Mano ( key 20170512164909_MCS293C55) 2006; 281 Trachsel ( key 20170512164909_MCS293C89) 2013; 140 Trachsel ( key 20170512164909_MCS293C88) 2011; 341 Robinson ( key 20170512164909_MCS293C77) 1990; 145 Raun ( key 20170512164909_MCS293C75) 1999; 91 de Dorlodot ( key 20170512164909_MCS293C14) 2007; 12 Oyanagi ( key 20170512164909_MCS293C67) 1994; 165 Bayuelo-Jimenez ( key 20170512164909_MCS293C2) 2011; 121 Bernier ( key 20170512164909_MCS293C4) 2009; 110 Hammer ( key 20170512164909_MCS293C28) 2009; 49 Kato ( key 20170512164909_MCS293C42) 2006; 287 Grant ( key 20170512164909_MCS293C25) 2001; 81 Lynch ( key 20170512164909_MCS293C48) 2007; 55 Fan ( key 20170512164909_MCS293C20) 2003; 30 Cassman ( key 20170512164909_MCS293C10) 2002; 31 Nord ( key 20170512164909_MCS293C62) 2008; 31 Rubio ( key 20170512164909_MCS293C80) 2001; 88 Singh ( key 20170512164909_MCS293C83) 2011; 51 Wiesler ( key 20170512164909_MCS293C98) 1994; 157 Henry ( key 20170512164909_MCS293C31) 2011; 120 Lynch ( key 20170512164909_MCS293C50) 2001; 237 O'Toole ( key 20170512164909_MCS293C65) 1987; 41 Zhu ( key 20170512164909_MCS293C101) 2005; 270 Dunbabin ( key 20170512164909_MCS293C17) 2003; 26 Zhu ( key 20170512164909_MCS293C105) 2010; 33 Burton ( key 20170512164909_MCS293C9) 2012; 357 Hoecker ( key 20170512164909_MCS293C34) 2006; 112 Hund ( key 20170512164909_MCS293C36) 2010; 4 Burton ( key 20170512164909_MCS293C8) 2013; 53 Omori ( key 20170512164909_MCS293C66) 2007; 1 Richardson ( key 20170512164909_MCS293C76) 2011; 349 Sanchez ( key 20170512164909_MCS293C82) 1976 Dunbabin ( key 20170512164909_MCS293C16) 2007; 104 Hund ( key 20170512164909_MCS293C38) 2009; 325 Pahlavian ( key 20170512164909_MCS293C70) 1988; 87 Miller ( key 20170512164909_MCS293C59) 2003; 30 Pace ( key 20170512164909_MCS293C69) 1986; 9 Robinson ( key 20170512164909_MCS293C79) 1999; 266 |
References_xml | – volume: 41 start-page: 91 year: 1987 ident: key 20170512164909_MCS293C65 article-title: Genotypic variation in crop plant root systems publication-title: Advances in Agronomy doi: 10.1016/S0065-2113(08)60803-2 – volume: 157 start-page: 351 year: 1994 ident: key 20170512164909_MCS293C98 article-title: Root growth of maize cultivars under field conditions as studied by the core and minirhizotron method and relationships to shoot growth publication-title: Zeitschrift fur Pflanzenernahrung und Bodenkunde doi: 10.1002/jpln.19941570506 – volume: 305 start-page: 253 year: 2008 ident: key 20170512164909_MCS293C45 article-title: Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.) publication-title: Plant and Soil doi: 10.1007/s11104-008-9562-z – volume: 12 start-page: 172 year: 2009 ident: key 20170512164909_MCS293C33 article-title: Genetic and genomic dissection of maize root development and architecture publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2008.12.002 – volume: 1 start-page: 57 year: 2007 ident: key 20170512164909_MCS293C66 article-title: QTL mapping of root angle in F2 populations from maize ‘B73’×teosinte ‘Zea luxurians publication-title: Plant Root doi: 10.3117/plantroot.1.57 – volume: 117 start-page: 209 year: 2010 ident: key 20170512164909_MCS293C30 article-title: Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L.) publication-title: Field Crops Research doi: 10.1016/j.fcr.2010.03.004 – volume: 120 start-page: 205 year: 2011 ident: key 20170512164909_MCS293C31 article-title: Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields publication-title: Field Crops Research doi: 10.1016/j.fcr.2010.10.003 – volume: 109 start-page: 7 year: 1995 ident: key 20170512164909_MCS293C46 article-title: Root architecture and plant productivity publication-title: Plant Physiology doi: 10.1104/pp.109.1.7 – volume: 156 start-page: 1190 year: 2011 ident: key 20170512164909_MCS293C71 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology doi: 10.1104/pp.111.175489 – volume-title: Soil fertility and fertilizers: an introduction to nutrient management year: 2004 ident: key 20170512164909_MCS293C29 – volume: 30 start-page: 973 year: 2003 ident: key 20170512164909_MCS293C59 article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils publication-title: Functional Plant Biology doi: 10.1071/FP03078 – volume: 32 start-page: 683 year: 2010 ident: key 20170512164909_MCS293C84 article-title: Spatial and temporal patterns of net nitrate uptake regulation and kinetics along the tap root of Citrus aurantium publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-009-0447-4 – volume: 16 start-page: 865 year: 2002 ident: key 20170512164909_MCS293C99 article-title: Coping with herbivores and pathogens: a model of optimal root turnover publication-title: Functional Ecology doi: 10.1046/j.1365-2435.2002.06904.x – volume: 270 start-page: 299 year: 2005 ident: key 20170512164909_MCS293C101 article-title: Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency publication-title: Plant and Soil doi: 10.1007/s11104-004-1697-y – volume: 132 start-page: 281 year: 1996 ident: key 20170512164909_MCS293C5 article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris publication-title: New Phytologist doi: 10.1111/j.1469-8137.1996.tb01847.x – volume: 52 start-page: 329 year: 2001 ident: key 20170512164909_MCS293C61 article-title: The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/52.355.329 – volume: 119 start-page: 1413 year: 2009 ident: key 20170512164909_MCS293C87 article-title: Mapping of QTLs for lateral and axile root growth of tropical maize publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-009-1144-9 – volume: 33 start-page: 740 year: 2010 ident: key 20170512164909_MCS293C105 article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2009.02099.x – volume: 110 start-page: 521 year: 2012 ident: key 20170512164909_MCS293C73 article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures publication-title: Annals of Botany doi: 10.1093/aob/mcs082 – volume: 48 start-page: 697 year: 2002 ident: key 20170512164909_MCS293C90 article-title: Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes publication-title: Plant Molecular Biology doi: 10.1023/A:1014897607670 – volume: 26 start-page: 835 year: 2003 ident: key 20170512164909_MCS293C17 article-title: Is there an optimal root architecture for nitrate capture in leaching environments? publication-title: Plant, Cell & Environment doi: 10.1046/j.1365-3040.2003.01015.x – volume: 121 start-page: 350 year: 2011 ident: key 20170512164909_MCS293C2 article-title: Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability publication-title: Field Crops Research doi: 10.1016/j.fcr.2011.01.001 – volume: 157 start-page: 423 year: 2003 ident: key 20170512164909_MCS293C91 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00695.x – start-page: 175 volume-title: Plant roots: the hidden half year: 1996 ident: key 20170512164909_MCS293C19 article-title: Multiform and multifunction of various constituents of one root system – volume: 232 start-page: 69 year: 2001 ident: key 20170512164909_MCS293C44 article-title: Effect of phosphorus availability on basal root shallowness in common bean publication-title: Plant and Soil doi: 10.1023/A:1010381919003 – volume: 218 start-page: 159 year: 2000 ident: key 20170512164909_MCS293C22 article-title: The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model publication-title: Plant and Soil doi: 10.1023/A:1014987710937 – volume: 12 start-page: 474 year: 2007 ident: key 20170512164909_MCS293C14 article-title: Root system architecture: opportunities and constraints for genetic improvement of crops publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2007.08.012 – volume: 145 start-page: 257 year: 1990 ident: key 20170512164909_MCS293C77 article-title: Phosphorus availability and cortical senescence in cereal roots publication-title: Journal of Theoretical Biology doi: 10.1016/S0022-5193(05)80130-4 – volume: 113 start-page: 1 year: 2006 ident: key 20170512164909_MCS293C104 article-title: Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-006-0260-z – volume: 62 start-page: 565 year: 1993 ident: key 20170512164909_MCS293C68 article-title: Relationship between root growth angle of seedlings and vertical distribution of roots in the field in wheat cultivars publication-title: Japanese Journal of Crop Science doi: 10.1626/jcs.62.565 – volume: 88 start-page: 929 year: 2001 ident: key 20170512164909_MCS293C80 article-title: Root gravitropism and below-ground competition among neighbouring plants: a modelling approach publication-title: Annals of Botany doi: 10.1006/anbo.2001.1530 – volume: 9 start-page: 1095 year: 1986 ident: key 20170512164909_MCS293C69 article-title: Comparison of nitrate uptake kinetic parameters across maize inbred lines publication-title: Journal of Plant Nutrition doi: 10.1080/01904168609363512 – volume: 269 start-page: 45 year: 2005 ident: key 20170512164909_MCS293C52 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant and Soil doi: 10.1007/s11104-004-1096-4 – volume: 325 start-page: 335 year: 2009 ident: key 20170512164909_MCS293C38 article-title: Growth of axile and lateral roots of maize. I. Development of a phenotying platform publication-title: Plant and Soil doi: 10.1007/s11104-009-9984-2 – volume: 287 start-page: 117 year: 2006 ident: key 20170512164909_MCS293C42 article-title: Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes publication-title: Plant and Soil doi: 10.1007/s11104-006-9008-4 – volume: 236 start-page: 221 year: 2001 ident: key 20170512164909_MCS293C53 article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: a modeling approach publication-title: Plant and Soil doi: 10.1023/A:1012728819326 – volume: 31 start-page: 949 year: 2004 ident: key 20170512164909_MCS293C100 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings publication-title: Functional Plant Biology doi: 10.1071/FP04046 – volume: 90 start-page: 145 year: 2004 ident: key 20170512164909_MCS293C35 article-title: From genome to crop: integration through simulation modeling publication-title: Field Crops Research doi: 10.1016/j.fcr.2004.07.014 – volume: 42 start-page: 1365 year: 2007 ident: key 20170512164909_MCS293C92 article-title: Method for evaluation of root hairs of common bean genotypes publication-title: Pesquisa Agropecuária Brasiliera, Brasília doi: 10.1590/S0100-204X2007000900020 – volume: 122 start-page: 1 year: 2011 ident: key 20170512164909_MCS293C24 article-title: Root biology and genetic improvement for drought avoidance in rice publication-title: Field Crops Research doi: 10.1016/j.fcr.2011.03.001 – volume: 91 start-page: 357 year: 1999 ident: key 20170512164909_MCS293C75 article-title: Improving nitrogen use efficiency for cereal production publication-title: Agronomy Journal doi: 10.2134/agronj1999.00021962009100030001x – volume: 266 start-page: 431 year: 1999 ident: key 20170512164909_MCS293C79 article-title: Plant root proliferation in nitrogen-rich patches confers competitive advantage publication-title: Proceedings of the Royal Society of London Series B: Biological Sciences doi: 10.1098/rspb.1999.0656 – volume: 32 start-page: 737 year: 2005 ident: key 20170512164909_MCS293C32 article-title: Root architectural tradeoffs for water and phosphorus acquisition publication-title: Functional Plant Biology doi: 10.1071/FP05043 – year: 2010 ident: key 20170512164909_MCS293C7 – volume: 367 start-page: 1598 year: 2012 ident: key 20170512164909_MCS293C51 article-title: New roots for agriculture: exploiting the root phenome publication-title: Philosophical Transactions of the Royal Society B – Biological Sciences doi: 10.1098/rstb.2011.0243 – volume: 60 start-page: 1927 year: 2009 ident: key 20170512164909_MCS293C63 article-title: Plant phenology: a critical controller of soil resource acquisition publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erp018 – volume: 21 start-page: 305 year: 1999 ident: key 20170512164909_MCS293C26 article-title: The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-999-0046-4 – volume: 74 start-page: 1367 year: 2010 ident: key 20170512164909_MCS293C11 article-title: Optimizing soil nitrogen supply in the root zone to improve maize management publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2009.0227 – volume: 349 start-page: 121 year: 2011 ident: key 20170512164909_MCS293C76 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant and Soil doi: 10.1007/s11104-011-0950-4 – volume: 104 start-page: 44 year: 2007 ident: key 20170512164909_MCS293C16 article-title: Simulating the role of rooting traits in crop–weed competition publication-title: Field Crops Research doi: 10.1016/j.fcr.2007.03.014 – volume: 140 start-page: 18 year: 2013 ident: key 20170512164909_MCS293C89 article-title: Maize root growth angles become steeper under low N conditions publication-title: Field Crops Research doi: 10.1016/j.fcr.2012.09.010 – volume-title: Properties and management of soils in the tropics year: 1976 ident: key 20170512164909_MCS293C82 – volume: 154 start-page: 290 year: 1992 ident: key 20170512164909_MCS293C41 article-title: Soil temperature and root growth publication-title: Soil Science doi: 10.1097/00010694-199210000-00005 – volume: 144 start-page: 458 year: 2010 ident: key 20170512164909_MCS293C57 article-title: Experimental and modelling studies of drought-adaptive root architectural traits in wheat (Triticum aestivum L.) publication-title: Plant Biosystems doi: 10.1080/11263501003731805 – volume: 31 start-page: 132 year: 2002 ident: key 20170512164909_MCS293C10 article-title: Agroecosystems, nitrogen-use efficiency, and nitrogen management publication-title: Ambio doi: 10.1579/0044-7447-31.2.132 – volume: 303 start-page: 115 year: 2008 ident: key 20170512164909_MCS293C56 article-title: Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.) publication-title: Plant and Soil doi: 10.1007/s11104-007-9492-1 – start-page: 43 volume-title: Nutrient acquisition by plants: an ecological perspective. year: 2005 ident: key 20170512164909_MCS293C78 article-title: Integrated root responses to variations in nutrient supply doi: 10.1007/3-540-27675-0_3 – volume: 153 start-page: 63 year: 2002 ident: key 20170512164909_MCS293C21 article-title: Lack of evidence for programmed root senescence in common bean (Phaseolus vulgaris) grown at different levels of phosphorus supply publication-title: New Phytologist doi: 10.1046/j.0028-646X.2001.00285.x – volume: 1 start-page: 241 year: 1998 ident: key 20170512164909_MCS293C47 article-title: The role of nutrient efficient crops in modern agriculture publication-title: Journal of Crop Production doi: 10.1300/J144v01n02_11 – volume: 111 start-page: 688 year: 2005 ident: key 20170512164909_MCS293C102 article-title: Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-005-2051-3 – volume: 281 start-page: 269 year: 2006 ident: key 20170512164909_MCS293C55 article-title: Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings publication-title: Plant and Soil doi: 10.1007/s11104-005-4268-y – volume: 18 start-page: 15 year: 2002 ident: key 20170512164909_MCS293C27 article-title: Future contributions of crop modelling – from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement publication-title: European Journal of Agronomy doi: 10.1016/S1161-0301(02)00093-X – volume: 4 start-page: 22 year: 2010 ident: key 20170512164909_MCS293C36 article-title: Genetic variation in the gravitropic response of maize roots to low temperature publication-title: Plant Root doi: 10.3117/plantroot.4.22 – volume: 156 start-page: 1041 year: 2011 ident: key 20170512164909_MCS293C49 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiology doi: 10.1104/pp.111.175414 – volume: 74 start-page: 612 year: 1993 ident: key 20170512164909_MCS293C40 article-title: The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics publication-title: Ecology doi: 10.2307/1939320 – volume: 108 start-page: 391 year: 2011 ident: key 20170512164909_MCS293C64 article-title: Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants publication-title: Annals of Botany doi: 10.1093/aob/mcr143 – volume: 51 start-page: 2011 year: 2011 ident: key 20170512164909_MCS293C83 article-title: Genetic variability and control of nodal root angle in sorghum publication-title: Crop Science doi: 10.2135/cropsci2011.01.0038 – volume: 237 start-page: 225 year: 2001 ident: key 20170512164909_MCS293C50 article-title: Topsoil foraging – an architectural adaptation of plants to low phosphorus availability publication-title: Plant and Soil doi: 10.1023/A:1013324727040 – volume: 26 start-page: 79 year: 1975 ident: key 20170512164909_MCS293C15 article-title: Nutrient supply and the growth of the seminal root system in barley. 2. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system publication-title: Journal of Experimental Botany doi: 10.1093/jxb/26.1.79 – year: 2010 ident: key 20170512164909_MCS293C60 – volume: 53 start-page: 1042 year: 2013 ident: key 20170512164909_MCS293C8 article-title: Phenotypic diversity of root anatomical and architectural traits in Zea species publication-title: Crop Science doi: 10.2135/cropsci2012.07.0440 – volume: 112 start-page: 421 year: 2006 ident: key 20170512164909_MCS293C34 article-title: Manifestation of heterosis during early maize (Zea mays L.) root development publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-005-0139-4 – volume: 68 start-page: 253 year: 2001 ident: key 20170512164909_MCS293C74 article-title: Impacts of cropping systems on soil nitrogen storage and loss publication-title: Agricultural Systems doi: 10.1016/S0308-521X(01)00011-7 – volume: 124 start-page: 97 year: 2012 ident: key 20170512164909_MCS293C54 article-title: QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-011-1690-9 – volume: 87 start-page: 529 year: 1988 ident: key 20170512164909_MCS293C70 article-title: Effect of temperature on spatial and temporal aspects of growth in the primary maize root publication-title: Plant Physiology doi: 10.1104/pp.87.2.529 – volume: 344 start-page: 143 year: 2011 ident: key 20170512164909_MCS293C39 article-title: A consensus map of QTLs controlling the root length of maize publication-title: Plant and Soil doi: 10.1007/s11104-011-0735-9 – volume: 30 start-page: 493 year: 2003 ident: key 20170512164909_MCS293C20 article-title: Physiological roles for aerenchyma in phosphorus-stressed roots publication-title: Functional Plant Biology doi: 10.1071/FP03046 – volume: 63 start-page: 3485 year: 2012 ident: key 20170512164909_MCS293C95 article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ers111 – volume: 35 start-page: 1163 year: 2008 ident: key 20170512164909_MCS293C12 article-title: Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice publication-title: Functional Plant Biology doi: 10.1071/FP08132 – volume-title: Soil nutrient bioavailability: a mechanistic approach year: 1995 ident: key 20170512164909_MCS293C1 – volume: 53 start-page: 1369 year: 2010 ident: key 20170512164909_MCS293C58 article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems publication-title: Science China – Life Sciences doi: 10.1007/s11427-010-4097-y – volume: 17 start-page: 385 year: 1968 ident: key 20170512164909_MCS293C13 article-title: The breeding of crop ideotypes publication-title: Euphytica doi: 10.1007/BF00056241 – start-page: 521 volume-title: Plant roots: the hidden half year: 2002 ident: key 20170512164909_MCS293C43 article-title: Respiratory patterns in roots in relation to their functioning doi: 10.1201/9780203909423.pt6 – volume: 163 start-page: 267 year: 1994 ident: key 20170512164909_MCS293C97 article-title: Root growth and nitrate utilization of maize cultivars under field conditions publication-title: Plant and Soil doi: 10.1007/BF00007976 – volume: 357 start-page: 189 year: 2012 ident: key 20170512164909_MCS293C9 article-title: RootScan: software for high-throughput analysis of root anatomical traits publication-title: Plant and Soil doi: 10.1007/s11104-012-1138-2 – volume: 34 start-page: 1127 year: 2011 ident: key 20170512164909_MCS293C85 article-title: Nitrate uptake along the maize primary root: an integrated physiological and molecular approach publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2011.02311.x – volume: 107 start-page: 829 year: 2011 ident: key 20170512164909_MCS293C72 article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability publication-title: Annals of Botany doi: 10.1093/aob/mcq199 – volume: 81 start-page: 211 year: 2001 ident: key 20170512164909_MCS293C25 article-title: The importance of early season phosphorus nutrition publication-title: Canadian Journal of Plant Science doi: 10.4141/P00-093 – volume: 49 start-page: 299 year: 2009 ident: key 20170512164909_MCS293C28 article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US Corn Belt? publication-title: Crop Science doi: 10.2135/cropsci2008.03.0152 – volume: 22 start-page: 425 year: 1999 ident: key 20170512164909_MCS293C6 article-title: Ethylene: a regulator of root architectural responses to soil phosphorus availability publication-title: Plant, Cell & Environment doi: 10.1046/j.1365-3040.1999.00405.x – volume: 151 start-page: 193 year: 1993 ident: key 20170512164909_MCS293C96 article-title: Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching publication-title: Plant and Soil doi: 10.1007/BF00016284 – volume: 279 start-page: 347 year: 2006 ident: key 20170512164909_MCS293C93 article-title: Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition publication-title: Plant and Soil doi: 10.1007/s11104-005-0389-6 – volume: 15 start-page: 763 year: 1992 ident: key 20170512164909_MCS293C18 article-title: Costs and benefits of constructing roots of small diameter publication-title: Journal of Plant Nutrition doi: 10.1080/01904169209364361 – volume: 110 start-page: 139 year: 2009 ident: key 20170512164909_MCS293C4 article-title: The large-effect drought-resistance QTL qtl12·1 increases water uptake in upland rice publication-title: Field Crops Research doi: 10.1016/j.fcr.2008.07.010 – volume: 55 start-page: 2269 year: 2004 ident: key 20170512164909_MCS293C81 article-title: Spatial mapping of phosphorus influx in bean root systems using digital autoradiography publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erh246 – volume: 341 start-page: 75 year: 2011 ident: key 20170512164909_MCS293C88 article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field publication-title: Plant and Soil doi: 10.1007/s11104-010-0623-8 – volume: 106 start-page: 215 year: 2010 ident: key 20170512164909_MCS293C94 article-title: Genetic improvement for phosphorus efficiency in soybean: a radical approach publication-title: Annals of Botany doi: 10.1093/aob/mcq029 – volume: 31 start-page: 1432 year: 2008 ident: key 20170512164909_MCS293C62 article-title: Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2008.01857.x – volume: 165 start-page: 323 year: 1994 ident: key 20170512164909_MCS293C67 article-title: Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivum L.) publication-title: Plant and Soil doi: 10.1007/BF00008076 – volume: 97 start-page: 365 year: 1996 ident: key 20170512164909_MCS293C86 article-title: Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.1996.970222.x – volume: 62 start-page: 59 year: 2011 ident: key 20170512164909_MCS293C3 article-title: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erq350 – volume: 55 start-page: 1 year: 2007 ident: key 20170512164909_MCS293C48 article-title: Roots of the second green revolution publication-title: Australian Journal of Botany doi: 10.1071/BT06118 – volume: 56 start-page: 3061 year: 2005 ident: key 20170512164909_MCS293C23 article-title: Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eri303 – volume: 109 start-page: 618 year: 2004 ident: key 20170512164909_MCS293C37 article-title: QTL controlling root and shoot traits of maize seedlings under cold stress publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-004-1665-1 – volume: 32 start-page: 749 year: 2005 ident: key 20170512164909_MCS293C103 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays L.) publication-title: Functional Plant Biology doi: 10.1071/FP05005 |
SSID | ssj0002691 |
Score | 2.6148355 |
SecondaryResourceType | review_article |
Snippet | BackgroundA hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition... • Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource... A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is... Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource... |
SourceID | pubmedcentral proquest pubmed crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 347 |
SubjectTerms | aerenchyma Agricultural soils branching cold soils cold tolerance Corn genetics growth & development Ideotypes metabolism Models, Biological nitrates Nitrogen Nitrogen - metabolism Phosphorus Plant Roots Plant Roots - genetics Plant Roots - growth & development Plant Roots - metabolism Plants Root growth root hairs Root systems rooting senescence Soil Soil depth Soil resources space and time temperature VIEWPOINT Water Water - metabolism Zea mays Zea mays - genetics Zea mays - growth & development Zea mays - metabolism |
Title | Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems |
URI | https://www.jstor.org/stable/42797967 https://www.ncbi.nlm.nih.gov/pubmed/23328767 https://www.proquest.com/docview/1393818541 https://www.proquest.com/docview/1663533186 https://pubmed.ncbi.nlm.nih.gov/PMC3698384 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe6jgdeEF9j5UtG8IJK9mE7icMTKzBNSPRlq7QHpMh2nFGJJoOmQttfz52dZMnoEPASRe41bn2_nO9s3-8IeRUJcGITqYIsZ3kglOSByvHYjsn2DNeZZRnu6H6eRkcz8ek0PB0M3nWzSyq9Yy7X5pX8j1ahDfSKWbL_oNn2odAA96BfuIKG4fpXOj6urHX15WDk1bnbB8iwBROYi_E8s6VbYQX3sgTLsJhf2vFPhayIKDkdK_N9NfdnttALXSgUAE-6qvmdl13P9YppWZdVY0HwJM9F4atJNevwdcZYvZKAVR3i7krCDRmKHYMEtiGIuWcd37HeYIKLFuBmbM-i7rMOdFjHPnJPr1lPtdxzU_9mxT3DlSo1XBdmyXwNxWu82LNjhqs1mE0rkmiDbDIIFNiQbB5MPkwO29mYRb5qYvPbG4rahO9CB7v-8T2nZCNXZXM6dV3ccf34bMcfOblL7tSBBD3wqLhHBra4T25NnG4ekC8OGm-oAwYFdVMExlu4ow0saFXSBhbUwcLJTWkHFlRfUAcLirCgNSwektnhx5P3R0FdSCMw8CpWAWMqykNtIJiUAuJ_aaQVCdjbXMUQH1sLXmeCvE0yypnVMlY8FCoU2mbM8NDwLTIsysJuE6pYbCN4Ck8yKSyLNMtyke_FWoKnyBI9Iq-bkUxNzTKPxU6-pf60A09h1FM_6iPyspU999wqa6W2QSGpOoNJL-0rfUS2nJbabwsWJ3ESxSPyolFbCuYS98BUYcvVMoWAx_moYv8PMuiFc5jsoINHXtVtD4xzBg4E9BD3QNAKIF17_5Ni_tXRtnOwiVyKxzf_nyfk9tV7-ZQMqx8r-wx83ko_r2H9CybKrFc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steep%2C+cheap+and+deep%3A+an+ideotype+to+optimize+water+and+N+acquisition+by+maize+root+systems&rft.jtitle=Annals+of+botany&rft.au=Lynch%2C+Jonathan+P&rft.date=2013-07-01&rft.pub=Oxford+University+Press&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=112&rft.issue=2&rft.spage=347&rft.epage=357&rft_id=info:doi/10.1093%2Faob%2Fmcs293&rft.externalDocID=US201500057496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |