Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 189; no. 19; pp. 6787 - 6795 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.10.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases. A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases. Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: JB A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases. [PUBLICATION ABSTRACT] A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum , grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases. |
Author | Nicholas D. Gold Vincent J. J. Martin |
AuthorAffiliation | Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6 |
AuthorAffiliation_xml | – name: Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6 |
Author_xml | – sequence: 1 givenname: Nicholas D. surname: Gold fullname: Gold, Nicholas D. organization: Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6 – sequence: 2 givenname: Vincent J. J. surname: Martin fullname: Martin, Vincent J. J. organization: Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19101728$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17644599$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLcLJ-4oQoILSvE42di-ILWrUqgq8SHgak0cp-uVExc72Wr_fZ3tQqES4jQezePRO-_METnofW8IeQ70GICJtxenx5QKwXLKH5EZ0IrnQhTsgMwoZZBLkMUhOYpxTSmU5YI9IYfAq_SSckb0ufM1uuyHNTeZb7NhZbKl83EItrFjN-Wh89o4l5LlFFLRdyb7ajYGnWmyept9GbEf7ICD3Zjsc_CD8Z3V2UmPbhttfEoet-iiebaPc_L9_dm35Yf88tP5x-XJZa7LBR9yQKS1ljWWrAVkBlqo2QKA1qWuhEQosJGSFo2mtK6waWnTNEJq1hiz4CCKOXl31_d6rDvTaNMPAZ26DrbDsFUerfq70tuVuvIbxWi5AMlSg9f7BsH_HE0cVGfjNDv2xo9RVYKJ5Kn4L8hoAVCICXz5AFz7MSRfEsN4YmhC5-TFn7p_C_61pQS82gMYNbo2YK9tvOckUOA7WW_uOB18jMG09whV062oi1O1uxVFeaLhAa13O_STOdb9489-npW9Wt3YYBTGTq1rBUImHarighe3Vv3NPg |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1007_s00253_010_2953_0 crossref_primary_10_1111_j_1574_6968_2010_01997_x crossref_primary_10_1038_msb_2010_116 crossref_primary_10_1002_bab_1804 crossref_primary_10_1021_ja309790w crossref_primary_10_1016_j_ijbiomac_2024_133212 crossref_primary_10_1128_AEM_00706_11 crossref_primary_10_1016_j_enzmictec_2016_10_021 crossref_primary_10_1016_j_rser_2016_11_037 crossref_primary_10_1186_1754_6834_5_41 crossref_primary_10_1016_j_enzmictec_2017_09_014 crossref_primary_10_1111_mmi_12488 crossref_primary_10_1073_pnas_1605482113 crossref_primary_10_1128_AEM_02137_13 crossref_primary_10_1139_cjm_2012_0412 crossref_primary_10_1186_1754_6834_6_182 crossref_primary_10_1016_j_ijbiomac_2023_125164 crossref_primary_10_1016_j_soilbio_2012_11_009 crossref_primary_10_1186_s13068_018_1151_7 crossref_primary_10_1186_s13068_016_0658_z crossref_primary_10_1021_pr200329b crossref_primary_10_1186_1752_0509_4_31 crossref_primary_10_1007_s10570_022_04790_5 crossref_primary_10_1016_j_biombioe_2019_02_016 crossref_primary_10_1016_j_enzmictec_2017_05_008 crossref_primary_10_1021_acscatal_1c03465 crossref_primary_10_1186_s13068_016_0526_x crossref_primary_10_1186_s12866_016_0711_x crossref_primary_10_1016_j_jprot_2015_04_026 crossref_primary_10_1080_09593331003710236 crossref_primary_10_1007_s12155_013_9295_6 crossref_primary_10_1007_s00253_015_7071_6 crossref_primary_10_1016_j_ijhydene_2020_08_069 crossref_primary_10_1016_j_jbiotec_2011_11_015 crossref_primary_10_1128_AEM_02811_10 crossref_primary_10_1002_elsc_201000059 crossref_primary_10_1111_1751_7915_13293 crossref_primary_10_1002_cctc_201000112 crossref_primary_10_1021_pr200536j crossref_primary_10_1021_pr400788e crossref_primary_10_1186_s12864_016_2436_5 crossref_primary_10_1371_journal_pone_0146316 crossref_primary_10_1111_1574_6976_12044 crossref_primary_10_1371_journal_pone_0006650 crossref_primary_10_1128_AEM_00772_15 crossref_primary_10_1002_1873_3468_15045 crossref_primary_10_1002_cite_201200190 crossref_primary_10_1146_annurev_chembioeng_100522_115850 crossref_primary_10_1007_s10295_010_0848_9 crossref_primary_10_1016_j_biortech_2010_11_043 crossref_primary_10_1016_j_enzmictec_2016_11_002 crossref_primary_10_1111_1574_6968_12029 crossref_primary_10_1016_j_enzmictec_2018_02_004 crossref_primary_10_1038_srep35709 crossref_primary_10_1111_1574_6968_12149 crossref_primary_10_1016_j_jclepro_2020_123896 crossref_primary_10_1128_AEM_07457_11 crossref_primary_10_1128_JB_00097_08 crossref_primary_10_1159_000351358 crossref_primary_10_1016_j_biortech_2011_08_134 crossref_primary_10_3389_fbioe_2015_00165 crossref_primary_10_1016_j_copbio_2008_04_008 crossref_primary_10_1016_j_copbio_2011_11_026 crossref_primary_10_1371_journal_pone_0054090 crossref_primary_10_3390_ijms222212249 crossref_primary_10_1186_1754_6834_6_179 crossref_primary_10_1186_1754_6834_6_82 crossref_primary_10_1111_j_1751_7915_2008_00034_x crossref_primary_10_1016_j_greenca_2024_01_003 crossref_primary_10_1093_femsle_fnz209 crossref_primary_10_1111_j_1742_4658_2009_07025_x crossref_primary_10_1016_j_ymben_2024_03_008 crossref_primary_10_1016_j_copbio_2011_10_008 crossref_primary_10_14720_aas_2014_104_2_5 crossref_primary_10_1007_s10529_010_0363_0 crossref_primary_10_1186_1754_6834_7_100 crossref_primary_10_1128_AEM_01484_10 crossref_primary_10_1007_s12010_012_9680_1 crossref_primary_10_1186_s13068_019_1447_2 crossref_primary_10_1371_journal_pone_0065333 crossref_primary_10_1186_s12896_018_0453_y crossref_primary_10_1080_10826068_2013_829494 crossref_primary_10_1186_s13068_017_0775_3 crossref_primary_10_1038_s41598_020_71428_6 crossref_primary_10_1002_bbb_1531 crossref_primary_10_3390_microorganisms9071445 crossref_primary_10_1073_pnas_1003584107 crossref_primary_10_1371_journal_pone_0244755 crossref_primary_10_1007_s12155_012_9184_4 crossref_primary_10_1186_1471_2164_13_336 crossref_primary_10_1007_s10295_008_0521_8 crossref_primary_10_1007_s00253_016_7776_1 crossref_primary_10_1016_j_jbiotec_2008_06_003 crossref_primary_10_1186_s13068_016_0697_5 crossref_primary_10_3389_fchem_2014_00066 crossref_primary_10_1002_pmic_200900311 crossref_primary_10_1039_C9GC03062J crossref_primary_10_1371_journal_pone_0005271 crossref_primary_10_1098_rsif_2009_0564 crossref_primary_10_3390_ijms20133354 crossref_primary_10_1016_j_micres_2012_02_006 crossref_primary_10_1146_annurev_biochem_091208_085603 crossref_primary_10_1016_j_tim_2011_07_005 crossref_primary_10_3390_catal11080996 crossref_primary_10_1021_cb5000289 crossref_primary_10_1186_s13068_016_0607_x crossref_primary_10_1007_s10570_022_04741_0 crossref_primary_10_3389_fmicb_2018_01947 crossref_primary_10_1002_bit_25250 crossref_primary_10_1007_s00253_016_7321_2 crossref_primary_10_1186_1754_6834_5_64 crossref_primary_10_1007_s12010_018_2864_6 crossref_primary_10_1016_j_cej_2022_135162 crossref_primary_10_1128_AEM_00464_11 crossref_primary_10_1186_1471_2180_11_134 crossref_primary_10_3389_fbioe_2020_00356 crossref_primary_10_1007_s11274_023_03546_y crossref_primary_10_1074_jbc_M112_405720 crossref_primary_10_4155_bfs_09_25 crossref_primary_10_1002_bit_25139 crossref_primary_10_1186_1754_6834_7_80 crossref_primary_10_1016_j_procbio_2020_02_034 crossref_primary_10_1093_nar_gkz355 crossref_primary_10_1128_AEM_07959_11 crossref_primary_10_1021_acscentsci_0c00050 crossref_primary_10_1107_S0907444912001680 crossref_primary_10_1128_mBio_00411_15 crossref_primary_10_1186_1471_2180_12_214 crossref_primary_10_1016_j_procbio_2024_03_008 crossref_primary_10_1016_j_apenergy_2012_03_016 crossref_primary_10_1073_pnas_1012175107 crossref_primary_10_1002_prot_25753 crossref_primary_10_1186_s13068_017_0928_4 crossref_primary_10_1016_j_bej_2016_10_010 crossref_primary_10_1186_s13068_017_0909_7 crossref_primary_10_1016_j_jbiotec_2016_11_008 crossref_primary_10_1038_ismej_2013_120 crossref_primary_10_1016_j_jmb_2010_07_028 crossref_primary_10_1186_1471_2180_10_219 crossref_primary_10_1128_AEM_02008_10 crossref_primary_10_3390_microorganisms6030080 crossref_primary_10_1128_AEM_03124_09 crossref_primary_10_4056_sigs_2535732 crossref_primary_10_1016_j_enzmictec_2016_04_009 crossref_primary_10_1128_AEM_00009_10 crossref_primary_10_3389_fmicb_2014_00142 crossref_primary_10_1016_j_jbiotec_2015_08_016 |
Cites_doi | 10.1099/00221287-148-1-247 10.1128/MMBR.69.1.124-154.2005 10.1128/jb.177.9.2451-2459.1995 10.1016/S1369-5274(03)00056-0 10.1007/s00253-005-0249-6 10.1128/aem.54.1.204-211.1988 10.1093/nar/14.21.8605 10.1016/0141-0229(90)90004-A 10.1021/pr015504q 10.1128/jb.175.11.3353-3360.1993 10.1016/0141-0229(85)90008-0 10.1111/j.1365-2958.1993.tb01576.x 10.1007/s002530051401 10.1128/jb.163.2.552-559.1985 10.1128/jb.173.1.80-85.1991 10.1006/jsbi.1998.4065 10.1128/aem.43.5.1125-1132.1982 10.1038/nchembio736 10.1128/JB.180.12.3091-3099.1998 10.1021/ac034790h 10.1007/BF01022619 10.1016/j.femsle.2005.06.037 10.1074/mcp.M500061-MCP200 10.1111/j.1365-2958.2006.05182.x 10.1128/AEM.71.8.4672-4678.2005 10.1099/mic.0.25959-0 10.1002/j.1460-2075.1996.tb00960.x 10.1128/JB.185.17.5109-5116.2003 10.1128/JB.187.7.2261-2266.2005 10.1021/ac020271n 10.1128/jb.179.8.2519-2523.1997 10.1128/JB.187.1.99-106.2005 10.1007/s00253-002-1048-y 10.1128/JB.181.17.5288-5295.1999 10.1002/j.1460-2075.1988.tb03284.x 10.1146/annurev.micro.57.030502.091022 10.1007/s00253-006-0689-7 10.1007/BF00504485 10.1073/pnas.92.20.9254 10.1128/jb.172.10.6098-6105.1990 10.1007/s00253-001-0832-4 10.1099/13500872-140-8-1829 10.1128/AEM.68.6.3176-3179.2002 10.1021/bi00405a048 10.1128/jb.179.13.4246-4253.1997 10.1073/pnas.0408734102 10.1128/JB.185.10.3042-3048.2003 10.1016/S0167-7799(97)01032-9 10.1038/nprot.2007.131 10.1099/00221287-145-11-3101 10.1128/MMBR.66.3.506-577.2002 10.1002/pmic.200401199 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright American Society for Microbiology Oct 2007 Copyright © 2007, American Society for Microbiology 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright American Society for Microbiology Oct 2007 – notice: Copyright © 2007, American Society for Microbiology 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.00882-07 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts CrossRef Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 6795 |
ExternalDocumentID | PMC2045192 1339908271 17644599 19101728 10_1128_JB_00882_07 jb_189_19_6787 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV ADXHL AENEX AFFDN AFFNX AFRAH AGCDD AGVNZ AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-O P-S P2P PQQKQ QZG RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT VH1 W8F WH7 WHG WOQ X7M Y6R YQT YR2 YZZ ZCA ZCG ZGI ZXP ZY4 ~02 ~KM IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c457t-1aa0bc9ba42f1a2e1f1b25110b4c689a13ad9903dc00b6adf0ddd89c2dee57183 |
ISSN | 0021-9193 |
IngestDate | Thu Aug 21 14:11:19 EDT 2025 Fri Jul 11 13:10:50 EDT 2025 Fri Jul 11 00:39:56 EDT 2025 Mon Jun 30 08:40:18 EDT 2025 Mon Jul 21 05:33:16 EDT 2025 Mon Jul 21 09:17:35 EDT 2025 Tue Jul 01 02:45:19 EDT 2025 Thu Apr 24 23:13:58 EDT 2025 Wed May 18 15:54:47 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Cellulosome Clostridium thermocellum Clostridiaceae Proteomics Clostridiales Bacteria Quantitative analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c457t-1aa0bc9ba42f1a2e1f1b25110b4c689a13ad9903dc00b6adf0ddd89c2dee57183 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6. Phone: (514) 848-2424. Fax: (514) 848-2881. E-mail: vmartin@alcor.concordia.ca |
PMID | 17644599 |
PQID | 227113020 |
PQPubID | 40724 |
PageCount | 9 |
ParticipantIDs | proquest_journals_227113020 proquest_miscellaneous_20311388 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2045192 proquest_miscellaneous_68280028 crossref_primary_10_1128_JB_00882_07 pubmed_primary_17644599 pascalfrancis_primary_19101728 crossref_citationtrail_10_1128_JB_00882_07 highwire_asm_jb_189_19_6787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2007 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_49_2 (e_1_3_2_18_2) 1999; 51 (e_1_3_2_42_2) 1996; 15 (e_1_3_2_4_2) 2004; 58 (e_1_3_2_19_2) 1990; 12 e_1_3_2_24_2 (e_1_3_2_47_2) 2005; 102 (e_1_3_2_40_2) 2002; 1 e_1_3_2_9_2 (e_1_3_2_50_2) 1994; 16 e_1_3_2_7_2 e_1_3_2_39_2 (e_1_3_2_51_2) 2005; 5 (e_1_3_2_13_2) 1980; 9 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 (e_1_3_2_22_2) 1986; 14 e_1_3_2_35_2 (e_1_3_2_6_2) 1998; 124 (e_1_3_2_37_2) 2005; 1 (e_1_3_2_3_2) 2001; 57 (e_1_3_2_53_2) 2002; 148 (e_1_3_2_2_2) 2006; 71 (e_1_3_2_20_2) 2005; 4 (e_1_3_2_26_2) 2006; 78 e_1_3_2_48_2 (e_1_3_2_44_2) 1994; 140 (e_1_3_2_43_2) 2007; 74 (e_1_3_2_28_2) 2002; 59 e_1_3_2_21_2 (e_1_3_2_15_2) 1988; 7 e_1_3_2_25_2 (e_1_3_2_29_2) 1985; 7 e_1_3_2_8_2 (e_1_3_2_14_2) 1993; 8 e_1_3_2_17_2 (e_1_3_2_23_2) 2006; 60 (e_1_3_2_54_2) 2003; 149 (e_1_3_2_11_2) 2007; 2 e_1_3_2_30_2 (e_1_3_2_45_2) 1988; 27 e_1_3_2_32_2 (e_1_3_2_38_2) 2003; 6 (e_1_3_2_16_2) 1999; 145 e_1_3_2_36_2 e_1_3_2_55_2 (e_1_3_2_34_2) 2003; 75 (e_1_3_2_41_2) 1997; 15 (e_1_3_2_46_2) 2003; 75 (e_1_3_2_52_2) 2005; 249 (e_1_3_2_27_2) 1995; 92 8918451 - EMBO J. 1996 Nov 1;15(21):5739-51 14670053 - Anal Chem. 2003 Dec 15;75(24):6912-21 9620957 - J Bacteriol. 1998 Jun;180(12):3091-9 8501039 - J Bacteriol. 1993 Jun;175(11):3353-60 17446895 - Nat Protoc. 2007;2(4):953-71 3208757 - EMBO J. 1988 Dec 1;7(12):3971-4 3024110 - Nucleic Acids Res. 1986 Nov 11;14(21):8605-13 10049808 - J Struct Biol. 1998 Dec 15;124(2-3):221-34 12172609 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):455-61 8316083 - Mol Microbiol. 1993 Apr;8(2):325-34 12831897 - Curr Opin Microbiol. 2003 Jun;6(3):219-28 10464199 - J Bacteriol. 1999 Sep;181(17):5288-95 17124583 - Appl Microbiol Biotechnol. 2007 Feb;74(2):422-32 15601693 - J Bacteriol. 2005 Jan;187(1):99-106 11782517 - Microbiology. 2002 Jan;148(Pt 1):247-55 9209040 - J Bacteriol. 1997 Jul;179(13):4246-53 12923083 - J Bacteriol. 2003 Sep;185(17):5109-16 15958392 - Mol Cell Proteomics. 2005 Sep;4(9):1265-72 7568112 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9254-8 10222584 - Appl Microbiol Biotechnol. 1999 Mar;51(3):348-57 16944911 - Anal Chem. 2006 Sep 1;78(17):6265-9 16346009 - Appl Environ Microbiol. 1982 May;43(5):1125-32 16408053 - Nat Chem Biol. 2005 Oct;1(5):252-62 16127726 - Proteomics. 2005 Sep;5(14):3646-53 16006068 - FEMS Microbiol Lett. 2005 Aug 15;249(2):353-8 1987137 - J Bacteriol. 1991 Jan;173(1):80-5 12039789 - Appl Environ Microbiol. 2002 Jun;68(6):3176-9 7730277 - J Bacteriol. 1995 May;177(9):2451-9 16347527 - Appl Environ Microbiol. 1988 Jan;54(1):204-211 4019409 - J Bacteriol. 1985 Aug;163(2):552-9 10589717 - Microbiology. 1999 Nov;145 ( Pt 11):3101-8 12730163 - J Bacteriol. 2003 May;185(10):3042-8 7921236 - Microbiology. 1994 Aug;140 ( Pt 8):1829-38 15755956 - Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54 11778875 - Appl Microbiol Biotechnol. 2001 Dec;57(5-6):660-6 15774868 - J Bacteriol. 2005 Apr;187(7):2261-6 15883376 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7321-5 1366808 - Enzyme Microb Technol. 1990 Sep;12(9):656-62 12643522 - J Proteome Res. 2002 Jan-Feb;1(1):21-6 12209002 - Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents 9098047 - J Bacteriol. 1997 Apr;179(8):2519-23 2211528 - J Bacteriol. 1990 Oct;172(10):6098-105 12624213 - Microbiology. 2003 Feb;149(Pt 2):515-24 16085862 - Appl Environ Microbiol. 2005 Aug;71(8):4672-8 15487947 - Annu Rev Microbiol. 2004;58:521-54 16796673 - Mol Microbiol. 2006 Jun;60(6):1344-54 16532315 - Appl Microbiol Biotechnol. 2006 Aug;71(5):654-60 12553755 - Anal Chem. 2003 Jan 15;75(2):219-27 |
References_xml | – volume: 148 start-page: 247 year: 2002 ident: e_1_3_2_53_2 publication-title: Microbiology doi: 10.1099/00221287-148-1-247 – ident: e_1_3_2_7_2 doi: 10.1128/MMBR.69.1.124-154.2005 – ident: e_1_3_2_32_2 doi: 10.1128/jb.177.9.2451-2459.1995 – volume: 6 start-page: 219 year: 2003 ident: e_1_3_2_38_2 publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(03)00056-0 – volume: 71 start-page: 654 year: 2006 ident: e_1_3_2_2_2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-005-0249-6 – ident: e_1_3_2_12_2 doi: 10.1128/aem.54.1.204-211.1988 – volume: 14 start-page: 8605 year: 1986 ident: e_1_3_2_22_2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/14.21.8605 – volume: 12 start-page: 656 year: 1990 ident: e_1_3_2_19_2 publication-title: Enzyme Microb. Technol. doi: 10.1016/0141-0229(90)90004-A – volume: 1 start-page: 21 year: 2002 ident: e_1_3_2_40_2 publication-title: J. Proteome Res. doi: 10.1021/pr015504q – ident: e_1_3_2_31_2 doi: 10.1128/jb.175.11.3353-3360.1993 – volume: 7 start-page: 37 year: 1985 ident: e_1_3_2_29_2 publication-title: Enzyme Microb. Techol. doi: 10.1016/0141-0229(85)90008-0 – volume: 8 start-page: 325 year: 1993 ident: e_1_3_2_14_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01576.x – volume: 51 start-page: 348 year: 1999 ident: e_1_3_2_18_2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051401 – ident: e_1_3_2_5_2 doi: 10.1128/jb.163.2.552-559.1985 – ident: e_1_3_2_35_2 doi: 10.1128/jb.173.1.80-85.1991 – volume: 124 start-page: 221 year: 1998 ident: e_1_3_2_6_2 publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1998.4065 – ident: e_1_3_2_21_2 doi: 10.1128/aem.43.5.1125-1132.1982 – volume: 1 start-page: 252 year: 2005 ident: e_1_3_2_37_2 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio736 – ident: e_1_3_2_55_2 doi: 10.1128/JB.180.12.3091-3099.1998 – volume: 75 start-page: 6912 year: 2003 ident: e_1_3_2_34_2 publication-title: Anal. Chem. doi: 10.1021/ac034790h – volume: 16 start-page: 29 year: 1994 ident: e_1_3_2_50_2 publication-title: Biotechnol. Lett. doi: 10.1007/BF01022619 – ident: e_1_3_2_25_2 – volume: 249 start-page: 353 year: 2005 ident: e_1_3_2_52_2 publication-title: FEMS Microbiol. Lett. doi: 10.1016/j.femsle.2005.06.037 – volume: 4 start-page: 1265 year: 2005 ident: e_1_3_2_20_2 publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M500061-MCP200 – volume: 60 start-page: 1344 year: 2006 ident: e_1_3_2_23_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05182.x – ident: e_1_3_2_39_2 doi: 10.1128/AEM.71.8.4672-4678.2005 – volume: 149 start-page: 515 year: 2003 ident: e_1_3_2_54_2 publication-title: Microbiology doi: 10.1099/mic.0.25959-0 – volume: 78 start-page: 6265 year: 2006 ident: e_1_3_2_26_2 publication-title: Chem. – volume: 15 start-page: 5739 year: 1996 ident: e_1_3_2_42_2 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00960.x – ident: e_1_3_2_9_2 doi: 10.1128/JB.185.17.5109-5116.2003 – ident: e_1_3_2_10_2 doi: 10.1128/JB.187.7.2261-2266.2005 – volume: 75 start-page: 219 year: 2003 ident: e_1_3_2_46_2 publication-title: Anal. Chem. doi: 10.1021/ac020271n – ident: e_1_3_2_30_2 doi: 10.1128/jb.179.8.2519-2523.1997 – ident: e_1_3_2_48_2 doi: 10.1128/JB.187.1.99-106.2005 – volume: 59 start-page: 455 year: 2002 ident: e_1_3_2_28_2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-002-1048-y – ident: e_1_3_2_24_2 doi: 10.1128/JB.181.17.5288-5295.1999 – volume: 7 start-page: 3971 year: 1988 ident: e_1_3_2_15_2 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb03284.x – volume: 58 start-page: 521 year: 2004 ident: e_1_3_2_4_2 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.57.030502.091022 – volume: 74 start-page: 422 year: 2007 ident: e_1_3_2_43_2 publication-title: Appl. Microbiol. Biotechnol. V doi: 10.1007/s00253-006-0689-7 – volume: 9 start-page: 189 year: 1980 ident: e_1_3_2_13_2 publication-title: Eur. J. Appl. Microbiol. Biotechnol. doi: 10.1007/BF00504485 – volume: 92 start-page: 9254 year: 1995 ident: e_1_3_2_27_2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.20.9254 – ident: e_1_3_2_36_2 doi: 10.1128/jb.172.10.6098-6105.1990 – volume: 57 start-page: 660 year: 2001 ident: e_1_3_2_3_2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-001-0832-4 – volume: 140 start-page: 1829 year: 1994 ident: e_1_3_2_44_2 publication-title: Microbiology doi: 10.1099/13500872-140-8-1829 – ident: e_1_3_2_49_2 doi: 10.1128/AEM.68.6.3176-3179.2002 – volume: 27 start-page: 1703 year: 1988 ident: e_1_3_2_45_2 publication-title: Biochemistry doi: 10.1021/bi00405a048 – ident: e_1_3_2_17_2 doi: 10.1128/jb.179.13.4246-4253.1997 – volume: 102 start-page: 7321 year: 2005 ident: e_1_3_2_47_2 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0408734102 – ident: e_1_3_2_8_2 doi: 10.1128/JB.185.10.3042-3048.2003 – volume: 15 start-page: 160 year: 1997 ident: e_1_3_2_41_2 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(97)01032-9 – volume: 2 start-page: 953 year: 2007 ident: e_1_3_2_11_2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.131 – volume: 145 start-page: 3101 year: 1999 ident: e_1_3_2_16_2 publication-title: Microbiology doi: 10.1099/00221287-145-11-3101 – ident: e_1_3_2_33_2 doi: 10.1128/MMBR.66.3.506-577.2002 – volume: 5 start-page: 3646 year: 2005 ident: e_1_3_2_51_2 publication-title: Proteomics doi: 10.1002/pmic.200401199 – reference: 12831897 - Curr Opin Microbiol. 2003 Jun;6(3):219-28 – reference: 16944911 - Anal Chem. 2006 Sep 1;78(17):6265-9 – reference: 15883376 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7321-5 – reference: 8501039 - J Bacteriol. 1993 Jun;175(11):3353-60 – reference: 8918451 - EMBO J. 1996 Nov 1;15(21):5739-51 – reference: 16346009 - Appl Environ Microbiol. 1982 May;43(5):1125-32 – reference: 10464199 - J Bacteriol. 1999 Sep;181(17):5288-95 – reference: 1987137 - J Bacteriol. 1991 Jan;173(1):80-5 – reference: 16408053 - Nat Chem Biol. 2005 Oct;1(5):252-62 – reference: 17124583 - Appl Microbiol Biotechnol. 2007 Feb;74(2):422-32 – reference: 1366808 - Enzyme Microb Technol. 1990 Sep;12(9):656-62 – reference: 10589717 - Microbiology. 1999 Nov;145 ( Pt 11):3101-8 – reference: 16085862 - Appl Environ Microbiol. 2005 Aug;71(8):4672-8 – reference: 8316083 - Mol Microbiol. 1993 Apr;8(2):325-34 – reference: 11778875 - Appl Microbiol Biotechnol. 2001 Dec;57(5-6):660-6 – reference: 15755956 - Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54 – reference: 12624213 - Microbiology. 2003 Feb;149(Pt 2):515-24 – reference: 12730163 - J Bacteriol. 2003 May;185(10):3042-8 – reference: 16006068 - FEMS Microbiol Lett. 2005 Aug 15;249(2):353-8 – reference: 7568112 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9254-8 – reference: 12553755 - Anal Chem. 2003 Jan 15;75(2):219-27 – reference: 10049808 - J Struct Biol. 1998 Dec 15;124(2-3):221-34 – reference: 9620957 - J Bacteriol. 1998 Jun;180(12):3091-9 – reference: 9209040 - J Bacteriol. 1997 Jul;179(13):4246-53 – reference: 12923083 - J Bacteriol. 2003 Sep;185(17):5109-16 – reference: 12209002 - Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents – reference: 15774868 - J Bacteriol. 2005 Apr;187(7):2261-6 – reference: 15487947 - Annu Rev Microbiol. 2004;58:521-54 – reference: 15958392 - Mol Cell Proteomics. 2005 Sep;4(9):1265-72 – reference: 12643522 - J Proteome Res. 2002 Jan-Feb;1(1):21-6 – reference: 16796673 - Mol Microbiol. 2006 Jun;60(6):1344-54 – reference: 16127726 - Proteomics. 2005 Sep;5(14):3646-53 – reference: 12172609 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):455-61 – reference: 14670053 - Anal Chem. 2003 Dec 15;75(24):6912-21 – reference: 17446895 - Nat Protoc. 2007;2(4):953-71 – reference: 9098047 - J Bacteriol. 1997 Apr;179(8):2519-23 – reference: 4019409 - J Bacteriol. 1985 Aug;163(2):552-9 – reference: 2211528 - J Bacteriol. 1990 Oct;172(10):6098-105 – reference: 10222584 - Appl Microbiol Biotechnol. 1999 Mar;51(3):348-57 – reference: 3024110 - Nucleic Acids Res. 1986 Nov 11;14(21):8605-13 – reference: 7921236 - Microbiology. 1994 Aug;140 ( Pt 8):1829-38 – reference: 12039789 - Appl Environ Microbiol. 2002 Jun;68(6):3176-9 – reference: 11782517 - Microbiology. 2002 Jan;148(Pt 1):247-55 – reference: 3208757 - EMBO J. 1988 Dec 1;7(12):3971-4 – reference: 16532315 - Appl Microbiol Biotechnol. 2006 Aug;71(5):654-60 – reference: 16347527 - Appl Environ Microbiol. 1988 Jan;54(1):204-211 – reference: 15601693 - J Bacteriol. 2005 Jan;187(1):99-106 – reference: 7730277 - J Bacteriol. 1995 May;177(9):2451-9 |
SSID | ssj0014452 |
Score | 2.3250074 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6787 |
SubjectTerms | Analytical, structural and metabolic biochemistry Bacteria Bacteriology Biochemistry Biological and medical sciences Cellobiose - pharmacology Cellulase - chemistry Cellulase - genetics Cellulase - metabolism Cellulose Cellulose - pharmacology Chromatography Chromatography, Liquid Clostridium thermocellum Clostridium thermocellum - genetics Clostridium thermocellum - metabolism Enzymes and Proteins Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial - drug effects Ionization Liquid chromatography Mass spectrometry Miscellaneous Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Proteins Proteomics Proteomics - methods Spectrometry, Mass, Electrospray Ionization |
Title | Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis |
URI | http://jb.asm.org/content/189/19/6787.abstract https://www.ncbi.nlm.nih.gov/pubmed/17644599 https://www.proquest.com/docview/227113020 https://www.proquest.com/docview/20311388 https://www.proquest.com/docview/68280028 https://pubmed.ncbi.nlm.nih.gov/PMC2045192 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviG_KYPhhT1QpsZPUziMtH1OlIZC2qW-W4yRaUZtMa4s0_g_-X-7iJHWqDgFSlbbJNV_3y_nOvfsdIccMRq08MMJjOhJeKLT24kgaT_AsRr63LE_xH93TL6OT83A6i2a93i8na2mzTobm5966kv_RKqwDvWKV7D9ott0prIDPoF9YgoZh-Vc6toT9g4u6-AR9yMmixE4c6XxTVY1cL0ucmocvE3zDrgVL7NTwA_3Dyvf8ttFFVWiGKURfkbUB65RbspJbnNexJXnuzMkDqDBQXg0-DAefy0XarL-YF5gCOpgO8WV5CzqTDaJNW1s7-f1oeJyU0tP5ljLKNbWY-8Fs-8NhZq0rDI2elMGO-Y1dnMWONYWBVOw38xxLF6ZjJKeVmD3rSoGOrpaVxpkAby-yDZi6VNs7Q2CbmPg9UXA-isUKj32H3OUQfVQ15LM2cwhC0KgmobdXWJd9wkm9c04J6Wjr43d9noaHGtNw9QqexNy2UNkX4-ym6jq-z9lD8qDWO31vEfiI9LLiMbln25jePCHG4pAiDmmZU8AddXBIXRxSB4e0wSFNbqiLQ9rikDY4fErOP308m5x4dfMOz4SRWMOzr_3ExIkOec40z1jOEgxn_SQ0IxlrFugUPKEgNb6fjHSa-2maytjwNMsicJiCZ-SgKIvsBaFgZ6SWkQnB2wXzESc8xakMibdW6HzUJ2-b26tMzWyPDVYWqopwuVTTsarUonzRJ8et8JUldNkvdtjoSenVUnWB0SdHHdVt9xTjEMcl_LzRpaoNxkpxLhjmCfh98qbdCtYc778usnIDIjDGskDK2yVGkmOMBxLPLTK2x67R1ieig5lWAJnku1uK-WXFKM8rlin-8o8XfUjub03CK3Kwvt5kr8EjXydH1fPxG1yZ4uI |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+View+of+the+Clostridium+thermocellum+Cellulosome+Revealed+by+Quantitative+Proteomic+Analysis&rft.jtitle=Journal+of+Bacteriology&rft.au=Nicholas+D.+Gold&rft.au=Vincent+J.+J.+Martin&rft.date=2007-10-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1067-8832&rft.volume=189&rft.issue=19&rft.spage=6787&rft_id=info:doi/10.1128%2FJB.00882-07&rft_id=info%3Apmid%2F17644599&rft.externalDBID=n%2Fa&rft.externalDocID=jb_189_19_6787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |