Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis

Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 189; no. 19; pp. 6787 - 6795
Main Authors Gold, Nicholas D., Martin, Vincent J. J.
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.10.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
AbstractList A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.
A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases. [PUBLICATION ABSTRACT]
A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum , grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.
Author Nicholas D. Gold
Vincent J. J. Martin
AuthorAffiliation Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6
AuthorAffiliation_xml – name: Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6
Author_xml – sequence: 1
  givenname: Nicholas D.
  surname: Gold
  fullname: Gold, Nicholas D.
  organization: Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6
– sequence: 2
  givenname: Vincent J. J.
  surname: Martin
  fullname: Martin, Vincent J. J.
  organization: Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19101728$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17644599$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLcLJ-4oQoILSvE42di-ILWrUqgq8SHgak0cp-uVExc72Wr_fZ3tQqES4jQezePRO-_METnofW8IeQ70GICJtxenx5QKwXLKH5EZ0IrnQhTsgMwoZZBLkMUhOYpxTSmU5YI9IYfAq_SSckb0ufM1uuyHNTeZb7NhZbKl83EItrFjN-Wh89o4l5LlFFLRdyb7ajYGnWmyept9GbEf7ICD3Zjsc_CD8Z3V2UmPbhttfEoet-iiebaPc_L9_dm35Yf88tP5x-XJZa7LBR9yQKS1ljWWrAVkBlqo2QKA1qWuhEQosJGSFo2mtK6waWnTNEJq1hiz4CCKOXl31_d6rDvTaNMPAZ26DrbDsFUerfq70tuVuvIbxWi5AMlSg9f7BsH_HE0cVGfjNDv2xo9RVYKJ5Kn4L8hoAVCICXz5AFz7MSRfEsN4YmhC5-TFn7p_C_61pQS82gMYNbo2YK9tvOckUOA7WW_uOB18jMG09whV062oi1O1uxVFeaLhAa13O_STOdb9489-npW9Wt3YYBTGTq1rBUImHarighe3Vv3NPg
CODEN JOBAAY
CitedBy_id crossref_primary_10_1007_s00253_010_2953_0
crossref_primary_10_1111_j_1574_6968_2010_01997_x
crossref_primary_10_1038_msb_2010_116
crossref_primary_10_1002_bab_1804
crossref_primary_10_1021_ja309790w
crossref_primary_10_1016_j_ijbiomac_2024_133212
crossref_primary_10_1128_AEM_00706_11
crossref_primary_10_1016_j_enzmictec_2016_10_021
crossref_primary_10_1016_j_rser_2016_11_037
crossref_primary_10_1186_1754_6834_5_41
crossref_primary_10_1016_j_enzmictec_2017_09_014
crossref_primary_10_1111_mmi_12488
crossref_primary_10_1073_pnas_1605482113
crossref_primary_10_1128_AEM_02137_13
crossref_primary_10_1139_cjm_2012_0412
crossref_primary_10_1186_1754_6834_6_182
crossref_primary_10_1016_j_ijbiomac_2023_125164
crossref_primary_10_1016_j_soilbio_2012_11_009
crossref_primary_10_1186_s13068_018_1151_7
crossref_primary_10_1186_s13068_016_0658_z
crossref_primary_10_1021_pr200329b
crossref_primary_10_1186_1752_0509_4_31
crossref_primary_10_1007_s10570_022_04790_5
crossref_primary_10_1016_j_biombioe_2019_02_016
crossref_primary_10_1016_j_enzmictec_2017_05_008
crossref_primary_10_1021_acscatal_1c03465
crossref_primary_10_1186_s13068_016_0526_x
crossref_primary_10_1186_s12866_016_0711_x
crossref_primary_10_1016_j_jprot_2015_04_026
crossref_primary_10_1080_09593331003710236
crossref_primary_10_1007_s12155_013_9295_6
crossref_primary_10_1007_s00253_015_7071_6
crossref_primary_10_1016_j_ijhydene_2020_08_069
crossref_primary_10_1016_j_jbiotec_2011_11_015
crossref_primary_10_1128_AEM_02811_10
crossref_primary_10_1002_elsc_201000059
crossref_primary_10_1111_1751_7915_13293
crossref_primary_10_1002_cctc_201000112
crossref_primary_10_1021_pr200536j
crossref_primary_10_1021_pr400788e
crossref_primary_10_1186_s12864_016_2436_5
crossref_primary_10_1371_journal_pone_0146316
crossref_primary_10_1111_1574_6976_12044
crossref_primary_10_1371_journal_pone_0006650
crossref_primary_10_1128_AEM_00772_15
crossref_primary_10_1002_1873_3468_15045
crossref_primary_10_1002_cite_201200190
crossref_primary_10_1146_annurev_chembioeng_100522_115850
crossref_primary_10_1007_s10295_010_0848_9
crossref_primary_10_1016_j_biortech_2010_11_043
crossref_primary_10_1016_j_enzmictec_2016_11_002
crossref_primary_10_1111_1574_6968_12029
crossref_primary_10_1016_j_enzmictec_2018_02_004
crossref_primary_10_1038_srep35709
crossref_primary_10_1111_1574_6968_12149
crossref_primary_10_1016_j_jclepro_2020_123896
crossref_primary_10_1128_AEM_07457_11
crossref_primary_10_1128_JB_00097_08
crossref_primary_10_1159_000351358
crossref_primary_10_1016_j_biortech_2011_08_134
crossref_primary_10_3389_fbioe_2015_00165
crossref_primary_10_1016_j_copbio_2008_04_008
crossref_primary_10_1016_j_copbio_2011_11_026
crossref_primary_10_1371_journal_pone_0054090
crossref_primary_10_3390_ijms222212249
crossref_primary_10_1186_1754_6834_6_179
crossref_primary_10_1186_1754_6834_6_82
crossref_primary_10_1111_j_1751_7915_2008_00034_x
crossref_primary_10_1016_j_greenca_2024_01_003
crossref_primary_10_1093_femsle_fnz209
crossref_primary_10_1111_j_1742_4658_2009_07025_x
crossref_primary_10_1016_j_ymben_2024_03_008
crossref_primary_10_1016_j_copbio_2011_10_008
crossref_primary_10_14720_aas_2014_104_2_5
crossref_primary_10_1007_s10529_010_0363_0
crossref_primary_10_1186_1754_6834_7_100
crossref_primary_10_1128_AEM_01484_10
crossref_primary_10_1007_s12010_012_9680_1
crossref_primary_10_1186_s13068_019_1447_2
crossref_primary_10_1371_journal_pone_0065333
crossref_primary_10_1186_s12896_018_0453_y
crossref_primary_10_1080_10826068_2013_829494
crossref_primary_10_1186_s13068_017_0775_3
crossref_primary_10_1038_s41598_020_71428_6
crossref_primary_10_1002_bbb_1531
crossref_primary_10_3390_microorganisms9071445
crossref_primary_10_1073_pnas_1003584107
crossref_primary_10_1371_journal_pone_0244755
crossref_primary_10_1007_s12155_012_9184_4
crossref_primary_10_1186_1471_2164_13_336
crossref_primary_10_1007_s10295_008_0521_8
crossref_primary_10_1007_s00253_016_7776_1
crossref_primary_10_1016_j_jbiotec_2008_06_003
crossref_primary_10_1186_s13068_016_0697_5
crossref_primary_10_3389_fchem_2014_00066
crossref_primary_10_1002_pmic_200900311
crossref_primary_10_1039_C9GC03062J
crossref_primary_10_1371_journal_pone_0005271
crossref_primary_10_1098_rsif_2009_0564
crossref_primary_10_3390_ijms20133354
crossref_primary_10_1016_j_micres_2012_02_006
crossref_primary_10_1146_annurev_biochem_091208_085603
crossref_primary_10_1016_j_tim_2011_07_005
crossref_primary_10_3390_catal11080996
crossref_primary_10_1021_cb5000289
crossref_primary_10_1186_s13068_016_0607_x
crossref_primary_10_1007_s10570_022_04741_0
crossref_primary_10_3389_fmicb_2018_01947
crossref_primary_10_1002_bit_25250
crossref_primary_10_1007_s00253_016_7321_2
crossref_primary_10_1186_1754_6834_5_64
crossref_primary_10_1007_s12010_018_2864_6
crossref_primary_10_1016_j_cej_2022_135162
crossref_primary_10_1128_AEM_00464_11
crossref_primary_10_1186_1471_2180_11_134
crossref_primary_10_3389_fbioe_2020_00356
crossref_primary_10_1007_s11274_023_03546_y
crossref_primary_10_1074_jbc_M112_405720
crossref_primary_10_4155_bfs_09_25
crossref_primary_10_1002_bit_25139
crossref_primary_10_1186_1754_6834_7_80
crossref_primary_10_1016_j_procbio_2020_02_034
crossref_primary_10_1093_nar_gkz355
crossref_primary_10_1128_AEM_07959_11
crossref_primary_10_1021_acscentsci_0c00050
crossref_primary_10_1107_S0907444912001680
crossref_primary_10_1128_mBio_00411_15
crossref_primary_10_1186_1471_2180_12_214
crossref_primary_10_1016_j_procbio_2024_03_008
crossref_primary_10_1016_j_apenergy_2012_03_016
crossref_primary_10_1073_pnas_1012175107
crossref_primary_10_1002_prot_25753
crossref_primary_10_1186_s13068_017_0928_4
crossref_primary_10_1016_j_bej_2016_10_010
crossref_primary_10_1186_s13068_017_0909_7
crossref_primary_10_1016_j_jbiotec_2016_11_008
crossref_primary_10_1038_ismej_2013_120
crossref_primary_10_1016_j_jmb_2010_07_028
crossref_primary_10_1186_1471_2180_10_219
crossref_primary_10_1128_AEM_02008_10
crossref_primary_10_3390_microorganisms6030080
crossref_primary_10_1128_AEM_03124_09
crossref_primary_10_4056_sigs_2535732
crossref_primary_10_1016_j_enzmictec_2016_04_009
crossref_primary_10_1128_AEM_00009_10
crossref_primary_10_3389_fmicb_2014_00142
crossref_primary_10_1016_j_jbiotec_2015_08_016
Cites_doi 10.1099/00221287-148-1-247
10.1128/MMBR.69.1.124-154.2005
10.1128/jb.177.9.2451-2459.1995
10.1016/S1369-5274(03)00056-0
10.1007/s00253-005-0249-6
10.1128/aem.54.1.204-211.1988
10.1093/nar/14.21.8605
10.1016/0141-0229(90)90004-A
10.1021/pr015504q
10.1128/jb.175.11.3353-3360.1993
10.1016/0141-0229(85)90008-0
10.1111/j.1365-2958.1993.tb01576.x
10.1007/s002530051401
10.1128/jb.163.2.552-559.1985
10.1128/jb.173.1.80-85.1991
10.1006/jsbi.1998.4065
10.1128/aem.43.5.1125-1132.1982
10.1038/nchembio736
10.1128/JB.180.12.3091-3099.1998
10.1021/ac034790h
10.1007/BF01022619
10.1016/j.femsle.2005.06.037
10.1074/mcp.M500061-MCP200
10.1111/j.1365-2958.2006.05182.x
10.1128/AEM.71.8.4672-4678.2005
10.1099/mic.0.25959-0
10.1002/j.1460-2075.1996.tb00960.x
10.1128/JB.185.17.5109-5116.2003
10.1128/JB.187.7.2261-2266.2005
10.1021/ac020271n
10.1128/jb.179.8.2519-2523.1997
10.1128/JB.187.1.99-106.2005
10.1007/s00253-002-1048-y
10.1128/JB.181.17.5288-5295.1999
10.1002/j.1460-2075.1988.tb03284.x
10.1146/annurev.micro.57.030502.091022
10.1007/s00253-006-0689-7
10.1007/BF00504485
10.1073/pnas.92.20.9254
10.1128/jb.172.10.6098-6105.1990
10.1007/s00253-001-0832-4
10.1099/13500872-140-8-1829
10.1128/AEM.68.6.3176-3179.2002
10.1021/bi00405a048
10.1128/jb.179.13.4246-4253.1997
10.1073/pnas.0408734102
10.1128/JB.185.10.3042-3048.2003
10.1016/S0167-7799(97)01032-9
10.1038/nprot.2007.131
10.1099/00221287-145-11-3101
10.1128/MMBR.66.3.506-577.2002
10.1002/pmic.200401199
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright American Society for Microbiology Oct 2007
Copyright © 2007, American Society for Microbiology 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright American Society for Microbiology Oct 2007
– notice: Copyright © 2007, American Society for Microbiology 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.00882-07
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Genetics Abstracts
CrossRef

Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1067-8832
1098-5530
EndPage 6795
ExternalDocumentID PMC2045192
1339908271
17644599
19101728
10_1128_JB_00882_07
jb_189_19_6787
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
ADXHL
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-O
P-S
P2P
PQQKQ
QZG
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c457t-1aa0bc9ba42f1a2e1f1b25110b4c689a13ad9903dc00b6adf0ddd89c2dee57183
ISSN 0021-9193
IngestDate Thu Aug 21 14:11:19 EDT 2025
Fri Jul 11 13:10:50 EDT 2025
Fri Jul 11 00:39:56 EDT 2025
Mon Jun 30 08:40:18 EDT 2025
Mon Jul 21 05:33:16 EDT 2025
Mon Jul 21 09:17:35 EDT 2025
Tue Jul 01 02:45:19 EDT 2025
Thu Apr 24 23:13:58 EDT 2025
Wed May 18 15:54:47 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Cellulosome
Clostridium thermocellum
Clostridiaceae
Proteomics
Clostridiales
Bacteria
Quantitative analysis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c457t-1aa0bc9ba42f1a2e1f1b25110b4c689a13ad9903dc00b6adf0ddd89c2dee57183
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6. Phone: (514) 848-2424. Fax: (514) 848-2881. E-mail: vmartin@alcor.concordia.ca
PMID 17644599
PQID 227113020
PQPubID 40724
PageCount 9
ParticipantIDs proquest_journals_227113020
proquest_miscellaneous_20311388
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2045192
proquest_miscellaneous_68280028
crossref_primary_10_1128_JB_00882_07
pubmed_primary_17644599
pascalfrancis_primary_19101728
crossref_citationtrail_10_1128_JB_00882_07
highwire_asm_jb_189_19_6787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2007
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_49_2
(e_1_3_2_18_2) 1999; 51
(e_1_3_2_42_2) 1996; 15
(e_1_3_2_4_2) 2004; 58
(e_1_3_2_19_2) 1990; 12
e_1_3_2_24_2
(e_1_3_2_47_2) 2005; 102
(e_1_3_2_40_2) 2002; 1
e_1_3_2_9_2
(e_1_3_2_50_2) 1994; 16
e_1_3_2_7_2
e_1_3_2_39_2
(e_1_3_2_51_2) 2005; 5
(e_1_3_2_13_2) 1980; 9
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
(e_1_3_2_22_2) 1986; 14
e_1_3_2_35_2
(e_1_3_2_6_2) 1998; 124
(e_1_3_2_37_2) 2005; 1
(e_1_3_2_3_2) 2001; 57
(e_1_3_2_53_2) 2002; 148
(e_1_3_2_2_2) 2006; 71
(e_1_3_2_20_2) 2005; 4
(e_1_3_2_26_2) 2006; 78
e_1_3_2_48_2
(e_1_3_2_44_2) 1994; 140
(e_1_3_2_43_2) 2007; 74
(e_1_3_2_28_2) 2002; 59
e_1_3_2_21_2
(e_1_3_2_15_2) 1988; 7
e_1_3_2_25_2
(e_1_3_2_29_2) 1985; 7
e_1_3_2_8_2
(e_1_3_2_14_2) 1993; 8
e_1_3_2_17_2
(e_1_3_2_23_2) 2006; 60
(e_1_3_2_54_2) 2003; 149
(e_1_3_2_11_2) 2007; 2
e_1_3_2_30_2
(e_1_3_2_45_2) 1988; 27
e_1_3_2_32_2
(e_1_3_2_38_2) 2003; 6
(e_1_3_2_16_2) 1999; 145
e_1_3_2_36_2
e_1_3_2_55_2
(e_1_3_2_34_2) 2003; 75
(e_1_3_2_41_2) 1997; 15
(e_1_3_2_46_2) 2003; 75
(e_1_3_2_52_2) 2005; 249
(e_1_3_2_27_2) 1995; 92
8918451 - EMBO J. 1996 Nov 1;15(21):5739-51
14670053 - Anal Chem. 2003 Dec 15;75(24):6912-21
9620957 - J Bacteriol. 1998 Jun;180(12):3091-9
8501039 - J Bacteriol. 1993 Jun;175(11):3353-60
17446895 - Nat Protoc. 2007;2(4):953-71
3208757 - EMBO J. 1988 Dec 1;7(12):3971-4
3024110 - Nucleic Acids Res. 1986 Nov 11;14(21):8605-13
10049808 - J Struct Biol. 1998 Dec 15;124(2-3):221-34
12172609 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):455-61
8316083 - Mol Microbiol. 1993 Apr;8(2):325-34
12831897 - Curr Opin Microbiol. 2003 Jun;6(3):219-28
10464199 - J Bacteriol. 1999 Sep;181(17):5288-95
17124583 - Appl Microbiol Biotechnol. 2007 Feb;74(2):422-32
15601693 - J Bacteriol. 2005 Jan;187(1):99-106
11782517 - Microbiology. 2002 Jan;148(Pt 1):247-55
9209040 - J Bacteriol. 1997 Jul;179(13):4246-53
12923083 - J Bacteriol. 2003 Sep;185(17):5109-16
15958392 - Mol Cell Proteomics. 2005 Sep;4(9):1265-72
7568112 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9254-8
10222584 - Appl Microbiol Biotechnol. 1999 Mar;51(3):348-57
16944911 - Anal Chem. 2006 Sep 1;78(17):6265-9
16346009 - Appl Environ Microbiol. 1982 May;43(5):1125-32
16408053 - Nat Chem Biol. 2005 Oct;1(5):252-62
16127726 - Proteomics. 2005 Sep;5(14):3646-53
16006068 - FEMS Microbiol Lett. 2005 Aug 15;249(2):353-8
1987137 - J Bacteriol. 1991 Jan;173(1):80-5
12039789 - Appl Environ Microbiol. 2002 Jun;68(6):3176-9
7730277 - J Bacteriol. 1995 May;177(9):2451-9
16347527 - Appl Environ Microbiol. 1988 Jan;54(1):204-211
4019409 - J Bacteriol. 1985 Aug;163(2):552-9
10589717 - Microbiology. 1999 Nov;145 ( Pt 11):3101-8
12730163 - J Bacteriol. 2003 May;185(10):3042-8
7921236 - Microbiology. 1994 Aug;140 ( Pt 8):1829-38
15755956 - Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54
11778875 - Appl Microbiol Biotechnol. 2001 Dec;57(5-6):660-6
15774868 - J Bacteriol. 2005 Apr;187(7):2261-6
15883376 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7321-5
1366808 - Enzyme Microb Technol. 1990 Sep;12(9):656-62
12643522 - J Proteome Res. 2002 Jan-Feb;1(1):21-6
12209002 - Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents
9098047 - J Bacteriol. 1997 Apr;179(8):2519-23
2211528 - J Bacteriol. 1990 Oct;172(10):6098-105
12624213 - Microbiology. 2003 Feb;149(Pt 2):515-24
16085862 - Appl Environ Microbiol. 2005 Aug;71(8):4672-8
15487947 - Annu Rev Microbiol. 2004;58:521-54
16796673 - Mol Microbiol. 2006 Jun;60(6):1344-54
16532315 - Appl Microbiol Biotechnol. 2006 Aug;71(5):654-60
12553755 - Anal Chem. 2003 Jan 15;75(2):219-27
References_xml – volume: 148
  start-page: 247
  year: 2002
  ident: e_1_3_2_53_2
  publication-title: Microbiology
  doi: 10.1099/00221287-148-1-247
– ident: e_1_3_2_7_2
  doi: 10.1128/MMBR.69.1.124-154.2005
– ident: e_1_3_2_32_2
  doi: 10.1128/jb.177.9.2451-2459.1995
– volume: 6
  start-page: 219
  year: 2003
  ident: e_1_3_2_38_2
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(03)00056-0
– volume: 71
  start-page: 654
  year: 2006
  ident: e_1_3_2_2_2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-005-0249-6
– ident: e_1_3_2_12_2
  doi: 10.1128/aem.54.1.204-211.1988
– volume: 14
  start-page: 8605
  year: 1986
  ident: e_1_3_2_22_2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/14.21.8605
– volume: 12
  start-page: 656
  year: 1990
  ident: e_1_3_2_19_2
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/0141-0229(90)90004-A
– volume: 1
  start-page: 21
  year: 2002
  ident: e_1_3_2_40_2
  publication-title: J. Proteome Res.
  doi: 10.1021/pr015504q
– ident: e_1_3_2_31_2
  doi: 10.1128/jb.175.11.3353-3360.1993
– volume: 7
  start-page: 37
  year: 1985
  ident: e_1_3_2_29_2
  publication-title: Enzyme Microb. Techol.
  doi: 10.1016/0141-0229(85)90008-0
– volume: 8
  start-page: 325
  year: 1993
  ident: e_1_3_2_14_2
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01576.x
– volume: 51
  start-page: 348
  year: 1999
  ident: e_1_3_2_18_2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051401
– ident: e_1_3_2_5_2
  doi: 10.1128/jb.163.2.552-559.1985
– ident: e_1_3_2_35_2
  doi: 10.1128/jb.173.1.80-85.1991
– volume: 124
  start-page: 221
  year: 1998
  ident: e_1_3_2_6_2
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1998.4065
– ident: e_1_3_2_21_2
  doi: 10.1128/aem.43.5.1125-1132.1982
– volume: 1
  start-page: 252
  year: 2005
  ident: e_1_3_2_37_2
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio736
– ident: e_1_3_2_55_2
  doi: 10.1128/JB.180.12.3091-3099.1998
– volume: 75
  start-page: 6912
  year: 2003
  ident: e_1_3_2_34_2
  publication-title: Anal. Chem.
  doi: 10.1021/ac034790h
– volume: 16
  start-page: 29
  year: 1994
  ident: e_1_3_2_50_2
  publication-title: Biotechnol. Lett.
  doi: 10.1007/BF01022619
– ident: e_1_3_2_25_2
– volume: 249
  start-page: 353
  year: 2005
  ident: e_1_3_2_52_2
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/j.femsle.2005.06.037
– volume: 4
  start-page: 1265
  year: 2005
  ident: e_1_3_2_20_2
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M500061-MCP200
– volume: 60
  start-page: 1344
  year: 2006
  ident: e_1_3_2_23_2
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05182.x
– ident: e_1_3_2_39_2
  doi: 10.1128/AEM.71.8.4672-4678.2005
– volume: 149
  start-page: 515
  year: 2003
  ident: e_1_3_2_54_2
  publication-title: Microbiology
  doi: 10.1099/mic.0.25959-0
– volume: 78
  start-page: 6265
  year: 2006
  ident: e_1_3_2_26_2
  publication-title: Chem.
– volume: 15
  start-page: 5739
  year: 1996
  ident: e_1_3_2_42_2
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00960.x
– ident: e_1_3_2_9_2
  doi: 10.1128/JB.185.17.5109-5116.2003
– ident: e_1_3_2_10_2
  doi: 10.1128/JB.187.7.2261-2266.2005
– volume: 75
  start-page: 219
  year: 2003
  ident: e_1_3_2_46_2
  publication-title: Anal. Chem.
  doi: 10.1021/ac020271n
– ident: e_1_3_2_30_2
  doi: 10.1128/jb.179.8.2519-2523.1997
– ident: e_1_3_2_48_2
  doi: 10.1128/JB.187.1.99-106.2005
– volume: 59
  start-page: 455
  year: 2002
  ident: e_1_3_2_28_2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-002-1048-y
– ident: e_1_3_2_24_2
  doi: 10.1128/JB.181.17.5288-5295.1999
– volume: 7
  start-page: 3971
  year: 1988
  ident: e_1_3_2_15_2
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb03284.x
– volume: 58
  start-page: 521
  year: 2004
  ident: e_1_3_2_4_2
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.091022
– volume: 74
  start-page: 422
  year: 2007
  ident: e_1_3_2_43_2
  publication-title: Appl. Microbiol. Biotechnol. V
  doi: 10.1007/s00253-006-0689-7
– volume: 9
  start-page: 189
  year: 1980
  ident: e_1_3_2_13_2
  publication-title: Eur. J. Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00504485
– volume: 92
  start-page: 9254
  year: 1995
  ident: e_1_3_2_27_2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.20.9254
– ident: e_1_3_2_36_2
  doi: 10.1128/jb.172.10.6098-6105.1990
– volume: 57
  start-page: 660
  year: 2001
  ident: e_1_3_2_3_2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-001-0832-4
– volume: 140
  start-page: 1829
  year: 1994
  ident: e_1_3_2_44_2
  publication-title: Microbiology
  doi: 10.1099/13500872-140-8-1829
– ident: e_1_3_2_49_2
  doi: 10.1128/AEM.68.6.3176-3179.2002
– volume: 27
  start-page: 1703
  year: 1988
  ident: e_1_3_2_45_2
  publication-title: Biochemistry
  doi: 10.1021/bi00405a048
– ident: e_1_3_2_17_2
  doi: 10.1128/jb.179.13.4246-4253.1997
– volume: 102
  start-page: 7321
  year: 2005
  ident: e_1_3_2_47_2
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0408734102
– ident: e_1_3_2_8_2
  doi: 10.1128/JB.185.10.3042-3048.2003
– volume: 15
  start-page: 160
  year: 1997
  ident: e_1_3_2_41_2
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(97)01032-9
– volume: 2
  start-page: 953
  year: 2007
  ident: e_1_3_2_11_2
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.131
– volume: 145
  start-page: 3101
  year: 1999
  ident: e_1_3_2_16_2
  publication-title: Microbiology
  doi: 10.1099/00221287-145-11-3101
– ident: e_1_3_2_33_2
  doi: 10.1128/MMBR.66.3.506-577.2002
– volume: 5
  start-page: 3646
  year: 2005
  ident: e_1_3_2_51_2
  publication-title: Proteomics
  doi: 10.1002/pmic.200401199
– reference: 12831897 - Curr Opin Microbiol. 2003 Jun;6(3):219-28
– reference: 16944911 - Anal Chem. 2006 Sep 1;78(17):6265-9
– reference: 15883376 - Proc Natl Acad Sci U S A. 2005 May 17;102(20):7321-5
– reference: 8501039 - J Bacteriol. 1993 Jun;175(11):3353-60
– reference: 8918451 - EMBO J. 1996 Nov 1;15(21):5739-51
– reference: 16346009 - Appl Environ Microbiol. 1982 May;43(5):1125-32
– reference: 10464199 - J Bacteriol. 1999 Sep;181(17):5288-95
– reference: 1987137 - J Bacteriol. 1991 Jan;173(1):80-5
– reference: 16408053 - Nat Chem Biol. 2005 Oct;1(5):252-62
– reference: 17124583 - Appl Microbiol Biotechnol. 2007 Feb;74(2):422-32
– reference: 1366808 - Enzyme Microb Technol. 1990 Sep;12(9):656-62
– reference: 10589717 - Microbiology. 1999 Nov;145 ( Pt 11):3101-8
– reference: 16085862 - Appl Environ Microbiol. 2005 Aug;71(8):4672-8
– reference: 8316083 - Mol Microbiol. 1993 Apr;8(2):325-34
– reference: 11778875 - Appl Microbiol Biotechnol. 2001 Dec;57(5-6):660-6
– reference: 15755956 - Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54
– reference: 12624213 - Microbiology. 2003 Feb;149(Pt 2):515-24
– reference: 12730163 - J Bacteriol. 2003 May;185(10):3042-8
– reference: 16006068 - FEMS Microbiol Lett. 2005 Aug 15;249(2):353-8
– reference: 7568112 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9254-8
– reference: 12553755 - Anal Chem. 2003 Jan 15;75(2):219-27
– reference: 10049808 - J Struct Biol. 1998 Dec 15;124(2-3):221-34
– reference: 9620957 - J Bacteriol. 1998 Jun;180(12):3091-9
– reference: 9209040 - J Bacteriol. 1997 Jul;179(13):4246-53
– reference: 12923083 - J Bacteriol. 2003 Sep;185(17):5109-16
– reference: 12209002 - Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents
– reference: 15774868 - J Bacteriol. 2005 Apr;187(7):2261-6
– reference: 15487947 - Annu Rev Microbiol. 2004;58:521-54
– reference: 15958392 - Mol Cell Proteomics. 2005 Sep;4(9):1265-72
– reference: 12643522 - J Proteome Res. 2002 Jan-Feb;1(1):21-6
– reference: 16796673 - Mol Microbiol. 2006 Jun;60(6):1344-54
– reference: 16127726 - Proteomics. 2005 Sep;5(14):3646-53
– reference: 12172609 - Appl Microbiol Biotechnol. 2002 Aug;59(4-5):455-61
– reference: 14670053 - Anal Chem. 2003 Dec 15;75(24):6912-21
– reference: 17446895 - Nat Protoc. 2007;2(4):953-71
– reference: 9098047 - J Bacteriol. 1997 Apr;179(8):2519-23
– reference: 4019409 - J Bacteriol. 1985 Aug;163(2):552-9
– reference: 2211528 - J Bacteriol. 1990 Oct;172(10):6098-105
– reference: 10222584 - Appl Microbiol Biotechnol. 1999 Mar;51(3):348-57
– reference: 3024110 - Nucleic Acids Res. 1986 Nov 11;14(21):8605-13
– reference: 7921236 - Microbiology. 1994 Aug;140 ( Pt 8):1829-38
– reference: 12039789 - Appl Environ Microbiol. 2002 Jun;68(6):3176-9
– reference: 11782517 - Microbiology. 2002 Jan;148(Pt 1):247-55
– reference: 3208757 - EMBO J. 1988 Dec 1;7(12):3971-4
– reference: 16532315 - Appl Microbiol Biotechnol. 2006 Aug;71(5):654-60
– reference: 16347527 - Appl Environ Microbiol. 1988 Jan;54(1):204-211
– reference: 15601693 - J Bacteriol. 2005 Jan;187(1):99-106
– reference: 7730277 - J Bacteriol. 1995 May;177(9):2451-9
SSID ssj0014452
Score 2.3250074
Snippet Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6787
SubjectTerms Analytical, structural and metabolic biochemistry
Bacteria
Bacteriology
Biochemistry
Biological and medical sciences
Cellobiose - pharmacology
Cellulase - chemistry
Cellulase - genetics
Cellulase - metabolism
Cellulose
Cellulose - pharmacology
Chromatography
Chromatography, Liquid
Clostridium thermocellum
Clostridium thermocellum - genetics
Clostridium thermocellum - metabolism
Enzymes and Proteins
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial - drug effects
Ionization
Liquid chromatography
Mass spectrometry
Miscellaneous
Multienzyme Complexes - chemistry
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Proteins
Proteomics
Proteomics - methods
Spectrometry, Mass, Electrospray Ionization
Title Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis
URI http://jb.asm.org/content/189/19/6787.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17644599
https://www.proquest.com/docview/227113020
https://www.proquest.com/docview/20311388
https://www.proquest.com/docview/68280028
https://pubmed.ncbi.nlm.nih.gov/PMC2045192
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviG_KYPhhT1QpsZPUziMtH1OlIZC2qW-W4yRaUZtMa4s0_g_-X-7iJHWqDgFSlbbJNV_3y_nOvfsdIccMRq08MMJjOhJeKLT24kgaT_AsRr63LE_xH93TL6OT83A6i2a93i8na2mzTobm5966kv_RKqwDvWKV7D9ott0prIDPoF9YgoZh-Vc6toT9g4u6-AR9yMmixE4c6XxTVY1cL0ucmocvE3zDrgVL7NTwA_3Dyvf8ttFFVWiGKURfkbUB65RbspJbnNexJXnuzMkDqDBQXg0-DAefy0XarL-YF5gCOpgO8WV5CzqTDaJNW1s7-f1oeJyU0tP5ljLKNbWY-8Fs-8NhZq0rDI2elMGO-Y1dnMWONYWBVOw38xxLF6ZjJKeVmD3rSoGOrpaVxpkAby-yDZi6VNs7Q2CbmPg9UXA-isUKj32H3OUQfVQ15LM2cwhC0KgmobdXWJd9wkm9c04J6Wjr43d9noaHGtNw9QqexNy2UNkX4-ym6jq-z9lD8qDWO31vEfiI9LLiMbln25jePCHG4pAiDmmZU8AddXBIXRxSB4e0wSFNbqiLQ9rikDY4fErOP308m5x4dfMOz4SRWMOzr_3ExIkOec40z1jOEgxn_SQ0IxlrFugUPKEgNb6fjHSa-2maytjwNMsicJiCZ-SgKIvsBaFgZ6SWkQnB2wXzESc8xakMibdW6HzUJ2-b26tMzWyPDVYWqopwuVTTsarUonzRJ8et8JUldNkvdtjoSenVUnWB0SdHHdVt9xTjEMcl_LzRpaoNxkpxLhjmCfh98qbdCtYc778usnIDIjDGskDK2yVGkmOMBxLPLTK2x67R1ieig5lWAJnku1uK-WXFKM8rlin-8o8XfUjub03CK3Kwvt5kr8EjXydH1fPxG1yZ4uI
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+View+of+the+Clostridium+thermocellum+Cellulosome+Revealed+by+Quantitative+Proteomic+Analysis&rft.jtitle=Journal+of+Bacteriology&rft.au=Nicholas+D.+Gold&rft.au=Vincent+J.+J.+Martin&rft.date=2007-10-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1067-8832&rft.volume=189&rft.issue=19&rft.spage=6787&rft_id=info:doi/10.1128%2FJB.00882-07&rft_id=info%3Apmid%2F17644599&rft.externalDBID=n%2Fa&rft.externalDocID=jb_189_19_6787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon