Enhanced Gluconeogenesis and Increased Energy Storage as Hallmarks of Aging in Saccharomyces cerevisiae

A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 276; no. 38; pp. 36000 - 36007
Main Authors Lin, S S, Manchester, J K, Gordon, J I
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 21.09.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2 Δ, and snf4 Δ strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2 Δ cells, and that it is attenuated in longer-lived snf4 Δ cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD + . The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair.
AbstractList A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2 Δ, and snf4 Δ strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2 Δ cells, and that it is attenuated in longer-lived snf4 Δ cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD + . The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair.
A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2Delta, and snf4Delta strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2Delta cells, and that it is attenuated in longer-lived snf4Delta cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD(+). The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair.
A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2 Delta , and snf4 Delta strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2 Delta cells, and that it is attenuated in longer-lived snf4 Delta cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD super(+). The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair.
Author Jill K. Manchester
Jeffrey I. Gordon
Stephen S. Lin
Author_xml – sequence: 1
  givenname: S S
  surname: Lin
  fullname: Lin, S S
  organization: Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
– sequence: 2
  givenname: J K
  surname: Manchester
  fullname: Manchester, J K
– sequence: 3
  givenname: J I
  surname: Gordon
  fullname: Gordon, J I
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11461906$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1P5DAQxS0Egl2gpUQuEF0Wj504SYnQ8iFxugKQ6CzHGSeGxAF7F7T_PT7tSpQ3zRTzm6d58-Zk308eCTkDtgBW5ldvjVn8ASYKVnPG9sgMWCUyUcDrPpkxxiGreVEdkXmMbyxVXsMhOQLIJdRMzki39L32Blt6N6xN0p469BhdpNq39MGbgDqm6dJj6Db0aTUF3SHVkd7rYRh1eI90svS6c76jztMnbUyvwzRuDEZqMOCXi07jCTmweoh4uuvH5OV2-Xxznz3-vXu4uX7MTF6Uqww41hbSnbwWsrLI24KJpkVEBgglb3JsrM4ZiERYXkgD3Ao0tdWVbrAQx-Ryq_sRps81xpUaXTQ4DDpZW0dVAtSFkP8HoawqKUWZwMUWNGGKMaBVH8El4xsFTP3LQKUM1G8GaeF8p7xuRmx_8d3TE3CxBXrX9d8uoGrcZHocFS-lEpUSMn1A_AAxOJBw
CitedBy_id crossref_primary_10_1038_nature03354
crossref_primary_10_7554_eLife_08527
crossref_primary_10_1016_j_molcel_2010_08_015
crossref_primary_10_1111_j_1467_789X_2007_00377_x
crossref_primary_10_7554_eLife_43808
crossref_primary_10_1038_nature01578
crossref_primary_10_1016_j_abb_2008_12_014
crossref_primary_10_1016_j_mito_2020_09_002
crossref_primary_10_1007_s00294_019_01019_0
crossref_primary_10_1073_pnas_0307929101
crossref_primary_10_1016_j_jbiotec_2021_03_020
crossref_primary_10_1091_mbc_e03_10_0742
crossref_primary_10_1002_jbio_202100344
crossref_primary_10_1007_s00253_016_7662_x
crossref_primary_10_1111_acel_12582
crossref_primary_10_1128_MCB_22_12_4136_4146_2002
crossref_primary_10_4161_15384101_2014_965003
crossref_primary_10_1152_physrev_00011_2008
crossref_primary_10_1016_j_cell_2007_08_047
crossref_primary_10_1371_journal_pone_0194942
crossref_primary_10_15252_emmm_202012005
crossref_primary_10_3390_life10060080
crossref_primary_10_1016_j_freeradbiomed_2008_08_021
crossref_primary_10_1074_jbc_M408388200
crossref_primary_10_1101_gad_233221_113
crossref_primary_10_1016_j_freeradbiomed_2004_04_009
crossref_primary_10_21769_BioProtoc_2937
crossref_primary_10_1016_j_exger_2009_06_001
crossref_primary_10_1111_j_1460_9568_2006_05110_x
crossref_primary_10_1002_bit_27353
crossref_primary_10_1016_j_micpath_2015_10_001
crossref_primary_10_18632_oncotarget_7645
crossref_primary_10_1002_jssc_200800238
crossref_primary_10_1038_nature07813
crossref_primary_10_1016_j_arr_2020_101064
crossref_primary_10_1111_j_1365_2958_2010_07209_x
crossref_primary_10_1016_j_arr_2020_101188
crossref_primary_10_7554_eLife_41046
crossref_primary_10_1074_jbc_M404849200
crossref_primary_10_1186_s12934_020_01391_4
crossref_primary_10_1134_S0006297914070013
crossref_primary_10_1016_j_molmet_2016_09_002
crossref_primary_10_1111_j_1742_4658_2006_05201_x
crossref_primary_10_1128_MMBR_67_3_376_399_2003
crossref_primary_10_1002_pmic_201800420
crossref_primary_10_1097_QAI_0000000000002864
crossref_primary_10_1128_MCB_23_4_1341_1348_2003
crossref_primary_10_18632_aging_101350
crossref_primary_10_1016_j_fgb_2017_11_002
crossref_primary_10_1111_j_1460_9568_2010_07372_x
crossref_primary_10_1038_sj_emboj_7601633
crossref_primary_10_1111_j_1567_1364_2011_00723_x
crossref_primary_10_1016_j_femsyr_2004_10_001
crossref_primary_10_1016_j_biochi_2003_10_019
crossref_primary_10_3390_jof7010006
crossref_primary_10_1016_j_exer_2012_12_007
crossref_primary_10_1016_j_exer_2012_12_008
crossref_primary_10_1016_j_mehy_2006_10_043
crossref_primary_10_3389_fgene_2018_00676
crossref_primary_10_1016_S0306_9877_03_00201_9
crossref_primary_10_1016_j_ab_2008_08_033
crossref_primary_10_1016_j_neuron_2012_06_024
crossref_primary_10_1097_01_hco_0000175517_50181_89
crossref_primary_10_1371_journal_pone_0054011
crossref_primary_10_3390_cells11040599
crossref_primary_10_1016_j_jchromb_2013_11_022
crossref_primary_10_1007_s00412_014_0496_3
crossref_primary_10_1111_j_1474_9726_2008_00424_x
crossref_primary_10_1016_j_ymben_2014_07_008
crossref_primary_10_15252_embr_201642540
crossref_primary_10_1016_j_celrep_2017_01_077
crossref_primary_10_1016_j_asr_2011_02_006
crossref_primary_10_1186_1752_0509_5_51
crossref_primary_10_1007_s10522_014_9528_x
crossref_primary_10_1186_s13568_021_01179_8
crossref_primary_10_1016_j_ab_2015_06_033
crossref_primary_10_1007_s13205_019_1979_y
crossref_primary_10_1101_gad_1648308
crossref_primary_10_1371_journal_pgen_1005974
crossref_primary_10_1016_j_exger_2019_110691
crossref_primary_10_1016_S1568_1637_02_00015_6
crossref_primary_10_1007_s11357_021_00412_3
crossref_primary_10_1128_EC_4_5_861_866_2005
crossref_primary_10_1007_s10522_018_9750_z
crossref_primary_10_1016_j_cell_2007_03_024
crossref_primary_10_1016_j_copbio_2010_09_008
crossref_primary_10_1089_ars_2010_3224
crossref_primary_10_1016_j_neuint_2013_07_001
crossref_primary_10_1016_j_exger_2023_112091
crossref_primary_10_1007_s00216_017_0596_z
crossref_primary_10_1002_arch_21468
crossref_primary_10_1073_pnas_1008189107
crossref_primary_10_1016_j_mrfmmm_2005_08_005
crossref_primary_10_1016_j_yexcr_2014_09_025
crossref_primary_10_1128_MCB_24_18_8255_8263_2004
crossref_primary_10_3390_nu14010101
crossref_primary_10_1074_jbc_M509461200
crossref_primary_10_1189_jlb_0903424
crossref_primary_10_18632_oncotarget_20614
crossref_primary_10_7554_eLife_39911
crossref_primary_10_1016_S0955_0674_03_00006_1
crossref_primary_10_1128_MCB_01461_08
crossref_primary_10_1074_jbc_M114_600528
crossref_primary_10_1111_1567_1364_12001
crossref_primary_10_1046_j_1365_2958_2003_03715_x
crossref_primary_10_1073_pnas_1323918111
crossref_primary_10_1074_jbc_M212818200
crossref_primary_10_1016_j_redox_2016_02_007
crossref_primary_10_1016_j_mehy_2006_01_055
crossref_primary_10_1080_15384101_2015_1093706
crossref_primary_10_1007_s13592_017_0521_7
crossref_primary_10_3389_fgene_2021_693071
crossref_primary_10_1101_gad_1164804
crossref_primary_10_1074_jbc_M607661200
crossref_primary_10_1002_yea_821
crossref_primary_10_1007_s10522_009_9225_3
crossref_primary_10_1074_jbc_M112_394031
crossref_primary_10_1089_ars_2017_7163
crossref_primary_10_1016_j_arr_2010_08_001
crossref_primary_10_1111_cbdd_13022
crossref_primary_10_1146_annurev_cellbio_23_090506_123509
crossref_primary_10_1074_jbc_M111773200
crossref_primary_10_1007_s10522_015_9585_9
crossref_primary_10_1007_s12015_013_9454_3
crossref_primary_10_1142_S0192415X16500440
crossref_primary_10_1074_jbc_RA119_011667
crossref_primary_10_1371_journal_pone_0014352
crossref_primary_10_1128_MCB_24_5_1836_1843_2004
crossref_primary_10_1111_j_1474_9728_2004_00115_x
crossref_primary_10_1016_j_mad_2009_04_005
crossref_primary_10_1093_gerona_63_1_21
Cites_doi 10.1016/0092-8674(95)90499-9
10.1111/j.1574-6976.2001.tb00574.x
10.1073/pnas.96.16.9100
10.1126/science.290.5489.147
10.1126/science.275.5302.980
10.1093/emboj/17.23.7002
10.1126/science.290.5499.2137
10.1073/pnas.95.22.13091
10.1016/S0092-8674(00)81038-7
10.1126/science.289.5487.2126
10.1126/science.285.5432.1390
10.1096/fj.00-0242fje
10.1016/S0960-9822(99)80503-X
10.1073/pnas.87.4.1357
10.1096/fasebj.9.13.7557026
10.1073/pnas.98.2.415
10.1093/genetics/149.1.57
10.1099/00221287-144-1-13
10.1146/annurev.biochem.67.1.821
10.1038/35041700
10.1128/MCB.16.5.1921
10.1073/pnas.250422697
10.1101/gad.14.15.1872
10.1002/yea.320110205
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1074/jbc.M103509200
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 36007
ExternalDocumentID 10_1074_jbc_M103509200
11461906
276_38_36000
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI38200
GroupedDBID -
02
186
2WC
34G
39C
3O-
53G
55
5BI
5GY
5RE
5VS
85S
AARDX
AAWZA
ABFLS
ABOCM
ABPPZ
ABPTK
ABUFD
ABZEH
ACNCT
ADACO
ADBBV
ADBIT
ADCOW
AEILP
AENEX
AFFNX
AFMIJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
C1A
CJ0
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
ET
F20
F5P
FA8
FH7
FRP
GJ
GX1
H13
HH5
IH2
KM
KQ8
L7B
LI
MVM
MYA
N9A
NHB
O0-
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
RPM
SJN
TBC
TN5
UHB
UKR
UPT
UQL
VH1
VQA
WH7
WOQ
X
X7M
XFK
XHC
Y6R
YZZ
ZA5
ZE2
ZGI
ZY4
---
-DZ
-ET
-~X
.55
.GJ
0R~
0SF
18M
6TJ
79B
AAEDW
AAFWJ
AALRI
AAXUO
ABDNZ
ABRJW
ABTAH
ACGFO
ADIYS
ADNWM
ADVLN
AEXQZ
AFOSN
AFPKN
AI.
AITUG
AKRWK
AMRAJ
BTFSW
CGR
CUY
CVF
ECM
EIF
FDB
GROUPED_DOAJ
NPM
ROL
TR2
W8F
WHG
XSW
YQT
YSK
YWH
YYP
~02
~KM
29J
4.4
41~
AAYJJ
AAYOK
AAYXX
ABFSI
ACSFO
ACYGS
AOIJS
BAWUL
CITATION
E.L
HYE
J5H
QZG
XJT
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c457t-12e9f100029368fe2d503bdeee01e172b4ebfa4013029f256c12f3ec9fa8abe53
ISSN 0021-9258
IngestDate Fri Oct 25 13:09:19 EDT 2024
Fri Oct 25 04:36:33 EDT 2024
Fri Aug 23 02:02:59 EDT 2024
Sat Sep 28 08:30:17 EDT 2024
Tue Jan 05 14:52:09 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c457t-12e9f100029368fe2d503bdeee01e172b4ebfa4013029f256c12f3ec9fa8abe53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.jbc.org/article/S0021925819588731/pdf
PMID 11461906
PQID 17886637
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_71195365
proquest_miscellaneous_17886637
crossref_primary_10_1074_jbc_M103509200
pubmed_primary_11461906
highwire_biochem_276_38_36000
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 2001-09-21
PublicationDateYYYYMMDD 2001-09-21
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-21
  day: 21
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2001
Publisher American Society for Biochemistry and Molecular Biology
Publisher_xml – name: American Society for Biochemistry and Molecular Biology
References Lee (10.1074/jbc.M103509200_bib17) 1999; 285
Vanfleteren (10.1074/jbc.M103509200_bib5) 1995; 9
Klein (10.1074/jbc.M103509200_bib13) 1998; 144
Kennedy (10.1074/jbc.M103509200_bib8) 1995; 80
Lin (10.1074/jbc.M103509200_bib10) 2000; 289
Lakowski (10.1074/jbc.M103509200_bib16) 1998; 95
Hardie (10.1074/jbc.M103509200_bib12) 1998; 67
Ewbank (10.1074/jbc.M103509200_bib1) 1997; 275
Muller (10.1074/jbc.M103509200_bib7) 1971; 77
Tanny (10.1074/jbc.M103509200_bib23) 2001; 98
Wolkow (10.1074/jbc.M103509200_bib6) 2000; 290
DeVit (10.1074/jbc.M103509200_bib14) 1999; 9
McDougal (10.1074/jbc.M103509200_bib21) 1990; 87
Arking (10.1074/jbc.M103509200_bib2) 1998
Passoneau (10.1074/jbc.M103509200_bib18) 1993
Guarente (10.1074/jbc.M103509200_bib3) 2000; 408
Jiang (10.1074/jbc.M103509200_bib15) 2000; 14
Lesage (10.1074/jbc.M103509200_bib27) 1996; 16
Ashrafi (10.1074/jbc.M103509200_bib24) 1999; 96
Ashrafi (10.1074/jbc.M103509200_bib11) 2000; 14
Ramaswamy (10.1074/jbc.M103509200_bib19) 1998; 149
Herrero (10.1074/jbc.M103509200_bib20) 1995; 11
Tanner (10.1074/jbc.M103509200_bib22) 2000; 97
Rogina (10.1074/jbc.M103509200_bib4) 2000; 290
Francois (10.1074/jbc.M103509200_bib25) 2001; 25
Smeal (10.1074/jbc.M103509200_bib9) 1996; 84
Vincent (10.1074/jbc.M103509200_bib26) 1998; 17
References_xml – volume: 80
  start-page: 485
  year: 1995
  ident: 10.1074/jbc.M103509200_bib8
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90499-9
  contributor:
    fullname: Kennedy
– volume: 25
  start-page: 125
  year: 2001
  ident: 10.1074/jbc.M103509200_bib25
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2001.tb00574.x
  contributor:
    fullname: Francois
– volume: 96
  start-page: 9100
  year: 1999
  ident: 10.1074/jbc.M103509200_bib24
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.16.9100
  contributor:
    fullname: Ashrafi
– volume: 290
  start-page: 147
  year: 2000
  ident: 10.1074/jbc.M103509200_bib6
  publication-title: Science
  doi: 10.1126/science.290.5489.147
  contributor:
    fullname: Wolkow
– volume: 275
  start-page: 980
  year: 1997
  ident: 10.1074/jbc.M103509200_bib1
  publication-title: Science
  doi: 10.1126/science.275.5302.980
  contributor:
    fullname: Ewbank
– volume: 17
  start-page: 7002
  year: 1998
  ident: 10.1074/jbc.M103509200_bib26
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.23.7002
  contributor:
    fullname: Vincent
– volume: 290
  start-page: 2137
  year: 2000
  ident: 10.1074/jbc.M103509200_bib4
  publication-title: Science
  doi: 10.1126/science.290.5499.2137
  contributor:
    fullname: Rogina
– volume: 95
  start-page: 13091
  year: 1998
  ident: 10.1074/jbc.M103509200_bib16
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.22.13091
  contributor:
    fullname: Lakowski
– volume: 84
  start-page: 633
  year: 1996
  ident: 10.1074/jbc.M103509200_bib9
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81038-7
  contributor:
    fullname: Smeal
– volume: 289
  start-page: 2126
  year: 2000
  ident: 10.1074/jbc.M103509200_bib10
  publication-title: Science
  doi: 10.1126/science.289.5487.2126
  contributor:
    fullname: Lin
– volume: 285
  start-page: 1390
  year: 1999
  ident: 10.1074/jbc.M103509200_bib17
  publication-title: Science
  doi: 10.1126/science.285.5432.1390
  contributor:
    fullname: Lee
– start-page: 417
  year: 1998
  ident: 10.1074/jbc.M103509200_bib2
  contributor:
    fullname: Arking
– volume: 14
  start-page: 2135
  year: 2000
  ident: 10.1074/jbc.M103509200_bib15
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0242fje
  contributor:
    fullname: Jiang
– volume: 9
  start-page: 1231
  year: 1999
  ident: 10.1074/jbc.M103509200_bib14
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80503-X
  contributor:
    fullname: DeVit
– volume: 87
  start-page: 1357
  year: 1990
  ident: 10.1074/jbc.M103509200_bib21
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.87.4.1357
  contributor:
    fullname: McDougal
– volume: 9
  start-page: 1355
  year: 1995
  ident: 10.1074/jbc.M103509200_bib5
  publication-title: FASEB J.
  doi: 10.1096/fasebj.9.13.7557026
  contributor:
    fullname: Vanfleteren
– volume: 98
  start-page: 415
  year: 2001
  ident: 10.1074/jbc.M103509200_bib23
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.98.2.415
  contributor:
    fullname: Tanny
– volume: 149
  start-page: 57
  year: 1998
  ident: 10.1074/jbc.M103509200_bib19
  publication-title: Genetics
  doi: 10.1093/genetics/149.1.57
  contributor:
    fullname: Ramaswamy
– year: 1993
  ident: 10.1074/jbc.M103509200_bib18
  contributor:
    fullname: Passoneau
– volume: 144
  start-page: 13
  year: 1998
  ident: 10.1074/jbc.M103509200_bib13
  publication-title: Microbiology
  doi: 10.1099/00221287-144-1-13
  contributor:
    fullname: Klein
– volume: 67
  start-page: 821
  year: 1998
  ident: 10.1074/jbc.M103509200_bib12
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.821
  contributor:
    fullname: Hardie
– volume: 408
  start-page: 255
  year: 2000
  ident: 10.1074/jbc.M103509200_bib3
  publication-title: Nature
  doi: 10.1038/35041700
  contributor:
    fullname: Guarente
– volume: 16
  start-page: 1921
  year: 1996
  ident: 10.1074/jbc.M103509200_bib27
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.5.1921
  contributor:
    fullname: Lesage
– volume: 97
  start-page: 14178
  year: 2000
  ident: 10.1074/jbc.M103509200_bib22
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.250422697
  contributor:
    fullname: Tanner
– volume: 14
  start-page: 1872
  year: 2000
  ident: 10.1074/jbc.M103509200_bib11
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.15.1872
  contributor:
    fullname: Ashrafi
– volume: 77
  start-page: 20
  year: 1971
  ident: 10.1074/jbc.M103509200_bib7
  publication-title: Arch. Microbiol.
  contributor:
    fullname: Muller
– volume: 11
  start-page: 137
  year: 1995
  ident: 10.1074/jbc.M103509200_bib20
  publication-title: Yeast
  doi: 10.1002/yea.320110205
  contributor:
    fullname: Herrero
SSID ssj0000491
Score 2.1588643
Snippet A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In...
A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 36000
SubjectTerms Culture Media
Energy Metabolism
Gene Expression Profiling
Genes, Fungal
Gluconeogenesis
Oligonucleotide Array Sequence Analysis
Phenotype
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Sip2 protein
Snf1 protein
Snf4 protein
Title Enhanced Gluconeogenesis and Increased Energy Storage as Hallmarks of Aging in Saccharomyces cerevisiae
URI http://www.jbc.org/content/276/38/36000.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11461906
https://search.proquest.com/docview/17886637
https://search.proquest.com/docview/71195365
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCOcAFQcsjhYIPCA7Rhn0_jlEVGqiKhNJKvVnjXTtEpJuquznAlT_O-LG72SqVCpdVshsnjuez_dnzzZiQ91JNu9ihHSTz4OB8zZ0skK6TxoEfgcQpGdSG_tm3eHYRfr2MLgeDP1uqpU3Nx_nvnXEl_2NVvId2VVGy_2DZ9kvxBr5G--IVLYzXe9l4Wv4wDvwTJTwvxXqhRq5lZUW-ihBW-HRq4vvmuLxWCh2oRjNYra7g5qfWcUwWNq5lDrkKwlpf_VIyrVwrgKsl9MRCXSiZJrEmh5PJMtIcHddqfEx6AqsjG83H3e53aY_p0hharlaj0_bhCa6GjRLABpmNvox7WxOe0lGYeOc2VMBzMt_kZm-GW9-c92JxZVK72NEzQPblbk3F6n2yc5xH4qPGeZ6PzzzlG838puB2Qu1bE10rP9SO9yRkWJ515R-Qhz6OVkoXePq9SzmPSyhz7KL9L03mzyT81P_9PrNpsk3fvXLRDOb8KXlirUYnBkfPyECU--RgUkKNFqcfqBYDay_LPnl03FjzgCwamNFbMKMIM9rCjBqYUQszChVtYUbXkmqY0WVJezCjHcyek4vP0_PjmWPP53DyMEpqx_NFJpV_CCljnErhF5Eb8EII4XoCiTEPBZcQat94JpFb554vA5FnElLgIgpekL0Sa_2K0IKD0iTwRIAMCzcFZO1BBJEQEjIovCH52LQtuzZpWNhuKw7JUdP0DPuAwj5DyLEgZRpeQ_KusQfDdlTuMcCG21TMS9IU-Xdy9ycSlR8xiKMheWkM2dUFCQdS6_jw3vV8TR53XeYN2atvNuII-W3N32r8_QXeVaWQ
link.rule.ids 315,783,787,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Gluconeogenesis+and+Increased+Energy+Storage+as+Hallmarks+of+Aging+in+Saccharomyces+cerevisiae&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Lin%2C+Stephen+S.&rft.au=Manchester%2C+Jill+K.&rft.au=Gordon%2C+Jeffrey+I.&rft.date=2001-09-21&rft.issn=0021-9258&rft.volume=276&rft.issue=38&rft.spage=36000&rft.epage=36007&rft_id=info:doi/10.1074%2Fjbc.M103509200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M103509200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon