Enhanced Gluconeogenesis and Increased Energy Storage as Hallmarks of Aging in Saccharomyces cerevisiae
A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between...
Saved in:
Published in | The Journal of biological chemistry Vol. 276; no. 38; pp. 36000 - 36007 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Biochemistry and Molecular Biology
21.09.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric
restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase
that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life
span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base
of global age-associated changes in gene expression in isogenic wild-type, sip2 Î, and snf4 Î strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose
storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2 Î cells, and that it is attenuated in longer-lived snf4 Î cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each
strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate
pathways, as well as glycogen, ATP, and NAD + . The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell
populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this
shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal
age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of
aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of
cellular maintenance and repair. |
---|---|
AbstractList | A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric
restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase
that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life
span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base
of global age-associated changes in gene expression in isogenic wild-type, sip2 Î, and snf4 Î strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose
storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2 Î cells, and that it is attenuated in longer-lived snf4 Î cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each
strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate
pathways, as well as glycogen, ATP, and NAD + . The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell
populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this
shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal
age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of
aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of
cellular maintenance and repair. A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2Delta, and snf4Delta strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2Delta cells, and that it is attenuated in longer-lived snf4Delta cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD(+). The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair. A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2 Delta , and snf4 Delta strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2 Delta cells, and that it is attenuated in longer-lived snf4 Delta cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD super(+). The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair. |
Author | Jill K. Manchester Jeffrey I. Gordon Stephen S. Lin |
Author_xml | – sequence: 1 givenname: S S surname: Lin fullname: Lin, S S organization: Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA – sequence: 2 givenname: J K surname: Manchester fullname: Manchester, J K – sequence: 3 givenname: J I surname: Gordon fullname: Gordon, J I |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11461906$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1P5DAQxS0Egl2gpUQuEF0Wj504SYnQ8iFxugKQ6CzHGSeGxAF7F7T_PT7tSpQ3zRTzm6d58-Zk308eCTkDtgBW5ldvjVn8ASYKVnPG9sgMWCUyUcDrPpkxxiGreVEdkXmMbyxVXsMhOQLIJdRMzki39L32Blt6N6xN0p469BhdpNq39MGbgDqm6dJj6Db0aTUF3SHVkd7rYRh1eI90svS6c76jztMnbUyvwzRuDEZqMOCXi07jCTmweoh4uuvH5OV2-Xxznz3-vXu4uX7MTF6Uqww41hbSnbwWsrLI24KJpkVEBgglb3JsrM4ZiERYXkgD3Ao0tdWVbrAQx-Ryq_sRps81xpUaXTQ4DDpZW0dVAtSFkP8HoawqKUWZwMUWNGGKMaBVH8El4xsFTP3LQKUM1G8GaeF8p7xuRmx_8d3TE3CxBXrX9d8uoGrcZHocFS-lEpUSMn1A_AAxOJBw |
CitedBy_id | crossref_primary_10_1038_nature03354 crossref_primary_10_7554_eLife_08527 crossref_primary_10_1016_j_molcel_2010_08_015 crossref_primary_10_1111_j_1467_789X_2007_00377_x crossref_primary_10_7554_eLife_43808 crossref_primary_10_1038_nature01578 crossref_primary_10_1016_j_abb_2008_12_014 crossref_primary_10_1016_j_mito_2020_09_002 crossref_primary_10_1007_s00294_019_01019_0 crossref_primary_10_1073_pnas_0307929101 crossref_primary_10_1016_j_jbiotec_2021_03_020 crossref_primary_10_1091_mbc_e03_10_0742 crossref_primary_10_1002_jbio_202100344 crossref_primary_10_1007_s00253_016_7662_x crossref_primary_10_1111_acel_12582 crossref_primary_10_1128_MCB_22_12_4136_4146_2002 crossref_primary_10_4161_15384101_2014_965003 crossref_primary_10_1152_physrev_00011_2008 crossref_primary_10_1016_j_cell_2007_08_047 crossref_primary_10_1371_journal_pone_0194942 crossref_primary_10_15252_emmm_202012005 crossref_primary_10_3390_life10060080 crossref_primary_10_1016_j_freeradbiomed_2008_08_021 crossref_primary_10_1074_jbc_M408388200 crossref_primary_10_1101_gad_233221_113 crossref_primary_10_1016_j_freeradbiomed_2004_04_009 crossref_primary_10_21769_BioProtoc_2937 crossref_primary_10_1016_j_exger_2009_06_001 crossref_primary_10_1111_j_1460_9568_2006_05110_x crossref_primary_10_1002_bit_27353 crossref_primary_10_1016_j_micpath_2015_10_001 crossref_primary_10_18632_oncotarget_7645 crossref_primary_10_1002_jssc_200800238 crossref_primary_10_1038_nature07813 crossref_primary_10_1016_j_arr_2020_101064 crossref_primary_10_1111_j_1365_2958_2010_07209_x crossref_primary_10_1016_j_arr_2020_101188 crossref_primary_10_7554_eLife_41046 crossref_primary_10_1074_jbc_M404849200 crossref_primary_10_1186_s12934_020_01391_4 crossref_primary_10_1134_S0006297914070013 crossref_primary_10_1016_j_molmet_2016_09_002 crossref_primary_10_1111_j_1742_4658_2006_05201_x crossref_primary_10_1128_MMBR_67_3_376_399_2003 crossref_primary_10_1002_pmic_201800420 crossref_primary_10_1097_QAI_0000000000002864 crossref_primary_10_1128_MCB_23_4_1341_1348_2003 crossref_primary_10_18632_aging_101350 crossref_primary_10_1016_j_fgb_2017_11_002 crossref_primary_10_1111_j_1460_9568_2010_07372_x crossref_primary_10_1038_sj_emboj_7601633 crossref_primary_10_1111_j_1567_1364_2011_00723_x crossref_primary_10_1016_j_femsyr_2004_10_001 crossref_primary_10_1016_j_biochi_2003_10_019 crossref_primary_10_3390_jof7010006 crossref_primary_10_1016_j_exer_2012_12_007 crossref_primary_10_1016_j_exer_2012_12_008 crossref_primary_10_1016_j_mehy_2006_10_043 crossref_primary_10_3389_fgene_2018_00676 crossref_primary_10_1016_S0306_9877_03_00201_9 crossref_primary_10_1016_j_ab_2008_08_033 crossref_primary_10_1016_j_neuron_2012_06_024 crossref_primary_10_1097_01_hco_0000175517_50181_89 crossref_primary_10_1371_journal_pone_0054011 crossref_primary_10_3390_cells11040599 crossref_primary_10_1016_j_jchromb_2013_11_022 crossref_primary_10_1007_s00412_014_0496_3 crossref_primary_10_1111_j_1474_9726_2008_00424_x crossref_primary_10_1016_j_ymben_2014_07_008 crossref_primary_10_15252_embr_201642540 crossref_primary_10_1016_j_celrep_2017_01_077 crossref_primary_10_1016_j_asr_2011_02_006 crossref_primary_10_1186_1752_0509_5_51 crossref_primary_10_1007_s10522_014_9528_x crossref_primary_10_1186_s13568_021_01179_8 crossref_primary_10_1016_j_ab_2015_06_033 crossref_primary_10_1007_s13205_019_1979_y crossref_primary_10_1101_gad_1648308 crossref_primary_10_1371_journal_pgen_1005974 crossref_primary_10_1016_j_exger_2019_110691 crossref_primary_10_1016_S1568_1637_02_00015_6 crossref_primary_10_1007_s11357_021_00412_3 crossref_primary_10_1128_EC_4_5_861_866_2005 crossref_primary_10_1007_s10522_018_9750_z crossref_primary_10_1016_j_cell_2007_03_024 crossref_primary_10_1016_j_copbio_2010_09_008 crossref_primary_10_1089_ars_2010_3224 crossref_primary_10_1016_j_neuint_2013_07_001 crossref_primary_10_1016_j_exger_2023_112091 crossref_primary_10_1007_s00216_017_0596_z crossref_primary_10_1002_arch_21468 crossref_primary_10_1073_pnas_1008189107 crossref_primary_10_1016_j_mrfmmm_2005_08_005 crossref_primary_10_1016_j_yexcr_2014_09_025 crossref_primary_10_1128_MCB_24_18_8255_8263_2004 crossref_primary_10_3390_nu14010101 crossref_primary_10_1074_jbc_M509461200 crossref_primary_10_1189_jlb_0903424 crossref_primary_10_18632_oncotarget_20614 crossref_primary_10_7554_eLife_39911 crossref_primary_10_1016_S0955_0674_03_00006_1 crossref_primary_10_1128_MCB_01461_08 crossref_primary_10_1074_jbc_M114_600528 crossref_primary_10_1111_1567_1364_12001 crossref_primary_10_1046_j_1365_2958_2003_03715_x crossref_primary_10_1073_pnas_1323918111 crossref_primary_10_1074_jbc_M212818200 crossref_primary_10_1016_j_redox_2016_02_007 crossref_primary_10_1016_j_mehy_2006_01_055 crossref_primary_10_1080_15384101_2015_1093706 crossref_primary_10_1007_s13592_017_0521_7 crossref_primary_10_3389_fgene_2021_693071 crossref_primary_10_1101_gad_1164804 crossref_primary_10_1074_jbc_M607661200 crossref_primary_10_1002_yea_821 crossref_primary_10_1007_s10522_009_9225_3 crossref_primary_10_1074_jbc_M112_394031 crossref_primary_10_1089_ars_2017_7163 crossref_primary_10_1016_j_arr_2010_08_001 crossref_primary_10_1111_cbdd_13022 crossref_primary_10_1146_annurev_cellbio_23_090506_123509 crossref_primary_10_1074_jbc_M111773200 crossref_primary_10_1007_s10522_015_9585_9 crossref_primary_10_1007_s12015_013_9454_3 crossref_primary_10_1142_S0192415X16500440 crossref_primary_10_1074_jbc_RA119_011667 crossref_primary_10_1371_journal_pone_0014352 crossref_primary_10_1128_MCB_24_5_1836_1843_2004 crossref_primary_10_1111_j_1474_9728_2004_00115_x crossref_primary_10_1016_j_mad_2009_04_005 crossref_primary_10_1093_gerona_63_1_21 |
Cites_doi | 10.1016/0092-8674(95)90499-9 10.1111/j.1574-6976.2001.tb00574.x 10.1073/pnas.96.16.9100 10.1126/science.290.5489.147 10.1126/science.275.5302.980 10.1093/emboj/17.23.7002 10.1126/science.290.5499.2137 10.1073/pnas.95.22.13091 10.1016/S0092-8674(00)81038-7 10.1126/science.289.5487.2126 10.1126/science.285.5432.1390 10.1096/fj.00-0242fje 10.1016/S0960-9822(99)80503-X 10.1073/pnas.87.4.1357 10.1096/fasebj.9.13.7557026 10.1073/pnas.98.2.415 10.1093/genetics/149.1.57 10.1099/00221287-144-1-13 10.1146/annurev.biochem.67.1.821 10.1038/35041700 10.1128/MCB.16.5.1921 10.1073/pnas.250422697 10.1101/gad.14.15.1872 10.1002/yea.320110205 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 M7N P64 RC3 7X8 |
DOI | 10.1074/jbc.M103509200 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 36007 |
ExternalDocumentID | 10_1074_jbc_M103509200 11461906 276_38_36000 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI38200 |
GroupedDBID | - 02 186 2WC 34G 39C 3O- 53G 55 5BI 5GY 5RE 5VS 85S AARDX AAWZA ABFLS ABOCM ABPPZ ABPTK ABUFD ABZEH ACNCT ADACO ADBBV ADBIT ADCOW AEILP AENEX AFFNX AFMIJ AIZTS ALMA_UNASSIGNED_HOLDINGS C1A CJ0 CS3 DIK DL DU5 DZ E3Z EBS EJD ET F20 F5P FA8 FH7 FRP GJ GX1 H13 HH5 IH2 KM KQ8 L7B LI MVM MYA N9A NHB O0- OHT OK1 P-O P0W P2P R.V RHF RHI RNS RPM SJN TBC TN5 UHB UKR UPT UQL VH1 VQA WH7 WOQ X X7M XFK XHC Y6R YZZ ZA5 ZE2 ZGI ZY4 --- -DZ -ET -~X .55 .GJ 0R~ 0SF 18M 6TJ 79B AAEDW AAFWJ AALRI AAXUO ABDNZ ABRJW ABTAH ACGFO ADIYS ADNWM ADVLN AEXQZ AFOSN AFPKN AI. AITUG AKRWK AMRAJ BTFSW CGR CUY CVF ECM EIF FDB GROUPED_DOAJ NPM ROL TR2 W8F WHG XSW YQT YSK YWH YYP ~02 ~KM 29J 4.4 41~ AAYJJ AAYOK AAYXX ABFSI ACSFO ACYGS AOIJS BAWUL CITATION E.L HYE J5H QZG XJT 8FD FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c457t-12e9f100029368fe2d503bdeee01e172b4ebfa4013029f256c12f3ec9fa8abe53 |
ISSN | 0021-9258 |
IngestDate | Fri Oct 25 13:09:19 EDT 2024 Fri Oct 25 04:36:33 EDT 2024 Fri Aug 23 02:02:59 EDT 2024 Sat Sep 28 08:30:17 EDT 2024 Tue Jan 05 14:52:09 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c457t-12e9f100029368fe2d503bdeee01e172b4ebfa4013029f256c12f3ec9fa8abe53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.jbc.org/article/S0021925819588731/pdf |
PMID | 11461906 |
PQID | 17886637 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_71195365 proquest_miscellaneous_17886637 crossref_primary_10_1074_jbc_M103509200 pubmed_primary_11461906 highwire_biochem_276_38_36000 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 2001-09-21 |
PublicationDateYYYYMMDD | 2001-09-21 |
PublicationDate_xml | – month: 09 year: 2001 text: 2001-09-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2001 |
Publisher | American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: American Society for Biochemistry and Molecular Biology |
References | Lee (10.1074/jbc.M103509200_bib17) 1999; 285 Vanfleteren (10.1074/jbc.M103509200_bib5) 1995; 9 Klein (10.1074/jbc.M103509200_bib13) 1998; 144 Kennedy (10.1074/jbc.M103509200_bib8) 1995; 80 Lin (10.1074/jbc.M103509200_bib10) 2000; 289 Lakowski (10.1074/jbc.M103509200_bib16) 1998; 95 Hardie (10.1074/jbc.M103509200_bib12) 1998; 67 Ewbank (10.1074/jbc.M103509200_bib1) 1997; 275 Muller (10.1074/jbc.M103509200_bib7) 1971; 77 Tanny (10.1074/jbc.M103509200_bib23) 2001; 98 Wolkow (10.1074/jbc.M103509200_bib6) 2000; 290 DeVit (10.1074/jbc.M103509200_bib14) 1999; 9 McDougal (10.1074/jbc.M103509200_bib21) 1990; 87 Arking (10.1074/jbc.M103509200_bib2) 1998 Passoneau (10.1074/jbc.M103509200_bib18) 1993 Guarente (10.1074/jbc.M103509200_bib3) 2000; 408 Jiang (10.1074/jbc.M103509200_bib15) 2000; 14 Lesage (10.1074/jbc.M103509200_bib27) 1996; 16 Ashrafi (10.1074/jbc.M103509200_bib24) 1999; 96 Ashrafi (10.1074/jbc.M103509200_bib11) 2000; 14 Ramaswamy (10.1074/jbc.M103509200_bib19) 1998; 149 Herrero (10.1074/jbc.M103509200_bib20) 1995; 11 Tanner (10.1074/jbc.M103509200_bib22) 2000; 97 Rogina (10.1074/jbc.M103509200_bib4) 2000; 290 Francois (10.1074/jbc.M103509200_bib25) 2001; 25 Smeal (10.1074/jbc.M103509200_bib9) 1996; 84 Vincent (10.1074/jbc.M103509200_bib26) 1998; 17 |
References_xml | – volume: 80 start-page: 485 year: 1995 ident: 10.1074/jbc.M103509200_bib8 publication-title: Cell doi: 10.1016/0092-8674(95)90499-9 contributor: fullname: Kennedy – volume: 25 start-page: 125 year: 2001 ident: 10.1074/jbc.M103509200_bib25 publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2001.tb00574.x contributor: fullname: Francois – volume: 96 start-page: 9100 year: 1999 ident: 10.1074/jbc.M103509200_bib24 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.16.9100 contributor: fullname: Ashrafi – volume: 290 start-page: 147 year: 2000 ident: 10.1074/jbc.M103509200_bib6 publication-title: Science doi: 10.1126/science.290.5489.147 contributor: fullname: Wolkow – volume: 275 start-page: 980 year: 1997 ident: 10.1074/jbc.M103509200_bib1 publication-title: Science doi: 10.1126/science.275.5302.980 contributor: fullname: Ewbank – volume: 17 start-page: 7002 year: 1998 ident: 10.1074/jbc.M103509200_bib26 publication-title: EMBO J. doi: 10.1093/emboj/17.23.7002 contributor: fullname: Vincent – volume: 290 start-page: 2137 year: 2000 ident: 10.1074/jbc.M103509200_bib4 publication-title: Science doi: 10.1126/science.290.5499.2137 contributor: fullname: Rogina – volume: 95 start-page: 13091 year: 1998 ident: 10.1074/jbc.M103509200_bib16 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.22.13091 contributor: fullname: Lakowski – volume: 84 start-page: 633 year: 1996 ident: 10.1074/jbc.M103509200_bib9 publication-title: Cell doi: 10.1016/S0092-8674(00)81038-7 contributor: fullname: Smeal – volume: 289 start-page: 2126 year: 2000 ident: 10.1074/jbc.M103509200_bib10 publication-title: Science doi: 10.1126/science.289.5487.2126 contributor: fullname: Lin – volume: 285 start-page: 1390 year: 1999 ident: 10.1074/jbc.M103509200_bib17 publication-title: Science doi: 10.1126/science.285.5432.1390 contributor: fullname: Lee – start-page: 417 year: 1998 ident: 10.1074/jbc.M103509200_bib2 contributor: fullname: Arking – volume: 14 start-page: 2135 year: 2000 ident: 10.1074/jbc.M103509200_bib15 publication-title: FASEB J. doi: 10.1096/fj.00-0242fje contributor: fullname: Jiang – volume: 9 start-page: 1231 year: 1999 ident: 10.1074/jbc.M103509200_bib14 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80503-X contributor: fullname: DeVit – volume: 87 start-page: 1357 year: 1990 ident: 10.1074/jbc.M103509200_bib21 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.87.4.1357 contributor: fullname: McDougal – volume: 9 start-page: 1355 year: 1995 ident: 10.1074/jbc.M103509200_bib5 publication-title: FASEB J. doi: 10.1096/fasebj.9.13.7557026 contributor: fullname: Vanfleteren – volume: 98 start-page: 415 year: 2001 ident: 10.1074/jbc.M103509200_bib23 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.98.2.415 contributor: fullname: Tanny – volume: 149 start-page: 57 year: 1998 ident: 10.1074/jbc.M103509200_bib19 publication-title: Genetics doi: 10.1093/genetics/149.1.57 contributor: fullname: Ramaswamy – year: 1993 ident: 10.1074/jbc.M103509200_bib18 contributor: fullname: Passoneau – volume: 144 start-page: 13 year: 1998 ident: 10.1074/jbc.M103509200_bib13 publication-title: Microbiology doi: 10.1099/00221287-144-1-13 contributor: fullname: Klein – volume: 67 start-page: 821 year: 1998 ident: 10.1074/jbc.M103509200_bib12 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.821 contributor: fullname: Hardie – volume: 408 start-page: 255 year: 2000 ident: 10.1074/jbc.M103509200_bib3 publication-title: Nature doi: 10.1038/35041700 contributor: fullname: Guarente – volume: 16 start-page: 1921 year: 1996 ident: 10.1074/jbc.M103509200_bib27 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.5.1921 contributor: fullname: Lesage – volume: 97 start-page: 14178 year: 2000 ident: 10.1074/jbc.M103509200_bib22 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.250422697 contributor: fullname: Tanner – volume: 14 start-page: 1872 year: 2000 ident: 10.1074/jbc.M103509200_bib11 publication-title: Genes Dev. doi: 10.1101/gad.14.15.1872 contributor: fullname: Ashrafi – volume: 77 start-page: 20 year: 1971 ident: 10.1074/jbc.M103509200_bib7 publication-title: Arch. Microbiol. contributor: fullname: Muller – volume: 11 start-page: 137 year: 1995 ident: 10.1074/jbc.M103509200_bib20 publication-title: Yeast doi: 10.1002/yea.320110205 contributor: fullname: Herrero |
SSID | ssj0000491 |
Score | 2.1588643 |
Snippet | A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric
restriction of model organisms. In... A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 36000 |
SubjectTerms | Culture Media Energy Metabolism Gene Expression Profiling Genes, Fungal Gluconeogenesis Oligonucleotide Array Sequence Analysis Phenotype Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - physiology Sip2 protein Snf1 protein Snf4 protein |
Title | Enhanced Gluconeogenesis and Increased Energy Storage as Hallmarks of Aging in Saccharomyces cerevisiae |
URI | http://www.jbc.org/content/276/38/36000.abstract https://www.ncbi.nlm.nih.gov/pubmed/11461906 https://search.proquest.com/docview/17886637 https://search.proquest.com/docview/71195365 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCOcAFQcsjhYIPCA7Rhn0_jlEVGqiKhNJKvVnjXTtEpJuquznAlT_O-LG72SqVCpdVshsnjuez_dnzzZiQ91JNu9ihHSTz4OB8zZ0skK6TxoEfgcQpGdSG_tm3eHYRfr2MLgeDP1uqpU3Nx_nvnXEl_2NVvId2VVGy_2DZ9kvxBr5G--IVLYzXe9l4Wv4wDvwTJTwvxXqhRq5lZUW-ihBW-HRq4vvmuLxWCh2oRjNYra7g5qfWcUwWNq5lDrkKwlpf_VIyrVwrgKsl9MRCXSiZJrEmh5PJMtIcHddqfEx6AqsjG83H3e53aY_p0hharlaj0_bhCa6GjRLABpmNvox7WxOe0lGYeOc2VMBzMt_kZm-GW9-c92JxZVK72NEzQPblbk3F6n2yc5xH4qPGeZ6PzzzlG838puB2Qu1bE10rP9SO9yRkWJ515R-Qhz6OVkoXePq9SzmPSyhz7KL9L03mzyT81P_9PrNpsk3fvXLRDOb8KXlirUYnBkfPyECU--RgUkKNFqcfqBYDay_LPnl03FjzgCwamNFbMKMIM9rCjBqYUQszChVtYUbXkmqY0WVJezCjHcyek4vP0_PjmWPP53DyMEpqx_NFJpV_CCljnErhF5Eb8EII4XoCiTEPBZcQat94JpFb554vA5FnElLgIgpekL0Sa_2K0IKD0iTwRIAMCzcFZO1BBJEQEjIovCH52LQtuzZpWNhuKw7JUdP0DPuAwj5DyLEgZRpeQ_KusQfDdlTuMcCG21TMS9IU-Xdy9ycSlR8xiKMheWkM2dUFCQdS6_jw3vV8TR53XeYN2atvNuII-W3N32r8_QXeVaWQ |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Gluconeogenesis+and+Increased+Energy+Storage+as+Hallmarks+of+Aging+in+Saccharomyces+cerevisiae&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Lin%2C+Stephen+S.&rft.au=Manchester%2C+Jill+K.&rft.au=Gordon%2C+Jeffrey+I.&rft.date=2001-09-21&rft.issn=0021-9258&rft.volume=276&rft.issue=38&rft.spage=36000&rft.epage=36007&rft_id=info:doi/10.1074%2Fjbc.M103509200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M103509200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |